
Cryptography Using Chinese Remainder Theorem

A Dissertation for

MAT-651 Discipline Specific Dissertation

Credits: 16

Submitted in partial fulfilment of Masters Degree

M.Sc. in Mathematics

by

Ms. SHRUSHTEE DEVIDAS BETODKAR

22P0410033

ABC ID : 351-975-342-792

201905578

Under the Supervisor of

Dr. M. TAMBA

School of Physical & Applied Sciences

Mathematics Discipline

GOA UNIVERSITY

APRIL 2024

Examined by: Seal of the School

DECLARATION BY STUDENT

I hereby decl are that the data presented in this Dissertation report entitled,

"Cryptography Using Chinese Remainder Theorem" , is based on the results of

investigations carried out by me in the Mathematics Discipline at the School of Physical

& Applied Sciences, Goa University under the Supervision of Dr. M. Tamba and the

same has not been submitted elsewhere for the award of a degree or diploma by me.

Further, I understand that Goa University will not be responsible for the correctness of

observations / experimental or other findings given the dissertation.

I hereby authorize the University authorities to upload this dissertation on the di ssertation

repository or anywhere else as the UGC regulations demand and make it available to any

one as needed.

Date: 0 '3 / o s-J .'.1 o 2 .Li

Place: GOA UNIVERSITY

@~ Signature: ____ ______ _

Student Name: Shrushtee Devidas Betodkar

Seat no: 22P0410033

COMPLETION CERTIFICATE

Thi s is to certify that the dissertation report "Cryptography Using Chinese Remainder

Theorem" is a bonafide work carried out by Ms. Shrushtee Devidas Betodkar under my

supervision in partial fulfilment of the requirements for the award of the degree of Master

of Science in Mathematics in the Discipline Mathematics at the School of Physical &

Applied Sciences , Goa University.

~L~
Signature : - -----"~...L------~ - - __

Date: o i \05 \ 2- 02..4

~~
Signature of HoD of the Dept

Date: 1 o \ o ~ f 2 oz. Lf

Place: Goa University

Supervisor : Dr. M. Tamba

~

._ GM e ~) - ' ! U,:I a.-V t
~~
~ ..

School Stamp

i

PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the

Subject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in

Mathematics in the academic year 2023-2024.

The topic assigned for the research report is: "Cryptography Using Chinese

Remainder Theorem." This survey is divided into seven chapters. Each chapter has

its own relevance and importance. The chapters are divided and defined in a logical,

systematic and scientific manner to cover every nook and corner of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of the Chinese

Remainder Theorem and Cryptography.

SECOND CHAPTER:

This chapter deals with Chinese Remainder Theorem [3]. In this topic we have discussed

origins of CRT, application of CRT in ancient China during 3rd century. Then we have

the properties of linear congruences, the Chinese Remainder Theorem and it’s proof

with uniqueness. We have also solved some examples of congruence using Chinese

Remainder Theorem.

THIRD CHAPTER:

The third chapter is about Cryptography. In this topic we have discussed about applica-

tions of cryptography, how cryptography underpins various aspects of digital communi-

cation and information security, types of cryptography and their application, definitions

ii

and security goals of cryptography.

FOURTH CHAPTER:

This chapter deal with Random Number Generating [8]. Here we have discussed how a

random number is generated using an example.

FIFTH CHAPTER.

This chapter is about RSA Cryptosystem [1] [4] and [9]. Here we have discussed about

the original RSA cryptography, the lemmas which are used. Then we have RSA algo-

rithm, in which we have key generation, encryption and decryption. Later we have solved

some problems using the RSA algorithm. Then we have double encryption, multiple

encryption and its examples.

SIXTH CHAPTER.

In this chapter we deal with Digital Signature Standard [5] and [9]. Here we have dis-

cussed about DSS which is also known as the Digital Signature Algorithm. Next we have

the process to generate keys, signature and verification and definition of generator,hash

function and hash value. Finally we have solve an example using the set up.

SEVENTH CHAPTER.

This chapter is all about different Threshold Cryptosystem or as it called Threshold

Cryptography [2], [4], [6] and [7] . First we have original Asmuth-Bloom SSS with an

example. Next we have discussed about the modified version of Asmuth-Bloom SSS.

After that we have RSA function which is different from the original RSA and threshold

RSA, which is a combination of RSA function, Asmuth-Bloom SSS and DSA. Then we

iii

have ElGamal function and threshold ElGamal, which is similar to Threshold RSA, and

finally we have discussed about Paillier and threshold Paillier, which is also similar to

other threshold functions.

iv

ACKNOWLEDGEMENTS

First and foremost, I would like thank Mr. Brandon Fernandes for introducing me to

Cryptography on which my project is based on. Next I would like to express my gratitude

to my Mentor, Dr. M. Tamba, who was a continual source of inspiration. He pushed

me to think imaginatively and urged me to do this homework without hesitation. His

vast knowledge, extensive experience, and professional competence in Number Theory

enabled me to successfully accomplish this project. This endeavour would not have been

possible without his help and supervision.

vi

ABSTRACT

This study looks at how the Chinese Remainder Theorem (CRT) can improve crypto-

graphic protocols by making arithmetic more efficient. It aims to speed up cryptographic

processes, especially in situations where resources and efficiency are important. The

study examines how CRT can be used in different cryptographic schemes, like public-key

cryptography and digital signature algorithms, to cut down on computing work, boost

performance, and make cryptographic systems stronger overall.

Keywords: Chinese Remainder Theorem, Cryptography, Encrypting, Decrypting,

RSA Cryptosystem, Asmuth-Bloom SSS, ElGamal Function, Paillier Function, Thresh-

old Cryptosystem, Random Number Generator.

Table of contents

List of figures xi

1 INTRODUCTION 1

2 CHINESE REMAINDER THEOREM 5

2.1 The Origin of Chinese Remainder Theorem 5

2.2 Properties of Linear Congruence . 7

2.3 The Proof of Chinese Remainder Theorem 12

3 CRYPTOGRAPHY 17

3.1 Types of Cryptography . 19

3.2 Security Goals . 20

4 RANDOM NUMBER GENERATING 23

4.1 Random Number Generating Using CRT 25

viii TABLE OF CONTENTS

4.1.1 Practical Application and Use Of Random Numbers 27

4.1.2 Conclusion . 28

5 RSA CRYPTOSYSTEM 29

5.1 The Original RSA Cryptography . 29

5.1.1 RSA Algorithm . 31

5.2 Double Encryption . 34

5.3 Multiple Encryption . 35

6 DIGITAL SIGNATURE STANDARD 39

6.1 Digital Signature Algorithm . 41

6.1.1 The Set Up . 41

7 THRESHOLD CRYPTOSYSTEM 45

7.1 Threshold Secret Sharing . 45

7.2 Function Sharing Schemes . 46

7.3 Asmuth-Bloom Secret Sharing Scheme 48

7.3.1 The Original Asmuth-Bloom Secret Sharing Scheme 48

7.3.2 Modified Asmuth-Bloom SSS 50

TABLE OF CONTENTS ix

7.4 Function Sharing Based On Asmuth-Bloom SSS 51

7.4.1 RSA Function . 51

7.4.2 Threshold RSA . 52

7.4.3 ElGamal Function . 54

7.4.4 Threshold ElGamal . 57

7.4.5 Paillier Function . 58

7.4.6 Threshold Paillier . 61

List of figures

4.1 Table for modulo 15 . 25

4.2 Table for modulo 5 . 25

4.3 Table for modulo 3 . 25

4.4 Modulo 5 looks in tabular form . 26

4.5 Modulo 3 looks in tabular form . 26

4.6 Combined tabular form of modulo 5 and 3 27

4.7 Tabular form of Modulo 15 using above figures 27

5.1 ASCII Table . 32

6.1 Digital Signature Standard . 40

6.2 Hash Input . 42

6.3 The Hash Output . 43

xi

LIST OF FIGURES xiii

Notations and Abbreviations

Z Set of integers
p! p factorial
φ(n) Euler’s totient function
PubKey Public key
PriKey Private key
g Generator
H(M) Hash Message
h Hash code or digest
ϕ coalition of t users
ϕ ′ coalition of t −1 users
λ lcm of (p−1)(q−1)
s Incomplete decryptor of s
Ks Corrector of s

Chapter 1

INTRODUCTION

The Chinese Remainder Theorem (CRT) is a key concept in number theory that has

important applications in mathematics and computing. It helps solve sets of modular

arithmetic equations and gives us a deeper understanding of how integers and their

remainders work together.

Originating from ancient Chinese mathematics and later formalized by Carl Friedrich

Gauss in the West, the CRT establishes conditions under which a system of congruences

can be simultaneously solved. Its fundamental principle asserts that if we know the

remainders when an integer is divided by several pairwise coprime integers, then we can

uniquely determine the remainder when that integer is divided by the product of those

integers.

So basically, if we know what’s left when we divide a number by different numbers

that don’t share factors, we can figure out what’s left when we divide by all those numbers

multiplied together.

1

2 INTRODUCTION

Formally, given a system of congruences:

x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr)

where m1,m2, · · ·mn are pairwise coprime integers and a1,a2, · · ·an are arbitrary integers,

the CRT guarantees the existence and uniqueness of a solution modulo.

The applications of the CRT are wide-ranging, spanning cryptography, error

correction, scheduling algorithms, and beyond. In cryptography, for instance, it forms

the basis of various encryption and decryption schemes, enabling secure communication

protocols. In error-correcting codes, it aids in the design of efficient algorithms for data

transmission and storage. Moreover, the CRT finds applications in diverse areas such as

number theory, algebraic geometry, and computer science.

The beauty of the CRT lies not only in its theoretical elegance but also in its practical

utility. Its algorithmic formulation makes it a powerful tool for problem-solving and

algorithm design, with implications extending to both theoretical and applied research.

As such, the Chinese Remainder Theorem continues to inspire exploration and inno-

vation across disciplines, making it a subject of enduring interest and significance in

mathematical research and beyond.

Cryptography is the mathematical foundation on which one builds secure systems. It

studies ways of securely storing, transmitting, and processing information. Understanding

what cryptographic primitives can do, and how they can be composed together, is

necessary to build secure systems, but not sufficient. Several additional considerations

3

go into the design of secure systems, and they are covered in various Berkeley graduate

courses on security.

In this course we will see a number of rigorous definitions of security, some of them

requiring seemingly outlandish safety, even against entirely implausible attacks, and we

shall see how if any cryptography at all is possible, then it is also possible to satisfy such

extremely strong notions of security. For example, we shall look at a notion of security

for encryption in which an adversary should not be able to learn any information about a

message given the ciphertext, even if the adversary is allowed to get encodings of any

messages of his choice, and decodings of any ciphertexts of his choices, with the only

exception of the one he is trying to decode.

We shall also see extremely powerful (but also surprisingly simple and elegant) ways

to define security for protocols involving several untrusted participants.

Learning to think rigorously about security, and seeing what kind of strength is

possible, at least in principle, is one of the main goals of this course. We will also see a

number of constructions, some interesting for the general point they make (that certain

weak primitives are sufficient to make very strong constructions), some efficient enough

to have made their way in commercial products.

Chapter 2

CHINESE REMAINDER THEOREM

2.1 The Origin of Chinese Remainder Theorem

The Chinese Remainder Theorem also called as CRT was formulated in Ancient China

in the 3rd century by Sun Zi. The CRT was developed to assist with practical problems

that arose in astronomy, construction and commerce. The Chinese used the algorithm to

calculate calendars, compute the number of soldiers when lined up in different config-

urations, or constructing the wall of a building or the base of a house. It is basically a

mathematical tool that helps you solve a system of equations where each equation has

a different modulo. A modulo is just a fancy term for the remainder you get when you

divide a number by another number.

The CRT was developed to assist with practical problems that arose in astronomy,

construction and commerce. The Chinese used the algorithm to calculate calendars,

compute the number of soldiers when lined up in different configurations, or constructing

the wall of a building or the base of a house. According to Shen Kangsheng, a translated

5

6 CHINESE REMAINDER THEOREM

problem from Master Sun’s Mathematical Manual (problem 26, Volume 3) reads as

follows:

“There are certain things whose number is unknown.

A number is repeatedly divided by 3, the remainder is 2;

divided by 5, the remainder is 3, and divided by 7, the remainder is 2.

What will the number be?”

From the given information we can construct three equations:

x = 3n+2, x = 5m+3, x = 7l +2

The equations form the following congruences:

x ≡ 2 (mod 3), x ≡ 3 (mod 5), x ≡ 2 (mod 7)

For a system of equations such as these, the Chinese Remainder Theorem provides

a unique solution up to a certain modulus. The Chinese Remainder Theorem (CRT)

can determine an integer from its residues modulo by a set of pairwise relatively prime

moduli. One of the earliest applications of the CRT arose from the computation of

calendars in ancient China.

In ancient time, Chinese used 60 days (or years) as a period to record days (or years)

starting from Jiazi to the end of Guihai. Sixty days are a period (or a week), and the

recording was repeated. “If Winter Solstice of a certain year occurred r1 days after

shangyuan and r2 days after the new moon, then that year was N years after shangyuan;

hence arose the system of congruences: N ≡ r1 (mod 60), aN ≡ r2 (mod b) where a

is the number of days in a tropical year and b the number of days in a lunar month”.

The CRT offered a simple method of determining the solution to this type of simulta-

neous congruences. While the CRT appeared in ancient texts as early as the 3rd century,

2.2 Properties of Linear Congruence 7

a complete solution for solving linear congruences was not given until much later. A

generalized solution for the CRT appeared in the mid thirteenth century.

The generalized method for solving systems of linear congruences was written by

Qin Jiushao in 1247 and published in a comprehensive book of Chinese mathematics

titled, Mathematical Book in Nine Chapters. In the first section he presents a remarkable

generalization of the Chinese Remainder Theorem, which allowed for congruences to be

solved even if the moduli were not relatively prime.

The CRT algorithms worked on a counting board with rods that represented numbers,

to find the modular multiplicative inverse of a given congruence. For cases where the

moduli were not relatively prime, his method looked for common factors to reduce the

moduli. Qin Jiushao then applied a method of continued division to solve the resulting

system of congruences.

The Euclidian algorithm is a computational process that computes the greatest com-

mon divisor of two positive integers. It’s a very old method that first appeared in Euclid’s

Elements, which was written approximately 300 BC. In this method, long division is

repeated, using the quotient and remainder. The method is exhausted when the remainder

is zero and the greatest common divisor is the last non-zero remainder.

2.2 Properties of Linear Congruence

Lemma 2.2.0.1. A congruence modulo m forms an equivalence relation.

That is, ∀,a,b,c ∈ Z, the following holds:

Reflexive: a ≡ a (mod m)

Symmetric: a ≡ b (mod m), then b ≡ a (mod m)

Transitive: a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m)

8 CHINESE REMAINDER THEOREM

Proof. Reflexive: Let a and m be any positive integers.

We have a = a =⇒ a−a = 0.

Let’s take 0 as 0m since any number that is multiplied by 0 is 0 so we have,

a−a = 0m =⇒ m|(a−a) and 0 is divisible by any nonzero integer.

Therefore, a ≡ a (mod m)

Symmetric: Let a,b and m be any integers.

Suppose a ≡ b (mod m) and ∃ n ∈ Z, we can write the equation as

a = mn+b =⇒ a−b = mn

=⇒ m|(a−b)

Therefore, if we multiply m|(a−b) by −1 we get,

m|(−1)(a−b)

=⇒ m|(b−a)

=⇒ b ≡ a (mod m)

Transitive: Let a,b,c and m be any integers.

Suppose for a ≡ b (mod m) and b ≡ c (mod m), ∃ n, p ∈ Z such that

a = mn+b =⇒ a−b = mn and

b = mp+ c =⇒ b− c = mp

=⇒ m|(a−b) and m|(b− c)

Now, using linear combination theorem, we have

m|(a−b+b− c)

=⇒ m|(a− c)

=⇒ a ≡ c (mod m)

Lemma 2.2.0.2. Congruence Modulo m Addition:

If a ≡ b (mod m) and c ≡ d (mod m), then a+ c ≡ b+d (mod m).

Proof. Suppose a ≡ b (mod m) and c ≡ d (mod m) then by definition,

∃ k1,k2 ∈ Z such that a−b = k1m and c−d = k2m.

Now, adding both of these equations we get,

2.2 Properties of Linear Congruence 9

(a−b)+(c−d) = k1m+ k2m

=⇒ (a+ c)− (b+d) = m(k1 + k2).

Now, let k = k1 + k2 =⇒ (a+ c)− (b+d) = km

=⇒ a+ c ≡ b+d (mod m)

Lemma 2.2.0.3. Congruence Modulo m Subtraction:

If a ≡ b (mod m) and c ≡ d (mod m), then a− c ≡ b−d (mod m).

Proof. Suppose a ≡ b (mod m) and c ≡ d (mod m) then by definition,

∃ k1,k2 ∈ Z such that a−b = k1m and c−d = k2m.

Now, subtract both of these equations we get,

(a−b)− (c−d) = k1m− k2m

=⇒ (a− c)− (b−d) = m(k1 − k2)

Now, let k = k1 − k2 =⇒ (a− c)− (b−d) = km

=⇒ a− c ≡ b−d (mod m)

Lemma 2.2.0.4. Congruence Modulo m Multiplication:

If a ≡ b (mod m) and c ≡ d (mod m), then ac ≡ bd (mod m).

Proof. Suppose a ≡ b (mod m) and c ≡ d (mod m) then by definition,

∃ k1,k2 ∈ Z such that a−b = k1m and c−d = k2m.

Now, consider
ac−bd = ac− cb+ cb−bd

= c(a−b)+b(c−d)

= ck1m+ ck2m,

= m(ck1 = ck2)

10 CHINESE REMAINDER THEOREM

Let k = (ck1 = ck2) for the above c,k1,k2 ∈ Z

=⇒ ac−bd = mk =⇒ ac ≡ bd (mod m)

Lemma 2.2.0.5. Congruence Modulo m to the kth Power:

If a ≡ b (mod m) and k ∈ N, then ak ≡ bk (mod m).

Proof. Suppose a ≡ b (mod m), where a,b ∈ Z, then ∃ k1 ∈ Z such that

a−b = k1m

Now consider (ak −bk) = (a−b)(ak−1 +ak−2b+ak−3b2 + · · ·+bk−1) · · · · · ·(1)

Substitute a−b = k1m into equation (2)

=⇒ (ak −bk) = k1m(ak−1 +ak−2b+ak−3b2 + · · ·+bk−1)

Let r = k1(ak−1 +ak−2b+ak−3b2 + · · ·+bk−1) where r ∈ Z

=⇒ ak −bk = rm, therefore m|(ak −bk)

=⇒ ak ≡ bk (mod m)

Lemma 2.2.0.6. Modular Multiplicative Inverse:

Let a, m be positive integers such that gcd(a,m) = 1. Then a has a multiplicative inverse

modulo m, and it is unique modulo m. In other words, a ∈ Z is invertable mod m, if and

only if the gcd(a,m) = 1.

Proof. Suppose a is invertible mod m and m > 1, then ∃ x,y ∈ Z such that

ax ≡ 1 (mod m)

=⇒ ax = my+1

=⇒ ax−1 = my or ax−my = 1

=⇒ m|(ax−1)

Let d = gcd(a,m), then d|a and d|m so,

d|(ax−my)

2.2 Properties of Linear Congruence 11

=⇒ d|1

=⇒ gcd(a,m)|1

=⇒ gcd(a,m) = 1

⇐= Suppose gcd(a,m) = 1, then by Bezout’s identity ∃ x,y ∈ Z such that

ax+my = 1

=⇒ ax = 1−my

=⇒ ax−1 = (−y)m

=⇒ m|(ax−1)

=⇒ ax ≡ 1 (mod m)

Lemma 2.2.0.7. Bezout’s Identity states:

If the greatest common divisor of a and b is d, then ax+by = d for x and y ∈ Z.

Proof. Consider the set S of all positive linear combination of a and b.

S = {au+bv | au+bv > 0, u,v ∈ Z}

For a > 0, taking u = 1,v = 0

au+bv =−a > 0 =⇒ S ̸= φ

By definition we know that S contains positive integers and by applying well

ordering principle ∃ x,y ∈ Z such that d = ax+by · · · · · ·(1)

Claim: d is gcd of a and b

d ∈ Z =⇒ d > 0

Applying division algorithm to a and b

a = qd + r, 0 ≤ r ≤ d · · · · · ·(2)

=⇒ r = a−qd

=⇒ r = a−q(ax+by) by equation (1)

=⇒ r = a−qax−qby

=⇒ r = a(1−qx)+b(−qy)

12 CHINESE REMAINDER THEOREM

If r > 0, then r ∈ S because 1−qx and qy.

But r < d and d is least element of S.

Hence this is a contradiction.

a = qd =⇒ q|a

Now if c is any other posiyive common divisor of a and b i.e. c|a, c|b.

Assume c|a ,c|b

=⇒ c|(ax+by)

=⇒ c|d

∴ By definition of gcd, d = gcd(a,b)

2.3 The Proof of Chinese Remainder Theorem

Theorem 2.3.0.1. Chinese Remainder Theorem:

Let n1,n2, . . . ,nr be positive integers such that gcd(ni,n j) = 1 for i ̸= j. Then the system

of linear congruences
x ≡ a1 (mod n1)

x ≡ a2 (mod n2)

...

x ≡ ar (mod nr)

has a simultaneous solution, which is unique modulo N = n1n2 . . .nr.

Proof. Let n1,n2, . . . ,nr be positive integers such that gcd(ni,n j) = 1 for i ̸= j.

Suppose N be the product of all positive integers that is

N =
r

∏
i=1

ni

2.3 The Proof of Chinese Remainder Theorem 13

then our Nk will be

Nk =
N
nk

= n1,n2, . . .nk−1,nk+1, . . . ,nr

where Nk is the product of all integers of ni except for nk ∀ i = 1,2, . . . ,r.

Since nk is not a factor of the product Nk, we have

gcd(Nk,nk) = 1.

Since gcd(Nk,nk) = 1, we know that Nk has an inverse modulo nk.

∴ It is possible to solve the following congruence

Nkx ≡ 1 (mod nk) =⇒ x ≡ N−1
k (mod nk) (2.1)

and we call this unique solution xk. So, by construction we have

Nk ≡ 1 (mod nk).

But Nkxk ≡ 0 (mod n j) for j ̸= k. · · · · · ·(1)

This is because, Nk is a product of all integers except nk, which means n j is present in Nk

and therefore congruent to 0 modulo n j ∀ i ̸= j.

Let x = x1N1a1 + x2N2a2 + . . . ,xrNrar.

If we compute x modulo nk, then every term which is not k will be 0 by (1).

∴ x = 0+0+ · · ·+ xkNkak +0 · · ·+0 ≡ xkNkak (mod nk).

However, xk was chosen to satisfy the congruence NKx ≡ 1 (mod nk).

Therefore, x ≡ ak (mod nk), ∀ 1 ≤ k ≤ r.

Hence x = x1N1a1 + x2N2a2 + . . . ,xrNrar is a solution of the system.

Uniqueness: Suppose x and y are two solutions of the proposed system of congruence.

=⇒ x ≡ ak (mod nk) and y ≡ ak (mod nk), ∀ 1 ≤ k ≤ r

Using properties of subtraction congruence, we have

x− y ≡ 0 (mod nk), ∀ 1 ≤ k ≤ r

=⇒ nk|x− y

=⇒ (x− y) is a multiple of nk, ∀ 1 ≤ k ≤ r

14 CHINESE REMAINDER THEOREM

And since Nk is the product of all integers where ni are pairwise relatively prime.

=⇒ (x− y) is a multiple of N, which means N divides (x− y).

=⇒ x ≡ y (mod N).

Therefore, the initial pair of congruences are the same modulo N.

Example: 2.3.0.2. Solve the following congruence

x ≡ 5 (mod 11)

x ≡ 4 (mod 23)

x ≡ 15 (mod 37)

Solution: Given that the moduli are pairwise relatively prime, a unique solution is

given by the Chinese Remainder Theorem

We have n1 = 11, n2 = 23 and n3 = 37.

∴ N = n1 ·n2 ·n3 = 11 ·23 ·37 = 9361

So a1 = 5, a2 = 4 and a3 = 15

Now we find Nk and Nk =
N
nk

where k = 1,2,3

∴ N1 =
N
n1

= 11·23·37
11 = 23 ·37 = 851

Similarly we have N2 = 407 and N3 = 253

By using equation (2.1) we find the inverse modulo of Nk.

851x1 ≡ 1 (mod 11)

=⇒ ((11×77)+4)x1 ≡ 1 (mod 11)

=⇒ 4x1 ≡ 1 (mod 11)

=⇒ x1 ≡ 3 (mod 11)

Similarly we have x2 ≡ 13 (mod 23) and x3 ≡ 6 (mod 37)

2.3 The Proof of Chinese Remainder Theorem 15

The solution x is as follows

x = N1a1x1 + N2a2x2 + N3a1x3

= 851×5×3+407×4×13+253×15×6

= 12765 + 21164 + 22770

= 56699

∴ 56699 will be a solution to the system of linear congruence.

However, the solution is unique modulo 9361. =⇒ x ≡ 56699 mod 9361

=⇒ x ≡ 533 (mod 9361).

∴ 533 is the smallest possible positive solution to the system of linear congruences.

Chapter 3

CRYPTOGRAPHY

Definition 3.0.0.1. Cryptography is technique of securing information and communica-

tions through use of codes so that only those person for whom the information is intended

can understand it and process it.

The term "cryptography" derives from the Greek words "kryptos," meaning hidden,

and "graphein," meaning writing. Essentially, cryptography involves transforming

plaintext (readable data) into ciphertext (encrypted data which is unreadable) through

the use of algorithms and keys. Only authorized parties possessing the correct key

can decrypt the ciphertext and recover the original plaintext. This process ensures that

sensitive information remains confidential even if intercepted by unauthorized entities.

Historically, cryptography has been employed for centuries, dating back to ancient

civilizations such as the Egyptians and Greeks. However, its modern applications have

expanded dramatically with the advent of computers and the internet.

Today, cryptography underpins various aspects of digital communication and

information security, including:

17

18 CRYPTOGRAPHY

1. Secure Communication: Cryptographic protocols, such as SSL/TLS (Secure

Sockets Layer/Transport Layer Security), enable secure communication over

networks like the internet. These protocols encrypt data transmitted between

parties, preventing eavesdropping and tampering.

2. Data Integrity: Cryptographic hash functions generate fixed-size hash values

from input data, which serve as unique digital fingerprints. By comparing hash

values before and after transmission, recipients can verify the integrity of received

data and detect any alterations.

3. Authentication: Cryptographic techniques, such as digital signatures, allow

entities to verify the authenticity and origin of messages or documents.

Digital signatures provide assurance that data has not been forged or modified by

unauthorized parties.

4. Access Control: Cryptography is integral to authentication mechanisms like

passwords and access tokens, which control access to sensitive resources.

Encryption techniques help safeguard authentication credentials and prevent

unauthorized access to systems and data.

5. Privacy Preservation: Techniques like public-key cryptography enable secure

communication between parties without the need for a shared secret key. This

facilitates confidential exchanges, such as online transactions or private messaging,

while minimizing the risk of interception or impersonation.

The field of cryptography continues to evolve rapidly, driven by advancements in

technology and the ever-changing landscape of cyber threats. Researchers and practition-

ers are constantly developing new cryptographic algorithms, protocols, and applications

to address emerging challenges and enhance security measures.

3.1 Types of Cryptography 19

3.1 Types of Cryptography

There are two different kinds of cryptography systems:

1. Private key cryptography also known as symmetric.

2. Public key cryptography also known as asymmetric.

Definition 3.1.0.1. Symmetric Cryptography: Sender and receiver agree on secret

key that both use to encrypt and decrypt the message. Here decryption is simply the

opposite of encryption. Such a system is called symmetric cipher because encryption

and decryption is symmetrical.

For example, Caesar cipher, Shift Cipher, Hill Cipher, Vigenère Cipher, etc.

Common Applications of Symmetric Cryptography

• Data Encryption: Symmetric-key algorithms, such as the Data Encryption Stan-

dard (DES), Advanced Encryption Standard (AES), and Triple DES (3DES), are

widely used for encrypting sensitive data in storage and transmission.

• File and Disk Encryption: It is used for encrypting files, folders, and entire disk

volumes to protect data stored on computers or portable storage devices.

Definition 3.1.0.2. Asymmetric Cryptography: There are two different but mathe-

matically linked keys the public key and the private key. The publicly disclosed key is

accessible by everyone, while the private key is known only to the receiver. Using the

public key, messages can be encrypted by anyone but can only be decoded with the use

of the private key.

For example, RSA Cryptosystem, DSS, etc

20 CRYPTOGRAPHY

Common Applications of Asymmetric Cryptography

• Digital Signatures: Public-key algorithms, such as RSA and ECDSA, are used

for creating digital signatures to authenticate the origin and integrity of electronic

documents, transactions, and software.

• Key Exchange: Public-key cryptography facilitates secure key exchange mecha-

nisms, such as Diffie-Hellman key exchange, enabling parties to establish shared

secret keys for symmetric-key encryption without prior communication.

• Identity Verification: Public-key certificates, issued by Certificate Authorities

(CAs), are used for verifying the identities of individuals, organizations, and

websites in digital environments, such as SSL certificates for secure websites.

Definition 3.1.0.3. Public Key:- A public key is a component of asymmetric cryp-

tography used in cryptographic systems. It is shared openly and used for encryption

or verification. Messages encrypted with a public key can only be decrypted by the

corresponding private key, providing a secure means of communication.

Definition 3.1.0.4. Private Key:- A private key is the secret part of an asymmetric

cryptographic key pair. It is kept confidential and is used for decrypting messages

encrypted with the corresponding public key. The private key is crucial for ensuring the

security of digital communication and transactions.

3.2 Security Goals

In cryptography, various security goals are essential to ensure the confidentiality, integrity,

authenticity, and availability of data and communication channels.

3.2 Security Goals 21

Confidentiality ensures that sensitive information remains private and inaccessible to

unauthorized parties. Cryptographic techniques such as encryption are used to scramble

plaintext data into ciphertext, making it unreadable without the proper decryption key.

Common encryption algorithms like AES (Advanced Encryption Standard) and RSA

(Rivest-Shamir-Adleman) are employed to achieve confidentiality in various applications,

including secure communication, data storage, and online transactions.

Integrity ensures that data remains unaltered and intact during storage, transmission,

or processing. Cryptographic integrity mechanisms, such as cryptographic hash functions

and digital signatures, are used to detect unauthorized modifications or tampering of

data. Hash functions generate fixed-size hashes or message digests from input data,

which are then compared to verify data integrity. Digital signatures provide proof of the

origin and integrity of electronic documents or messages, allowing recipients to verify

the authenticity of the sender and detect any unauthorized changes.

Authenticity verifies the identity of users, devices, or entities involved in commu-

nication or transactions. Public-key cryptography plays a crucial role in establishing

authenticity through digital signatures and certificates. Digital signatures are created

using the sender’s private key and can be verified using the corresponding public key,

providing assurance of the sender’s identity and the integrity of the message. Certificates

issued by trusted Certificate Authorities (CAs) bind public keys to the identities of indi-

viduals, organizations, or websites, enabling parties to verify authenticity and establish

secure communication channels.

Non-repudiation prevents parties from denying their actions or transactions. Digital

signatures provide strong non-repudiation guarantees by associating cryptographic proof

of identity with electronic documents or transactions. Once a digital signature is applied

to a document, the signer cannot later deny their involvement or the validity of the

signature, providing evidence in case of disputes or legal proceedings.

22 CRYPTOGRAPHY

Availability ensures that authorized users have timely and uninterrupted access to

resources and services. While not directly a cryptographic goal, cryptographic techniques

can be used to mitigate denial-of-service (DoS) attacks and ensure the availability of

critical systems and communication channels. Cryptographic protocols and algorithms

must be designed to withstand attacks and disruptions that may compromise availability,

ensuring reliable operation in adverse conditions.

By addressing these security goals, cryptographic systems and protocols provide the

foundation for secure communication, data protection, and trust in digital environments.

Organizations and individuals rely on cryptographic techniques to safeguard sensitive

information, maintain privacy, and mitigate risks associated with cyber threats and

attacks.

Chapter 4

RANDOM NUMBER GENERATING

Definition 4.0.0.1. Random Number:- A Random Number refers to a value that is

generated unpredictably and uniformly from a defined range of numbers. These random

numbers are crucial for various cryptographic operations, such as key generation, digital

signatures, and encryption.

Definition 4.0.0.2. Randomness:- Randomness refers to the absence of any discernible

pattern or predictability in a sequence of events or values. In other words, when something

is random, it occurs without any apparent order or regularity.

A random number generator (RNG) is a computational or physical process that

generates a sequence of numbers or symbols that cannot be reasonably predicted better

than by a random chance. RNG’s are used in various applications such as cryptography,

simulations, gaming, and statistical sampling. They can be implemented in software

using algorithms or hardware-based methods.

Random number generators (RNG’s) are used in various fields for several reasons:

23

24 RANDOM NUMBER GENERATING

1. Simulations and Modeling: RNG’s are crucial for creating realistic simulations

and models in fields like physics, engineering, and computer science. They allow

researchers to mimic complex systems and behaviors where randomness is a factor.

2. Games and Gambling: RNG’s are extensively used in gaming and gambling

applications to ensure fairness and unpredictability. Whether it’s a video game, a

casino game, or a lottery, RNG’s provide the randomness necessary for a fair and

entertaining experience.

3. Cryptography: RNG’s are used in generating cryptographic keys and in en-

cryption algorithms to enhance security. Randomness is fundamental in creating

unpredictable keys that are resistant to hacking attempts.

4. Statistical Sampling: In statistical analysis and experimentation, RNG’s are used

for random sampling to ensure representative samples and accurate analysis results.

5. Security Protocols: RNG’s are utilized in various security protocols, such as

generating session keys, authentication tokens, and random challenges to thwart

unauthorized access and attacks.

6. Artificial Intelligence and Machine Learning: RNG’s can be used in training

and testing machine learning models to introduce variability and randomness,

aiding in robustness and generalization.

Overall, RNG’s are essential tools across a wide range of applications where randomness

is required or beneficial.

There are some techniques that are used to generating random numbers such as

Pseudorandom Number Generator and Linear Congruent Generator also Cryptographi-

cally Generated Random Numbers, etc. In this chapter we are using Chinese Remainder

Theorem for the purpose of generating random numbers. In essence, CRT says it is

4.1 Random Number Generating Using CRT 25

possible to reconstruct integers in a certain range from their residue modulo a set of

pairwise relatively prime modulo.

4.1 Random Number Generating Using CRT

The CRT is an algorithm with so many applications in mathematics, computing is the

main area of its application and moreover, recently it is being used in cryptography also.

But in the field of cryptosystem, the algorithm is used for functionality for modular

computation.

Example: 4.1.0.1. Produce random numbers where p = 5 and q = 3 by using CRT.

Solution: Let p and q be any large prime numbers for modulo m where m is the

product of two primes.

Figure 4.1: Table for modulo 15

Now for m = pq where we have a function X : Zm → Zp ×Zq

We separate the two primes into two different tables. So we have

i (mod 5)

Figure 4.2: Table for modulo 5

and i (mod 3)

Figure 4.3: Table for modulo 3

26 RANDOM NUMBER GENERATING

Now we are going to plot the below table in such a way that we obtain the values of

Z5 and Z3 using the values of Z15.

So we need the table for i (mod 5) as

Figure 4.4: Modulo 5 looks in tabular form

and i (mod 3) as

Figure 4.5: Modulo 3 looks in tabular form

Now combining both of them the table for i (mod 15) would look like

Now we take the value 0 in the first cell since for both modulo 5 and modulo 3 the first

value is 0.

Now for to find the value for cell (0,1) so we obtain the numbers 0 for i (mod 3) and

1 for i (mod 5) we take 6. Similarly we find other values for the rest of the cell which

give us the following table.

It is clear that on every point a number is being generated for every value.

4.1 Random Number Generating Using CRT 27

Figure 4.6: Combined tabular form of modulo 5 and 3

Figure 4.7: Tabular form of Modulo 15 using above figures

4.1.1 Practical Application and Use Of Random Numbers

Random number generators have application in gambling, statistical sampling, computer

simulation, cryptography, and other areas where a random number is useful in producing

an unpredictable result. The random numbers also is useful for the prevention of reply

attack also for counter measures.

In the area of cryptography and network security random numbers can be used as

the Nonce and it can be attached with the message packets on the sender end as the

identification of each and every packet. In the above technique the CRT generate unique

random numbers for every key value which can be attached with the message.

28 RANDOM NUMBER GENERATING

4.1.2 Conclusion

Chinese reminder theorem, provide benefits in computing, mathematics and also in the

field of cryptography, where the algorithm provides relief in case of modular computation

and also in case of generating the random numbers. But we had made a complex study

of this theorem to develop a new concept of producing random numbers. As we know

that random numbers has a wide application in cryptography to make security of the

network communication more and stronger so that the intruder can hot hamper the

network security.

We have also these random to show how these random numbers can be used in secure

message transmission preventing packet reply which is an attack in which an intruder

captures a message packet and reply it again to gain access to information or system

application. We have used random numbers which are unique for a session of message

transmission. At the receiver side these random numbers are checked and if the number

has been received earlier also it means that the packet is replayed and discarded.

Chapter 5

RSA CRYPTOSYSTEM

5.1 The Original RSA Cryptography

The RSA cryptosystem is commonly used to authenticate digital signatures and protect

data such as customer information and transaction data. It can be used to create key

exchanges that establish a secure, encrypted communication channel. It has numerous

applications in banking, telecommunications and ecommerce.

The RSA cryptosystem was created in 1977 by MIT professors, Ron Rivest, Adi

Shamir, and Leonard Adleman. Their last names form the acronym RSA. It is one of the

first public-key or asymmetric cryptosystems.

The RSA method is secure because it is difficult to factor the products of two large

primes. “RSA encryption works under the premise that the algorithm is easy to compute

in one direction, but almost impossible to reverse”. There are three steps in the RSA

algorithm: key generation, encryption and decryption. The Chinese Remainder Theorem

plays an integral role in the final phase, the decryption or private key process.

29

30 RSA CRYPTOSYSTEM

Lemma 5.1.0.1. Euler’s Totient Theorem:

If m is natural number and a is an integer such that gcd(a,m) = 1, then

aφ(m) ≡ 1 (mod m).

Proof. Let A = {n1,n2, · · ·nφ(m)} such that the elements of the set are the

numbers relatively prime to m.

It will now be proved that this set is the same as the set

B = {an1,an2, ...anφ(m)} where gcd(a,m) = 1.

All elements of B are relatively prime to m so if all elements of B are distinct, then B has

the same elements as A.

In other words, each element of B is congruent to one of A.

This means that n1n2...nφ(m) ≡ an1 ·an2...anφ(m) (mod m)

=⇒ aφ(m) · (n1n2...nφ(m))≡ n1n2...nφ(m) (mod m)

=⇒ aφ(m) ≡ 1 (mod m) as desired.

Note that dividing by n1n2...nφ(m) is allowed since it is relatively prime to m.

Lemma 5.1.0.2. For any prime p,we have (x+ y)p ≡ xp + yp (mod p)

Proof. Let p be a prime, and consider the binomial coefficient

(p
i) =

p!
(p−1)!i!

where 0 < i < p,. Then p occurs in the numerator and is greater than each number in the

denominator. Since p is prime, it follows that (p
i) is divisible by p.

So (p
i) is congruent to zero modulo p, ∀ 0 < i < p.

The binomial theorem states that

5.1 The Original RSA Cryptography 31

(x+ y)p =
p

∑
i=0

(p
i)x

p−iyi

= (p
0)x

p +(p
1)x

p−1y+(p
2)x

p−2y2 + · · ·+(p
p−1)xyp−1 +(p

p)y
p

= (p
0)x

p +0+0+ · · ·+0+(p
0)y

p

= 1xp +0+0+ · · ·+0+1yp

= xp + yp

Since the middle term except the first and last are all congruent to zero modulo p and

(p
0) = (p

p) = 1

=⇒ (x+ y)p ≡ xp + yp (mod p)

Theorem 5.1.0.3. Fermat’s Little Theorem:

Let p be a prime. Then,for every positive integer a, we have ap ≡ a (mod p)

Proof. The proof is by induction on a. If a = 1, then ap = 1p = 1a. So the result holds

for a = 1. Inductive step.

Assume that kp ≡ k (mod p)

and consider (k+1)p. By previous lemma. we have

(k+1)p ≡ kp +1 (mod p).

Hence, by the induction assumption, we obtain

(k+1)p ≡ k+1 (mod p).

By the principle of induction, it follows that ap ≡ a (mod p), for every positive integer

a.

5.1.1 RSA Algorithm

Key Generation:

First, we have to prepare keys that will be used by others to encrypt messages, the same

information will be used forever. Take two large prime numbers p and q where p ̸= q.

32 RSA CRYPTOSYSTEM

Let n = pq. Let φ(n) = (p−1)(q−1). Now choose a prime number e ∈ [2,φ(n)) that is

co-prime to φ . If the gcd(e,φ(n)) = 1 only then the value e can be used. After compute

d ∈ [2,φ(n)) such that e.d ≡ 1 (mod φ(n)) and d must be co-prime. Finally announce

that (e,n) as public key and (d,n) as private key.

Encrypting:

A message is converted into numbers by using ASCII encoding system. Once the

plaintext is converted into a series of numbers where m ≤ n − 1, the number m is

then transformed into an unreadable ciphertext C.The ciphertext is calculated using the

encryption equation:

C ≡ me (mod n).

Figure 5.1: ASCII Table

5.1 The Original RSA Cryptography 33

Decryption:

The receiver is given C and must recover the m. Since the receiver knows the factorization

on n and with the use of private key (d,n), m is recovered using the decryption equation:

m ≡Cd (mod n).

Example: 5.1.1.1. For any two primes, p = 53 and q = 61. Encrypt and decrypt the

message m = 72.

Solution Since p = 53 and q = 61 then n = 3233.

Let φ(n) = (53−1)(61−1) = 3120.

Choose e = 7 since 3 and 5 are not co-prime.

Compute d.
e.d ≡ 1 (mod φ(n))

d ≡ 7−1 (mod 3120)

d ≡ 1783 (mod 3120)

Therefore, public key is (7,3233) and private key is (1783,3233).

So, let’s take m = 72 which will be our message.

To encrypt we use C ≡ me (mod n), so the ciphertext will be C ≡ 727 (mod 3233)

=⇒ C ≡ 133640 (mod 3233)

=⇒ C ≡ 1087 (mod 3233)

Now, to recover the message from the ciphertext using private key.

To decrypt, we use m ≡Cd (mod n)

=⇒ m ≡ 10871783 (mod 3233)

=⇒ m ≡ 45334 (mod 3233)

=⇒ m ≡ 72 (mod 3233)

Therefore, m = 72 which is our secret.

34 RSA CRYPTOSYSTEM

5.2 Double Encryption

Definition 5.2.0.1. Double encryption is where two or more independent layers of

encryption are enabled to protect against compromises of any one layer of encryption.

Using two layers of encryption mitigates threats that come with encrypting data.

The Process: The double encryption process is similar to RSA algorithm, except we

do this process twice since we are encrypting an already encrypted message.

Example: 5.2.0.2. Encrypt the message using p=53 and q=61 where message is m=72.

Then encrypt the ciphertext using p=37 and q=41.

Solution: We have p = 53 and q = 61 then n = pq = 3233.

=⇒ φ(n) = φ(pq) = (p−1)(q−1) = 3120

We choose e = 7 and computing d, we get, d ≡ 1783 (mod 3120).

So we have PubKey1 = (7,3233) and PriKey1 = (1783,3233)

Our message is m = 72

Encrypting using, C1 ≡ me (mod n)

=⇒ C1 ≡ 727 (mod n)

=⇒ C1 ≡ 1087 (mod 3233)

For second encrypting, we have p = 37 and q = 41

=⇒ n = 1517 and φ(n) = 1440.

Choose e = 7 and compute d.

After computing, we get, d ≡ 1823 (mod 1440)

So the next Keys will be, PubKey2 = (7,1517) and PriKey2 = (823,1517)

Take C1 = m1. So our m1 will be 1087.

5.3 Multiple Encryption 35

Encrypting using, C2 ≡ me
1 (mod n), we get

C2 ≡ 10877 (mod n)

=⇒ C2 ≡ 689 (mod 1517)

Now to decrypt we will use m1 ≡Cd
2 (mod n).

Then using PriKey2 = (823,1517)

We get, m1 ≡ 689823 (mod 1517)

=⇒ m1 ≡ 1087 (mod 1517).

Now decrypting the above message with PriKey1 = (1783,3233) and using

since m1 =C1 we take m ≡Cd
1 (mod n), we get, m ≡ 10871783 (mod 3233)

Now we have m = 72 which is our message.

Let’s see if we can decrypt the message while using the Key1 first and then Key2.

So first use Key1 in m ≡ 6831783 (mod 3233)

=⇒ m ≡ 2067 (mod 3233)

Then we use Key2 in m ≡ 2067823 (mod 1517)

=⇒ m ≡ 827 (mod 1517), which is not the original message.

∴ While decrypting always use most recent key first then the older key.

5.3 Multiple Encryption

Definition 5.3.0.1. Multiple encryption is similar to double encryption. In this we are

encrypting an already encrypted message twice or more times, either using the same

algorithm or a different algorithm. It is also known as cascade encryption, cascade

36 RSA CRYPTOSYSTEM

ciphering, multiple encryption, and superencipherment. Superencryption refers to the

outer-level encryption of a multiple encryption.

The Process: Multiple Encryption process is similar to double encryption, except

we encrypt the message multiple times to make it more secure.

Example: 5.3.0.2. Encrypt the message using p=53 and q=61 where message is m=72.

Then encrypt the ciphertext using p=37 and q=41. Again encrypt the obtained ciphertext

using p = 29 and q = 31.

Solution: We have p = 53 and q = 61 then n = pq = 3233.

=⇒ φ(n) = φ(pq) = (p−1)(q−1) = 3120

We choose e = 7 and computing d, we get, d ≡ 1783 (mod 3120).

So we have PubKey1 = (7,3233) and PriKey1 = (1783,3233)

Our message is m = 72

Encrypting using, C1 ≡ me (mod n)

=⇒ C1 ≡ 727 (mod n)

=⇒ C1 ≡ 1087 (mod 3233)

For second encrypting, we have p = 37 and q = 41

=⇒ n = 1517 and φ(n) = 1440.

Choose e = 7 and compute d.

After computing, we get, d ≡ 1823 (mod 1440)

So the next Keys will be, PubKey2 = (7,1517) and PriKey2 = (823,1517)

Take C1 = m1. So our m1 will be 1087.

Encrypting using, C2 ≡ me
1 (mod n), we get

C2 ≡ 10877 (mod n)

5.3 Multiple Encryption 37

=⇒ C2 ≡ 689 (mod 1517)

Now to encrypt the message for third time we use p = 29 and q = 31 =⇒ n = 899

=⇒ φ(n) = φ(pq) = (p−1)(q−1) = 840

We choose e = 11 and compute d, we get

d ≡ 611 (mod 840)

So we have PubKey3 = (11,899) and PriKey3 = (611,899)

Take C2 = m2. So our m2 will be 689.

Encrypting using, C3 ≡ me
2 (mod n), we get

C3 ≡ 68911 (mod 899) =⇒ C3 ≡ 702 (mod 899)

Now to decrypt we will use m2 ≡Cd
3 (mod n).

Then using PriKey3 = (611,899)

We get, m2 ≡ 702611 (mod 899) =⇒ m2 ≡ 689 (mod 899).

Now to decrypt the above message we will use m1 ≡Cd
2 (mod n).

Then using PriKey2 = (823,1517)

We get, m1 ≡ 689823 (mod 1517) =⇒ m1 ≡ 1087 (mod 1517).

Now decrypting the above message with PriKey1 = (1783,3233) and using

m ≡Cd
1 (mod n), we get, m ≡ 10871783 (mod 3233)

Now we have m = 72 which is our message.

Let’s see if we can decrypt the message while using the PrivKey1 first and then PriKey2

and last PriKey3.

So first use PrivKey1 in m ≡ 6831783 (mod 3233)

=⇒ m ≡ 2067 (mod 3233)

Then we use PrivKey2 in m ≡ 2067823 (mod 1517)

38 RSA CRYPTOSYSTEM

=⇒ m ≡ 827 (mod 1517),

Then we use PrivKey3 in m ≡ 827611 (mod 1517)

=⇒ m ≡ 322 (mod 899), which is not the original message.

Remark: 5.3.0.3. In the RSA cryptosystem, the security is based on the difficulty of

factoring large composite numbers into their prime factors. If a composite number has

small prime factors, it becomes vulnerable to factorization attacks, compromising the

security of the RSA encryption.

Remark: 5.3.0.4. If the underlying mathematical problem that RSA relies on, factoring

large composite numbers, is efficiently solved, it could compromise the confidentiality of

encrypted messages. This could lead to the unauthorized access to sensitive information

and potentially undermine the security of various online systems and communications.

Chapter 6

DIGITAL SIGNATURE STANDARD

The Digital Signature Standard (DSS) is a cryptographic algorithm used for creating and

verifying digital signatures. It was developed by the National Institute of Standards and

Technology (NIST) in the United States and was first published in 1993. The purpose

of the DSS is to provide a secure method for authenticating the origin and integrity of

digital messages or documents.

At its core, the DSS relies on the principles of public key cryptography. It utilizes

a pair of mathematically related keys: a private key, which is kept secret by the signer,

and a public key, which is freely available for anyone to use. The private key is used to

generate the digital signature, while the corresponding public key is used to verify the

signature.

The following figure shows how the Digital Signature Standard works.

39

40 DIGITAL SIGNATURE STANDARD

Figure 6.1: Digital Signature Standard

The DSS algorithm involves several steps:

1. Key Generation: The signer generates a pair of cryptographic keys - a private key

and a corresponding public key.

2. Signature Generation: To sign a document or message, the signer uses their

private key to perform a mathematical operation on a cryptographic hash of the

message. This produces the digital signature.

3. Signature Verification: To verify the signature, anyone with access to the public

key can perform a similar mathematical operation on the received message and

the digital signature. If the result matches the original hash of the message, the

signature is considered valid, confirming the authenticity and integrity of the

message.

The security of the DSS relies on the computational difficulty of certain mathematical

problems, such as factoring large integers or computing discrete logarithms. As long as

6.1 Digital Signature Algorithm 41

these problems remain difficult to solve, the digital signatures produced by the DSS are

considered secure.

Over the years, the DSS has undergone revisions and updates to address security

concerns and improve efficiency. However, it remains a widely used standard for digital

signatures in various applications, including electronic transactions, secure communica-

tion, and document authentication.

6.1 Digital Signature Algorithm

DSA stands for the Digital Signature Algorithm. It’s a widely-used cryptographic

algorithm for creating digital signatures. Digital signatures are electronic equivalents of

handwritten signatures or stamped seals, but they’re based on cryptographic techniques,

providing integrity, authenticity, and non-repudiation of digital messages or documents.

DSA is primarily used for creating and verifying digital signatures. Digital signatures

generated using DSA allow the recipient to verify the authenticity and integrity of a

message or document and confirm that it was indeed signed by the purported sender.

6.1.1 The Set Up

Generation of Keys: To generate a key first we need to find a prime number p where

2L−1 < p < 2L and L is an integer and L represents the length of the hash output produced

by the chosen hash function. Then find q where q is a prime divisor of p−1.

Compute g ≡ h
p−1

q (mod p) where g is a generator, g and p are public parameters.

We choose x as any random number where 0 < x < q and y ≡ gx (mod p) which will be

our private key and public key respectively..

42 DIGITAL SIGNATURE STANDARD

Creation of Digital signature: We generate the signature, r ≡ (gk (mod p)) (mod q)

where k is a random number and s ≡ (k−1(H(M)+ xr)) (mod q) where H(M) is the

hash value and M is the message.

The resulting signature is the pair (r,s)

Verification: Ensure that 0 < r < q and 0 < s < q. If not, the signature is invalid.

Now compute w ≡ s−1 (mod q). Calculate u1 ≡ (H(M)w) (mod q) and

u2 ≡ rw (mod q).

Compute v ≡ (gu1yu2 (mod p)) (mod q) If v = r then the signature is not altered.

Definition 6.1.1.1. Generator g: The generator g in the DSA is a key parameter that

defines a subgroup within the multiplicative group modulo p, and it plays a crucial role

in the generation of public and private keys as well as in the signature generation and

verification processes.

Definition 6.1.1.2. Hash Function: A hash function is a mathematical algorithm that

takes an input (or ’message’) and produces a fixed-size string of bytes, typically a

hexadecimal number, regardless of the size or complexity of the input. It is denoted by

H(M). Hash functions like SHA-256 are commonly used in cryptography for various

purposes, including data integrity verification, password hashing, and digital signatures.

Here is an example of a hash function using the SHA-256 algorithm:

Let’s say we have a message "Hello, World!" that we want to hash. This is the H(M)

before digest.

Figure 6.2: Hash Input

We apply the SHA-256 hash function to this message, which will produce a fixed-size

6.1 Digital Signature Algorithm 43

Figure 6.3: The Hash Output

output, typically represented in hexadecimal format.

This hexadecimal string represents the SHA-256 hash of the message "Hello, world!".

Definition 6.1.1.3. Hash value: The output of hash function is often called a hash value

or hash code, is typically a hexadecimal number and is of a fixed length, regardless of

the size of the input. When computing the generator we work with individual digits after

we add the digits to obtain a single number. This only happens when generating g. The

hash value is also called hash code or hash digest and it is denoted by h.

Remark: 6.1.1.4. Thee security of DSA relies on the difficulty of solving the discrete

logarithm problem, particularly in the subgroup generated by g.

Remark: 6.1.1.5. The use of a per-message random integer k is crucial to prevent

private key exposure through a phenomenon called "reusing k".

Remark: 6.1.1.6. Care must be taken in choosing parameters and in the generation of

random values to avoid vulnerabilities and ensure the security of the DSA implementation.

Remark: 6.1.1.7. DSA is generally used with a secure hash function to sign and verify

the messages securely.

Example: 6.1.1.8. Solve for p = 283 and q = 47 with H(M) = 41 where x = 24 and

k = 15.

Solution: Since p = 283 then q = 47.

So, g ≡ h(p−1)/q (mod p)

=⇒ (4+1)282/47 (mod 283)

44 DIGITAL SIGNATURE STANDARD

=⇒ 56 (mod 283)

=⇒ g ≡ 60 (mod 283)

Given that x is our private key, to find the public key,

we compute y ≡ gx (mod p). =⇒ y ≡ 158 (mod 283)

To generate the signature, r ≡ (gk (mod p)) (mod q)

=⇒ r ≡ 207 (mod 47)

=⇒ r ≡ 19 (mod 47)

And s ≡ [k−1(H(M)+ xr)] (mod q)

=⇒ s ≡ 10934 (mod 47)

=⇒ r ≡ 30 (mod 47)

Then the Signature = (r,s) = (19,30)

Let M′,r′ and s′ be the message and signature components respectively received

corresponding to M,r and s.

We verify that 0 < r′ = 19 < 47 and 0 < s′ = 30 < 47

=⇒ we can proceed

So we compute,w ≡ s′−1 (mod q)

=⇒ w ≡ 11 (mod 47).

Then u1 ≡ (H(M)w) (mod q)

=⇒ u1 ≡ 28 (mod 47)

Now we compute, u2 ≡ r′w (mod q)

=⇒ u2 ≡ 21 (mod 47)

Now to verify if v = r′, using v ≡ (gu1yu2 (mod p)) (mod q)

=⇒ v ≡ 207 (mod 47)

=⇒ v ≡ 19 (mod 47)

∴ v = r′.

After we check that v = 19 = r, then we can accept the signature since it is not altered.

Chapter 7

THRESHOLD CRYPTOSYSTEM

7.1 Threshold Secret Sharing

Secret sharing is a cryptographic technique used to distribute a secret among a group of

participants in such a way that only authorized subsets of participants can reconstruct the

original secret. The main idea behind secret sharing is to divide the secret into multiple

shares or pieces, each distributed to different participants, ensuring that cooperation from

a minimum number of participants (known as the threshold) is required to reconstruct

the secret. Each piece of the secret is called a share and the person creating the shares is

called the dealer.

There are various methods for secret sharing, with one of the most common being

Shamir’s Secret Sharing scheme, developed by Adi Shamir in 1979. In Shamir’s scheme,

the secret is represented as a polynomial equation, and each participant is given a point

on the polynomial curve. The secret can only be recovered when a predetermined number

of shares come together.

45

46 THRESHOLD CRYPTOSYSTEM

Secret sharing has applications in various fields, including cryptography, cybersecu-

rity, and distributed systems, where it is used to enhance security by distributing sensitive

information across multiple parties in a way that protects against single points of failure

or compromise.

Definition 7.1.0.1. Fault Tolerant: Fault-tolerant computers are systems designed

to continue operating without interruption in the event of hardware or software fail-

ures. They typically incorporate redundancy in critical components, such as processors,

memory, and storage, along with mechanisms for detecting and correcting errors au-

tomatically. This ensures that even if a component fails, the system can still function

properly, minimizing downtime and ensuring reliability. These systems are commonly

used in mission-critical applications where uninterrupted operation is essential, such as

aerospace, financial services, and telecommunications.

7.2 Function Sharing Schemes

Function sharing schemes were first introduced by Desmedt et al. in 1989. Key-dependent

function is distributed among n people such that any coalition of size t or more can

evaluate the function but smaller coalitions cannot. When a coalition S is to evaluate

the function, the ith user in S computes his own partial result by using his share yi and

sends it to a platform which combines these partial results. Unlike in a secret sharing

scheme, the platform here need not be trusted since the user shares are not disclosed to

the platform.

FSSs are typically used to distribute the private key operations in a public key cryp-

tosystem (i.e., the decryption and signature operations) among several parties. Sharing

a private key operation in a threshold fashion requires first choosing a suitable SSS to

share the private key. Then the subject function must be arranged according to this SSS

7.2 Function Sharing Schemes 47

such that combining the partial results from any t parties will yield the operation’s result

correctly. This is usually a challanging task and requires some ingenious techniques.

Several solutions for sharing the RSA and ElGamal private key operations have been

proposed in the literature. Almost all of these schemes are based on the Shamir SSS,

with the only exception of one scheme based on Blakley. Lagrangian interpolation used

in the secret reconstruction phase of Shamir’s scheme makes it a suitable choice for

function sharing, but it also provides several challenges. One of the most significant

challenges is the computation of inverses in Zφ(N) for sharing the RSA function where

φ(N) should not be known by the users. The first solution to this problem, albeit a

relatively less efficient one, was proposed by Desmedt and Frankel, which solved the

problem by making the dealer compute all potentially needed inverses at the setup time

and distribute them to users mixed with the shares. A more elegant solution was found a

few years later by De Santis et al. They carried the arithmetic into a cyclotomic extension

of Z, which enabled computing the inverses without knowing φ(N). Finally, a very

practical and ingenious solution was given by Shoup where he removed the need of

taking inverses in Lagrangian interpolation altogether by a slight modification in the

RSA signature function.

To the best of our knowledge, so far no function sharing schemes based on the Asmuth-

Bloom SSS have been proposed in the literature. We show in this paper that the Asmuth-

Bloom scheme in fact can be a more suitable choice for function sharing than its alterna-

tives, and the fundamental challanges of function sharing with other SSSs do not exist

for the Asmuth-Bloom scheme.

48 THRESHOLD CRYPTOSYSTEM

7.3 Asmuth-Bloom Secret Sharing Scheme

One of the threshold SSS, which utilizes the Chinese Remainder Theorem is the Asmuth-

Bloom secret sharing scheme. This scheme was presented in 1983 by Charles Asmuth

and Charles Bloom. The Asmuth-Bloom SSS uses a weighted threshold access structure.

The weighted threshold allows for a more perfect privacy, meaning no unauthorized

group of participants can obtain information about the secret. The weighted threshold

schemes are essentially a way of modifying the qualified sets of the access structure.

7.3.1 The Original Asmuth-Bloom Secret Sharing Scheme

Dealer Phase: The secret d is shared among the group of n users and t is our recovery

threshold.

A set of pairwise relatively prime numbers m0 < m1 < · · · < mn where m0 > d are

choosen such that
t

∏
i=1

mi > m0

t−1

∏
i=1

mn−i+1

Combiner Phase: Let M = ∏
t
i=1 mi and our y = d+Am0 where A is any random integer.

To find shares we take yi ≡ y (mod mi)

Let ϕ be the coalition of t users such that the combiner phase will be

Mϕ = ∏
i∈ϕ

mi

We find the possible sets by using nCt

To recover d, find yit

So first we find N = ∏
t
j=1 mi j and ni =

N
mi

7.3 Asmuth-Bloom Secret Sharing Scheme 49

Then using modular multiplication inverse niyit ≡ 1 (mod mi) we find yit

Then computing
y ≡

t

∑
i=1

niyitai (mod N)

We finally compute d ≡ y (mod m0)

The Asmuth-Bloom SSS is close to perfect in the sense that t −1 or fewer shares do not

narrow down the key space: Assume a coalition ϕ ′ size t−1 has gathered and let y be the

unique solution for y in ZM. According to original scheme, M/M′
ϕ > m0, hence y+ jM′

ϕ

is smaller than M for j < m0. Since gcd(m−0,Mϕ) = 1, all (y+ jMϕ) (mod m0) are

distinct for 0 j < m0, and there are m0 of them. That is, d can be any integer from Zm0 .

However, this scheme is not exactly perfect since when t −1 shares are known, the key

candidates are not equally likely.

Example: 7.3.1.1. For shares n = 6 with recovery threshold r = 4, given p = 83,m1 =

127,m2 = 131,m3 = 137,m4 = 139,m5 = 149 and m6 = 151 where the secret is x = 75.

Solution: Take A = 3000 where A is any integer.

Given x = 75 and p = 83 we have, y = x+Ap = 249075

So the shares will be yi ≡ y (mod mi)

y1 ≡ 28 (mod 127)

y2 ≡ 44 (mod 131)

y3 ≡ 9 (mod 137)

y4 ≡ 126 (mod 139)

y5 ≡ 96 (mod 149)

y6 ≡ 76 (mod 151)

To recover the secret, using r = 4 and n = 6, we can find the sets 6C4 = 15

50 THRESHOLD CRYPTOSYSTEM

We will take y1,y2,y3 and y4.

By using ni =
N
mi

, where N = 316818391 we find the rest of ni’s

So we have n1 = 2494633,n2 = 2418461,n3 = 2312543, and n4 = 2279269

Find the shares using nisi ≡ 1 (mod mi) where i = 1,2,3,4

s1 ≡ 68 (mod 127)

s2 ≡ 73 (mod 131)

s3 ≡ 8 (mod 137)

s4 ≡ 118 (mod 139)

∴ s ≡ 249075 (mod 316818391)

Then x ≡ 249075 (mod 83)

=⇒ x ≡ 75 (mod 83), so we have recovered the secret.

But we cannot recover the secret when the recovery threshold is r−1

7.3.2 Modified Asmuth-Bloom SSS

Several changes were needed on the basic Asmuth-Bloom scheme to make it more

suitable for function sharing. In this section we describe these modi cations: In the

original Asmuth-Bloom SSS, the authors proposed an iterative process to solve the

system y ≡ yi (mod mi). Instead, we use a non-iterative and direct solution as described

in , which turns out to be more suitable for function sharing in the sense that it does not

require interaction between parties and has an additive structure which is convenient for

exponentiations. Suppose ϕ is a coalition of t users gathered to construct the secret d.

1. Let Mϕ\{i} denotes ∏ j∈S m j then M′
ϕ,iMϕ\{i} ≡ 1 (mod mi)

7.4 Function Sharing Based On Asmuth-Bloom SSS 51

2. The ith user, ui ≡ yiM′
ϕ,iMϕ\{i} (mod Mϕ) where y= d+Am0 and yi ≡ y (mod mi)

3. y is computed as
y ≡ ∑

i∈ϕ

ui (mod Mϕ)

4. The secret d is computed as d ≡ y (mod m0)

We also modified

t

∏
i=1

mi > m0

t−1

∏
i=1

mn−i+1 to
t

∏
i=1

mi > m2
0

t−1

∏
i=1

mn−i+1

Remark: 7.3.2.1. m0 need not be a prime and the scheme works correctly for a composite

number as long as m0 is relatively prime to mi, where 1 ≤ i ≤ n

Remark: 7.3.2.2. m0 need not be known during the secret reconstruction process until

the 4th step

7.4 Function Sharing Based On Asmuth-Bloom SSS

In this section, we present three novel FSSs based on the Asmuth-Bloom SSS for sharing

the RSA signature, ElGamal decryption functions and Paillier function. In the original

Asmuth-Bloom SSS, the authors proposed a recursive process to solve the system

y ≡ yi (mod mi). Here, we give a direct solution which is more suitable for function

sharing. Suppose S is a coalition of t users gathered to construct the secret d.

7.4.1 RSA Function

This RSA function is similar to the original RSA. Except when signing the message we

use private key. And to verify the message we use public key.

52 THRESHOLD CRYPTOSYSTEM

RSA Set Up

Key Generation: Let N = pq be the product of two large primes p and q.

Choose e ∈ Z∗
φ(N) and compute de ≡ 1 (mod φ(N)).

The public and private key are (e,N) and d respectively.

Signing: Given a message w ∈ ZN , the signature s is computed as

s ≡ wd (mod N)

Verification: Given a signature s ∈ ZN , the verification is done by checking

w ≡ se (mod N)

Example: 7.4.1.1. Sign for p = 59 and q = 73 for the message w = 87

Solution: For p = 59 and q = 73 we have N = 4307 and φ(N) = 4176

We have e = 19, compute d

=⇒ ed ≡ 1 (mod φ(N))

=⇒ d ≡ 1099 (mod 4176)

To sign the message we use s ≡ wd (mod N) =⇒ s ≡ 871099 (mod 4307)

=⇒ s ≡ 1254 (mod 4307)

Now to verify the authenticity of the message we use w ≡ se (mod N)

=⇒ w ≡ 125419 (mod 4307)

=⇒ w ≡ 87 (mod 4307) which is our message. So the message has not been altered.

7.4.2 Threshold RSA

Threshold RSA extends the basic RSA scheme to distribute the private key among

multiple parties in such a way that a threshold of those parties must collaborate to decrypt

7.4 Function Sharing Based On Asmuth-Bloom SSS 53

a message. This approach enhances security by preventing any single entity from having

complete access to the private key.

Threshold RSA enhances security by mitigating the risk of single points of compro-

mise and ensuring that decryption requires collusion among multiple entities. It’s useful

in scenarios where key management and distribution are challenging or where a higher

level of security is desired, similar to Threshold ElGamal.

Threshold RSA Set Up

Key Generation: Choose p = 2p′+1 and q = 2q′+1 where p′ and q′ are both primes.

Let N = pq and the public key e and the private key d are choosen from Z∗
N where

ed ≡ 1 (mod φ(N)) Use Asmuth-Bloom SSS for sharing d with m0 = 4p′q′ = φ(N).

Signing: Let w be the messsage to be signed. Assume a coalition ϕ of size t wants

to obtain the signature s ≡ wd (mod N)

Generating Partial Results: Each user i∈ϕ . Computes ui ≡ yiM′
ϕ,iMϕ\{i} (mod Mϕ)

where y = d +Am0 and yi ≡ y (mod mi) such that si ≡ wui (mod N)

Combining Partial Results: The incomplete decryptor s is obtained by combining

the si values s ≡ ∏i∈ϕ si (mod N)

Correction: Let K ≡ w−Mϕ (mod N) be the corrector. The incomplete signature

can be corrected by trying

(sK j)e ≡ se(Ke) j ≡ w (mod N), for 0 ≤ j < t (7.1)

Then the signature t is computed by s ≡ sKδ (mod N) where δ denotes the value for j

that satisfies (7.1)

54 THRESHOLD CRYPTOSYSTEM

Verification: Verification is the same as the standard RSA verification i.e.

w ≡ se (mod N)

Definition 7.4.2.1. Generating partial results: Generating partial results refers to

the process of computing or deriving intermediate outcomes or data points within a

larger calculation or operation. These partial results are often generated sequentially

or concurrently as part of a multi-step process and may be used to facilitate further

computation, analysis, or decision-making.

Definition 7.4.2.2. Combining Partial Results: Combining partial results refers to the

process of merging intermediate outcomes or data points generated from different sources

or computations into a cohesive final result. This consolidation step is typically necessary

in various computational tasks where the final outcome depends on the integration of

multiple partial results.

Definition 7.4.2.3. Correction: The use of correction mechanisms after combining par-

tial results is essential for ensuring the accuracy, integrity, and reliability of the combined

outcome, particularly in scenarios where data may be subject to errors, inconsistencies,

or faults. By detecting and rectifying deviations from the expected outcome, correction

mechanisms help produce trustworthy and dependable results that reflect the true nature

of the underlying data.

7.4.3 ElGamal Function

ElGamal Function is named after its inventor Taher Elgamal in 1985. The ElGamal

Algorithm provides an alternative to the RSA for public key encryption. Security of

the RSA depends on the (presumed) difficulty of factoring large integers. While the

security of the ElGamal algorithm depends on the (presumed) difficulty of computing

discrete logs in a large prime modulus. In other words, it’s hard to determine the private

7.4 Function Sharing Based On Asmuth-Bloom SSS 55

key x given the public key y and the generator g. Thus, an adversary who intercepts

the ciphertext (C1,C2) without knowing the private key should find it computationally

infeasible to recover the plaintext message m.

ElGamal encryption is often used in practice, especially in scenarios where secure

communication over public channels is needed, such as secure messaging protocols or

cryptographic applications. It is a powerful public key encryption scheme that provides

perfect forward secrecy. It is slower than others but it is easy to implement and is widely

used.

ElGamal Set Up

The Following is the set up for ElGamal Function:

Key generation: Let p be a large prime number and g be a generator of Zp.

We find g ≡ h(p−1)/q (mod p) where h is the hash digest.

Choose a random α ∈ {1,2, . . . , p− 1} and compute β ≡ gα (mod p) where (β ,g, p)

and α are the public and private key respectively.

Encryption: Given a message w ∈ Zp, the ciphertext C = (C1,C2) is computed as

C1 ≡ gr (mod p) and C2 ≡ β rw (mod p), where r is a random integer from Zp

Decryption: Given a ciphertext C, the message w is computed as

w ≡ (Cα
1)

−1C2 (mod p).

Example: 7.4.3.1. For p = 101,q = 5 and h = 41 for the message w = 72.

Solution: Given p = 101, q = 5 and h = 41 we first find the generator

g ≡ h(p−1)/q (mod p)

56 THRESHOLD CRYPTOSYSTEM

=⇒ g ≡ h100/5 (mod 101)

=⇒ g ≡ 84 (mod 101)

Choose α as any random number as private key. So we have α = 53

Then our public key will be β ≡ gα (mod p)

=⇒ β ≡ 8453 (mod 101)

=⇒ β ≡ 36 (mod 101)

Now to encrypt the message w = 72

We use C1 ≡ gr (mod p) where r is random number.

=⇒ C1 ≡ 8417 (mod 101) where r = 17

=⇒ C1 ≡ 87 (mod 101)

Now to find C2 we use C2 ≡ β rw (mod p)

=⇒ C2 ≡ 3617 ×72 (mod 101)

=⇒ C2 ≡ 89 (mod 101)

Now to decrypt the message we compute w ≡ (Cα
1)

−1C2 (mod p)

=⇒ (8753)−1 × 89 (mod 101) Since we cannot solve the equation once we break it

down.

First we find the value of z ≡ (Cα
1 (mod p)

=⇒ z ≡ 8753 (mod 101)

=⇒ z ≡ 84 (mod 101)

Now we find the z−1

So k ≡ z−1 (mod p)

=⇒ k ≡ 84−1 (mod 101)

=⇒ k ≡ 95 (mod 1)01

After mutiplying 95×89 = 8455

=⇒ w ≡ 8455 (mod 101)

=⇒ w ≡ 72 (mod 101) which is our secret.

7.4 Function Sharing Based On Asmuth-Bloom SSS 57

7.4.4 Threshold ElGamal

Threshold ElGamal is an extension of the ElGamal encryption scheme that introduces a

mechanism for distributing the private key among multiple parties in such a way that a

predetermined threshold of those parties must collaborate to decrypt a message. This

threshold mechanism enhances security and ensures that no single entity has full access

to the decryption key. Similar to the Threshold RSA Function, Threshold ElGamal is also

a combination of ElGamal and Asmuth-Bloom SSS. The security of Threshold ElGamal

relies on the assumption that no fewer than t parties collude to reconstruct the private

key. If fewer than t parties collude, they should gain no information about the private

key, ensuring the confidentiality of the encrypted messages.

Threshold ElGamal is particularly useful in scenarios where key management and

distribution are challenging or where a higher level of security is desired. It finds

applications in secure multi-party computation, distributed systems, and cryptographic

protocols where access control and confidentiality are paramount.

Threshold ElGamal Set Up

Key Generation: Choose p = 2q+1 where q is a large prime number and let g ∈ Z∗
p

with order q. Choose a random α ∈ {1, . . . , p−1} and compute β ≡ gα (mod p).

Let α and (β ,g, p) be the private and public key respectively.

Use Asmuth-Bloom SSS for sharing the private key α with m0 = 2q.

Encryption: Given a message w ∈ Zp, the ciphertext C = (C1,C2) is computed as

C1 ≡ gr (mod p) and C2 ≡ β rw (mod p) where r is a random integer from Zp

Decryption: Let (C1,C2) be ciphertext to be decrypted where C1 ≡ gk (mod p) for

some k ∈ {1, . . . , p− 1} and C2 = β kw, where w is the message. The coalition ϕ of t

58 THRESHOLD CRYPTOSYSTEM

users wants to obtain the message w ≡ sC2 (mod p) for the decryptors

s ≡ (Cα
1)

−1 (mod p).

Generating Partial Results: Each user i ∈ ϕ computes

ui ≡ yiM′
ϕ,iMϕ\{i} (mod Mϕ) where y = d +Am0 and yi ≡ y (mod mi).

si ≡C−ui
1 (mod p) and β ≡ gui (mod p)

Combining Partial Results: The incomplete decryptor s is obtained by combining

the si values s ≡ ∏i∈ϕ si (mod p)

Correction: The βi values will be used to find the exponent which will be used to

correct the incomplete decryptor.

Compute the incomplete public key β as β ≡ ∏i∈ϕ βi (mod p).

Let Ks ≡CMϕ

1 (mod p) and Kβ ≡ g−Mϕ (mod p) be the correctors for s and β respec-

tively. The corrector exponent δ can be obtained by trying

βK j
β
≡ β (mod p) for 0 ≤ j ≤ t (7.2)

Extracting the Message: Compute the message w as s ≡ sKδ
s (mod p) and

w ≡ sC2 (mod p) where δ denotes the value for j that satisfies (7.2)

7.4.5 Paillier Function

The Paillier cryptosystem is a public-key encryption scheme with homomorphic proper-

ties, meaning it supports operations on encrypted data without needing to decrypt it first.

It was proposed by Pascal Paillier in 1999 and is based on the computational difficulty of

the decisional composite residuosity assumption.

7.4 Function Sharing Based On Asmuth-Bloom SSS 59

The security of the Paillier cryptosystem relies on the difficulty of the decisional

composite residuosity assumption, which states that given n and n2 it’s computationally

hard to distinguish between gx mod n2 and a random value in the set Z∗
n2 .

It allows two types of computation: Addition of two ciphertext and Multiplication of

two ciphertext by a plaintext number.

Paillier Set Up

Key Generation: Choose two large prime numbers p and q randomly and independently

of each other such that gcd(N,(p−1)(q−1)) = 1 This property is assured if both primes

are of equal length. Compute N = pq and λ = lcm(p−1,q−1).

Choose a random g ∈ ZN2 such that the order of g is a multiple of N. Ensure n divides

the order of g by checking the existence of the following modular multiplicative inverse

µ ≡ L(gλ (mod N2))−1 (mod N)

where L is a function s.t. L(x) = x−1
N and the result of function L is always an integer.

(N,g) and (λ ,µ) are the public and private key respectively.

Encryption: Let w be the message to be encrypted where 0 ≤ w ≤ N. Select a

random r where gcd(r,N) = 1 , the ciphertext C is computed as C ≡ gwrN (mod N2).

Decryption: Given a ciphertext C ∈ ZN2 , the message w is computed as

w≡ L(Cλ (mod N2))

L(gλ (mod N2))
(mod N) which can also be written as w≡L(Cλ (mod N2))µ (mod N).

Example: 7.4.5.1. Encrypt the message w = 42 using p = 7 and q = 11

Solution: Let p= 7 and q= 11 be two prime integers such that N = pq= 7×11= 77

since gcd(77,60) = 1.

60 THRESHOLD CRYPTOSYSTEM

Now we select a random g = 5652 since it satisfies the property that order of g is

2310 = 30×77 in ZN2 .

Thus the public key will be (N,g) = (77,5652)

Now we encrypt the message w = 42 and we choose a random number r as 23 using

C ≡ gmrN (mod N2).

=⇒ C ≡ 5652422377 (mod 5929)

=⇒ C ≡ 4626 (mod 5929)

Now we find µ ,

µ ≡ L(gλ (mod N2))−1 (mod N)

≡ L(565230 (mod 5929))−1 (mod 77)

≡ L(3928)−1 (mod 77)

≡
(

3928−1
77

)−1

(mod 77)

≡ 51−1 (mod 77)

≡ 74 (mod 77)

Now we decrypt the message using w ≡ L(Cλ (mod N2))µ (mod N)

=⇒ w ≡ L(462630 (mod 5929))74 (mod 77)

=⇒ w ≡ L(4852)74 (mod 77)

=⇒ w ≡ 63×74 (mod 77)

=⇒ w ≡ 4662 (mod 77)

=⇒ w ≡ 42 (mod 77) which is our message.

7.4 Function Sharing Based On Asmuth-Bloom SSS 61

7.4.6 Threshold Paillier

Threshold Paillier is an extension of the Paillier cryptosystem that introduces a mech-

anism for distributing the private key among multiple parties in such a way that a

predetermined threshold of those parties must collaborate to decrypt a message. This

threshold mechanism enhances security and ensures that no single entity has full access

to the decryption key.

The security of Threshold Paillier relies on the assumption that no fewer than t parties

collude to reconstruct the private key. If fewer than t parties collude, they should gain no

information about the private key, ensuring the confidentiality of the encrypted messages.

Threshold Paillier is particularly useful in scenarios where key management and

distribution are challenging or where a higher level of security is desired. It finds

applications in secure multi-party computation, distributed systems, and cryptographic

protocols where access control and confidentiality are paramount.

Threshold Paillier Set Up

Definition 7.4.6.1. Carmichael Number: A composite integer n is a Carmichael number

if and only if an ≡ a (mod n) for all a ∈ Z

Key Generation: Choose p = 2p′+ 1 and q = 2q′+ 1 where p′ and q′ are also

primes and gcd(N,φ(N)) = 1 for N = pq. Let g ≡ (1+N)abN (mod N2) for a random

a,b ∈ Z∗
N .

Compute θ ≡ aβ (mod N) for β ∈Z∗
N and where λ = lcm(p−1,q−1) is the Carmichael

number for N. Let (N,g,θ) and λ be the public and private key respectively.

Use Asmuth-Bloom SSS to share βλ with m0 = Nλ .

62 THRESHOLD CRYPTOSYSTEM

Encryption: Given a message w ∈ ZN , the ciphertext C is computed as

C ≡ gwrN (mod N2).

Decryption: Let C ≡ gwrN (mod N2) be the ciphertext to be decrypted for some

random r ∈ Z∗
N , where w is the message from ZN .

Assume a coalition ϕ of size t wants to obtain the message

w ≡ L(Cβλ (mod N2))
θ

(mod N). We call s ≡Cβλ (mod N2) as the decryptor.

Generating Partial Results: Each user i∈ ϕ computesui ≡ yiM′
ϕ,iMϕ\{i} (mod Mϕ)

where y = d+Am0 and yi ≡ y (mod mi) then si ≡Cui
i (mod N2) and θi ≡ gui (mod N2)

Combining Partial Results The incomplete decryptor s is obtained by combining

the si values s ≡ ∏i∈ϕ si (mod N2)

Correction: The θi values will be used to find the exponent which corrects the

incomplete decryptor. Compute θ ≡ ∏i∈ϕ θi (mod N2). Let Ks ≡C−Mϕ (mod N2) and

Kθ ≡ g−Mϕ (mod N2) be the correctors for s and θ respectively. The corrector exponent

δ can be obtained by trying

θ ≡ L(θK j
θ

(mod N2)) for 0 ≤ j < t (7.3)

Extracting the Message: Compute the message w as s ≡ sKδ
s (mod N2) and

w ≡ L(s)
θ

(mod N) where δ denotes the value for j that satisfies (7.3).

The decryptor s is incomplete and to find the corrector exponent we used a similar

approach. When the equality holds we know that θ ≡ aβλ (mod N2) is the correct

value. Also, this equality must hold for one j value, denoted by δ , in the given interval.

Actually our purpose is not computing θ since it is already known. We want to find the

corrector exponent δ to obtain s, which is also equal to the one we used to obtain θ .

Bibliography

[1] Dr Michael Evans AMSI. “RSA Encryption”. In: (). URL: https://amsi.org.au/

teacher_modules/pdfs/Maths_delivers/Encryption5.pdf.

[2] C. Asmuth and J. Bloom. “A modular approach to key safeguarding”. In: IEEE

Transactions on Information Theory 29.2 (1983), pp. 208–210.

[3] David M. Burton. “Elementary Number Theory, Seventh Edition”. In: Sigma Math-

ematics (), pp. 79–82.

[4] Carol S. Jackson. “The Chinese Remainder Theorem”. In: Mathematics Capstone

Project (Dec. 2021).

[5] Baivab Kumar Jena. “Digital Signature Algorithm (DSA) in Cryptography: How It

Works More”. In: (). URL: https://www.simplilearn.com/tutorials/cryptography-

tutorial/digital-signature-algorithm.

[6] Kamer Kaya. “Threshold Cryptography with Chinese Remainder Theorem”. In:

Sigma Mathematics (Aug. 2009).

[7] Kamer Kaya and Ali Aydin Selçuk. “Threshold Cryptography based on Asmuth-

Bloom Secret Sharing”. In: Information Sciences (Apr. 2006-2007).

[8] Saurabh Singh and Gaurav agarwal. “Use of CRT to generate Random numbers for

Cryptography”. In: International Journal of Applied Engineering 2 (2010).

63

https://amsi.org.au/teacher_modules/pdfs/Maths_delivers/Encryption5.pdf
https://amsi.org.au/teacher_modules/pdfs/Maths_delivers/Encryption5.pdf
https://www.simplilearn.com/tutorials/cryptography-tutorial/digital-signature-algorithm
https://www.simplilearn.com/tutorials/cryptography-tutorial/digital-signature-algorithm

64 BIBLIOGRAPHY

[9] Yufei Tao. “RSA Cryptosystem”. In: (). URL: https://www.cse.cuhk.edu.hk/taoyf/

course/bmeg3120/notes/rsa.pdf.

https://www.cse.cuhk.edu.hk/taoyf/course/bmeg3120/notes/rsa.pdf
https://www.cse.cuhk.edu.hk/taoyf/course/bmeg3120/notes/rsa.pdf

	3dd73b82e6f06c7ac2e78caa8f97a57f0cf5fb9f057fef5a0965beff83b32d27.pdf
	b45d9089a83604d93d8482e928d78f3337d21c944584f7bba34225456e1d0922.pdf
	3dd73b82e6f06c7ac2e78caa8f97a57f0cf5fb9f057fef5a0965beff83b32d27.pdf
	b45d9089a83604d93d8482e928d78f3337d21c944584f7bba34225456e1d0922.pdf
	3dd73b82e6f06c7ac2e78caa8f97a57f0cf5fb9f057fef5a0965beff83b32d27.pdf
	Table of contents
	List of figures
	1 Introduction
	2 Chinese Remainder Theorem
	2.1 The Origin of Chinese Remainder Theorem
	2.2 Properties of Linear Congruence
	2.3 The Proof of Chinese Remainder Theorem

	3 Cryptography
	3.1 Types of Cryptography
	3.2 Security Goals

	4 Random Number Generating
	4.1 Random Number Generating Using CRT
	4.1.1 Practical Application and Use Of Random Numbers
	4.1.2 Conclusion

	5 RSA Cryptosystem
	5.1 The Original RSA Cryptography
	5.1.1 RSA Algorithm

	5.2 Double Encryption
	5.3 Multiple Encryption

	6 Digital signature Standard
	6.1 Digital Signature Algorithm
	6.1.1 The Set Up

	7 Threshold Cryptosystem
	7.1 Threshold Secret Sharing
	7.2 Function Sharing Schemes
	7.3 Asmuth-Bloom Secret Sharing Scheme
	7.3.1 The Original Asmuth-Bloom Secret Sharing Scheme
	7.3.2 Modified Asmuth-Bloom SSS

	7.4 Function Sharing Based On Asmuth-Bloom SSS
	7.4.1 RSA Function
	7.4.2 Threshold RSA
	7.4.3 ElGamal Function
	7.4.4 Threshold ElGamal
	7.4.5 Paillier Function
	7.4.6 Threshold Paillier

