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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the

Subject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Math-

ematics in the academic year 2023-2024.

The topic assigned for the research report is: " Cantor Sets : Generalizations & In-

teresting Properties." This survey is divided into five chapters. Each chapter has its own

relevance and importance. The chapters are divided and defined in a logical, systematic

and scientific manner to cover every nook and corner of the topic.

This report is mainly focsed on the standard Cantor set. The brief history,constrction

and various properties will be discussed in detail.

In chapter 1, all the basic definations and results will be stated and proved and also a

brief history about the origin of the Cantor set is given throughout the report.The Cantor

set that is the Cantor 1/3 set is denoted by ∆ and various generalizations are denoted by

C. Ternary representation of real numbers is discussed in detail.

In chapter 2, the Cantor Lebesgue function is introduced and its construction and

various properties will be explored. At many places, two different proofs for one partic-

ular result will be given which are taken from various references.

Chapter 4 will be about various generalizations of the standard cantor set and their

properties analogous to δ. A special type of "Fat cantor set" known as SVC set will be

discssed.

In chapter 5, the concept of fractral dimension will be discussed very briefly and

fractral dimensions of few sets will be computed.
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Overall in this report the Cantor set and all its related properties will be discussed

which can be used for further applications of Cantor sets in Analysis and Topology.
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ABSTRACT

The ternary Cantor set , constructed by George Cantor in 1883, is the best known

example of a perfect nowhere-dense set in the real line. The present article we study the

basic properties of the Cantor set and also study in detail the ternary expansion charac-

terization . We then consider the Cantor-Lebesgue function defined on the Cantor set,

prove its basic properties and study its continuous extension to [0, 1]. Cantor set as a

mathematical object displays various intriguing properties. Although it looks sparse it

is an uncountable set. The cantor set is used as a very good example in many theorems

and proofs of and topology and measure theory. The Cantor function has various ap-

plications in Analysis(ref. [8]) Any compact metric space is a continuous image of the

Cantor set is another such result. Thus in this particular report I have tried to study all

the basic properties of this very special type of set in detail.
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Chapter 1

INTRODUCTION

The Cantor set is an unusual and intriguing subset of R , also referred to as "Cantor-

ternary set" or "Cantor-middle third set". It shows various surprising properties and thus

serves as an important counter example in topology , measure theory , and analysis.

Here we shall discuss all the properties of the cantor set in detail and construct

the corresponding Cantor function. Later with the help of the standard Cantor set ,

generalizations of the Cantor set and also various different forms of the Cantor set has

been discussed.

1.1 Brief History about of origin of Cantor set.

George Cantor(1845 - 1918) was the originator of modern set theory. Cantor first men-

tioned the Cantor set in connection with the concept of "perfect" sets. But the set itself
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was not discovered by Cantor. H.J.S. Smith in 1875 introduced the Cantor set in con-

nection with the construction for nowhere dense sets.

The first construction of a perfect, nowhere dense set was by the British mathemati-

cian Henry J. S. Smith (1826-1883) in 1875. Smith, who taught at Balliol College in

Oxford and was appointed Savilian professor of geometry in 1860, is known primar-

ily for his work in number theory. Not many mathematicians were aware of Smith’s

construction, a fate that was shared by some of his other ground breaking work. Most

of the exciting mathematics was happening in Germany and France, and that is where

attention was focused. In 1881, Vito Volterra showed how to construct such a set, but

Volterra was still a graduate student, and he published in an Italian journal that was not

widely read. Again, little notice was paid. Finally, in 1883, Cantor rediscovered this

construction for himself, and suddenly everyone knew about it. Cantor’s example is

known as the Cantor ternary set.
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1.2 Preliminaries and Definitions

First let’s recall some basic concepts from Analysis on Rn

Let (Rn, d) be a metric space .

Definition 1.1. (Open Ball)

Let x ∈ Rn and r > 0. We define the set B(x, r) = {y ∈ Rn|d(x, y) < r}. Then

B(x, r) is called as the open ball with center x and radius r.

Definition 1.2. (Open set)

A subset U of Rn is called an open set if for each x̄ ∈ U , ∃ r > 0 s.t. B(x, r) ⊂ U

Definition 1.3. (Interior point)

S ⊂ Rn. A point x ∈ S is said to be an interior point of S if ∃ r > 0 s.t. the open ball

B(x, r) ⊂ S.

Interior of a set is an open set.

Definition 1.4. (Closed Set)

A subset E of Rn is said to be closed if its complement , Ec is open.

Definition 1.5. (Limit point of a set)

Let A ⊆ Rn. A point x0 ∈ Rn is said to be a limit point of A if

∀ r > 0, (B(x, r) ∩ A) \ {x0} ≠ ∅

Theorem 1.6. Let A ⊂ Rn, a point x ∈ A is a limit point of A iff ∃ (xn) , a sequence

in A s.t. xn −→ x.

Definition 1.7. (Derived set)

Let E be a subset of Rn. The set of all limit points of E is called as derived set of E and

denoted by E ′ .
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Definition 1.8. (Nowhere dense set)

A subset A of a metric space M is nowhere dense if its closure has an empty interior.

That is int(A) = ϕ.

Definition 1.9. (Perfect set)

A set is perfect if it is equal to its derived set. In other words, S is perfect if and only if

every point of S is an accumulation point of S, and all accumulation points of S are in

S.

Definition 1.10. (Outer Measure)

For any subset of R, say E ⊂ R, the Lebesgue outer measure m∗(E) is defined as an

infimum, which is represented by

m∗(E) = inf

{∑
l(In) | (In) is a sequence of intervals s.t. E ⊂

∞⋃
n=1

In

}

where l(In) = length of the interval In

* If In = (a, b) or [a, b] then length of In = l(In) = b− a

Proposition 1.11. Properties of outer measure

• The outer measure m∗ is a real-valued set function defined on a space X with the

properties:

– It is a non-negative set function defined for all subsets of X

– m∗(O) = 0, i.e. the outer measure of the empty set is zero.

– It is monotone increasing, i.e. if A ⊆ Bthen m∗(A) ≤ m∗(B)
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– It is countably subadditive, i.e. m∗(
⋃
Aj) ≤

∑
m∗(Aj)

– It is countably additiveb for any pairwise disjoint sets Aj . That is, m∗(
⋃
Aj) =∑

m∗(Aj) if Aj’s are pairwise disjoint.

Definition 1.12. (Separated sets)

Two subsets A,B of Rn are said to be separated if A ∩B = ∅ and A ∩B = ∅

Definition 1.13. (Connected set)

A subset E of Rn is said to be connected if E cannot be written as the union of two

non-empty seperated sets.

Definition 1.14. (Totally disconnected set)

If E contains no interval then E is totally disconnected.

A set S is called totally disconnected if for each distinct x, y ∈ S there exist disjoint

open set U and V such that x ∈ U, y ∈ V and (U ∩ S) ∪ (V ∩ S) = S.

A totally disconnected space is a topological space that has no non-trivial (singletons

and empty set) connected subsets. In other words, the only connected components in

any totally disconnected space X are the one-point sets.

Definition 1.15. (Self Similar sets)

A set S is self similar if it can be divided into N congruent subsets, each of which when

magnified yields the entire set S.

Definition 1.16. (Fractal dimension)

Let S be a compact set and N(S, r) be the minimum number of balls of radius r needed

to cover S. Then the fractal dimension of S is defined as

dimS = lim
r→0

logN(S, r)

log(1/r)
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Fractals

Definition 1.17. (Fractals)

A fractal is an object or quantity that displays self-similarity. Fractal is a pattern that

repeats forever, and every part of the Fractal, regardless of how zoomed in, or zoomed

out you are, it looks very similar to the whole image.

• It is a curve or geometrical figure, each part of which has the same statistical

character as the whole.

• A fractal is a never-ending pattern. Fractals are infinitely complex patterns that

are self-similar across different scales.

• A Fractal is a type of mathematical shape that is infinitely complex. In essence, a

Fractal is a pattern that repeats forever, and every part of the Fractal, regardless of

how zoomed in, or zoomed out you are, it looks very similar to the whole image.

Definition 1.18. (Absolutely Continuous functions)

A real-valued function f on a closed, bounded interval [a, b] is said to be absolutely

continuous on [a, b] provided for each ϵ > 0, there is a δ > 0 such that for every finite

disjoint collection (ak, bk)
n
k=1 of open intervals in (a, b), if

n∑
k=1

|bk − ak| < δ, then
n∑

k=1

|f(bk)− f(ak)| < ϵ

Definition 1.19. (Dyadic rational) In mathematics, a dyadic rational or binary rational

is a number that can be expressed as a fraction whose denominator is a power of two.

For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not.
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A rational number p/q in simplest terms is a dyadic rational when q is a power of

two. Another equivalent way of defining the dyadic rationals is that they are the real

numbers that have a terminating binary representation.

The dyadic rationals are precisely those numbers possessing finite binary expan-

sions. Their binary expansions are not unique; there is one finite and one infinite rep-

resentation of each dyadic rational other than 0 (ignoring terminal 0s). For example,

0.112 = 0.10111...2, giving two different representations for 3/4. The dyadic rationals

are the only numbers whose binary expansions are not unique.

Analogous to dyadic rationals we have ternary rationals the only difference being

denominator is a power of 3 instead of 2. That is a rational number p
q

in simplest terms

is a ternary (tri-adic) rational when q is a power of three.
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Chapter 2

The standard Cantor set

The standard Cantor set or the Cantor ternary set, denoted by ∆ is an unusual subset

of [0, 1] , which is uncountable, perfect , totally disconnected and nowhere dense. This

is an example of an Uncountable set which has Lebesgue measure zero. we will prove

all the above stated properties in the subsequent section, before that let us look at the

construction of the Cantor set.

2.1 The Cantor ternary set

2.1.1 Construction of the Cantor ternary set

The Cantor set ∆ is produced by the iterated process of removing the middle third from

the previous segments. Begin with the closed real interval [0, 1] and divide it into three

equal open sub intervals. Remove the central open interval (1
3
, 2
3
). Removing the middle
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third, leaving us with the union of two closed intervals of length 1
3

each.

Now we remove the middle third from each of these intervals, leaving us with the union

of four closed intervals of length 1
9

each.

We continue this process inductively, then for each n=1,2 3,.. we get a set Cn which

is the union of 2n closed intervals of length 1
3n

. This iterative construction is illustrated

in the following figure, for the first four steps:

Consider closed interval [0, 1]. Let C0 = [0, 1]

C1 = [0, 1] \ (1
3
, 2
3
)

= [0, 1
3
] ∪ [2

3
, 1]

C2 = ([0, 1
3
] \ ( 1

32
, 2
32
))
⋃
([2

3
, 1] \ ( 7

32
, 8
32
))

= [0, 1
9
] ∪ [2

9
, 3
9
] ∪ [6

9
, 7
9
] ∪ [8

9
, 1]

Cn = [0, 1
3n
] ∪ [ 2

3n
, 3
3n
] ∪ · · · ∪ [3

n−3
3n

, 3
n−2
3n

] ∪ [3
n−1
3n

, 1]

Continuing this way we obtain a sequence of sets such that

1. C1 ⊃ C2 ⊃ C3 · · ·

2. Cn is the union of 2n intervals, each of length 1
3n

3. The set ∆ =
⋂∞

n=1Cn is called the Cantor set.
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2.1.2 Illustration of the Construction

The following is the illustration of the first few iterations of the cantor set.

Figure 2.1: Cantor ternary set

2.1.3 Basic results

Observation 2.1. The Cantor set is non empty.

Note that in process of construction we never removed the endpoints. for e.g.

0, 1, 1
3
, 2
3
, 1
9
· · · ∈ ∆. So ∆ ̸= ϕ.

Also note that (Cn) is a decreasing sequence of non empty closed and compact sets.

Therefore by the Cantor intersection theorem , ∆ is non-empty.

Theorem 2.2. ∆ is uncountable.

Proof. This is quite a surprising result as though The Cantor set looks very discrete and

scarce, we can actually prove that it is uncountable.

The proof that ∆ is uncountable is based on characterization of ∆ in terms of ternary

(base 3) decimals. This we shall discuss in the next section.

Proposition 2.3. ∆ is closed.
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∆ is a closed set, being the countable intersection of closed sets, and trivially bounded,

since it is a subset of [0,1]. Therefore, by the Heine-Borel theorem ∆ is a compact set.

Proposition 2.4. The cantor set has Lebesgue measure zero.

Proof. The Cantor set ∆ is an intersection of union of closed intervals. Thus comple-

ment of ∆ in [0, 1] is a union of disjoint open intervals. Therefore , from additivity of

outer measure, (ref : 1.11 ) length of the removed intervals at each stage that is length

of [0, 1] \ Cn for each n will add up.

Total length removed =
1

3
+ 2(

1

3
)2 − 22(

1

3
)3 + · · ·

=
1

3

(
1 +

2

3
+ (

2

3
)2 + · · ·

)
=

1

3

( 1

1− 2
3

)
=

1

3
(
1
1
3

)

= 1

Thus the total length of the removed intervals is 1

Implies,the remaining length that is the length of the intervals in ∆

= length of [0, 1]− 1

= 1− 1 = 0

Thus ∆ has outer measure zero.
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2.2 Ternary Expansion and the Cantor set

There is an alternative characterization of C, the ternary expansion characterization.

Consider the ternary representation for x ∈ [0, 1].We shall describe this in detail in the

following sections.

For that let us briefly discuss binary, ternary and decimal expansion of real numbers.

Let p ∈ N be greater than or equal to 2. Then we want to show that there exists

p-expansion for any real number x in the following sense: There exists an integer x0

and numbers ak lying in {0, 1, ..., p− 1} such that x = x0 +
∑
k

ak
pk

It will suffice to consider real numbers between 0 and 1, since the representations

for other real numbers can then be obtained by adding a positive or negative integer.

Any real number x can be written in the form x = x0 + a, where x0 ∈ Z and a ∈ [0, 1).

This suggests that it suffices to consider only x ∈ [0, 1]. The most widely used are the

cases when p=2,3,4 ; and we shall explore these three cases only. When p = 2, 3, 10,

the expansions are respectively called binary, ternary and decimal. We shall discuss

this in detail in the following sections.

2.2.1 The decimal Expansion of real numbers

Definition 2.5. (Positive decimal)

An expression of the form a0 +
a1
101

+ a2
102

+ · · ·+ an
10n

+ · · ·

where a0 is a positive integer and ak ∈ {0, 1, 2, · · · 9} for each n ∈ N

This series represents the number a0.a1a2 . . . an · · ·
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If a0 ∈ Z+ then a0 = zm10
m + zm−110

m−1 + · · ·+ z010
0 for some m ∈ N

Then the above series representation can also be written as

a0 +
a1
101

+
a2
102

+ · · ·+ an
10n

+ · · ·

= zm10
m + zm−110

m−1 + · · ·+ z010
0 +

a1
101

+
a2
102

+ · · ·+ an
10n

+ · · · .

The following are some of the well known results on the decimal expansion of real

numbers. They are just stated here without giving proofs.

Proposition 2.6. • Every infinite decimal is a real number.

• Every (positive) real number has an infinite decimal representation.

• A real number is rational if and only if it has periodic (repeating) decimal repre-

sentation.

• This representation is unique except for rational numbers of the form m
10n

for some

m,n ∈ N in its simplest form.

2.2.2 Binary Expansion of numbers

Similar to the properties of decimal expansion we have binary expansion of real num-

bers. This we shall formally construct and prove.

If x ∈ [0, 1], we will use a repeated bisection procedure to associate a sequence (ηn) of

0’s and 1’s as follows.

If x ̸= 1
2

belongs to the left sub interval [0, 1
2
] we take η1 := 0, while if x belongs to the

13



right sub interval [1
2
, 1] we take η1 := 1. If x = 1

2
, then we may take η1 to be either 0 or

1. In any case, we have
η1
2

≤ x ≤ η1 + 1

2

. We now bisect the interval [1
2
η1,

1
2
(η1 + 1)]. If x is not the bisection point and belongs

to the left sub interval we take η2 := 0, and if x belongs to the right sub interval we take

η2 := 1. If x = 1
4

or x = 3
4
, we can take η2 to be either 0 or 1. In any case, we have

η1
2

+
η2
22

≤ x ≤ η1
2

+
η2 + 1

22

We continue this bisection procedure, assigning at the nth stage the value ηn := 0

if x is not the bisection point and lies in the left subinterval, and assigning the value

ηn := 1 if x lies in the right subinterval. In this way we obtain a sequence (ηn) of 0’s or

1’s that correspond to a nested sequence of intervals containing the point x. For each n,

we have the inequality

η1
2

+
η2
22

+ · · · ηn−1

2n−1
+

ηn
2n

≤ x ≤ η1
2

+
η2
22

+ · · ·+ ηn−1

2n−1
+

ηn + 1

2n
(2.1)

If x is the bisection point at the nth stage, then x = m
2n

with m odd. In this case,

we may choose either the left or the right subinterval; however, once this subinterval is

chosen, then all subsequent subintervals by the bisection procedure are determined. For

instance, if we choose the left subinterval so that ηn = 0, then x is the right endpoint of

all subsequent subintervals, and hence ηk = 1 for all k ≥ n+1. On the other hand, if we

choose the right subinterval so that ηn = 1, then x is the left endpoint of all subsequent

subintervals, and hence ηk = 0 for all k ≥ n + 1. For example, if x = 3
4
, then the two
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possible expansions for x are 0.10111 · · · (base 2) and 0.11000 · · · (base 2)

To summarize: If x ∈ [0, 1], then there exists a sequence (ηn) of 0’s and 1’s such that

inequality above holds ∀n ∈ N. In this case we write

x = 0.η1 η2 η3 · · · ηn · · · (base 2)

where ηi ∈ {0, 1}and call it binary representation of x.This representation is unique

except when x = m
2n

with m odd, in which case x has two representations

x = 0.η1 η2 η3 · · · ηn−11000 · · · (base 2)

= 0.η1 η2 η3 · · · ηn−10111 · · · (base 2)

one ending in 0’s and the other ending in 1’s. Conversely, each sequence of 0’s and

1’s is the binary representation of a unique real number in [0, 1]. The inequality (2.1)

determines a closed interval with length 1
2n

and the sequence of these intervals is nested.

Therefore, the nested interval property implies that there exists a unique real number x

satisfying the inequality for every n ∈ N. Consequently, x has the binary representation

x = 0.η1 η2 η3 · · · ηn · · · (base 2)

Thus any real number x ∈ [0, 1] can be represented as the sum of series

x =
η1
21

+
η2
22

+
η3
23

+
η4
24

+ · · · (2.2)

where , ηn is an integer s.t. 0 ≤ ηn ≤ 1 for each n ∈ N, which represents the number

x = 0.η1 η2 η3 · · · ηn · · · (base 2)
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This is called as binary representation of the number.

Examples

1. x = 1
2
= 0.1 = 0.0111 · · · (base 2)

• If [0, 1] is bisected then 1
2

is the midpoint and it is a dyadic rational number.

Thus there as discussed earlier it has 2 binary expansions.

2. x = 1
4
= 0.01 = 0.00111 · · · (base 2)

3. x = 3
2
= 1.1 = 1.0111 · · · (base 2)

4. x = 1
16

= 0.0001 = 0.0000111 · · · (base 2)

5. x = 5
9
= 0.100011 (base 2)

6. x = 1 = 0.111 · · · (base 2)

2.2.3 Ternary Representation

Analogously, if x ∈ [0, 1], we will use a repeated trisection procedure to associate a

sequence (εn) of 0’s, 1’s and 2’s as follows. If x ̸= 1
3

and belongs to the left sub interval

[0, 1
3
] we take ε1 := 0, if x belongs to the right sub interval [1

3
, 2
3
] we take ε1 := 1 while

if x belongs to the right sub interval [2
3
, 1] we take ε1 := 2. If x is the end points of each

of the sub intervals ; that is if x = 1
3
, then we may take ε1 to be either 0 or 1, and if

x = 2
3
, then we may take ε1 to be either 1 or 2. In any case, we have

ε1
3

≤ x ≤ ε1 + 1

3
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We now trisect the interval [1
3
ε1,

1
3
(ε1 +1)] If x is not the trisection point and belongs to

the left sub interval we take ε2 := 0, and if x belongs to the right sub interval we take

ε2 := 1. If x = 1
9
, 2
9
, 4
9
, 5
9
, 7
9

or 8
9
, we can take ε2 to be either 0, 1 or 2. In any case we

have
ε1
3
+

ε2
32

≤ x ≤ ε1
3
+

ε2 + 1

32

We continue this process , at each nth stage assigning the value εn := 0 if x is not the

trisection point and lies in the left sub interval, assigning the value εn := 1 if x lies in

the middle sub interval and assigning the value εn := 2 if x lies in the right sub interval.

In this way we obtain a sequence (εn) of 0’s, 1’s or 2’s that correspond to a nested

sequence of intervals containing the point x. For each n, we have the inequality,

ε1
3
+

ε2
32

+ · · · εn−1

3n−1
+

εn
3n

≤ x ≤ ε1
3
+

ε2
32

+ · · ·+ εn−1

3n−1
+

εn + 1

3n
(2.3)

If x is the trisection point at the nth stage, then x = m
3n

. In this case, we may choose

either the left or the right sub interval; however, once this sub interval is chosen, then all

subsequent sub intervals in the trisection procedure are determined. (For instance, if we

choose the left sub interval so that εn = 0, then x is the right endpoint of all subsequent

sub intervals, and hence εk = 1 for all k ≥ n + 1. On the other hand, if we choose the

right sub interval so that εn = 2, then x is the left endpoint of all subsequent subinter-

vals, and hence εk = 0 for all k ≥ n+ 1.

For example, if x = 2
3
, then the two possible sequences are 2, 0, 0, 0, · · · and 1, 2, 2, 2, · · ·
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That is, if x = 2
3
, then the two possible representations of x are

x =
2

3
= 0.2000 · · · (base 3)

= 0.1222 · · · (base 3)

Thus to summarize:

• If x ∈ [0, 1], then there exists a sequence (εn) of 0’s, 1’s and 2’s such that inequal-

ity above holds for all n ∈ N. In this case we write

x = 0.ε1ε2ε3 · · · εn · · · (base 3)

and call it as ternary representation of x.

(Also called representation of x in base 3)

• This representation is unique except when x = m
3n

for some m, in which case x

has the two representations one ending in 0’s and the other ending in 2’s

x = 0.ε1ε2ε3 · · · εn−11000 · · · (base 3)

= 0.ε1ε2ε3 · · · εn−10222 · · · (base 3)

• The inequality in (2.3) determines a closed interval with length 1
3n

and the se-

quence of these intervals is nested. Therefore,the nested interval property implies

that there exists a unique real number x satisfying the inequality for every n ∈ N.
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Consequently, x has the ternary representation

x = 0.ε1ε2ε3 · · · εn · · · (base 3)

.

• Any x ∈ [0, 1] can be written in the form

x =
ε1
31

+
ε2
32

+
ε3
33

+
ε4
34

+ · · · (2.4)

where , εn is an integer s.t. 0 ≤ xn ≤ 2 for each n ∈ N and this represents the real

number x = 0.ε1ε2ε3 · · · εn · · · (base 3) and this is called as ternary representation of

x

• For any ternary(tri-adic) rational number m
3n

there are two possible ternary expan-

sions, because

m

3n
=

m− 1

3n
+

1

3n

=
m− 1

3n
+

∞∑
k=n+1

2

3k

Depending on where the rational number m−1
3n

lies among the three sub intervals

created at each stage in the trisection process, we will have the ternary represen-

tation of m−1
3n

as we have discussed earlier.

• Therefore the decimal,binary (dyadic) and the ternary representations are unique

except for the decimal fraction or dyadic or ternary rational numbers,() in that

case we will take the infinite expansions representations for the dyadic and ternary

19



rational numbers.

Some examples for the illustration.

(0.10101)(base 3) = 1/3 + 0/32 + 1/34 + 1/35

= 91/243

(0.22222....)(base 3) =
1

2
+

1

22
+

1

23
+

1

24
+

=
1

2

(
1 +

1

2
+

1

22
+ · · ·

)
=

1

2

(
1

1− 1
2

)
= 1

1

3
= 0.1(base 3) 0.22222.... (base 3)

2

3
= 0.2 (base 3) = 0.1222 · · · (base 3)

1

4
= 0.010101 · · · (base 3)

7

9
= (0.21)3 = 0.02222 · · · (base 3)

Observe that the rational numbers of the form m
3n
, n ∈ N have 2 different expansions,

also note that in the construction of the Cantor set the end points of the sub intervals

created at each nth stage are of the form m
3n

.

Now we characterize the elements in the Cantor set.

Theorem 2.7. x ∈ ∆ if and only if x can be written as
∞∑
k=1

εk
3k

,

where an = 0 or 2.
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Proof. Recall in the Construction of cantor set we divide the unit interval into three

parts and then remove the central open interval.

We have seen that, for n = 1, an interval (an, bn) = (a1, b1) is removed if a1 =

0.1(base 3) = 0.02̄(base 3) and b1 = 0.2(base 3).

For n = 1, we remove points between 1
3

and 2
3
.

That is between 0.02(base3) = 0.0222 · · ·(base 3) and 0.2 (base 3)

For n = 2, it is removed if a2 = 0.01(base 3) = 0.002̄, b2 = 0.02(base 3) or a2 =

0.21(base 3) = 0.202̄(base 3), b2 = 0.22(base 3).

In general, any interval (an, bn) is removed if and only if an, bn can be written in the
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form

an = 0.ε1ε2ε3 · · · εn−11(base 3)

= 0.ε1ε2ε3 · · · εn−10222 · · · (base 3)

=
n−1∑
k=1

εk
3k

+
∞∑

k=n+1

1

3k

bn =
n−1∑
k=1

εk
3k

+
∞∑

k=n+1

2

3k

= 0.ε1ε2ε3 · · · εn−12(base 3)

Assume this is true for a given n, then for (n + 1)th step. At each step we remove

2n open intervals. Suppose we remove right most interval from one particlar segment

formed at the n-th stage then we have,
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an+1 = bn +
1

3n+1

= 0.ϵ1ϵ2ϵ3 · · · ϵn−12 +
1

3n+1
= 0.ϵ1ϵ2ϵ3 · · · ϵn−121

= 0.ϵ1ϵ2ϵ3 · · · ϵn−120222 · · ·

bn+1 = bn +
2

3n+1

= 0.ϵ1ϵ2ϵ3 · · · ϵn−122

OR

If we remove the open interval (an, bn) from the left most segment then we have

an+1 = an −
2

3n+1

= 0.ϵ1ϵ2ϵ3 · · · ϵn−11−
1

3n+1
= 0.ϵ1ϵ2ϵ3 · · · ϵn−101

= 0.ϵ1ϵ2ϵ3 · · · ϵn−100222 · · ·

bn+1 = an −
1

3n+1

= 0.ϵ1ϵ2ϵ3 · · · ϵn−11−
1

3n+1

= 0.ϵ1ϵ2ϵ3 · · · ϵn−102
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Therefore by the induction principle we conclude that

x =
∞∑
k=1

ϵk
3k

, where ϵk = 0 or 2

Observe that this implies, in particular, that the left end points of the disjoint intervals

constituting Cn have a finite triadic representation with ending digit 2; more precisely,

they can be written as

x =
∞∑
k=1

ak
3k

where an ∈ {0, 2} for 0 < k ≤ n,

ak = 2 and ak = 0 for k > n , and the right end points of the disjoint intervals

constituting Cn have a infinite periodic triadic representation (endpoints are of the form

m
2n

) with period 2 (means 2 is recurring). Moreover, observe that Cn consists of exactly

2n disjoint intervals, which is exactly the number of points in [0, 1] of the form

x =
∞∑
k=1

ak
3k

, where ak ∈ {0, 2} for 0 < k ≤ n .

and ak = 0 for k > n

Therefore we can conclude that if x ∈ ∆ then

x = 0.ε1ε2ε3 · · · εn · · · (base 3) where εk ∈ {0, 2}

Theorem 2.8. Every point in the Cantor ternary set ∆ is a limit point of ∆.

Proof. Recall the definition of a limit point: Let A ⊂ R, a point x ∈ A is a limit point

of A iff ∃ (xn) , a sequence in A s.t. xn → x. We will prove that for every x ∈ ∆, ∃ a

sequence in ∆ converging to it.

Case 1 : Suppose x has only finite number of digits, say n.
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Approach x through the sequence x+
2

3n+1
, x+

2

3n+2
, x+

2

3n+3
, · · · where all

the terms are also elements in the standard cantor set. Therefore x is a limit point

of ∆

Case 2 : Ternary expansion of x has infinite digits.

x = x1x2x3x4....(base 3) where each xk is either 0 or 2. Now approach x through the

sequence 0.x1 , 0.x1x2 , 0.x1x2x3 , 0.x1x2x3x4 , . . .

(xk = kth digit)

All the terms in the sequence that converge to x , belong to ∈ ∆, since xk is either

0 or 2. As a result, x is a limit point of the Cantor ternary set.

Corollary 2.9. The Cantor set is perfect.

Proof. Recall that a set S is said to be perfect if S is closed and S = S ′.

Since a closed set contains all its limit points , it is equivalent to prove that every point

of a closed set is a limit point. The Cantor set ∆ is closed and ∀x ∈ ∆, x is a limit point

of ∆.

Proposition 2.10. ∆ is totally disconnected

Proof. We will show that any two elements of the Cantor set are separated by at least

one point not in ∆.

Let a, b ∈ ∆. Then we know that written in base 3, both a and b are composed of only

0 and 2.

Now, starting from left decimal digit locate the first digit that differ in a and b and

25



replace it with a 1.

w.l.o.g. , if a = 0.20202... and b = 0.20222... in base 3, then let c = 0.2021... in base 3,

where the remaining digits don’t really matter. Since the first 3 digits of a, b and c are

the same, we are able to argue that a < c < b and that c is not in the ternary Cantor set

since it contains the digit 1.

If this is the case, no two distinct points can be part of the same connected compo-

nent, so the set is totally disconnected.

Proposition 2.11. ∆ is nowhere dense.

Proof. The Cantor set contains no interval of non-zero length.

For, suppose ∆ contains some interval (a, b) . Then (a, b) ⊂ Cn ∀n. But each Cn

consists of 2n closed disjoint intervals. So (a, b) is contained in exactly one of the 2n

closed intervals, say Jn .

But length of each Jn is 1/3n.

=⇒ |b− a| < 1
3n

∀n.

Thus as n → ∞, 1/3n → 0.

=⇒ a = b and hence (a, b) = ϕ So int(∆) = ϕ.

So summing up this chapter , some of the key points in this chapter are noted down

here.

• For any point in the Cantor set and any arbitrarily small neighborhood of the

point, there is some other number with a ternary numeral of only 0s and 2s, as
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well as numbers whose ternary numerals contain 1s. Hence, every point in the

Cantor set is an accumulation point (also called a cluster point or limit point) of

the Cantor set, but none is an interior point. A closed set in which every point

is an accumulation point is also called a perfect set in topology, while a closed

subset of the interval with no interior points is nowhere dense in the interval.

• It is worth emphasizing that numbers like 1, 1/3 = 0.13 and 7/9 = 0.213 are in

the Cantor set, as they have ternary numerals consisting entirely of 0s and 2s: 1

= 0.222...3 = 0.23, 1/3 = 0.0222...3 = 0.023 and 7/9 = 0.20222...3 = 0.2023. All

the latter numbers are "endpoints", and these examples are right limit points of ∆.

The same is true for the left limit points of ∆, e.g. 2/3 = 0.1222...3 = 0.123 =

0.203 and 8/9 = 0.21222...3 = 0.2123 = 0.2203. All these endpoints are proper

ternary fractions (elements of Z · 3−N0) of the form p/q, where denominator q is

a power of 3 when the fraction is in its irreducible form.[10] The ternary repre-

sentation of these fractions terminates (i.e., is finite) or — recall from above that

proper ternary fractions each have 2 representations — is infinite and "ends" in

either infinitely many recurring 0s or infinitely many recurring 2s. Such a fraction

is a left limit point of ∆ if its ternary representation contains no 1’s and "ends" in

infinitely many recurring 0s. Similarly, a proper ternary fraction is a right limit

point of ∆ if it again its ternary expansion contains no 1’s and "ends" in infinitely

many recurring 2s.

• The Cantor set contains as many points as the interval from which it is taken,

yet itself contains no interval of nonzero length. The irrational numbers have the

same property, but the Cantor set has the additional property of being closed, so

it is not even dense in any interval, unlike the irrational numbers which are dense
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in every interval.

• This set of endpoints is dense in ∆ (but not dense in [0,1]) and makes up a count-

ably infinite set. The numbers in ∆ which are not endpoints also have only 0s and

2s in their ternary representation, but they cannot end in an infinite repetition of

the digit 0, nor of the digit 2, because then it would be an endpoint. Thus there are

as many points in the Cantor set as there are in the interval [0, 1] (which has the

uncountable cardinality c = 2ℵ0). However, the set of endpoints of the removed

intervals is countable, so there must be uncountably many numbers in the Can-

tor set which are not interval endpoints. As noted above, one example of such a

number is 1/4, which can be written as 0.020202 · · ·3 = 0.0̄2 in ternary notation.

Thus we have seen that the Cantor ternary set enjoys various interesting properties:

• ∆ is uncountable.

• ∆ is closed and compact.

• ∆ is totally disconnected perfect set.

• ∆ is nowhere dense set, having Lebesgue measure zero.

Having discussed the ternary representation let us now explore the corresponding

Cantor function and ten discuss some properties of the Cantor set.
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Chapter 3

The Cantor-Lebesgue function

Now let us discss the Cantor Lebesge function associated with the Cantor middle-thhird

set.

The Cantor Lebesgue function or simply the "the Cantor function" is defined on ∆, is

constructed using the Cantor set.

We know that every element x ∈ ∆, Cantor set, x can be written as
∑∞

i=1
2ai
3i

where

ai ∈ {0, 1}

f : ∆ → [0, 1], is defined by

f
( ∞∑

i=1

2ai
3i
)
=

∞∑
i=1

ai
2i

where ai ∈ {0, 1} (3.1)

Basically, x ∈ ∆ can be written as:

x = 0.a1a2a3 · · · (base 3)
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where each an = 0 or 2

Observe that the action of the function f can be written as

f(x) = f(0.a1a2a3 · · · ) = 0.
a1
2

a2
2

a3
2
· · · (base2)

• f is well defined since from the discussion in the previous chapter, for almost all

points of [0, 1] (except for the binary and ternary rationals, m
2n
, m
3n

) have a unique

representation. For the case of the binary and tri-adic rationals they have two

representations, in order to apply the definition of f(x), we need the infinite rep-

resentation with period 2

x =
m

3n
= 0.a1a2a3 · · · an−11000 · · · = 0.a1a2a3 · · · an−102222 · · ·(base 3)

F (x) = 0.
a1
2

a2
2

a3
2
· · · an−101111 · · ·(base 2)

= 0.
a1
2

a2
2

a3
2
· · · an−110000 · · ·(base 2)

• f is not one-one.

Observe that 0.02̄(base3) and 0.2(base3) are mapped to the same element ;

0.01̄(base2) = 0.1(base 3) in base 2 expansion.

f(1/3) = f(0.0222...3) = (0.0111...)(base 2) = (0.1)2 = 1/2

f(2/3) = f(0.2 3) = (0.1)2 = 1/2

30



Figure 3.1: The Cantor Function

Proposition 3.1. The cantor function is surjective.

Proof. Given any y in [0, 1], we can find its pre-image in the Cantor set.

Let y ∈ [0, 1] with binary expansion of the form
∑n=∞

k=1

ηk
2k

with ηk ∈ {0, 1}.

Then consider x =
∑n=∞

k=1

2ηk
3k

with ηk ∈ {0, 1}.

It clear that x ∈ ∆ and by the definition of f , f(x) = y.

This proves that f is surjective.

Theorem 3.2. The cantor function f : ∆ → ∆ is continuous.

Proof. Let us now prove the continuity of f on ∆. Suppose that x0 ∈ ∆ , is fixed, and

let x ∈ ∆, such that |x−x0| <
1

32n
. Then, x0 and x cannot differ in the first 2n ternary

places and we have

x0 = 0.ϵ1ϵ2 · · · ϵ2n−1ϵ2nϵ2n+1 · · ·( base 3)

x = 0.ϵ1ϵ2 · · · ϵ2n−1τ2nτ2n+1 · · ·( base 3)
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Suppose, to the contrary, that ϵ2n ̸= τ2n. Then, |ϵ2n − τ2n| = 2 and

x− x0 =
(τ2n − ϵ2n)

32n
+

(τ2n+1 − ϵ2n+1)

32n+1
+ · · ·

and, hence,

|x− x0| ≥
2

32n
− 2

32n+1
(1 +

1

3
+

1

9
+ · · · )

=
2

32n
− 1

32n
=

1

32n
,

instead of <
1

32n
.

Therefore, given ϵ > 0 there exists N such that
1

22N
< ϵ, and taking δ =

1

32N
we have

that if |x− x0| <
1

32N

then

|f(x)− f(x0)| =
∣∣∣ τ2N+1

2
− ϵ2N+1

2
22N+1

+
(
τ2N+2

2
− ϵ2N+2

2
)

22N+2
+ · · ·

∣∣∣
=
∣∣∣(τ2N+1 − ϵ2N+1)

22N+2
+

(τ2N+2 − ϵ2N+2)

22N+3
+ · · ·

∣∣∣
≤ 2

22N+2

(
1 +

1

2
+

1

4
+ · · ·

)
=

1

22N

< ϵ

Hence the continuity of f at x0 follows. We have actually proved that f is uniformly

continuous on ∆, since δ is independent of x0, since given ϵ > 0, taking
1

22N
< ϵ, and

δ =
1

32N
we have for all x, y ∈ ∆ such that |x− y| < δ

=⇒ |f(x)− f(y)| ≤ ϵ

32



Note that f(0) = 0 and f(1) = 1. Because,

0 =
∞∑
k=1

0

3k
and 1 =

∞∑
k=1

2

3k
= 0.222 · · · (base 3)

f(0) =
∞∑
k=1

0

2k
= 0 and f(1) =

∞∑
k=1

1

2k
=

1
2

1− 1
2

= 1

Or 1 = 0.222 · · · (base 3)

f(1) = 0.111 · · · (base 2) = 1

We can extend the Cantor function defined on ∆ to [0, 1].

F : [0, 1] −→ [0, 1] s.t .F
∣∣∣
∆
= f

F (x) = f(x) for x ∈ ∆.

F (x) = sup{f(y) : y ∈ ∆, y ≤ x}

First, we will prove that if (an, bn) is an open interval of the complement of ∆, ∆c

then F (an) = F (bn). Hence we may define F to have the constant value F (an) in that

interval. Then, the definition of F may be extended into all of [0, 1] by defining it on ∆

as follows:

If x ∈ ∆c, then x ∈ (an, bn) where the open interval (an, bn) is one of those that has

been removed from [0, 1] in the construction of the Cantor set. Then, necessarily

an = 0.ϵ1ϵ2ϵ3...ϵn−11(base 3) = 0.ϵ1ϵ2ϵ3...ϵn−102̄(base 3)

bn = 0.ϵ1ϵ2ϵ3...ϵn−12(base 3)

33



and therefore,

F (an) = 0.
ϵ1
2

ϵ2
2

ϵ3
2
· · · ϵn−1

2
01̄(base 2)

= 0.
ϵ1
2

ϵ2
2

ϵ3
2
· · · ϵn−1

2
1(base 2) = F (bn)

Thus F is constant on each of the subintervals removed at each n− th stage.

Now, to prove that the extension, also denoted by F , is continuous on [0, 1], i.e., we

need to prove that for any x0 ∈ [0, 1] given ϵ > 0 there exist δ > 0 such that if x ∈ [0, 1]

such that |x− x0| < δ then |F (x)− F (x0)| < ϵ.

• If x0 ∈ ∆c , then x0 ∈ (an, bn) where the open interval (an, bn) is one of those

that has been removed from [0, 1] in the construction of the Cantor set and then as

we have proved above F is constant on (an, bn) so F is trivially continuous at x0.

• If x0 ∈ ∆, then, as ∆ is perfect, it is either a left accumulation point, a right

accumulation point or an accumulation point. We will only consider the case

where x0 is a left accumulation point, which makes that it a right end point of an

interval that has been removed in the construction of ∆.

From above we know that namely x0 = 0.ϵ1ϵ2ϵ3 · · · ϵn−12 (base3) . Then we know

that the restriction of F to ∆, is continuous on it and, since ∆ is compact, it is

uniformly continuous on ∆, i.e.,

for any ϵ > 0, there is δ > 0 such that

|F (x1)− F (x2)| < δ,

for all x1, x2 ∈ ∆ for which |x1 − x2| < δ. Let us now examine |F (x)− F (x0)|.
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There are two possibilities:

– x ∈ ∆: then, we already know |F (x)− F (x0)| < ϵ for |x− x0| < δ,

– x ∈ ∆c: then, x ∈ (a, b), where (a, b) is one of the intervals that have been

removed in the construction of ∆.

Then a, b ∈ ∆ and (a, b) ⊂ ∆c.

But again, as F is constant on (a, b), then F (t) = F (a) = F (b) ∀ t ∈

(a, b).

Now, let (a, b) be any such interval with x0 < a < b < x0 + δ,

|F (t) − F (x0)| = |F (a) − F (x0)| < ϵ, for all t ∈ (a, b) ⊂ ∆c, as a ∈ ∆.

This, together with the fact that to the left of x0 (x0 being the right endpoint

of a removed interval) which implies the continuity of F at x0 ∈ ∆. An

analogous proof applies to a right accumulation point of ∆, and both proofs

together take care of a two-sided accumulation point of ∆.

Another proof that the extended Cantor function F defined from [0, 1] to [0, 1] is

continuous.

To prove that the F : [0, 1] → [0, 1] is continuous let us look at the following two results:

Theorem 3.3. If f : (a, b) → R is monotone , then f has at most countably many points

of discontinuity in (a,b), all of which are jump discontinuities.

Proof. Let f : I = (a, b) → J be monotonic increasing. E = {x ∈ I | f is discontinuous at x}.

TPT: E is at most countable.

Recall that for monotonic increasing function f(x−) ≤ f(x) ≤ f(x+).
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f is increasing; and f is discontinuous at x ⇐⇒ f(x−) < f(x+). By density of

rationals in R,∃rx a rational in I such that f(x−) < rx < f(x+).

Suppose x, y ∈ E and x < y then we have

f(x−) < f(x+) < f(y−) < f(y+)

and thus rx ̸= ry if x ̸= y.

Thus for the distinct points x ∈ E we can assign distinct rational numbers rx.

i.e we can have a function , g : E → Q such that g is injective, and g(x) = rx.

Thus card(E) ≤ card(Q). ∴ E is at most countable.

Corollary 3.4. If f : [a, b] → [c, d] is both monotone and onto , then f is continuous.

Proof. Let f : [a, b] → [c, d] be monotonic increasing and onto.

Let x0 ∈ [a, b] & ε > 0

Since f is increasing , f(x0)− ε ≤ f(x0) ≤ f(x0) + ε

Consider rationals qj , qk s.t.

qj ∈ (f(x0)− ε, f(x0))

qk ∈ (f(x0), f(x0) + ε)

Then qj ≤ qk.
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Since f is onto, ∃ xj, xk in [a, b] s.t. f(xj) = qj and f(xk) = qk.

Let δ = min{x0 − xj, xk − x0}

Without loss of generality assume δ = xk − x0.

If x ∈ [a, b] s.t |x− x0| < δ then

|x− x0| < xk − x0

=⇒ x0 − xk < x− x0 < xk − x0

xj − x0 < x0 − xk < x− x0 < xk − x0

xj < 2x0 − xk < x < xk

xj < x < xk

By monotonicity, f(xj) ≤ f(x) ≤ f(xk)

Thus qj ≤ f(x) ≤ qk =⇒ f(x0)− ε ≤ f(x) ≤ f(x0) + ε

That is, |f(x)− f(x0)| ≤ ε

Thus we have proved that f is continuous.

37



Theorem 3.5. The Cantor function is uniformly continuous.

Proof. given ϵ > 0 let N be the smallest integer such that, 1
2N

< ϵ let δ = 1
3N

Let x0 ∈ [0, 1]. For any x ∈ (x0 − δ, x0 + δ),

i.e. |x− x0| < δ = 1
3N

=⇒ x and x0 cannot differ in first N places.

for, suppose

x = 0.a1a2a2a4....aN−1aNaN+1 . . .

x0 = 0.a1a2a2a4....aN−1bNbN+1 . . .

and if we have aN ̸= bN , then |aN − bN | = 2 and

x− x0 =
aN − bN

3N
+

aN+1 − bN+1

3N+1
+

aN+2 − bN+2

3N+2
+ · · ·

=
2

3N
+

aN+1 − bN+1

3N+1
+

aN+2 − bN+2

3N+2
+ · · ·

≥ 2

3N

> δ

=
1

3N

Thus if |x− x0| < δ = 1
3N

then x and x0 cannot differ in first N places.

Therefore, given ϵ > 0, ∃ N such that
1

2N
< ϵ, and taking δ =

1

3N
we have that ,

if |x− x0| <
1

3N
then,
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F (x)− F (x0) =
(aN+1 − bN+1)/2

2N+1
+

(aN+2 − bN+2)/2

2N+2
+

(aN+3 − bN+3)/2

2N+3
+ · · ·

=
(aN+1 − bN+1)/2

2N+1
+

(aN+2 − bN+2)/2

2N+2
+

(aN+3 − bN+3)/2

2N+3
+ · · ·

=
(aN+1 − bN+1)

2.2N+1
+

(aN+2 − bN+2)

2.2N+2
+

(aN+3 − bN+3)

2.2N+3
+ · · ·

≤ 1

2

1

2N+1

(
2 +

2

2N
+

2

22
)
+ · · ·

≤ 1

2

1

2N+1
2
(
1 +

1

2N
+

1

22
+ · · ·

)
≤ 1

2N
< ϵ

Recall how we defined the absolutely continuous functions.

A real-valued function f on a closed, bounded interval [a, b] is said to be absolutely

continuous on [a, b] provided for each ϵ > 0, there is a δ > 0 such that for every finite

disjoint collection (ak, bk)
n
k=1 of open intervals in (a, b), if

n∑
k=1

|bk − ak| < δ, then
n∑

k=1

|f(bk)− f(ak)| < ϵ

Proposition 3.6. The Cantor function is uniformly continuous but not absolutely con-

tinuous.

Proof. The Cantor-Lebesgue function ϕ is increasing and continuous on [0, 1], but it is

not absolutely continuous.

To see that ϕ is not absolutely continuous, let n be a natural number. At the nth stage

of the construction of the Cantor set, a disjoint collection {[ck, dk]}1<k<2n of 2n sub

intervals of [0, 1] is constructed that cover the Cantor set. Each interval at the n-th stage
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which constitutes Cn has length (1/3)n.

The Cantor function is constant on each of the intervals in the complement of this col-

lection of intervals (constant on each interval in the complement of the Cantor set).

Therefore, since ϕ is increasing and ϕ(1)− ϕ(0) = 1,

∑
1≤k≤2n

|dk − ck| =
(
2

3

)n

while
∑

1≤k≤2n

|ϕ(dk)− ϕ(ck)| = 1.

Proposition 3.7. The Cantor function has zero derivative on ∆c (the complement of the

cantor set on the interval (0,1) and is not differentiable on the ternary Cantor set.

Proof. The first half of the theorem is trivial, since the Cantor function is constant on

each of the open interval in the ∆c . Therefore the derivative is zero on ∆c .

The second half can be proved as follows.

Given x ∈ ∆,

Case 1: x has a finite number of digits in base 3.

Denote that number as n. Let h = 2
3k

where k > n.

Then limk→∞ h = 0.

So limh→0
f(h+ x)− f(x)

h

= limk→∞
f(h+ x)− f(x)

h

= 1
2k
/ 2
3k

= limk→∞
3k

2k+1 = ∞. Similarly, it can be proved that the limit does not exist

when h is negative.

40



Case 2: x has an infinite number of digits in base 3. Let y be the first k digits of x, then

y is also in ∆.

so limx→y
(f(x)− f(y)

x− y

= limk→∞
(f(x)− f(y)

x− y

> limk→∞
( 1
2k+1 )

( 2
3k+1 )

= limk→∞
3k+1

2k+2
= ∞

Thus limit does not exist in any case. therefore F is not differentiable on ∆

We will see another proof for the same result.

Alternate proof

Proof. Let x, xn ∈ ∆

x = 0.ϵ1ϵ2 · · · ϵn−1ϵnϵn+1ϵn+2 · · ·(base 3)

xn = 0.ϵ1ϵ2 · · · ϵn−1ϵnτn+1ϵn+2 · · ·(base 3)

where τn+1 = ϵn+1 + 1(mod 2).

Then |x− xn| =
2

3n+1
and it is easy to see that

F (x)− F (xn) =
ϵn+1 − τn+1

2n+1

Hence,
F (x)− F (xn)

x− xn

=
3

4
(
9

2
)n −→ ∞
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Thus, F is nowhere differentiable on ∆. Therefore, as F is trivially differentiable

on ∆c, with derivative zero, we can conclude that F is a singular function, i.e., F ′(x) is

zero a. e., for x ∈ [0, 1] without being constant.

Let us now go back to some properties of the Cantor set .

Theorem 3.8. ∆ has same cardinality as [0, 1].

Proof. The Cantor function F : ∆ → [0, 1] is onto.

This implies that card(∆)≥ card([0, 1]). But since ∆ is a subset of [0, 1],

card(∆)≤ card([0, 1])

Thus card(∆)= card([0, 1]) = c

Therefore ∆ is uncountable.
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Chapter 4

Generalizations of the Cantor set

In the previous chapters we saw the construction and properties of the standard Cantor

set , (Cantor middle third or ternary set) and the corresponding Cantor function. We

also proved all the properties associated with the Cantor set and the Cantor function.

In this section various generalizations of The standard Cantor set has been discussed.

Similar to Cantor 1
3

set , Cantor 1
5
, 1
7
, 1
9

sets and in general the cantor middle 1
2m+1

set

where 1 ≤ m < ∞ has been discussed.

Another Category of Cantor sets called as "fat Cantor sets" has been introduced. In

that the special case of Smith-Volterra Cantor sets is also been discussed. [2] "Two ratio

Cantor set" is discussed in brief.

Let look at various generalizations one at a time.
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4.1 Generalization I

4.1.1 Cantor middle 1/2m+1 set.

we generalize the Cantor set by removing the central open interval of length 1
n

from

equal parts of length n, where n is an odd number say, n = 2m + 1 from the unit

interval C0 = [0, 1] . Before discussing this construction for n = 2m + 1 let us look at

the particular cases of n = 5, 7, 9. For n = 3 we obtain the standard Cantor ternary set

which has already been discussed.

4.1.2 Cantor 1/5 set

Let us look at the particular case of Cantor( 1
2m+1

)th set when m = 2.

For m = 1 it is the Cantor middle(1
3
)rd set which we have already discussed in detail.

Construction

To build this set (denoted by C(1
5
)) we can follow the same procedure as construction of

the middle-third Cantor’s set. First we delete the open interval covering its middle fifth

from the unit interval C0 = [0, 1]. That is, we remove the open interval (2
5
, 3
5
). The set

of points that remain after this step will be called C1 That is, C1 = [0, 2
5
] ∪ [3

5
, 1]

In the second step, we remove the middle fifth portion of each of the 2 closed intervals

of C1 and the remaining set is C2:

C2 = [0,
4

25
] ∪ [

6

25
,
2

5
] ∪ [

3

5
,
19

25
] ∪ [

21

25
, 1]
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Note that at the first step we obtained 21 closed intervals , each of length (2
5
).

At the second step ; in C2 we have 22 = 4 intervals of length 4
25

each.

The following are the steps for first few iterations.

Repeating this process, we get a limiting set C(1
5
),

C(1
5
) =

∞⋂
n=1

Cn

and call it the Cantor middle 1
5

set.

Properties of Cantor middle 1
5

set.

Proposition 4.1. Outer measure of the Cantor 1
5

set is zero
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Proof.

The length of removed intervals

=
1

5
+ 2(

2

52
) + 22(

22

52
) + 23(

23

54
) + · · ·

=
1

5
+

4

52
+

42

53
+

43

54
+ · · ·

=
1

5
+

4

52
(1 +

4

5
+ (

4

5
)2 + (

4

5
)3 + · · ·

=
1

5
+

4

52

( 1

1− 4
5

)
=

1

5
+

4

52

(1
1
5

)
=

1

5
+

4

5

= 1

Therefore the length of remaining set is= 1− 1 = 0

Construction of Cantor middle C( 1
2m+1

) set.

Having discussed few examples previously let us us look at the generalized construction

of the set as introduced the subsection 4.1.1. ,i.e C( 1
2m+1

) set. or C( 1
2m+1

) set where

n = 2m+ 1, m = 1, 2, 3, · · ·

Consider the unit interval C0 = [0, 1]. Divide it into n equal parts and remove remove it

the central open interval of length 1
n

.
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That is, we are removing

Z1 = {x ∈ [0, 1] :
n− 1

2n
< x <

n+ 1

2n
}

We remove from [0, 1], Z1 an open interval of total length = 1
n

.

we remove Z1 =
{
x ∈ [0, 1]

∣∣∣ n− 1

2n
< x <

n+ 1

2n

}
from F0 = [0, 1].

Then we get union of two closed intervals as

C1 = C0 \ Z1

=
{
x : 0 ≤ x ≤ n− 1

2n

}⋃{
x :

n+ 1

2n
≤ x ≤ 1

}
= L ∪R

where L =
{
x | 0 ≤ x ≤ n− 1

2n

}
and R =

{
x :

n+ 1

2n
≤ x ≤ 1

}
i.e L =

[
0,

n− 1

2n

]
and R =

[n+ 1

2n
, 1
]
.

Next we divide each of L and R into n equal parts and remove from it the central

open interval. . That is, we remove

Z2 =
{
x
∣∣∣ n2 − 2n+ 1

4n2
< x <

n2 − 1

4n2

}⋃{
x :

3n2 + 1

n2
< x <

3n2 + 2n− 1

4n2

}

We remove from [0, 1]\Z1 = C2, a union of 21 open intervals of total length = 1
2

(
n−1
n2

)k
After this removal, we set the remaining part as C2, i.e., C2 = F0 \ Z1 ∪ Z2 which is

union of four closed intervals, viz. LL, LR, RL, RR, each of length
(
n−1
2n

)2
. Thus we
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get C2 = LL ∪ LR ∪RL ∪RR, where

LL =
[
0,

n2 − 2n+ 1

4n2

]
and LR =

[n+ 1

2n
,
3n2 + 1

4n2

]
(4.1)

RL =
[n+ 1

2n
,
3n2 + 1

4n2

]
and RR =

[3n2 + 2n− 1

4n2
, 1
]

(4.2)

(4.3)

Proceeding this way, we get a sequence of closed intervals {Ck} where Ck is union of

2k number of closed intervals of length
(
n−1
2n

)k
each. At each k − th step we remove

2k−1 intervals of length 1
2k−1

( (n−1)k−1

nk

)
Hence, in this process of generalization, limiting

set formed from this process is called set, i.e. Cantor( 1
n
) the set, and formally defined

as

C( 1
n
) = [0, 1] \

{ ∞⋃
k=1

Rk

}
=

∞⋂
k=1

Ck

where n = 2m+ 1, m = 1, 2, 3, · · ·

Properties of Cantor middle 1
2m+1

set.

Properties of Cantor 1
5
, 1
7

sets have been discussed.Let us look at the properties of the

generalized form.

Proposition 4.2. The set C( 1
(2m+1)

) is disconnected.
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Proof. Let 2m+ 1 = n.

The set C( 1
(2m+1)

) = C( 1
n
) is totally disconnected since it is constructed so as to contain

no intervals other than points. For, suppose it contains an interval of positive length ϵ

then this interval would be contained in each Ck, but Ck contains no interval of length

greater than
(
n−1
2n

)k
. (For each n ∈ N, Ck is an union of 2k closed disjoint intervals

each having length
(
n−1
2n

)k
.)

For any n ∈ N,

n < 2n

n− 1 < 2n

=⇒ n− 1

2n
< 1

=⇒
(n− 1

2n

)k
< 1 ∀ k ∈ N

So using Archimedean property if n is chosen to be large enough so that
(
n−1
2n

)k
is

less than ϵ, then there is no interval of length ϵ in Fk .

Proposition 4.3. The set C( 1
(2m+1)

) is nowhere dense

Proof. Let 2m+ 1 = n.

The Cantor middle 1
2m+1

set contains no interval of non-zero length.

For, suppose ∆ contains some interval (a, b) . Then (a, b) ⊂ Ck ∀n. But each Ck

consists of 2k closed disjoint intervals. So (a, b) is contained in exactly one of the 2k

closed intervals, say Jik , i = 1, 2, · · · , k.

But length of each Jik is
(
n−1
2n

)k
.

=⇒ |b− a| <
(
n−1
2n

)k
∀k.
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Thus given n = 2m+ 1 as k → ∞,(
n−1
2n

)k
= (1

2
)k
(
n−1
n

)k
= (1

2
)k
(
1− 1

n

)k
= (1

2
)k −→ 0.

=⇒ a = b and hence (a, b) = ϕ

Proposition 4.4. The generalized Cantor set , C( 1
(2m+1)

) is measurable and has Lebesgue

measure zero.

Proof. Let 2m+ 1 = n

At the first step we remove one open interval of length 1
(2m+1)

= 1
n

What remains is the union of two closed intervals, each of length (n−1
2n

)

[0,
n− 1

2n
] ∪ [

n+ 1

2n
, 1]

. And at 1st step we remove open interval of length 1
n

. Then at step 2 we divide intervals

of length n−1
2n

by n and remove 2 , central open intervals of length
(
(n−1)2

2n2

)
from the

above two disjoint sets

Inductively at kth step we remove 2k−1 intervals of length
(n− 1)k−1

2k−1nk
.
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Thus the total length removed =

=
1

n
+ 2(

n− 1

2n2
) + 22

(n− 1)2

22n3
+ · · ·

=
1

n
+ (

n− 1

n2
) +

(n− 1)2

n3
+ · · ·

=
1

n
+

n− 1

n2

[
1 +

(n− 1)

n
+ (

n− 1

n
)2 + · · ·

]
=

1

n
+

n− 1

n2

[ 1

1− n−1
n

]
=

1

n
+

n− 1

n2

[ 1
1
n

]
=

1

n
+

n− 1

n

= 1

Therefore the outer measure of the set is 1− 1 = 0

4.1.3 Generalization II

Cantor(mn ) set

In this generalization, we divide the unit interval C0 = [0, 1] in n ≥ 3 parts, where

n = 2m+1, some odd number. And then remove from it the alternate m open intervals,

(
1

n
,
2

n
) ∪ (

3

n
,
4

n
), (

5

n
,
6

n
), ..., (

2m− 1

n
,
2m

n
)

The remaining set C1 = [0, 1] \ C0 turns out to be the union of m+ 1 intervals, i.e
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C1 =
[
0,

1

n

]
,
[ 2
n

3

n

]
∪
[ 4
n
,
5

n

]
∪ . . .

[2m
n

, 1
]

Note that here each interval has length 1
n

.

In the next step, we divide each of the above sub interval into n = 2m + 1 equal

parts again, and then remove alternate open intervals. What remains is a set C2 a union

of (m+ 1)2 closed intervals, each of length 1
n2

In general, after n iterations we obtain a set

Cn = [0,
1

(2m+ 1)n
]∪ [

2

n
,

3

(2m+ 1)n
]∪ · · · ∪ [

2m− 2

2m+ 1n
,

2m− 1

(2m+ 1)n
]∪ [

2m

(2m+ 1)n
, 1]

Since n is odd n = 2m+1 Therefore we construct a decreasing sequence (Ck) of closed

sets, that is

Ck+1 ⊆ Ck ∀k ∈ N,

each Ck consists of nk intervals of length 1
(n)k

.

The limiting set obtained in this process is called Cantorm
n

set, C(m
n
) =

⋂∞
n=1Ck.

where n = 2m+ 1
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Construction of C(2/5)

We start with the closed interval C0 = [0, 1].

Remove the open intervals (1
5
, 2
5
) and (3

5
, 4
5
). This leaves a new set

C1 = [0,
1

5
] ∪ [

2

5
,
3

5
] ∪ [

4

5
, 1]

Each iteration removes the open 2nd and 4th interval from each segment of the pre-

vious iteration. Thus the next set would be

M2 = [0,
1

25
]∪[ 2

25
,
3

25
]∪[ 4

25
,
1

5
]∪[2

5
,
11

25
]∪[12

25
,
13

25
]∪[14

25
,
3

5
]∪[4

5
,
21

25
]∪[22

25
,
23

25
]∪[24

25
, 1]

In general, after n iterations we obtain Cn as follows

Cn =
[
0,

1

5n
]
∪
[ 2
5n

,
3

5n

]
∪ · · · ∪ [

5n − 3

5n
,
5n − 2

5n
] ∪ [

5n − 1

5n
, 1]

where n ≥ 1

Therefore, we construct a decreasing sequence (Cn) of closed sets, that is, Cn+1 ⊆

Cn for all n ∈ N, so that every Cn consists of 3n closed intervals each of them having

the same length 1
5n

We define C(2
5
) as C(2

5
) =

⋂∞
n=1 Cn and call it the Cantor 2

5
set.

Geometrical representation
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Construction of Cantor 3
7

set.

In the construction of the Cantor 3
7

set we consider the closed unit interval [0, 1] and then

divide it into 7 equal parts each part having length one by 7. Then from this remove open

intervals alternatively that is, remove 2-nd, 4-th and 6-th open intervals from the above

7 parts. This leaves us a new set M1 = [0, 1
7
] ∪ [2

7
, 3
7
] ∪ [4

7
, 5
7
] ∪ [6

7
, 1]

Note that C1 is a union of 22 closed intervals of length 1
7
; and we removed 3(40) = 3

open intervals, each of length 1
7
. Thus the total length removed at the step one is 3(1

7
).
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In the second step we divide each of the four closed intervals in C1 into 7 equal parts of

length 1
72

.

Then remove from each segment in the previous iteration the 2nd, 4th and 6th open

interval. Thus the next set will be

M2 = [0,
1

49
] ∪ [

2

49
,
3

49
] ∪ [

4

49
,
5

49
] ∪ [

6

49
,
7

49
] ∪ [

2

7
,
15

49
] ∪ · · · ∪ [

46

49
,
47

49
] ∪ [

48

49
, 1]

Note that C2 is a union of 42 closed intervals , each of length 1
7

and we removed

3(41) = 12 open intervals, each of length 1
7
.
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In general, after n iterations we obtain Cn as follows

Cn =
[
0,

1

7n
]
∪
[ 2
7n

,
3

7n

]
∪ · · · ∪ [

7n − 3

7n
,
7n − 2

7n
] ∪ [

7n − 1

7n
, 1]

where n ≥ 1

Therefore, we construct a decreasing sequence (Cn) of closed sets, that is, Cn+1 ⊆

Cn for all n ∈ N, so that every Cn consists of 4n closed intervals each of them having

the same length 1
7n

7 = 2(3) + 1

We define C(3
7
) as C(3

7
) =

⋂∞
n=1Cn and call it the Cantor 3

7
set.

4.1.4 The Smith-Volterra-Cantor Sets (SVC sets)

A particular family of SVC sets consists of those formed by, at the k-th iteration, re-

moving an open interval of length 1
nk from the center of each of the remaining closed
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intervals. We shall denote the resulting set SVC(n), n ≥ 3. For n = 3, i.e. SVC(3) is

noting but the standard Cantor ternary set

We shall see the case for n = 4 To create the set SVC(4), we remove an open interval

of length 1
4

from the middle of [0, 1]

First remove middle-1/4 from the interval [0, 1] then we get two remaining intervals

[0, 3
8
] ∪ [5

8
, 1] For the second step the remove (1

4
)2 from both the remaining intervals.

Subsequently, remove sub intervals of width (1/4)n from the middle of each of the

remaining intervals Following is the illustration for the same.

Fat Cantor sets

Instead of removing a constant portion of the original set in each iteration, fat Cantor

sets are created by removing progressively smaller portions of the original set in each

step such that the ratio of what is being removed to the interval it is being removed from

goes to 0 as n goes to infinity.

Smith Volterra Cantor sets SVC(n) for n ≥ 4 are examples of Fat cantor sets.

Remove the middle ( 1
k
)n from Cn−1, k > 3.

at each stage we remove 2n intervals; each of length ( 1
k
)n.

The Lebesgue measure of the removed intervals.

= 1
k
+ 2( 1

k
)2 + 4( 1

k
)3 + . . .
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= 1
k

(
1 + 2

k
+ ( 2

k
)2 + ( 2

k
)3 + . . .

)
= 1

k

( 1

1− 2
k

)
= 1

k

( k

k − 2

)
= 1

k−2

Thus the Lebesgue measure of SVC(k) = 1− 1
k−2

=
k − 2− 1

k − 2
=

k − 3

k − 2

Thus since k > 3, SVC(k) has non zero Lebesgue measure.

A closed set is nowhere dense if and only if it is equal to its boundary,

A nowhere dense set is not necessarily negligible in every sense. For example, if X

is the unit interval [0,1], not only is it possible to have a dense set of Lebesgue measure

zero (such as the set of rationals), but it is also possible to have a nowhere dense set with

positive measure.
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Chapter 5

CANTOR SET AS A FRACTAL

A Fractal is a type of mathematical shape that is infinitely complex. In essence, a Fractal

is a pattern that repeats forever, and every part of the Fractal, regardless of how zoomed

in, or zoomed out you are, it looks very similar to the whole image.

Definition 5.1. A set S is self similar if it can be divided into N congruent subsets, each

of which when magnified yields the entire set S.

Definition 5.2. (Topological Dimension)

It is defined as the number of independent coordinates needed to specify the location of

a point in a space.

Basically, the topological dimension of an object is a topological measure of the size

of its covering properties. Roughly speaking, it is the number of coordinates needed to

specify a point on the object. For example, a rectangle is two-dimensional, while a cube

is three-dimensional. It a quantity having integer values.

Fractals are basically, self similar objects.

59



Definition 5.3. (Fractal dimension or Hausdorff Dimension)

Let S be a compact set and N(S, r) be the minimum number of balls of radius r needed

to cover S. Then the fractal dimension of S is defined as

dimS = limr→0
logN(S, r)

log1/r

Definition 5.4. A fractal set is a set whose fractal dimension exceeds topological di-

mension.

Fractal dimension (also called Hausdorff dimension) is a fine tuning of the defini-

tion of topological dimension that allows notions of objects with dimensions other than

integers.

Cantor set has topological dimension 0.

Lets find out fractal dimension of a Cantor ternary set.

In general, cantor set ∆ consists of 2n intervals, each of length 1
3n

Further we know that ∆ contains the end points that lie 1
3n

apart.

Therefore, the smallest number of 1
3n

-balls covering ∆ is

N(∆, 1/3n) = 2n

dim(∆) = limn→∞
logN(∆, 1

3n
)

log3n

=
n log2

n log3
= approx. 0.6309

Hence, the fractal dimension exceeds the topological dimension.

Let us see one more example to understand the concept of self similarity and fractal
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dimension.

• The koch curve is constructed very differently start with a closed unit interval. At

the 1st stage remove the middle third of the interval and replace it with two line

segments of length 1/3 to make a tent. The resulting set consists of 4 line segments

of length 1/3. At the next stage, repeat this procedure on all of the existing line

segments, resulting in a set that contains 16 line segments of length 1/9. At each

stage there are 4n line segments of length 1
3n

.

When n → ∞ the resulting set is called koch curve.

• The set is self-similar,with 4n subsets at nth stage of length (1
3

n
) So, the fractal

dimension is:

limn→∞
log4n

log3n
=

n log4

n log3
= log3(4) = approx. 1.2619

Figure 5.1: koch snowflake
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CONCLUSION

Following the construction of the standard Cantor set (denoted as ∆ throughout this

report) in geometrical way we discussed the ternary representation of the real numbers

and their relation with the Cantor set. We concluded that any element in [0, 1] ∈ ∆ iff

its ternary representation contains the digit 0 and 2 only. Thus ∆ is an example of set of

cardinality same as [0,1] yet it has zero outer measure. The Cantor Lebesgue function

which was discussed in chapter 3 is an example of monotonic increasing continuous

function; in fact uniformly continuous function which is not absolutely continuous. It is

also an example of a singular function, that is a function whose derivative is zero almost

everywhere on [0,1]. Chapter 4 was attributed to various generalizations of the Cantor

set and their Lebesgue measure. In the last chapter a brief light was drawn on fractals

and their relation with the Cantor set.
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