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Preface

This report has been presented in order to satisfy the requirements for the MAT-
651 Discipline specific Dissertation subject of the program Master of Science in
Mathematics for the academic year 2023-2024.

The Riemann-Stieltjes integral: Functions, Geometric interpretation and some
Applications" is the subject of this report. There are five chapters in it. After gain-
ing an understanding of the Riemann-Stieltjes integral, we examine its geometric
interpretation, some applications,and generalization to the Lebesgue-Stieltjes in-
tegral.

Chapter 1:
This chapter serves as an introduction, outlining the significance of the
Riemann-Stieltjes integral as well as some preliminaries.

Chapter 2:

The definition and a discussion of some of the features of the Riemann-Stieltjes
integral are covered in chapter 2. The impact of various integrator functions on
the integral is examined. The Mean value theorems and the Fundamental
theorem of Calculus for the Riemann-Stieltjes integral are studied.

Chapter 3:
The software "GeoGebra" is used to interpret the Riemann-Stieltjes integral
geometrically.

Chapter 4:
Some applications of the Riemann-Stieltjes integral in Probability theory and
Number theory are discussed.

11



Chapter 5:
The generalization of Riemann-Stieltjes integral to Lebesgue-Stiltjes integral, by
integrating over measurable sets instead of compact intervals is studied in this

chapter.
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Abstract

This report is a study of the existence, characterization and some of the properties
of the Riemann-Stieltjes integral. The mean value theorems and the Fundamen-
tal theorem of Calculus for the Riemann-Stieltjes integral are studied. Next, we
interprete the integral geometrically and consider the impact of the integrator func-
tions on the integral. Further, we give some applications in number theory. We
also discuss some applications in Probability theory, where the Riemann-Stieltjes
integral yields a general formula for the expectation, independent of it’s underlying
distribution, to demonstrate the integral’s versatility. The integral is then further
generalized to Lebesgue-Stieltjes integral.

Keywords: Riemann-Stieltjes integral, integrator functions, geometric
interpretation, Mean value theorems, Fundamental theorem of calculus for
Riemann-Stieltjes integral.
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Chapter 1

Notations and abbreviations

fecCla,b] | f is continuous on [a,b]

m* (F) Outer measure of E

m (F) Measure of F

S(P, f,«) Riemann-Stieltjes sum of f with respect to «

f € Ryla,b] | fis Riemann-Stieltjes integrable on [a, b] w.r.t. «

SZ fda Riemann-Stieltjes integral of f w.r.t. o from a to b
feRla,b] | fis Riemann integrable on [a, 0]
I(f, «) Upper integral of f w.r.t. «




Chapter 2

Introduction

The Riemann—Stieltjes integral is a generalization of the Riemann integral,
named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of
this integral was first published in 1894 by Stieltjes.

This generalization is useful in applications and also served as a foundation
for the corresponding extension of the Lebesgue integration theory. Stieljes was a
Dutch-born French mathematician who had an interesting career path to mathe-
matics. He died in 1894 at the age of 38, too early to see his work published and
his integral gain prominence.

b

The main distinction of the Stietjes integral { fda from the Riemann
integral is that it depends on two functions: (Sne, the integrand f and then a
function « that replaces the identity map (that is, a(z) = x ) in the increment
of the underlying variable. The Riemann-Stieltjes integral is called so not because
Riemann had anything to do with it but rather that the integral uses the frame-
work of the Riemann integral. A version called Lebesgue-Stieltjes integral exists
in Lebesgue theory of integration. The Riemann integral is thus a special case of

the Riemann-Stieltjes integral.



Stieltjes integral allows us to generalize the notion of area to the situation when
the “length” of interval [t1, 5] is given by « (t2) — a/(t1) and area of the rectangle
[t1,t2] x [0, k] ( where h is the height of the rectangle), is thus h [« (t3) — a (¢1)].
Notably, this includes negative “lengths” but this is no problem because the Rie-
mann integral anyway computes the signed area. The Stieltjes integral is quite
useful in probability. There « is usually the cumulative distribution function of a

random variable X.

The use of the Stieltjes integral permits treating all the various kinds of dis-
tributions of X — namely, discrete, continuous and mixtures thereof — under the

same umbrella.

We note that Rudin’s book presents a different definition of the Stieltjes integral
which is based on Darboux’s approach to Riemann integration. This streamlines
the analysis somewhat but forces us to work with a monotone or, at best, of
bounded variation. The applications mentioned earlier are not always of this kind
and so we prefer to work with the Stieltjes integral in the Riemann sense. However,
the two definitions are equivalent whenever the integrator function is monotonically

increasing and the same has been proved in the following chapter.



2.1 Preliminaries

Definition 1 (Upper bound of a set). Let X be a subset of R. u is said to be an

upper bound for the set X if u > x for all x € X.

Definition 2 (Lower bound of a set). Let X be a subset of R. v is said to be an

lower bound for the set X if v < z for all z € X.

Definition 3 (Supremum of a set). Let X be a subset of R that is bounded above.

A real number M is called the sup of X if the following conditions hold:
i M is an upper bound for X.
i seX, s<M = sisnotan upper bound for X.

Definition 4 (Infimum of a set). Let X be a subset of R that is bounded below.

A real number m is called the inf of X if the following conditions hold:
i m is a lower bound for X.
ii se X, s>m = s isnot alower bound for X.

Definition 5 (A characterization of Supremum). Let X be a non-empty subset
of R that is bounded below. Then M = sup X if and only if the following two

conditions hold:
i M is an upper bound for X.
ii Given € > 0, there exists a € X such that M — e < a.

Definition 6 (A characterization of infimum). Let X be a non-empty subset of R
that is bounded above. Then m = inf X if and only if the following two conditions

hold:



1 m is a lower bound for X.
ii Given € > 0, there exists b € X such that b <m + e.

Definition 7 (Covering of a set). Let E be a subset of R. A collection of subsets

F ={F, : a e A} is called a covering of the set E'if E < | F,.

ael
Definition 8 (Continuity at a point in a closed and bounded interval). Let [a, b]
be a closed and bounded interval in R. Let f : [a,b] — R be defined. f is said
to be continuous at a point ¢ € (a,b) if for € > 0, there exists a 6 > 0 such that
|z —a| < § implies |f (z) — f(c)| <€
f is continuous at a if for € > 0, there exists a § > 0 such that x € (a, a + ¢) implies

|f () — f(a)| <e. fis continuous at b if for € > 0, there exists a 6 > 0 such that

x € (b—0,b) implies |f (z) — f (b)].

Definition 9 (Uniformly continuous function). A function f : [a,b] — R is said
to be uniformly continuous on |[a, b] if given € > 0, there exists a § > 0 such that

for all z, y € [a,b] with |z — y| < J, we have |f (z) — f (y)| <e.

Definition 10 (Differentiable function). Let f [a,b] — R be a function. Suppose
c € (a,b). fis differentiable at = = ¢ if lim fla)= {9

T—C T—C

exists.

Theorem 1 (Lagrange’s mean value theorem on R). Let [a, b] be a closed bounded

interval and f : [a,b] — R be a function such that
i [ is continuous on [a,b].

i [ is differentiable on the open interval (a,b),

then there exists c € (a,b) such that f (b) — f(a) = (b—a) f'(c)



Chapter 3

Riemann-Stieltjes Integral

3.1 Riemann-Stieltjes integral

Definition 11 (Bounded function). Let X < R. A function f : X — R is said
to be bounded on X if there exist m, M € R such that m < f(z) < M for all

x € [a,b] . Equivalently, there exists k = 0 such that |f (z)| < k for all z € [a,b].

We consider f,« : [a,b] — R, that is, unless otherwise stated, all functions

f,9,a, B etc. will be assumed to be real valued functions defined and bounded on

[a,b].

Definition 12 (Monotonically increasing function). A function f : [a,b] — R is
said to be monotonically increasing on [a,b] if x < y implies f (z) < f (y) for all

z,y € [a,b]

Definition 13 (Partition of an interval). By a partition of the interval [a,b], we

mean a set of points P = {a = zg,x1, -+ ,x, = b} where g < 1 < -+ < z,.



Definition 14 (Refinement of a partition). A partition @ of [a, b] is said to be a

refinement of the partition P on [a,b] if P < Q.

Definition 15 (Riemann-Stieltjes sum). Let P = {a = x¢, 21, - ,2, = b} be a
partition of [a,b] and let ¢, be a point in the sub-interval [x;_1,x]. A sum of
the form S (P, f,a) = i (tr) Acy, is called the Riemann-Stiletjes sum of f with
respect to a. o

Definition 16 (Riemann-Stieltjes Integral). We say f is Riemann-Stieltjes in-
tegrable with respect to « on [a,b] if there exists a real number A having the
following property:

Given € > 0, there exists a partition P, of [a,b] such that for every choice of the

points t in [x_1, 2] and for any partition P finer that P, we have

|S<P,f,&)—A’ <€
where S (P, f,a) = éjl I (tr) Aay.

When such a number A exists, it is uniquely determined and is denoted by
SZ fdo or by SZ f (z) da(x). We also say that the Riemann-Stieltjes integral exists.
The functions f and « are referred to as the integrand and the integrator respec-
tively. In the special case when « (x) = z, we write S (P, f) instead of S (P, f, «)
and f € R instead of f € R,. The integral is then called a Riemann integral and is
denoted by SZ fdz or by SZ f (z) dz. The numerical value of SZ f (z) da (x) depends
only on f,a,a and b, and does not depend on the symbol x. The letter x is a

"dummy variable" and may be replaced by any other convinient symbol.



3.2 Linearity

It is very easy to prove that the Riemann-Stieltjes integral is linear with respect

to the integrand and the integrator.

3.2.1 Linearity w.r.t. integrand

Theorem 2. Let f,g € R, [a,b]. Then c1f + cag € Ry [a,b] for all ¢1,c € R and

we have
b

fb (cif +cag)da =c Jb fda + 02-[ gda

a a a

Proof. Let h = c1f + cag

Given a partition P of [a,b], we can write

M=

S (P, h, Oé) = h (tk)AOdk

Eey
I
—

I
1=

[(crf + cag) (th)] A

el
Il
—

[
1=

(crf (tr) + cag (tr)) Ay,

o~
Il
—_

= Z f(te) Aag + c2 Z g (tg) Ay

k=1 k=1

:Cls(P7f7a)+CZS(Pag7a>

Let € > 0
f € Ry la,b] = there exists a partition P. of [a, b] such that for any partition

PoP,
b

’S(P,f,&)—f deé

a

<€




g € Ry |a,b] = 3 a partition P! of [a, b] such that for any partition P 2 P/,

b

IS(Pag7a)_f ngé

a

< €

Let P’ = P. U P!

— For any partition P 2 P/, we have

b b
S(P,f,oz)—ffda < e and S(P,g,a)~fgdoz <e€

Cl‘S(Pvfaa)—i_CQS(Pagva)

b b
—clf fda—c2j gda

S(P, f,«a) — Jb fda

b
S(P,Q,OZ)—J‘ gda

a

a a

b b
‘S(P, h, &) *clj fda*CQJ gda

< e

+ |CQ|

< ‘Cl|€+ ‘02’6

= (lex] +[eaf) €

(le + C2g> = Ra [a,b] .



3.2.2 Linearity w.r.t. integrator

Theorem 3. If f € R, [a,b] and f € Rgla,b] , then f € R ateop) 0N |a,b] for all

c1,c2 € R and we have

Lbfd(cloz+02ﬁ) =c Lbfdoz+02 Lbfdﬁ

Proof. Let e >0
f € Ryla,b] = there exists a partition P, of [a,b] such that for a partition

PQPl,
b

‘S (P, f,a) — J fda

a

<€

f € Rgla,b] = there exists a partition P, of [a, b] such that for a partition

PQPQ,
b

‘S(P,m) —J F

a

<€

LetpezPlng

Let n = cta + 3

I
[M]=

>
Il
—

I
=

f () (0 (wx) = (2-1))

o~
Il
—

Il
=

I (tr) ((croe + c2B) (wx) — (cra + c28) (T—1))

el
Il
it

Il
M=

f (tk) (ClAOék -+ CQA5k>

T

1
n n

=0 Z [ (tr) Ay + ¢ Z I (tr) AP

k=1 k=1

10



b b
‘S(P,f,n)—clj fda—@f fdﬁ’ -

1S (P, f,a) + 2SS (P, f, B)

- Lb fda — ¢ Lb fdﬁ‘

alS(Pf,a)— bfda
J

ro (S (P.1,5) - Jab de> ‘

= |1

S(Rﬁa)—fbfda

+ |ea]

b
5.9 - | fdﬁ‘

< ’Cl|€+ ’CQ|€

= (lea] + lea) €

3.3 Additivity

Our next result is somewhat analogous to the previous two theorems and it tells

us that the integral is additive with respect to the interval of integration.

Theorem 4. Assume that c € (a,b). If two of the three integrals in the equation

given below exist, then the third also exists and we have

Lc fda + Lb fda = Lb fda

Proof. 1f P is a partition of [a, b] such that c € P, let P’ = Pn|a,c] and P" = Pn

[c,b] denote the corresponding partitions of [a,c] and [c, b] respectively. Without

11



loss of generality, let us assume that ¢ = z,, for some 1 < m <n

S(P fa) =) f (tx) Ay
k=1

Il

f (tk) Aak + i f (tk) A@k

k=m+1

S(P, f,a)+S(P" f,«)

I
NgE

B
Il
_

c b
Assume that § fda and § fda exist.

Then, given € > 0, there exists a partition P! of [a, ¢] such that

S(P’,f,a)—ffda <§

whenever the partititon P’ is finer than P/ and there exists a partition P of [c, b]

such that

b
S(P", f,a) — ffdoz < %

whenever the partition P” is finer than P”.
Then P. = P/ u P is a partition of [a,b]. Now, if partition P is finer than P,

€

then P’ > P/ and P" = P’

12



S (P, f,a)— dea—l—dea = S(P’,f,a)+S(P”,f,oz)—ffda—fbfda

N

c b
S(P',f,a)—dea + S(P”,f,a)—ffda

<€+ €

= 2¢

b c b
.. § fda exists and is equal to { fda + § fdo []

Definition 17. If a < b, we define {; fdo = — Ss fda whenever SZ fda exists. We
also define § fdo = 0

3.4 Integration by parts

A notable connection exists between the integrand and the integrator in a Riemann-
Stieltjes integral. The existence of SZ fda implies the existence of SZ adfand the

converse is also true. Morever, we have a simple relation between the two integrals.
Theorem 5. If f € Ru[a,b], then a € Ry [a,b] and we have

b

Jf (z) do () + foz (@)df (z) = f (b)  (b) = [ (a) @ (a)

a

Proof. Let € > 0 be given.
Since f € R, [a,b], there exists a partition P. of [a,b] such that for a partition

P’ 2 P,., we have

b
S(P',f,oz)—ffda <e€

13



=N a(t) [f (@) = f (25-1)]
= Z a (tr) f (zx) — Z a(ty) f(zr_1)

M=

A—S(P fa)=)Y f (2p—1) @ (Tp—1)

>
Il

D= "
o

)«
a(ty) f(ve-1)

n

£ (@) [or () = a (t)] + D f (k) [ (B) — @ (241

1 k=1

(o)~ > f
() f (@) + Y

1

=

B
Il

The two sums on the right hand side can be combined into a single sum of the
form S (P, f,«) where P’ is the partition of [a,b] obtained by taking the points

x), and t; together.

=— P’ is finer than P.

14



b
S |A=S(Pa, f) = § fda| < €, where P 2 P.

b

A—ffdoz —S(Pa,f) <e

a

b

b b
= Jadf exists, and Jadf =A-— dea

3.5 Change of variable in a Riemann-Stieltjes in-
tegral

Theorem 6. Let f € R, [a,b] and let g be a strictly monotonic continuous function
defined on an interval S having endpoints ¢ and d. Assume that a = g(c), b =
g (d). Let h and [ be the composite functions defined as follows:

h(z) = flg(@)], B(z) =alg(@)] ifzesS.

Then h is Riemann-Stieltjes integrable with respect to 5 on S and we have

Lbfdathdﬁ

That 1s,
g(d)

£ (t) dac (1) = j £ 19 @)]dalg ()]

g(c)

Proof. Suppose ¢ is strictly increasing on S.

15



= c<d

= ¢ is one-one and has a strictly increasing, continuous inverse ¢g—' defined on
[a,b].

Therefore for every partition P = {yo,y1 - yn} of [¢,d], there corresponds one
and only one partition P’ = {x¢,x; -+ ,x,} of [a,b] with zx = g (yx) .

In fact, we can write

P' = g(P) and P = g~' (P’). Futhermore, a refinement of P produces a corre-
sponding refinement of P’ and the converse holds.

Let € > 0 be arbitrary.

f € Ry la,b] = 3 a partition P. of [a, b] such that for P’ 2 P., we have

b
S(P,f,a)— dea <e€
P! is a partition of [a, b].

Let P. = g~' (P!) be the corresponding partition of [c, d].

Let P = {yo,y1, - ,yn} be a partition of [c, d] finer than P,.
S(P,h,B) = Y h(ux) Ay
k=1

where uy, € [ykfla yk] and AfB, = 3 (yk) — 8 (ykfl) , Then P' = {3307351, T ,iﬁn} is a

partition of [a, b] finer than P/

16



Morever, we have

S(P,h,B) = [9 (yx)] — alg (yk-1)]}

f(te) {a(zr) — a(xk_1)}

271

= S(P’,f, a) (" ty € [Tp—1, 1))

Note:

For o (z) = x, we have
J F(t)dt = f /1o
g9(c)
3.6 Reduction to Riemann Integral

The next theorem tells us that we can replace the term da by o/ () dx in Sz f(z)da(x)

whenever a has a continuous derivative o/.

Theorem 7. Assume f € R, [a,b] and that « has a continuous derivative o/ on

[a,b]. Then the Riemann integral SZ f(x)da(x) exists and we have

[reomao= [ 1

Proof. Let g(x) = f(x)d/ () and P = {a = 9 < 21 < --+ < x, = b} be a

17



partition of [a,b]. Then the Riemann sum of g with respect to partition P is

The same partition P and the same choice of the ¢, can be used to form the

Riemann-Stieltjes sum

Pf()ézi tkAOék

Now, using the mean value theorem on the function «, we have there exists
vk € (zx—1, k) such that a(z) — a(zg_1) = (zx — xx_1) & (vg), that is, Aay =

o (vg) Axy

Ifk ’Uk; Al’k — Z f tk tk) A%k
k=1

() [ (vr) — o (tx)] Az

II

M= M;z

S(P fa

e
I
—

Now, f is bounded — there exists M > 0 such that |f (z)| < M for all
€ [a, 0]
o' is continuous on [a,b] = </ is uniformly continuous on [a, b]

Therefore for € > 0, there exists 6 > 0 such that

€
< _ / _/ -
0<fr—yl <5 = |/ (2) =o' )| < 37—

Consider a partition P! with ||P!|| < 4.

Then for any partition P 2 P we have

18



| (vg) — o ()] forall ke {1,--- ,n}

€
S OM(b—a)
€

Therefore |S (P, f,a) — S (P, g)| < ZM~m (b—a) = % (1)
k=1

Also, since f € R, [a,b], there exists a partition P” such that

b
Po P = ‘S(P,f,a)—f fda

a

<3 (2)

Let P.= P/ u P!

For P 2 P., we have

b b

‘S(P,g)—f fda :‘S(P,g)—S(P,f,oz)—FS(P,f,a)—f fda
<|S(P,g)—S(P,f,oz)HlS(P,f,a)—f fda
<§+§ - (from (1) and (2))

I
M

b
Therefore ‘S (P,g) — J fda

a

<€

19



3.7 Step functions as integrator

Let us first note that, if «: [a,b] — R is given by « () = ¢ for all z € [a,b] for

some c € R, that is, « is a constant function. Then |,

Pf, i tk A&k—o

k=1

This is true for any partition P of [a, b]

— SZ fdao exists and is equal to 0.

Next, suppose « is constant except for a jump discontinuity at some point ¢ € (a, b) ,
then the integral SZ fda may or may not exist and, if it exists, it’s value need not

be 0. We have the following theorem :

Theorem 8. Given a < ¢ < b, define a on [a,b| as follows:

The values « (a),a (b),a (c) are arbitrary.

Let [ be defined on [a,b] in such a way that atleast one of the functions f or «
s continuous from the left at ¢ and atleast one is continuous from the right at c.

Then f € R, [a,b] and we have

f fda = £ (0) [ (e+) — a(c-)]

Proof. Let P ={a =xy<z; <--- < x, = b} be a partition of [a,b] .
Without loss of generality, we can assume that ¢ is a point in the partition, say

¢ = Ty, for some = € {1,2,--- ;m — 1}, then every term in S (P, f,«) is 0 except
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the two terms arising from the subintervals [z,,_1,c] and [¢, zp,—1] .

RgE

S(P>f7a): f(tk)Aak

>
I
—

[
RgE

f () {a (zr) — a(zr-1)}

>
I
—

[ (tm) {a(c) —a(e=)} + f (tmrr) {o (c+) — a(c)}

where ¢, < ¢ < tpa1-

This equation can also be written as follows:

A=[f(tn) = F(A)]e(c=) =]+ [f (tmsr) = F ()] e (e+) —a ()]

where A = S (P, f,a) — f (¢) [a(c+) — a(c—)].

Hence we have

Al < |f (tm) = f (O]l (c=) = a ()| + [f (tmia) = F ()] o (c+) —a(o)]

If f is continuous at ¢, for every e > 0, there exists a > 0 such that ||P|| < 0

implies |f (tm) — f (¢)] < e and |f (tms+1) — f ()] < e

In this case, we obtain the inequality

Al <e€la(c—) —a(c)] +e|la(ct+) —alc)]

But this inequality holds whether or not f is continuous at c.

For example, if f is discontinuous from the right and from the left at ¢, then
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a(c) = a(c—) and a(c) = a(c+) and we get A = 0.
One the other hand, if f is continuous from the left and discontinuous from the

right at ¢, we must have o (¢) = a (c+) and we get A < ela(c) —a(c—)|.

Similarly, if f is continuous from the right and discontinuous from the left at ¢, we

have a (¢) = a(c—) and |A] < €|a(c+) — a(c)].

Hence the last displayed inequality holds in either case.

This proves the theorem.

Note:
The result also holds if ¢ = a, provided that we write a (¢) for « (¢—) and it holds

for ¢ = b if we write a (¢) for a(c+).

Theorem 8 tells us that the value of a Riemann-Stieltjes integral can be altered by
changing the value of f at a single point. The following example shows that the

existence of the integral can also be affected by such a change.

Consider the interval [—1,1].

, f(z)=1forall ze[-1,1].

1
In this case, Theorem 8 = { fda = 0.
1
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But if we redefine f as follows:

we can easily see that Sil fda does not exist. In fact, when P is a partition of

[—1, 1] which includes 0 as a point of subdivision, we have

S(P, f,a) = f(ty) [a(zx) —a(0)] + f (tr1) [ (0) — a (zr—2)]
= f(tr) — f (tr1)

where z;_9 < tp_1 <0 <t < 2.
Now, S (P, f,a) = 0,1, or —1 depending on the choice of t; and t;_;
§ fda does not exist in this case.

1
Definition 18 (Step function). A function « defined on [a, 0] is called a step func-
tion if there exists a partition P = {a = g < x; < -+ < z,, = b} such that « is
constant on each subinterval (zj_1,x). The number « (z5+) — a (xx—) is called

the jump discontinuity at zj if 1 < k& < n. The jump at x; is a (x1+) — (x1) and

the jump at z, is a (z,) — (z,—).

When we integrate with respect to the step function, we get the following

relation between Riemann-Stieltjes integrals and finite sums :

Theorem 9. Let « be a step function defined on [a,b] with jump oy at xy, where
X1, , &, are described as in the above definition. Let f be defined on [a,b] in

such a way that not both f and o are discontinuous from the right or from the left
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at each xy. Then SZ fda exists and we have

b n
| 1@ da@ = ) 7 @

Proof. We divide the interval [a, b] into n + 1 subintervals as follows:

[a b] _ [a x0+x1] 0 [x0+x1 x1+x2]
’ ’ 2 2 2
Tn—2 + Tn—1 Tp-—1 + T Tp—1 + Ly
U[ 2 2 ]U[ 2 x”]

= la,p1] U [p1,p2] U U [Pre1,Pn] Y [Pn, Tn]

Dk—1 + Dk
2
By the theorem on the additivity of Riemann-Stieltjes integrals,

b p1 D2 Pn Zn
ffda=ffda—|—dea+~--+ J fda+ffda
a a p1 Pn—1 Pn

p1

§ f(2)da(z) = 0 since « is constant on [a,pi] .

a

where p;, = forall £=1,2,...,n

Thereforejfda = f(z1) [a(z14) —a(z1=)] + [ (z2) [a (z2+) — a(z2)] + - -

a

+ f (@) [ (@nat) —a(z)]
Z /(@
O
The greatest integer function is one of the simplest step functions. Its value
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at x is the greatest integer which is less than orequal to x and is denoted by [z] .
Thus, [z] is the unique integer satisfying the inequalities [z] < = < [z] + 1.
Theorem 10. Fvery finite sum can be written as Riemann-Stieltjes integral. In

fact, given a sum >’ ag, define f on [0,n] as follows:
k=1

Then
ICESWICES WIOHE

where [x] is the greatest integer less than or equal to x.

Proof. The greatest integer function is a step function, continuous from the right
and having jump 1 at each integer. The function f is continuous from the left at
1,2, n.

Now, applying the previous theorem, we get the required result. O

3.8 Monotonically Increasing Integrators

The further theory of Riemann-Stieltjes integration will now be developed for
monotonically increasing integrators, and we shall see later that for many pur-
poses this is just as general as studying the theory for integrators which are of
bounded variation.

When « is increasing, the differences Aay which appear in the Riemann-Stieltjes
sums are all nonnegative. This simple fact plays a vital role in the development of

the theory.
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Definition 19 (Upper and Lower Sums). Let P = {a =2y <2y < -+ < z,, = b}
be a partition of [a,b] and let

My = sup{f (z) : x € [zk_1, x|}

my = inf{f (z) : x € [zx_1, x|}

The number U (P, f,«a) = kil My (f) Aay is called the Upper Riemann-Stieltjes

sum of f with respect to « for the partition P.

The number L (P, f,a) = >, my (f) Aay is called the Lower Riemann-Stieltjes
k=1

sum of f with respect to « for the partition P.

Note:
We know that my, (f) < My, (f) for all k.
If o is monotonically increasing on [a,b] , then Aay, = a (z;) — a (z5-1) =0

mg (f) Aax < My, (f) Aoy for all &

== Upper sums are always greater than or equal to the lower sums.

Furthermore, if ¢ € [z)_1, zx], then

mi (f) < f () < My (f)
mi (f) Aa < f (tk) Ao < My (f) Aoy
= L(P,f,a)<S(P, f,a)<U(P,f,a)
L(P f,a)<S(P f,a)<U(P,f,«)
The above inequalities need not necessarily hold when « is not an increasing
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function.

For a monotonic increasing function «, with refinement in partition, lower sum
increases and upper sum decreases. Also, the lower sum can never exceed the

upper sum for any arbitrary partitions.
Theorem 11. Assume that o is monotonically increasing on |a,b]. Then

(i) If P' is finer than P, we have
U(P,7f7a) < U(P7f7a) andL(P7f7a) < L(P/7f7a)

(i) For any two partitions Py and P, we have

L(Pl,f,Oé> <U(P2,f,a).

Proof. (i) Let P={a=xzp <1 < -+ < x,, = b}.
It is enough to prove the statement when P’ contains one more point than P, say

the point c.

Without loss of generality assume that c is the ith subinterval of P.

Therefore we have

U(P,f,&) = iMk(f)Aak

k=1
- 2 My (f) Aoy, + M; (f) Aoy

k=1,k+#i

Let M' = sup f(x)and M" = sup f(z)

z€[xi—1,c] z€[c,z4]

Then M’ < M; (f) and M” < M; (f)
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U(P,f,a)=U(P, f,a) =M [a(c)—a(xi1)] + M"[a(z;) —a(c)] — M; (f) Aa;
< M; (f) [e(¢) — o (@i-1)]
= M; (f) Ao = M; (f) Ay

=0

== U(P7f7a)>U(P/7f7a>
== Upper sum decreases with refinements.

Similarly, we can prove that lower sum increases with refinement in partition.

(zz)LetP:PluP2

— L(P, f,0) S L(P, f,0) SU(P, f,a) SU(B, f,q)

Note:

Using the above theorem, for monotonic increasing o, we have

mla(b) —a(a)] < L(P, f,0) U (P, f,0) < Ma(b) — a(a)]
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where M = sup f(x), m= il[nfb] f (z) and Py, P, are any partitions of [a, b].
z€[a,b] z€|a,

Definition 20 (Upper and Lower Integrals). Assume that « is monotonically
increasing on [a, b]. The Upper Riemann-Stieltjes integral of f with respect to «
is defined as follows:

f:fda = inf{U (P, f,a): Pe Pla,b]} = I(f,a).

The lower Riemann-Stieltjes integral of f with respect to « is defined as follows:

§! fdo = sup{L (P, f,a) : Pe P[a,b]} = L(f,a).

Note: We sometimes write I (f,a) and I (f, ) for the upper and lower inte-
grals. In the special case where « (x) = x, the upper and lower sums are denoted
by U (P, f) and L (P, f) and are called upper and lower Riemann sums. The cor-
responding integrals, denoted by Sg f (z)dx and SZ f (z) dx, and are called upper

and lower Riemann integrals. They were first introduced by J. G. Darboux(1875).

Theorem 12. Assume that « is monotonic increasing on [a,b]. Then

I(f,a)<I(f a)

Proof. Let € > 0.

T(f,0) =infU (P, f,0)

By the characterization of infimum, there exists a partition P; of [a,b] such that
U(be?a) <T(f,04)
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Now,

L(P f,a) <U(P, f,a) V partitions P

L(Py, f,a) <U(P, f,a) <I(f,a)+ e V partitions P

" I(f,a)+ €is an upper bound to all lower sums L (P, f, «) .

(f,a) <I(f,a)+el

+ e is arbitrary, .. I (f,a) < I (f, )

An example in which I (f,a) <1 (f, ).
Let o (z) = « and define f: [0,1] - R by

1 ;2€[0,1]nQ
f(z) =
0 ;z€[0,1]nQ°

For any partition P = {a = zp < 21 < -+ < x, = b} of [0,1], we have My (f) =1
and my, (f) = 0.
Every subinterval contains both, rationals and irrationals,

Therefore U(P, f,a) = 1 and L (P, f,«a) = for all partitions P.
— Sfdx—landedx—O

Observe that the same result holds if

0 ;2€[0,1]nQ°
flx) =
1 ;z€[0,1]nQ
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3.9 Riemann’s Condition

If we are to expect the upper and lower sums to be equal then we must also
expect the upper sums to become arbitrarily close to the lower sums. As a result,
it appears logical to seek those functions f for which the difference U (P, f, ) —

L (P, f,a) can be made arbitrarily small.

Definition 21. If for every € > 0, there exists a partition P, such that for any

partition P finer than P, we have
0< U(P,f,O{) _L(P7f7a) <€

then we say that f satisfies Riemann’s condition with respect to « on [a, b].

Theorem 13. Assume that « is monotonic increasing on [a,b]|. Then the following

statements are equivalent :

(i) f e R,a,b]

(11) f satisfies Riemann’s condition with respect to a on [a, b]
(iii) L(f,a) =1I(f,a)
Proof. To prove that (i) = (i1).

Suppose f € R, [a,b]

== For € > 0, there exists a partition P, of [a,b] such that for P © P., we have

b
S(P,f,a)—ffda <e€
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If @(a) = a(b), that is, if « is constant on [a, b] then (ii) is trivially satisfied. So
we can assume that a (a) < a(b).
Given € > 0, we can choose a partition P. such that for any partition P finer than

P. and all choices of t;, and #} in [xg_1,zx], we have

n

Z tk AOék —

<§ and

n

Z [ () Aoy, — A

<§ WhereAszdoz

k=1

N = $ 2e

Z_: tk AOzk — A+ kZl f ka AOék — g tk Aak Z:: tk Aak < §
N 2
Z ] Aak < —6
k=1 3

My (f)= sup f(z) and mu(f)= inf f(z)
z€[Tp—1,7L] z€[T)—1,7k]

My, (f) = mu () = Sup{f (z) = f () : @, 2" € [wp1, 2]}

". For h > 0,3ty,t), € [zx_1, zx] such that

f(te) = f(ty) > M (f) —me (f) —h

My (f) —me (f) < f (te) — [ (t,) + A
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U (P, f,0) = L(P, f,0)] = | Y [Mi (F) = mi ()] Ay

< DL LF (8) = F(#)] Aag| + [hAay|

Next, to show that (i) = (i7)
Suppose f satisfies Riemann’s condition w.r.t. « on [a,b] such that for any parti-

tion P 2 P., we have

U(Paf7a)_L(P7f7a)<6
U(P,f,a) < L(P, f,a)+e¢

.". for such partition P, we have
I(f,a) <U(P, fia) < L(P, f,a) +e< L(f,a)+e
that is, I (f,a) < L(f, ) + € for every € > 0.

LT(foa) <I(f.a)+e (1)
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But by Theorem 17, we have

.. from (i) and (i7) we have

I(f,0) =T(f )

To show that (iit) = (i7)
Suppose I (f,a) =1 (f,a)=A
To show that § fda exists and is equal to A.
Let € > 0. ’
I(f,a)=infpU (P, f,a)and I (f,a) =infpU (P, f,q)
Therefore By the characterization of infimum, there exists a partition P, of [a, b]

such that

U(P, f,a)<I(f,a)+e VP2 P

Next, by the characterization of Supremum, there exists a partition P of [a, b]

such that

I(f,a)—e<L(P, f,a) YVP2P,

Let P, = P, u P,. Then for any partition P 2 P,, we have
I(f,a) —e<L(P,f,a)<S(P f,a) SU(P, fa) <I(fa)+e

A—e< S(P f,a) < A+e¢
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IS (P, f,a) — Al <e

b

Since € is arbitrary, { fdo exists and is equal to A. m

3.10 Comparison Theorems

Theorem 14. Assume that « is monotonically increasing on [a,b]. If f € R, [a, b]

and g € Ry [a,b] and if f(x) < g (z) for all x € [a,b]; then we have

Lbf(x)dx<ng(x)dx

Proof. For every partition P of [a,b], we have
S(P. f,) :Z k) A < Y g (1) Ay = S (P, g, )
k=1 k=1

(PfOé)\ (Pga )
U (P, f,a) <U(P,g,a)

— irl_;)fU(P, f,a) < irlng(P,g,a)

b

b
e, ffdozgjgdoz

a

Note:
b
If g (z) = 0 and « is monotonic increasing on [a, b] then {da (z) = 0

a
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Theorem 15. Assume that v is monotonically increasing on |a,b] . If f € R, [a,b],

then |f| € Ry [a,b] and we have the inequality

f!f )| do(z

Proof. Let € > 0. By Riemann,s condition, there exists a partition P. of [a, b] such

x)do (z

that

U(P, f,a)—L(P,f,a)<e VPP,

My (f) = mu (f) = sup{f (z) = [ (y) - 2,y € [, 24]}
[f (@) = fWl<|f(@)=fW| ¥Yaye [zp,z]
= My (|f]) = mw (If]) < My (f) = ()
= [My ([f]) = mu ([fD] Acw < [M (f) = mu ()]

— > [Mi(If]) = ma (1f])] Aak\Z k()]
k=1 k=1

U(P,|f|,a)—L(P,|f|,a)<U(P,f,a)—L(P,f,a)<e

|/l € Ra [a,b]

The converse of the above theorem need not be true.

Example:

36



1 z€[0,1]nQ
flz) =
1 ze[0,1]nQ°
Theorem 16. Assume that v is monotonically increasing on [a,b] . If f € R, [a,b],

then f? € Ry [a,b].

Proof. Let M = sup |f(x)

Z‘E[Ik,l,xk]
Let P ={a =129 <z <---<ux, = b} be a partition of [a, b].

Let My (f)= sup |f(z)] and my (f) = inf ]|f(q’)|

z€[T)—1,7K] z€[T]_1,Tk

S M () = mu (£7) = [Me (DT = T (1))
= [My (If1) = mu (| FD] [M (1 f]) + . (1 F])]
= [M + M| [Mg (|f]) + mu (| f])]

— 2M [My, (|f]) + my (| f])]

|f| € Ry [a,b] = 3 partition P, of [a,b] such that
€
U(Pfl,a) = L(P|f],0) < 5P 2 P

LU (P f20) =L (P, f*0) <2M [U (P, |f], ) = L(P,|f],0)]

< 2Mﬁ forP > P.

C.ffe Ry a,b]
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]

Theorem 17. Assume that « is monotonically increasing on [a,b]. If f € R, |a, b]

and g € R, [a,b] then the product fg € R, [a,b].

Proof. [f (z) + g ()" = [f (2)]* + [g (2)]* + 2f (x) g () Yz € [a, ]

f:9€ Rala,b] = f*,g° € Raa,b]

— (f+9)’€Rala,b]

CA(f+9)° — fP— g% € Rola,b]}

fg € Rola,b]

3.11 Integrators of bounded variation

Next, we look at another class of integrator functions, namely, functions of bounded
variation, a class of functions closely related to the monotonically increasing func-

tions.
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Definition 22 (Variation). Let [a, b] be a closed, bounded interval and f : [a, b] —
R be a function. Given a partition P = {a = xy < 21 < -+ < x, = b} of [a,b],

the sum
n

V(f,P)= Z\f(%) = [ (zi-1))]

i=1

is called the Variation of f in [a,b] over the partition P.

Definition 23 (Function of bounded variation). If sup V' (f, P) < oo, then we say
P
that f is a function of bounded variation on [a, b] . The value V.? (f) = sup V (f, P)
P

is called the variation of f over the interval [a, b].

Definition 24. Let f € BV [a,b]. We define v : [a,b] — R by

v(z)=0 for z=a
=VI(f) for a<x<b.
v is called the total variation function for f on [a,b].
Theorem 18. Both v and v — f are monotonic increasing functions on [a,b].
Proof. Let a <x <y <b

Then

— v is monotonically increasing.

Once again, from (x),
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— (V-NE=V-1k

— v — f is also monotonically increasing. O

Theorem 19 (Jordan’s theorem). f € BV [a,b] <= [ can be written as the

difference of two monotonic increasing functions.

Proof. Suppose f € BV [a,b].

Then both v and v — f are monotonic increasing where

by the theorem.

Clearly then f=v— (v—f).

Clearly then f=v — (v —f).

Coversely, suppose f = g — h. where both g and h are monotonic increasing.

= ¢, h € BV [a,b] ("." every monotonic function on [a, b] is a function of bounded
variation.)

= g—he BV]a,b] (. BV [a,b] is a vector space.)

. f e BV [a,b]
0

Jordan’s theorem says that every function of bounded variation on [a, b] can be
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expressed as the difference of two monotonically increasing functiona, say «; and
g, that is, @ = ag — an. If f € R,, [a,b] and f € Ra, [a,b], then the linearity of
Riemann-Stieltjes integral will imply f € R, _a,, that is, f € R, [a,b]. However,
the converse is not always true. If f € R, [a,b], it is quite possible to choose
increasing functions a; and as such that a = «a; — ag, but such that neither
integrals SZ fdal,gz fdas exists. The difficulty is because of the fact that the
decomposition o = a; — as of the function a need not be unique. However, we
can prove that there is atleast one decomposition for which the converse us true,

namely, when «; is the total variation of a and as = a3 — a.

Theorem 20. Assume that o € BV [a,b]. Let V (z) denote the total variation of
a on |a,z] ifa <x <bandlet V(a) =0. Let f be defined and bounded on |[a,b] .
If f € R, [a,b] then f € Ry [a,b]

Proof. If V' (b) = 0, then V is constant and the result is trivial.

Suppose V' (b) > 0.

Suppose also that |f (z)] < MYz € [a,b].

Let € > 0.

f e fla,b] = 3 a partition P, of [a,b] such that for any partition P finer than

P, and any ty,t) € [xr—1 — x|, we have

2L () = (6] Ay < | (1)

k=

—_

41



By the characterization of Supremum, there exists a partition P; of [a, b] such that

€ n
v(b) = 37 < DA
k=1

— v(b) — . |Aay <ﬁ 2)
k=1

Let Pe = Pl U P2
". (1) and (2) will hold true for any partition P finer than P,

Note that Avg — |Aag| =0

Y M (f) = mu (£)] (Ave — [Aaw]) < 2M Y (Avg — [Acw])

n

k=1 k=1
— oM <U(b) - \Aak|>
k=1
€
€

=3 (3)
Let A (P) = {k: Aay = 0}, B(P) ={k: Aay < 0}
and let h = ﬁ(b)

If k € A(P) by the characterizarion of Supremum, we can choose ¢} and ¢, so that
fQte) = f () > M (f) —mu (f) = h
(o M (f) = mu (f) = sup{f (tx) — f (&%) : ti, 8}, € [2-1, 2]})

but if k € B (P), we can choose t}, t; € [Tr_1, Tk]

5 f(8) = f (tk) > My (f) — mu (f) — D
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[My, (f) — mu, (f)] | Acu|!

k=1

<31 ()~ f (5] [ o] + 3 h|Aay]

SR AN M VIARS I[N
keAéP) keA(P)

+ h Y | Ay

<itmng VO
Adding (3) and (4), we get

n

[My, (f) — my (f)] Avg <€

= U (P, f,v)— L(P, f,v) <e

. feR,[a,b]

O

This theorem together with theorem 19 enables us to reduce the theory of

Riemann-Stieltjes integration for integrators of bounded variation to the case of

increasing integrators. Riemann’s condition then becomes available and it turns

out to be a particularly useful tool in the work. As a first application we shall
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obtain a result which is closely related to theorem 4.

Theorem 21. Let o € BV [a,b] and assume that f € R, [a,b].Then f € R, [c,d]

for any subinterval [c,d] of [a,b].

Proof. Let

Then o =v — (v — «)
where v and v — a are increasing on [a, b] .

Now by the previous theorem, f € R,[a,b] and f € R,[a,b] = [ €
R_.la,b].

f € vaa [Cl,b]

Therefore if the theorem is true for increasing a then the theorem is true for
integrators of bounded variation.

Therefore it is enough to prove the theorem for a monotonic increasing on |a, b]
By the additive property of Riemann-Stieltjes integrals it is enough to show that
cach integral { fdo and SZ fda exist.

Assume that a < ¢ < b.

If P is a partition of [a, z],

let A(P,z) =U (P, f,a) — L (P, f,«a) denote the difference of the upper and lower
sums associated with the interval [a, z].

" f € Ryla,b] .. Riemann’s condition holds.
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.. for e > 0,3 a partition P, of [a,b] such that
A(Pb) <e if P2 P (1)

We can assume that c e P;.
" Ja,e] n Py is a partition of [a, ] .
Let P, = [a,c| n Py.
Now P, € P.
P, contains points of [a, c] but P, contains points of [a, c] and [c, b] as well.
Suppose P’ is a partition of [a,c| such that P’ © P,, then P = P’ U P, is a
partition of [a,b] .
Then the sum defining A (P’ ¢) contains only part of the terms in the sum defining
A(Pb).
" A(P',c) =0,A(P,b) =0 and since P 2 P, we have
A (P c) < A(Pb) <e (from (1))
That is, PP 2 P, — A(FP,¢) <e.
.. f satisfies Riemann’s condition on [a, ¢] and §, fda exists.
The same argument shows that Sz fda exists.
.. by the summability of the Riemann-Stieltjes integrals, the integral Sf fda exists.
[

The next theorem is an application of Theorems 15, 17 and 21.

Theorem 22. Assume that f,g € Rq[a,b], where o is monotonic incresing on

b

[a,b]. Define
F () :j £ () da (2)
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and

if x € [a,b].
Then f € Rga,b], g € Rrla,b] and f- g€ R, [a,b] , and we have
| 1@s@dat) = | f@)ac @
b
- [s@ar @

a

Proof. The integral Sz f - gda exists (By theorem 15).

For every partition P of [a,b], we have

S(Paf)G)_if(tk)AGk

_ i f ) [G (z1) — G (z3-1)]
_ if(tk){fzkg(t)da(t)

and [ f (2) g (¢) da (z) = 31§ f(£) g (t)da (1
oif My = sup{|g (z)| : = € [a, b]}, we have

S(P.£.G) =1, f - gdal
SR CHCTACES AR CHICE A0
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— 3§ {F (40— £ (B} (8) da (1)

k=1

<M, z §oe 1F () = f ()] da (2)

< M, z {7 My (f) = my (f)]de (2)

Tr—1

= My 3% [Me (F) = me ()] [0 (@) — e )]
= M, [U (P.f,0) = L(P,f.a)]

- f € Rola,b] .. for each € > 0,3 a partition P. such that P 2 P. —>
U(P,f,a)—L(P,f,a) <e = feRgla,b]and § f-gda = f-dG

Similarly, it can be proved that g € Rg [a,b] and that SZ fgda = SZ g-dF

Note:

Theorem 22 is also valid if « is of bounded variation on [a,b] .

3.12 Sufficient conditions for existence of Riemann
integrals

In most of the previous theorems we have assumed that certain integrals existed
and then studied their properties. It is quite natural to ask: When does the integral

exist? Two useful sufficient conditions will be obtained.

Theorem 23. If f is continuous on [a,b] and if a is of bounded variation, then
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f € Rala,b]

Proof. 1t is enough to prove the theorem for v monotonic increasing.

If a(a) = a (b) then we are done.

We have My, (f) —my (f) =sup{f (z) — f (y) : x,y € [xp_1, 2]}
Suppose « (a) < a (b).

Let € > 0.

f is continuous on [a, b] .

= [ is uniformly continuous on [a, b].

.30 > 0 such that

lz—y| >0 = |f(x)— f(y)| < ala(b) —a(a)]

Suppose P, is a partition of [a, b] such that || P.|| < ¢, then for P © P,, we have

My () = () < o Ao
— M () = e (D] Aay < 5y
= 2, [ (f) = mi ()] A < ) 2[a (b)i a(a)]
" —a@] 20
=3
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S U(P f,a) = L(P, f,a) <e

and we see that Riemann’s condition holds.

. f € Ryla,b]

We have the special case of the above theorem:
Theorem 24. Fach of the following conditions is sufficient for the existence of
the Riemann integral:

1. f is continuous on [a,b]

2. f is of bounded variation on |a,b]

Proof. 1. TST f € R]a,b]
a (x) = x is continuous on [a,b] and « (z) can be expressed as the difference
of the two increasing functions x and 0.

". a(z) is of bounded variation on [a, b] .

. feR|a,b]

2. f is of bounded variation on [a, b].
a (z) = x is continuous on [a, b]
— a€ Ryla,b]

— feRyla,b]ie feR]a,b]
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3.13 Necessary conditions for existence of Riemann-
Stieltjes integrals

When « € BV [a,b], continuity of f s sufficient for the existence of SZ fda. How-
ever, the continuity of f throughout [a, b] is not a necessary condition. For example,
in Theorem 8, if « is a step function, then f can be defined quite arbitrarily in
[a, b] provided only that the continuity of f compensates for the discontinuity of «.
The next theorem tells us that if both, a and f have a common discontinuity from

the left (or from the right) at some point then the integral SZ fda cannot exist.

Theorem 25. Assume that « is monotonic increasing on [a,b] and let a < ¢ < b.
Assume further that both o and f are discontinuous from the right at x = c; that
is,assume that there exists an € > 0 such that for every 6 > 0,3z,y € (¢,c+ 9)
such that

[f (@) = f ()] = € and o (y) —a(c)| > €

Then the integral SZ f(z)da(x) cannot exist.

The integral also fails to exist if o and f are discontinuous from the left at c.

Proof. Let P = {a = 9 < x1 < -+ < x, = b} be a partition of [a,b]. Suppose

ce P and ¢ = x

U(Pvf7a)_L(Paf7a/):Z[Mk(f)_mk(f)]Aak

=1

[MZH (f) — My (f)] Aayiy
= [Mys1 (f) — murs ()] [ (2i41) — o (22)]
= [Mi1 (f) = musr ()] [ (z141) — v (0)]

= [MZH (f) — My41 (f)] T €1

B

\Y
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{3 an ¢; > 0 such that Vz,y € (c,c+4), |a(z) —a(y)| = e}
Also, the hypothesis of the theorem also implies that Je; > 0 such that Vé > 0
and Vz,y € (c,c+0),|f (z) = f (W) = &

= [ M1 (f) = mura (f)] = e

Let € = min{e;, €2}

SU(P f,a) — L(P, f,a) =€

.. Riemann’s condition is not satisfied.

3.14 Mean Value Theorems for Riemann-Stieltjes
integrals

Although integrals occur in a wide variety of problems, there are relatively fewer
cases in which the explicit value of the integral can be obtained. However, it is
often enough to have an estimate for the integral rather than its exact value. The

mean value theorems of this section are especially useful in making such estimates.

Theorem 26. Assume that « is monotonically increasing and let f € [a,b]. Let
M and m denote the Sup and inf of the set {f (x) : x € [a,b]|} respectively. Then

dc € R satisfying m < ¢ < M such that

[1@aat) = [ aa @) = efa®) - a @)

a

In particular, if f is continuous on [a,b], then ¢ = f (xo) for some xq in [a,b]
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Proof. 1f o (a) = a (b) then §’ f (z) da (z) = 0 and ¢ [a (b) — a(a)] = 0
. The theorem holds trivially when « (a) = « (b)

Suppose a (a) < a (b)

Now,m [ (b) — a (a)] < L (P, f,a) < U (P, f,a) <

M [a (b) — a(a)]

for any partition P of [a, b]

.". the value of the integral SZ fda must lie between m [« (b) — « (a)] and M [« (b) — a(a)]
That is, m [a (b) — a (a)] < SZ da < M [a(b) — a(a)]

a(a) <a(b) = a(a)— a(b) > 0 that is, SZdoz(J;)>0

SZ fda

b <M
Sa da

m <

SZ fda
SZ do

.. we found ¢ € R satisfying m < ¢ < M such that SZ [ (z)da(x) = cSZ da(x) =

cla(b) —a(a)]

Let ¢ = = m<c< M

[

Another theorem of this type can be obtained from the First Mean Value The-

orem by using integration by parts.

Theorem 27 (Second MVT for Riemann-Stieltjes integrals). Assume that « is

continuous and that f is monotonically increasing on [a,b].Then 3 a point zy €
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[a,b] such that

0 b
a

Lbf(x) do (z) = f(a)J da (z) +f(b)f der ()

= [(a)[a(zo) —a(a)] + f(b) [a (b) — a(z0)]

Proof. We have the theorem,

b

ff@ﬂﬂ@=f@a@—f@a@—fa@MH@

Now, apply the previous theorem to the integral on the right hand side.

Jec e R satisfying m < ¢ < M such that

fa@#@waﬁ@FwU@—ﬂm

Let M and m be the Supremum and infimum of « on [a, b] respectively.

m < ¢ < M and « is continuous on [a,b] = Tz € [a, b] such that « (zg) = ¢ O

— f a(z)df (z) = a(zo) [f (D) — f(a)]
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3.15 The integral as a function of the interval

b
If f e Ryla,b] and if & € BV [a,b], then by Theorem 21, the integral | exists
for each = € [a,b] and can be studied as a function of z. Let us now obtain some

properties of this function.

Theorem 28. Let aw € BV [a,b] and assume that f € R, [a,b]. Define F by the

equation

F(z) = fxfda if x€la,b]
Then we have
(i) F e BV |a,b].
(i1) Every point of continuity of « is also a point of continuity of F.

(111) If a is monotonic increasing on [a,b], the derivative F'(x) exists at each
point xo in (a,b) where o (xg) exists and where f is continuous. For such

xg, we have

F'(20) = f (w0) &' (o)

Proof. 1t is enough to prove all three statements for the case where « is monotonic

increasing on [a,b] .

(i) Let m and M be the infimum and supremum of f on [a,b].

54



If x # y, then Theorem 26 implies Jc € R satisfying m < ¢ < M such that

Fy) - F(z) = Jyfda—ffda

« € BV [a,b] = For any partition P = {a = xg <21 < -+ < 2,

[a,b],3S > 0 such that

Z la (2, — ()| < S
k=1

2 |F (@) = F (wi-)| = ) lefa (zr) — a (z5-1)]]

= le| Y] o (zx) — a (zh-1)|

=ld S

— F e BV [a,b]

(ii) Let e > 0.
Suppose « is continuous at .

= 39 > 0 such that |z —x¢| < d = |a(z) — (zo)| <€

%)

= b} of



— F is continuous at xg.

(i) z #y = y—x # 0. Let 29 € (a,b)

Suppose o (xg) exists and f is continuous at xq. For any x € [a, b] ,

F(z) = F(zo) _cla(z) —a(xo)]

r — 2o T — Xo
L F@-F) . cla@) - amw)
T—T0 T — X T—T0 r — Xy
a (@) — a(x)

CUF =c li
(o) Cacg:lo z — 20

c lim exists because o (xg) exists.
T—>T0

S F (x) exists.
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Theorem 29. If f,g € Ra[a,b], let F(z) = {f(t)dt,G (z) =

Next,

xo+h

F (o + h) — F (o) — F (x0) § fda~§fda

h h
zo+h
§ fda
T h
:ch[a(mg—l-h)—oz(xg)]
h
. a(xg+h)—alz

S F (1) = }lllir(l] cred (x0)

a(z) — a(xg)

But F' (zg) = climz — g

.oelim iz +h) — ala) = lim ¢ lim @ (0 +A) — ara)
h—0 h h—0 h

c=limg¢,
h—0

O

gt)dt if x €

Qe ]

Then F and G are continuous functions of bounded variation on [a,b].

Also, f € R la,b] and g € Rr(r)|a,b] and we have

fbf(x)g(ﬂf)dﬂf=ff(x)dG(x) = fbg(x)dF(x)
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Proof.

T

:ff(t)dt, G(aj)zfg(t)dt it z€a,b]

a

F and G are continuous functions of bounded variation on [a, b]. (By Theorem 28
(1),(i1))

By taking a (z) = « in Theorem 22, we get

ff() d:uff )dG (z :fbg

This theorem converts a Riemann-Stieltjes integral of a product fg into a
b

Riemann-Stieltjes integral{ fdG with a continuous integrator of bounded varia-
a

tion. Il

Note:
When « (z) = x, part (iii) of Theorem 28 is sometimes called the The First Fun-
damental Theorem of Integral Calculus. It states that F’ (z) = f () at each point
of continuity of f. A companion result, called the Second Fundamental Theorem

of Integral Calculus is given in the next section.

3.16 Second Fundamental Theorem of Integral Cal-
culus

The next theorem tells us how to integrate a derivative.

Theorem 30 (Second Fundamental theorem of integral calculus). Assume that

f e Rla,b]. Let g be a function defined on [a,b] such that the derivative ¢’ exists
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in (a,b) and has the value ¢’ (z) = f (z) for every x in (a,b).
At the endpoints assume that g (a) — g (a+) = g (b) — g (b—)

Then we have

[1@a={ywa=g0 -0

Proof. Let P ={a =xy <z, <--- < x, = b} be a partition of [a,b] .

We can write

g(b) —g(a) = >, [g(xx) — g (zx-1)]

¢’ is differentiable on (zy_1,25) = Ity € (xx_1,xx) such that

f € Rla,b] .. 3 a partition P, of [a,b] such that VP 2 P,,

b

D f (t) Ay — J f(z)d
k=1

a

= <€

]g<b>—g<a>—ff<a:>dx

This proves the theorem. O

The second Fundamental theorem of integral calculus can be combined with

Theorem 29 to give the following strengthening of Theorem 6.

Theorem 31. Assume f € [a,b]. Let a be a function which is continuous on

[a,b] and whose derivative o/ is Riemann-integrable on [a,b]. Then the following
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integrals exist and are equal.

fbf (z) dov (2) = be (z) o (x) dx

Proof. f € R]a,b].
« is defined on [a, b] and it’s derivative o exists in (a,b) .

.. by the second Fundamental Theorem, for each z € [a,b], we have
Jo/ (t)dt = a(z) — a(a)

f,a/ € Rla,b].
Let F(z) =" f(t)dt, A(z)= (o (t)dt

Applying Theorem 29 on f (z) and g (z) = o/ (z) we get
f€Rala,b] and o € Rgla,b]

and we have

b b

Jf (z) o (z)dx = Jf (r)da’ (x) By Theorem 29
= be (z) do () = be(x) da’ (x) By Theorem 6
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Chapter 4

(Geometric interpretation of

Riemann-Stieltjes integral

For this discussion, let « (x) be differentiable, apart from being monotonic increas-

ing, as in the definition of the Riemann-Stieltjes integral.

To visualize a Riemann-Stieltjes integral, we assign axes that are perpendicular
to each other to x and f (z). We graph the function f (z) and the are under the

curve f (x) bounded below by the z—axis is the Riemann integral.

we interpret the Riemann-Stieltjes integral in a similar way. But the problem
over here is that instead of z, over here we need to integrate with respect the
function «. So instead of finding the area under f along x—axis, we need to find

the area under f along the a— axis.
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Figure 4.2: a(x) =z
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3
Figure 4.3: f (z) = 2t 1
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Figure 4.4: o (z) = 2?2

y

Figure 4.5: Geometric interpretation ofRiemann-Stieltjes integral

64



While graphing dependent sets , we assign a dimension to each set with di-
rection perpendicular to the other sets. So f(z) and «(z) are graphed as in
fig 5.1 and fig 5.2. In order to consider z, f (z) and « (z) simultaneously, each

is assigned it’s own dimension and direction perpendicular to that of the other two.

An important thing we need to notice over here is that because f (x) is inde-
pendent of « (x), therefore for a fixed value of z, f (z) is constant along the a—
axis. So f (x) is a cylinder(or more intuitively, a sheet) that is straight in the a—
direction. Therefore, if one looks along the sheet in the z— direction, one may see

hills and valleys, but one will see only flat terrain in the a— terrain.

Similarly, since « (z) is independent of f (z) , therefore the same result will hold
for f(x).

If we think of the («, f) plane as horizontal and the f—direction as pointing
straight up, then the surface to be considered is like a curved fence. The fence is
along the curve « (x) and the height of the fence is given by f (). So, the fence is
actually the section of the a—sheet that is bounded between the («a, f) plane and
the f—sheet.

The Stieltjes integral integrates along this fence. It is the sum of heights and in-
finitesimal widths. The height is taken as f(z) in each subinterval but for the
differential width it only considers Aay, the length of the infinitesimal subinterval
in the a—direction.

As a result, the area of the integral is actually the area of the projection of the

fence onto the (o, f) plane.
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Figure 4.6: Graphs of integrators

If a spotlight is placed with a beam parallel to the z—axis, so as to aim toward
the fence, then the area given by the Riemann-Stieltjes integral is the shadow of
the fence on the («, f) plane.

If a(x) = z, then the fence will be along a straight line from the origin that makes
angle of 459 with a—axis and z—axis. Therefore the fence will be symmetric with
respect to the (a, f) plane and the (f, z) plane. Hence, the projection of the plane
on the (a, f) plane will be symmetric to the projection of the fence on the (f,x)
plane and therefore the area of projection on the (f, @) plane is equal to the area
of projection on the (f,z) plane. Thus, the Riemann-Stieltjes integral reduces to

Riemann integral.

Now let us consider the case where « is not a straight line.

Note that over here, since « is not symmetric with respect to the («, f) and
(f,x) planes, therefore the projection of the fence on (a, f) plane will not be equal
to the projection on the (f,z) plane.

Define f as in figure 5.3 and let a be given by figure 5.6(a) and ay by figure 5.6(b).
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(@) a(z) = v ((b) a(z) = a?

3
Figure 4.7: Geometric interpretation of Riemann-Stieltjes integral for f (x) = Z:E—i—
1

Let a7 and as be differentiable. The corresponding figures show the projections
and shadows on the (f, ) plane. If we observe the shadows carefully then we can
see that the function a weighs the area of the shadow. The values of = for which
« (z) has the steepest slope corresponds to regions of the fence that cast the most

shadow and thereby carry the most value in the integral.

We know for a fact that the Riemann-Stieltjes integral is equal to the Riemann
integral of f (z) o/ (z). As we know, o/ () is the slope of v at z. So we can observe
that the regions of the fence in which « (z) has slope 0 cast no shadow at all , that
is,

ffdaz ff(x)o/ (2) dz

d
where o () = % i weighing function.

dx
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Chapter 5

Applications of Riemann-Stieltjes

Integral

5.1 Application in Probability Theory

Definition 25 (Probability Space). A probability space is a triple (w, F,P) where
w is a sample space, F' is a o—algebra of events and P is a probability measure on

F.

Definition 26 (Sample Space). The set of all possible outcomes for the random

experiment we want to model.

Definition 27 (Event space). A collection of all subsets of w satisfying the follow-
ing conditions ; making it into a o —algebra: undefined. "See the enumitem package

documentation for explanation. Type__H_<return>__for_immediate_help

peF

Ae F = Ae F
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0
AjeFfori=1,2,--- = |JAeF

i=1
Definition 28 (The function P). The function P is a probability measure defined
on F that is, on the function P : F — [0,1] such that : undefined. See the enu-

mitem package documentation for explanation. Type__H_<return>__for_immediate_help

P(9)=0
P(A°)=1— P(A) where Ae F

P(L_JlAi) = ;P(Ai) it A;nAj; = ¢ when i # j where A; € F

Example :
Flipping of a fair coin (Outcome is Heads (H) or (T)).
Sample space : w = {H,T}.
Event space : 4 events : {H},{T}, {},{H,T}
F=A{{ {1} (T} {H, T}}
Probability measure : 50% chance of H and 50% chance of T.
P({(}) =0, P((H}) = 5, PUT, PU{H.) =1

= (w,F, P) is a Probability space.

Definition 29 (Random variable). A random variable X is a function X : w — R
such that {w : X (w) < x} € F for every x € R. This condition is called measura-
bility.

It ensures that one can define the distribution function F' of X, which is defined

as

F(z)=P(w: X (w)<x)
. the set {w: X (w) <z} isin F .. we can apply P on it.
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Definition 30. Assume that X is a random variable with distribution functionf.

The expectation F (X) of X is defined, if it exists, as

B(X) - J 2dF (2)

Note: The interpretation of the expectation £ (X) is clear from the Riemann-

Stieltjes approximation

with & € (v;1, 2] .
Lemma 1:

Assume F' is an increasing step function on I so that

F(t) = ZCLZ',

with t, =min(I) <ty <ty <--- <ty =max () and a; =0

Then, if ¢ is continuous,

jgmdmx):iai

Proof. This Lemma is a corollary to Theorem 8 O]

Theorem 32. If X is a random variable and g as above then the random variable

Y = g (z) has expectation
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Proof. A Riemann-Stieltjes sum for the LHS is

Z i (Fy () — F (yi-1)) = Z m:P (y € (yio1, yi))
= ZmP (9 (X) € (yi1,i])

= > 0P (X € g7 (Wi, yil}) .01 € (imr, yi]
Note that

m € (Yic1, yi] <= & =g (m) € g {(yi-1,y1]}

= ¢(&) € (Y1, vi]

. above is equal to 3 g (§) P (X € g7 {(yi-1,yil}) with € € ¢~ {(yi-1, yil}
Note that if the intervals (y;_1, yi] form a partition (are disjoint and their union
is the whole interval I)

.". The above can be written as

ZQ (&) P (z € (zi1, 1)) ,

with & € (x;-1, ;] , which is a Riemann-Stieltjes sum for the RHS.

Hence we are done.

Special case:

g(X)=1if X e AJA < R This is a Bernoulli random variable, it’s distribution
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function is a step function with jumps at 0 and 1, so that

=P(XeA

Also, note that the LHS of this is

and thus we get the formula
P(XeA) = JdF(x)
A

In particular, 1 = P (X € R) = {dF (z)
R

Theorem 33. Let X be a random variable with distribution function F. Then

E(aX +b) =aE(X)+b

72



Proof. We have

E(aX +b) = f(aXer)dF(X)

8

:afxdp(z)erTdF(x)

—aX (X)+b

O

Definition 31 (Variance of a random variable). The variance of a random variable

X with distributive function is defined (if it exists) as
Var (X) = E (X?) — B(X)?

Proof.
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5.2 Application in Number Theory

5.2.1 FEuler’s Summation formula

The Euler’s summation formula relates the integral of a function over an interval
[a,b] with the sum of the function values at the integers in [a, b]. Sometimes it can
be used to approximate integrals by sums or, Conversely, to estimate the values of

certain sums by means of integrals.

Theorem 34. FEuler’s Summation formula If f has a continuous derivative f' on

[a,b], then we have

b b
E]f@0=J ﬂ@d$+ff%@¢M@D+fWMWDf@ﬂ@»

a<n<b

where Y. means sum fromn = [a] + 1 to n = [b]
a<n<b

When a and b are integers, this becomes

Z f(n) :Lbf(x)dx+Lbf’(x)dx (ib—[l']_%>

a<n<b

Proof. Theorem 6 says that if f € R, [a,b] then
[1@ae@+ [[a@a@=-10a®)-s@a

Let a(x) =z — [z].

Now, since Riemann-Stieltjes integral is linear w.r.t. the integrator
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fbf(fv)d(w—[r])=fbf($)dx—ff(x)d[w] (2)

The greatest integer function has unit jumps at the integers [a] + 1,[a] +
2, [b].

.. using Theorem 11, we get

jf ) 3)

a<n<b

f has a continuous derivative f’ on [a,b]..". By applying Theorem 7.8, we get
b
J -

f jfwwmm (4)
(4

l
- S
)
|

Substituting (2) and (4) in (1), we get

f f(z)dzx —f f(z)d]z] +J f@)d((z)) = f () ((0) = f(a) (@) (5)

Next, substituting (3) in (5),

J fla)yde— Y f(n J f (@) d((x)) = £ () (b)) = f () ((a))

a<n<b

jf m+jf ) ((6)) — f () (())

a<n<b
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= 1 1
Z—z _1+SJ [z]ldxifs;él
— ks ns st

1

1
Proof. Let f(x) = —,s # 1. Recall Theorem 7.11,
xS

k=1

| r@da@) = f@)an

zlogn—fx_[x]dx—kl
x

2

1=
| =

el
Il
—

Proof. Let f(x) = %
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(5.2)



If f is continuous on [1,2n] then

S0t 0 - | @ (-2[3])
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Proof.

[
S

(k)=—2§]f<k)+222f
== (Jf(x)d[x]+f<1>>+z (ff(x)d[g])

ff z|dx —2nf (2n) Jf dx~|—2nf(2n)

=jf'<x> ] -2[%])

el
Il
—
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Chapter 6

Lebesgue-Stieltjes Integral

Definition 32 (Outer measure). Let E be an arbitrary subset of R. We define the

outer measure of E to be the quantity

o0
m* (E) = {Z [(I,) : (I,) is a sequence, finite or infinite, such that £ < U I}

n=1 n=1

Definition 33 (Measurable set). A subset E of R is called a measurable set if
given € > (, there exists a closed set I’ and open set U such that FF < F < U and

m* (U\F) < e.

Definition 34 (Measurable function). Let E be a subset of R. A function f : E —
R is said to be measurable if f~! ((«,0)) = {z € E : f (z) > a} is measurable for

all a e R.

Definition 35 (Borel sets). The collection B of Borel sets is the smallest o—

algebra which contains all of the open sets.

Definition 36 (Baire measure). Let X be the set of real numbers and B the class

of all Borel sets. A measure p defined on B3 and finite for bounded sets is called a
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Baire measure (on the real line.

To each finite measure we associate a function F' by setting
F(z) = p (-0, z].

The function F' is called the cumulative distribution function of y and I real valued

and monotonic increasing. We have
i (a,b] = F (b) - F (a)

1
Since (a, b] is the intersection of the sets (a, b+ —] , Proposition 11.2 implies that
n

n—ao0

1
w(a,b] = lim p (a,b%—cﬁl

and so,

n—a0

F (a,b] = limF<b+%] = F(b+).

Thus a cumulative distribuion function is continuous on the right.

Similarly,

1
pu{b} = lim p (a, b+ E]

;;w%>F@i)}
—F () - F (o)

Hence F is continuous at b if and only if the set {b} consisting of b alone has
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measure 0.

e 0]
Since ¢ = () (=0, —n], we have
n=1

A Fin) =0
and hence
lim F(z)=0
xr—>—00

because of the monotonicity of F. We summarize the properties in the following

lemma:

Lemma 1. If p is a finite Baire measure on the real line, then it’s cumulative
distribution function F is a monotonic increasing bonded function, which is con-
tinuous on the right.

Morever, lim F(z)=0.

T——00

Lemma 2. Let F' be a monotone increasing fuunction continuous on the right. If

e}
[a,b] < U (ai, bi], then
i=1

Proof:
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F(b) = F(a) = Y{F () = F (a0}

Theorem 35. Let p be a measure on an algebra A and p* the outer measure
induced by p. Then the restriction i of u* to the u*-measurable sets is an extension
of p to a o-algebra containing A. If uis finite (or o—)-finite, so is . If p is o-
finite, then [ is the only measure on the smallest o-algebra containing A which is

an extension of .

Proposition 1. Let C be a semialgebra of sets and j1 a non negative set function
defined on C with u(¢) =0 (if € C ). Then phas a unique extension to a measure

on the algebra A generated by C if the following conditions are satisfied:

(i) If a set C' in C is the union of a finite disjoint collection {C;} of sets in C,

then (€)= 3 ()

(ii) If a set C is the union of a countable disjoint collection {C;} of sets in C,

then 1 (C) < éﬂ(oi)

Proposition 2. Let F' be a monotone increasing function which is continuous on
the right, then there is a unique Baire measure p such that for all a and b we have

(a,b] = F (b) - F(a).
Proof. O

Let C be a semi-algebra consisting of all intervals of the form (a,b] or (a, o)
and set u(a,b] = F (b) — F (a),
then p satisfies condition (i) of Proposition 1. Also Lemma 2 is precisely the
condition (i) of Proposition 1

therefore by Proposition 1, p admits a unique extension to a measure on the
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o—algebra generated by B.

By Theorem 35, this 1 can be extended to a o—algebra containing C.

Since the class B of Borel sets is the smallest o—algebra conatining C, we have an
extension of i to a Baire measure. The measure p is o—finite, since X is the union
of the intervals (n,n + 1] and each has finite measure. Thus, the extension of u to

B is unique.

Corollary 1. Each bounded monotone function which is continuous on the right
s the cumulative distribution function of a unique finite Baire measure provided

F(—o0)=0.

Definition 37 (Lebesgue-Stieltjes integral). If ¢ is a non-negative Borel measur-
able function and F' is a monotone increasing function which is continuous on the

right, we define the Lebesgue-Stieltjes integral of ¢ wit respect to F' to be

| ear = [ odn

where p is the Baire measure having F' as its cumulative distribution function. If
¢ is both positive and negative, we say that it is integrable with respect to F' if it

is integrable wit respect to u.

If F'is any monotone increasing function, then there is a unique function F*
which is monotone increasing, continuous on the right, and agrees with F’ wherever

F is continuous on the right, and we define the Lebesgue-Stieltjes integral of ¢ with

J ¢dF = J PdF*.

respect to F' by
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If F' is a monotone function, continuous on the right, then SZ @dF agrees
with the Riemann-Stieltjes integral whenever the latter is defined. The Lebesgue-
Stieltjes integral is only defined when F' is monotone(or more generally, of bounded
variation) while the Riemann-Stieltjes integral can exist when F' is not of bounded

variation, say when F'is continuous and ¢ is of bounded variation.
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Chapter 7

Conclusion

Chapter 3: The Riemann-Stieltjes integral has basic features such as linearity
with respect to integrand and integrator, as well as additivity with respect to the
interval of integration. If the intergral exists, it can be simplified to the Riemann
integral whenever the integrator has a continuous derivative. The integral can
occur at a point where the integrad is continuous from left (or right), as long as
the discontinuity is compensated for by the integrator’s continuity from left(or
right). For monotonic increasing integrators, the presence of a Riemann-Stieltjes
integral implies that the integrand satisfies Riemann’s condition with respect to
the integrator. The existence of the Riemann-Stieltjes integral is guaranteed by
the continuity of the integrand and the bounded variation of the integrator. When
both the integrand and the integrator are discontinuous at the same point from the
same side, the Riemann-Stieltjes integral cannot exist. The mean value theorems
for the Riemann-Stieltjes integral can be used to estimate its value. Integrator

functions that are not of bounded variation can be explored.
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Chapter 4: Geometric interpretations of various functions have been done
with the GeoGebra software. Other software packages, such as Scilab, can be used

to graph more functions.

Chapter 5: The Riemann-Stieltjes integral is utilized in probability theory.
The Riemann-Stieltjes integral makes it simple to prove theorems in number theory.
The Riemann-Stieltjes integral is very useful in functional analysis. Applications

of the Riemann-Stieltjes integral in Complex analysis can be investigated.

Chapter 6: The Lebesgue-Stiltjes integral has been defined. Properties of the
Riemann-Stieltjes/Lebesgue integral that also apply to the Lebesgue-Stieltjes inte-
gral can be investigated. Various functions can be used to compare the Riemann-

Stieltjes and Lebesgue-Stieltjes integrals.
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