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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Sub-

ject: MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics

in the academic year 2023-2024.

The topic assigned for the research report is: " STUDY AND ANALYSIS OF MATH-

EMATICAL MODELS FOR COVID-19 PANDEMIC." This survey is divided into five

chapters. Each chapter has its own relevance and importance. The chapters are divided

and defined in a logical, systematic and scientific manner to cover every nook and corner

of the topic.

FIRST CHAPTER :

The Introductory stage of this Project report is based on overview of mathematical Mod-

elling, COVID-19 disease models, Aim and objectives .

SECOND CHAPTER:

This chapter deals with the SEIRS model. The positivity, boundedness , Existence of

solution is discussed. Equilibrium Points and their stabilty analysis is done. Basic

Reproduction Number is also found.

THIRD CHAPTER:

In this chapter we have introduced an Isolation class Q. Here we study the SEIQR

model.The positivity, boundedness , Existence of solution is discussed. Equilibrium

Points and their stabilty analysis is done. Basic Reproduction Number is also found. The

importance of an Isolation class is shown in this paper.
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FOURTH CHAPTER:

This chapter deals with the SEIQRD model which is a slight modification of the model

in Chapter 2. Here we include the Recovered Class R for our dynamical analysis. The

positivity, boundedness , Existence of solution is discussed. Equilibrium Points and their

stabilty analysis is done. Basic Reproduction Number is also found.

FIFTH CHAPTER.

In this chapter we have given some concluding reamarks based on the papers we have

reviewed.
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ABSTRACT

This dissertation project deals with the model formulation and analysis of three

COVID-19 pandemic mathematical models. Many compartment models have been

formulated to study the spread of COVID-19 disease. In this project, we study the SEIRS,

SEIQR and SEIQRD models. The positivity, boundedness, and existence of the solutions

of the model are proved. The Disease-free equilibrium point and endemic equilibrium

points are identified. Local Stability of disease free Equilibrium point is checked with the

help of Next generation matrix. Global stability of endemic equilibrium point is proved

using the Concept of Liapunove function. The Basic Reproduction Number is computed.

If basic reproduction number is less than one, then number of cases decrease over time

and eventually the disease dies out, and if the basic reproduction number is equal to one,

then the number of cases are stable. On the other hand, if the basic reproduction number

is greater than one, then the number of cases increase over time.

Keywords: COVID-19 Pandemic, Stability Analysis, Next Generation Matrix, Basic

Reproduction Number.
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Chapter 1

INTRODUCTION

1.1 Background

A differential equation is a mathematical equation that involves an unknown function

and one or more of its derivatives with respect to an independent variable. The equation

expresses a relationship between the function and its rates of change, reflecting how the

function evolves or behaves over the given variable.

System of differential equation:

A system of differential equations involves multiple equations, each describing the rate

of change of one or more dependent variables with respect to an independent variable.

These systems are commonly used to model complex relationships where the behavior

of one variable is dependent on the behavior of others.

1
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The general form of a system of a n first-order ordinary differential equations (ODEs)

is often written as:

dx1

dt
= f1(x1,x2, . . . ,xn, t)

dx2

dt
= f2(x1,x2, . . . ,xn, t)

...

dxn

dt
= fn(x1,x2, . . . ,xn, t)

Here, x1,x2, . . . ,xn are the dependent variables, t is the independent variable (often

representing time), and f1, f2, . . . , fn are functions defining the rates of change of the

corresponding variables.

Mathematical Modelling:

Mathematical modeling is a way to represent real-world phenomena using mathematical

equations and formulas. It allows us to simulate and understand complex systems, such

as the spread of diseases, climate patterns, or economic trends. By inputting different

variables and parameters, we can predict how the system will behave under different

conditions. Mathematical modeling helps us make informed decisions, test hypotheses,

and explore various scenarios without having to rely solely on real-world experiments.

It’s a powerful tool that combines math and science to gain insights and make predictions.

Examples: Population Growth Model, Radio-active Decay Model, Diffusion Model

and so on.
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Epidemiology:

Epidemiology is the study of how diseases spread and impact populations. It involves

analyzing patterns, causes, and effects of diseases in order to understand and control

their occurrence. Epidemiologists gather and analyze data to identify risk factors, track

the progression of diseases, and develop strategies for prevention and control. It’s a

fascinating field that plays a crucial role in public health.

COVID-19:

COVID-19, short for "coronavirus disease 2019," is a highly contagious respiratory

illness caused by the SARS-CoV-2 virus. It first emerged in late 2019 in Wuhan, China.

The virus quickly spread globally, leading to a pandemic. The pandemic has had a

profound impact on the world, causing widespread illness, loss of lives, disruptions to

economies, travel restrictions, and changes in daily life. It has highlighted the importance

of public health measures and the need for global collaboration in fighting infectious

diseases.

1.2 Model Formulation and Analysis

Formulation of a mathematical model:

The formulation of a mathematical model using differential equations involves expressing

the relationships between variables in a system in terms of differential equations
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Positivity, Boundedness and Existence of Solution :

The Existence, positivity and Boundedness of the solution of the model is shown to

clarify the model is biologically meaningful and mathematically well posed. A Model is

mathemematically well posed if it has a solution, the solution is unique and the solution’s

behaviour changes continously with initial conditions.

Reproduction number:

The reproduction number, often denoted as R0 , is a crucial epidemiological concept

used to measure the transmission potential of an infectious disease within a population.

Specifically, R0 represents the average number of secondary infections produced by one

infected individual in a completely susceptible population.

Equilibrium points:

The equilibrium points represent the states where the system is at rest, as the rates of

change are zero at those points. Analyzing the stability and behavior of the system

around these equilibrium points is crucial for understanding its dynamics.We investigate

the following two equilibrium points:

• Endemic Equilibrium :

The endemic equilibrium represents a stable state in the population where the

disease persists at a non-zero level. In this equilibrium, there is a balance between

the rates of infection and recovery, leading to a constant, non-zero prevalence of

the disease.
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• Disease-Free Equilibrium :

The disease-free equilibrium represents a state in the population where no indi-

viduals are infected with the disease. At this equilibrium point, all compartments

related to the disease (such as susceptible, infected, and recovered) have constant

values, and the spread of the disease is not occurring.

Stability analysis:

Stability analysis helps to understand whether small perturbations (changes) from an

equilibrium point lead to convergence (stable behavior) or divergence (unstable behavior)

over time. There are two main types of stability: local stability and global stability.

• Local stability:

Local stability focuses on the behavior of solutions in the immediate vicinity

of a specific equilibrium point. It examines how small perturbations from that

equilibrium point evolve over time.

• Global stability:

Global stability considers the behavior of the entire system over its entire state

space. It examines whether all trajectories in the system, regardless of initial

conditions, converge to a specific equilibrium point..

Lyapunov’s Function and Stability Theory:

Lyapunov’s Stability Theory has three theorems, namely:
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Stability Theorem in Lyapunov Sense, Asymtotic Stability Theorem and Lyapunov Insta-

bility Theorem.

Theorem 1.2.0.1. Stability Analysis based on Lyapunov function

If in the given domain, the function F(x) is positive definite and has continuous partial

derivatives, and if its time derivative along any state trajectory of the system is negative

semi-definite, i.e., Ḟ(x)≤ 0, then F(x) is said to be a Lyapunov function. The point for

which this function exists is said to be stable. The stability is Asymptotic Global Stable if

Ḟ(x)< 0.

1.3 COVID-19 Mathematical Model

Corona virus disease 2019 (COVID-19) is an infectious disease that can cause illnesses

ranging from the common cold to much more severe illnesses like SARS, MERS, and

COVID-19. Severe acute respiratory syndrome corona virus 2 (SARS Cov-2)[5, 14],

commonly known as Novel Corona virus (nCoV), is a single, positive-stranded, RNA

virus that belongs to Nidoviral type, which are responsible for the Current COVID-19

Pandemic.[24, 23] The novel corona virus (nCoV) or COVID-19 may show signs of

fever, cough, breathing difficulties, organ failures or even death of whole society[21]. It

can be transmitted from person to person even before any actual signs appeared, which

is difficult to prevent and control. According to WHO report, the virus that causes

COVID-19 is mainly transmitted through droplets generated when an infected person

coughs, sneezes, or speaks.[5] These droplets are too heavy to hang in the air. They

quickly fall on floors or surfaces. You can be infected by breathing in the virus if you are
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within 1 meter of a person who has COVID-19, or by touching a contaminated surface

and then touching your eyes, nose or mouth before washing your hands[6, 4, 16]. There

is no specific medicine to prevent or treat corona virus disease (COVID-19). People may

need supportive care to help them breathe. If you have mild symptoms, stay at home

until you have recovered. You can relieve your symptoms if you:

• rest and sleep

• keep warm

• drink plenty of liquids

• use a room humidifier or take a hot shower to help ease a sore throat and cough

People with COVID-19 develop signs and symptoms, including mild respiratory symp-

toms and fever, on an average of 5-6 days after infection (mean incubation period 5-6

days, range 1-14 days).

The importance of mathematical modeling in epidemic forecasting is emphasized, rang-

ing from historical outbreaks like cholera to contemporary challenges such as AIDS,

COVID-19 and Ebola. The ultimate goal is to refine disease transmission models for

better forecasting, preparedness, and intervention strategies to address infectious disease

threats effectively. Researchers all round the world have been trying to know how the

disease spreads and find out effective ways control the outbreak. Many Compartment

models have been formulated to study these outbreaks. Compartments like Susceptible,

Exposed, Infected, Recovered, Dead, Quarantined, Hospitalized, Vaccinated etc. are

used to form different interesting models.[22, 15]
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The ongoing Covid-19 pandemic has similarly caused widespread devastation, affecting

social, economic, and health structures globally.Measures such as school closures, travel

restrictions, lockdowns, and social distancing have been implemented to curb the virus’s

spread. Efforts to combat Covid-19 include the development of vaccines, although the

virus’s ability to mutate has raised concerns. Researchers have employed mathematical

models to analyze the disease’s dynamics and propose containment strategies. Studies

by different mathematicians explore various mathematical models, considering factors

like isolation, transmission dynamics, fractional differential equations, super-spreaders,

lockdown impact, age groups, hospitalization, vaccination drives and social distancing

.These studies aim to understand and predict COVID-19 dynamics, stability, including

peak values, infection rates, recovery rates, and case fatality rates[19].

1.4 Aim and Objectives

1.4.1 Aim

To Study and Analyse 3 Mathematical Models for COVID-19 Pandemic.

1. SEIRS Model

2. SEIQR Model

3. SEIQRD Model
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1.4.2 Objective of study

Study formulation of mathematical model

To study how we can formulate different models in linear and non linear system of

differential equation taking different compartments as variables and the changes that are

happening with time.

Positivity and Boundedness of solution

To show that the formulated Model is epidemiologically / biologically meaningful.

Existence of Solution

To show that the Model is mathematically well-posed.

Finding Equilibrium points of the system

Helps in studying stability of the system.

Finding Reproduction number

Help in guiding our understanding of disease transmission and aiding in the design and

evaluation of public health interventions.
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Stability Analysis

Studying stability of the system whether the system is locally stable and globally stable

or not. We use different methods to find stability at the equilibrium points. Methods like

Lyapunov function method, Castilo-Chavez method and so on are used.



Chapter 2

REVIEW OF SEIRS MODEL

2.1 Introduction

The main purpose of this article is to formulate and to make Mathematical model analy-

sis that describes the disease transmission dynamics of COVID-19 based on different

literature reviews. The paper will create better understanding of the current corona virus

pandemic. The SEIRS model is discussed here. SEIRS: Susceptible - Exposed - Infected

- Recovered - Susceptible Model. The susceptibles become infected on contact with

Infected people. initially they are put in the exposed class (no symptoms) and once they

start showing symptoms they are moved to the Infected class [5]. The Infected class

is assumed to recover from the disease. Once immunized recovered these individuals

may lose their immunity and become susceptible again. Now Let us study the SEIRS

Model[14, 24, 23, 6].

11
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This paper is organized as follows:

In section 2, Mathematical model formulation: Model assumptions, description of

variables and parameters, Model diagram and Model equations are presented.

In section 3, Mathematical Analysis of Model: Positivity, Boundedness and Existence

of solution, Equilibrium points and Basic Reproduction number are Discussed.

In section 4, Stability Analysis of Equilibrium points: Next Generation matrix, Local

Stability of disease free equilibrium point (LSDFEP), Global Stability of endemic equi-

librium point (GSEEP) will be presented.
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2.2 Mathematical Model Formulation

In the present study SEIRS model of COVID-19 is Constructed as follows. The total

populations are divided into four classes:

1. Susceptible class denoted by S (contains population which are capable of becoming

infected)

2. Exposed class denoted by E (consists of populations being infected but not infec-

tious and waiting for a short period time is called latency period.)

3. Infected class denoted by I (consists of population which are infected with COVID-

19 and are also infectious)

4. Recovered class denoted by R (consists of recovered class from infectious disease

COVID-19.)

2.2.1 Assumptions

• The size of total population is assumed to be constant,

N(t) = S(t)+E(t)+ I(t)+R(t)

• Both the number of births and death are may not be equal and populations are well

mixed.

• Susceptible class are recruited into the compartment S(t) at a constant rate Λ
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• The Exposed class has short incubation period and are not yet infective but move

to infective class at rate β

• Susceptible class are infected when they come into contact with COVID-19 patient

and the disease transmitted according to bilinear interaction rate αλ (t) where,

λ (t) = I(t) which is force of infection.

• Recovered class revert to the susceptible class after losing their immunity at a rate

ρ

• All types of population suffer natural mortality at a rate µ .

• All types of population suffer die due to Covid-19 Pandemic at a rate δ

• All parameters in the model are positive.
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2.2.2 Model Diagram

The Model Diagram is shown in figure 1:

Figure 2.1: Model Diagram

Parameter Description

Λ
Constant Influx Rate (Rate at which new susceptibles are recruited or enter the Susceptible
Compartment )

α
Infection Rate or Contact Rate (rate at which COVID-19 patients transfer from Compart-
ment S to E)

β
Latency Transfer Rate (rate at which COVID-19 patients transfer from Compartment E to
I)

γ Recovery Rate (rate at which COVID-19 patients recover)

ρ
Loss of Immunity or Re-infection Rate (rate at which recovered COVID-19 patients
transfer from Compartment R to S)

δ Death Rate due to infection of COVID-19
µ Natural Death Rate

Table 2.1: Parameters and Description
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Variable Description
S(t) Number of Susceptible Individuals at time t
E(t) Number of Exposed Individuals at time t ( infected but not infectious)
I(t) Number of Infected Individuals at time t ( infectious)
R(t) Number of Recovered Individuals at time t ( removed or immune)

Table 2.2: Variables and Description

2.2.3 Model Equations

dS
dt

= Λ+ρR(t)−αS(t)I(t)−δS(t)−µS(t) (2.1)

dE
dt

= αS(t)I(t)−βE(t)−δE(t)−µE(t) (2.2)

dI
dt

= βE(t)− γI(t)−δ I(t)−µI(t) (2.3)

dR
dt

= γI(t)−ρR(t)−δR(t)−µR(t) (2.4)

with initial conditions, S(0)> 0,E(0)≥ 0, I(0)≥ 0,R(0)≥ 0,λ (t) = I(t) which is

force of infection.

2.3 Model Analysis

In this section mathematical model analysis part is presented.

The analysis consists of the following features:

(i) Positivity of solutions the model

(ii) Boundedness of solutions of the model
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(iii) Existence of solutions of the model

(iv) Equilibrium points of the model: Disease free equilibrium points, endemic equilib-

rium points

(v) Basic Reproduction number

(vi) Stability analysis of equilibrium points: Local stability of disease free equilibrium

point and Global stability of endemic equilibrium point.

2.3.1 Positivity of solutions

In order to show that the model is biologically valid, it is required to prove that the

solutions of the system of ordinary differential equations are positive and bounded for all

time t [4]

Theorem 2.3.1.1 (Positivity). Solutions of the model equations together with initial

conditions S(0)> 0,E(0)≥ 0, I(0)≥ 0,R(0)≥ 0 are always positive. That is, the model

variables S(t),E(t), I(t),R(t) are positive for all t and will remain in R4
+

Proof: Positivity of the model variables is shown separately for each of the model

variables,S(t),E(t), I(t),&R(t).

Positivity of S(t) :

The model equation given by dS
dt = Λ+ρR(t)−αS(t)I(t)− δS(t)− µS(t) can be ex-

pressed without loss of generality, after eliminating the positive terms (Λ+ρR(t)) which
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are appearing on the right hand side, as an inequality as

dS
dt ≥−(αI +δ +µ)S(t).

Using variables separable method and on applying integration,

∫ dS
S ≥

∫
−(αI +δ +µ)dt

=⇒ ln(S)≥−(αI +δ +µ)t +C1 ,where C1 is constant of integration.

=⇒ ln(S)≥−(αI +δ +µ)t

taking anti-log on both sides, the solution of the foregoing differential inequality can be

obtained as S(t)≥ e−(αI+δ+µ)t .

Recall that an exponential function is always non-negative irrespective of the sign of the

exponent, hence it can be concluded that S(t)≥ 0

Positivity of E(t) :

The model equation given by dE
dt = αS(t)I(t)−βE(t)−δE(t)−µE(t) can be expressed

without loss of generality, after eliminating the positive terms (αS(t)I(t)) which are

appearing on the right hand side, as an inequality as

dE
dt ≥−(β +δ +µ)E(t).

Using variables separable method and on applying integration,

∫ dE
E ≥

∫
−(β +δ +µ)dt

=⇒ ln(E)≥−(β +δ +µ)t +C2 ,where C2 is constant of integration.

=⇒ ln(E)≥−(β +δ +µ)t

taking anti-log on both sides, the solution of the foregoing differential inequality can be
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obtained as E(t)≥ e−(β+δ+µ)t .

Recall that an exponential function is always non-negative irrespective of the sign of the

exponent, hence it can be concluded that E(t)≥ 0

Positivity of I(t) :

The model equation given by dI
dt = βE(t)− γI(t)−δ I(t)−µI(t) can be expressed with-

out loss of generality, after eliminating the positive terms (βE(t)) which are appearing

on the right hand side, as an inequality as

dI
dt ≥−(γ +δ +µ)S(t).

Using variables separable method and on applying integration,

∫ dI
I ≥

∫
−(γ +δ +µ)dt

=⇒ ln(I)≥−(γ +δ +µ)t +C3 ,where C3 is constant of integration.

=⇒ ln(I)≥−(γ +δ +µ)t

taking anti-log on both sides, the solution of the foregoing differential inequality can be

obtained as I(t)≥ e−(γ+δ+µ)t .

Recall that an exponential function is always non-negative irrespective of the sign of the

exponent, hence it can be concluded that I(t)≥ 0

Positivity of R(t) :

The model equation given by dR
dt = γI(t)−ρR(t)−δR(t)−µR(t) can be expressed with-

out loss of generality, after eliminating the positive terms (γI(t)) which are appearing on
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the right hand side, as an inequality as

dR
dt ≥−(ρ +δ +µ)R(t).

Using variables separable method and on applying integration,

∫ dR
R ≥

∫
−(ρ +δ +µ)dt

=⇒ ln(R)≥−(ρ +δ +µ)t +C4 ,where C4 is constant of integration.

=⇒ ln(R)≥−(ρ +δ +µ)t

taking anti-log on both sides, the solution of the foregoing differential inequality can be

obtained as R(t)≥ e−(ρ+δ+µ)t .

Recall that an exponential function is always non-negative irrespective of the sign of the

exponent, hence it can be concluded that R(t)≥ 0

2.3.2 Boundedness of solution

Theorem 2.3.2.1 (Boundedness). The positive solutions of the system of model equations

are bounded. That is, the model variables S(t),E(t), I(t)&R(t) are bounded for all t

Proof: Recall that each population size is bounded if and only if the total population

size is bounded. Hence, in the present case it is sufficient to prove that the total population

size

N = S(t)+E(t)+ I(t)+R(t) is bounded for all t (2.5)

. It can be shown that all feasible solutions are uniformly bounded in a proper subset
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Ω ∈ R4
+ where the feasible region Ω is given by

Ω = (S,E, I,R) ∈ R4
+;N ≤ (

Λ

δ +µ
) (2.6)

It is clear that the derivative of total population with respect to time t is given by

dN
dt

= [
dS
dt

]+ [
dE
dt

]+ [
dI
dt

]+ [
dR
dt

] (2.7)

.

Then summation of all the four model equations as follows:

dN
dt = [Λ+ρR−αSI−δS−µS]+[αSI−βE−δE−µE]+[βE−γI−δ I−µI]+[γI−

ρR−δR−µR]

=⇒ dN
dt = [Λ+�

�ρR−���αSI−δS−µS]+[���αSI−�
�βE −δE −µE]+[�

�βE −��γI−δ I−µI]+

[��γI −�
�ρR−δR−µR]

which simplifies to
dN
dt

= Λ− (δ +µ)(S+E + I +R) (2.8)

⇒ dN
dt

= Λ− (δ +µ)N(t) (2.9)

Now, Λ− (δ +µ)N(t)≥ 0 if Λ ≥ (δ +µ)N(t)

which is
Λ

(δ +µ)
≥ N(t) = S+E + I +R ≥ 0 (2.10)

∵ S(t),E(t), I(t),R(t)≥ 0 (from Theorem 2.3.1.1) .
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Thus, it can be concluded that N(t) is bounded as it is shown that

0 ≤ N(t)≤ (
Λ

(δ +µ)
)

Therefore, ( Λ

δ+µ
) is an upper bound of N(t).

Hence, feasible solution of the system of model equations remains in the region Ω which

is positively invariant set.

Thus, the system is biologically meaningful and mathematically well posed in the domain

Ω. It is sufficient to consider the dynamics of the populations represented by the model

system in that domain.

Therefore, it can be summarized that the model variables S(t),E(t), I(t),&R(t) are

bounded for all t.

2.3.3 Existence of solution

Theorem 2.3.3.1 (Existence). Solutions of the model equations together with the initial

conditions, S(0)> 0,E(0)≥ 0, I(0)≥ 0,R(0)≥ 0 exist in R4
+ i.e. the model variables

S(t),E(t), I(t),&R(t) exist for all t.

Proof: Let the system of equations arranged as follows:

f1 = Λ+ρR−αSI − (δ +µ)S

f2 = αSI − (β +δ +µ)E

f3 = βE − (γ +δ +µ)I

f4 = γI − (ρ +δ +µ)R
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According to Derrick and Grossman Theorem [11], let us now define the feasible region

Ω that has been discussed under primarily results boundedness of the solutions,

Ω = (S,E, I,R) ∈ R4
+;N ≤ (

Λ

δ +µ
)

Then model equations have a unique solution if ( ∂ fi
∂x j

), i, j = 1,2,3,4 are continuous and

bounded in Ω. Here,x1 = S,x2 = E,x3 = I,x4 = R, The continuity and the boundedness

are shown as follows:

Partial Differentiation,

for f1,

∂ f1

S
= (−αI −δ −µ) =⇒ |∂ f1

S
|= |− (αI +δ +µ)|< ∞

∂ f1

E
= 0 =⇒ |∂ f1

E
|= 0 < ∞

∂ f1

I
= (−αS) =⇒ |∂ f1

I
|= |−αS|< ∞

∂ f1

R
= ρ =⇒ |∂ f1

R
|= |ρ|< ∞

for f2,

∂ f2

S
= (αI) =⇒ |∂ f2

S
|= |αI|< ∞

∂ f2

E
=−β −δ −µ =⇒ |∂ f2

E
|= |− (β +δ +µ)|< ∞

∂ f2

I
= (αS) =⇒ |∂ f2

I
|= |αS|< ∞

∂ f2

R
= 0 =⇒ |∂ f2

R
|= 0 < ∞
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for f3,

∂ f3

S
= 0 =⇒ |∂ f3

S
|= 0 < ∞

∂ f3

E
= β =⇒ |∂ f3

E
|= |β |< ∞

∂ f3

I
=−γ −δ −µ =⇒ |∂ f3

I
|= |− (γ +δ +µ)|< ∞

∂ f3

R
= 0 =⇒ |∂ f3

R
|= 0 < ∞

for f4,

∂ f4

S
= 0 =⇒ |∂ f4

S
|= 0 < ∞

∂ f4

E
= 0 =⇒ |∂ f4

E
|= 0 < ∞

∂ f4

I
= γ =⇒ |∂ f4

I
|= |γ|< ∞

∂ f4

R
=−ρ −δ −µ =⇒ |∂ f4

R
|= |− (ρ +δ +µ)|< ∞

Thus, all the partial derivatives , ( ∂ fi
∂x j

), i, j = 1,2,3,4 exist, are continuous and

bounded in Ω. Hence, by Derrick and Groosman theorem, a solution for the model exists

and is unique.

2.3.4 Equilibrium Points

Disease Free Equilibrium Point

Disease Free Equilibrium Points are steady state solutions where there is no disease in

the population. In the absence of the disease this implies that E(t) = I(t) = R(t) = 0 and
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the right hand side of the model is equal to zero. Thus Λ− (δ +µ)S = 0 which implies

S = Λ

(δ+µ) . Thus, the disease-free equilibrium point of the model equation is given by,

E(S,E, I,R) = (
Λ

(δ +µ)
,0,0,0)

Endemic Equilibrium Point

Endemic Equilibrium Point E∗(S∗,E∗, I∗,R∗) in the feasible region is a steady state

solution where the disease persists in the population. The endemic equilibrium point is

obtained by setting rates of changes of variables with respect to time in model equations

to zero. That is, setting

dS
dt

=
dE
dt

=
dI
dt

=
dR
dt

= 0 (2.11)

The model equations can be written as the system of non linear equations

Λ+ρR−αSI −aS = 0 (2.12)

αSI −bE = 0 (2.13)

βE − cI = 0 (2.14)

γI −dR = 0 (2.15)

Where, a = δ +µ,b = β +δ +µ,c = γ +δ +µ,d = ρ +δ +µ

Solving these equations will give expression for I & R in terms of variable E as follows:

i.e;

βE − cI = 0 (2.16)
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=⇒ cI = βE

=⇒ I = (
β

c
)E (2.17)

substitute I = (β

c )E in eq (2.15)

γ(
β

c
)E −dR = 0

dR = γ(
β

c
)E

R = (
γ

d
)I = (

γ

d
)(

β

c
)E (2.18)

This expression could be re-written as

R = (
βγ

dc
)E (2.19)

Now substitute in eq (2.13), so as to solve E which results

αS(
β

c
)E −bE = 0

This can be arranged as

αS((
β

c
)−b)E = 0 (2.20)

However, E does not vanish, since the disease is assumed endemic and it is a

computation of non zero equilibrium point of the system. i.e, E ̸= 0

Thus the only meaningful solution is αS(β

c )−b = 0

=⇒ αS(
β

c
) = b
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=⇒ αSβ = bc

then after rearranging the terms, solution is given by the expression

S∗ =
[bc]
[αβ ]

(2.21)

Then substituting equations (2.19), (2.21) into (2.12) we get

Λ+ρ(
βγ

dc
)E −α(

bc
αβ

)−a(
bc
αβ

) = 0 here(I = 1)

after some algebraic simplifications an expression for E∗ can be obtained as

E∗ =
[dc(bc(α +a)−αβΛ)]

αβ 2γρ
(2.22)

Finally, substitution of E∗ will give expressions for I∗ & R∗ in terms of parameters

I∗ =
[d(bc(α +a)−αβΛ)]

αβγρ
(2.23)

R∗ =
[bc(α +a)−αβΛ]

αβρ
(2.24)

Therefore the endemic equilibrium points computed above is given by

E∗(S∗,E∗, I∗,R∗)= (
[bc]
[αβ ]

,
[dc(bc(α +a)−αβΛ)]

αβ 2γρ
,
[d(bc(α +a)−αβΛ)]

αβγρ
,
[bc(α +a)−αβΛ]

αβρ
)

(2.25)
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2.3.5 Reproduction Number

The basic reproduction number represent the average number of new infections generated

by each infected person[4, 16, 12] .

Higher value of R0 implies fast disease transmission rate.

Smaller values of R0 implies slow disease transmission rate .

There are three options for the values of R0

1. R0 < 1 means the number of new cases will decrease over time and eventually the

outbreak will end on its own.

2. R0 = 1 means the cases are stable.

3. R0 > 1 means the outbreak is self-sustaining unless effective control measures are

implemented.

To derive the general Reproduction number for the formulated model of Covid-19 under

the discussion of primary results.

S∗ ≥ Λ

a
⇐⇒ bc

αβ
≥ Λ

a

Without losing original generality dividing both sides of the inequality by bc
αβ

yields

1 ≥ (αβΛ)

(abc)
= R0

where the letters notation a,b,c,d are given by

a = δ +µ,b = β +δ +µ,c = γ +δ +µ,d = ρ +δ +µ



2.4 Stability Analysis 29

and hence, the basic Reproduction Number of the model would be

R0 =
(αβΛ)

[(δ +µ)(β +δ +µ)(γ +δ +µ)]
(2.26)

2.4 Stability Analysis

In absence of the infectious disease, the model equations have a unique disease free

steady state E0. It is shown that DFEP of model is given by E0 = ( Λ

(δ+µ) ,0,0,0) .

Now local stability analysis of DFEP is presented in the following theorem and proved

with the help of next generation matrix.

Theorem 2.4.0.1 (Local Stability of Disease-free equilibrium points (LSDFEP)). . The

model equations are locally asymptotically stable at disease free equilibrium point

(DFEP) E0

Proof: Consider the right hand side expressions of the equations as functions to

compute Jacobian matrix.

dS
dt

= Λ+ρR−αSI −aS ≡ f (S,E, I,R) (2.27)

dE
dt

= αSI −bE ≡ g(S,E, I,R) (2.28)
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dI
dt

= βE − cI ≡ h(S,E, I,R) (2.29)

dR
dt

= γI −dR ≡ k(S,E, I,R) (2.30)

where a = δ +µ,b = β +δ +µ,c = γ +δ +µ,d = ρ +δ +µ

Compute the Jacobian matrix of functions ( f ,g,h,k) with respect to (S , E, I, R) is

given by

J(S,E, I,R) =



∂ f
∂S

∂ f
∂E

∂ f
∂ I

∂ f
∂R

∂g
∂S

∂g
∂E

∂g
∂ I

∂g
∂R

∂h
∂S

∂h
∂E

∂h
∂ I

∂h
∂R

∂k
∂S

∂k
∂E

∂k
∂ I

∂k
∂R



J(S,E, I,R) =



−αI −a 0 −αS ρ

αI −b αS 0

0 β −c 0

0 0 γ −d



At E0 = ( Λ

(δ+µ) ,0,0,0) we get,

J(
Λ

(δ +µ)
,0,0,0) =



−a 0 −α(Λ

a ) ρ

I −b α(Λ

a ) 0

0 β −c 0

0 0 γ −d



Then the eigen values of J(E0) are computed from characteristic equation
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| J(E0)−λ Id |= 0.

=⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣

−a−λ 0 −α
Λ

a ρ

0 −b−λ α
Λ

a 0

0 β −c−λ 0

0 0 γ −d −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

=⇒ (−a−λ )

∣∣∣∣∣∣∣∣∣∣
−b−λ α

Λ

a 0

β −c−λ 0

0 γ −d −λ

∣∣∣∣∣∣∣∣∣∣
= 0

=⇒ (−a−λ )(−b−λ )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
(c−λ ) 0

γ (−d −λ )

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣= 0

=⇒ (−a−λ )(−b−λ )(−c−λ )(−d −λ ) = 0

=⇒ −a−λ = 0 =⇒ λ1 =−a

&−b−λ = 0 =⇒ λ2 =−b

&− c−λ = 0 =⇒ λ3 =−c

&−d −λ = 0 =⇒ λ4 =−d

Thus the four eigen values are λ1 =−a, λ2 =−b, λ3 =−c, λ4 =−d

Therefore, it is concluded that the Local Stability of Disease Free Equilibrium point

of the system of differential equations is locally asymptotically stable because all the
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eigen values are negative.

The Global stability Analysis of endemic equilibrium point E∗(S∗,E∗, I∗,R∗) is stated

in the following Theorem and proved by taking appropriate Liapunove function.[4, 16]

Theorem 2.4.0.2 (Global Stability of endemic equilibrium point (GSEEP)). The endemic

equilibrium point E∗(S∗,E∗, I∗,R∗) is globally asymptotically stable.

Proof: Let

L(S,E, I,R) = m1
(S−S∗)2

2
+m2

(E −E∗)2

2
+m3

(I − I∗)2

2
+m4

(R−R∗)2

2
(2.31)

differentiate with respect to t

dL
dt

= m1(S−S∗)
dS
dt

+m2(E −E∗)
dE
dt

+m3(I − I∗)
dI
dt

+m4(R−R∗)
dR
dt

(2.32)

Substitute the model equations

dL
dt = m1(S−S∗)(Λ+ρR−αSI−aS)+m2(E−E∗)(αSI−bE)+m3(I− I∗)(βE−cI)+

m4(R−R∗)(γI −dR)

Take out S,E,I,R and put as change

dL
dt = m1(S−S∗)(S−S∗)[(Λ+ρR

S )−αI −a]+m2(E −E∗)(E −E∗)[(αSI
E )−b]+m3(I −

I∗)(I − I∗)[(βE
I )− c]+m4(R−R∗)(R−R∗)[( γI

R )−d]

By rearranging and take out negative sign from the bracket it could be otained as
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dL
dt =−m1(S−S∗)2[−(Λ+ρR

S )+αI+a]−m2(E−E∗)2[−(αSI
E )+b]−m3(I−I∗)2[−(βE

I )+

c]−m4(R−R∗)2[−( γI
R )+d]

Thus it is possible to set m1,m2,m3,m4 as non-negative integers such that dL
dt ≤ 0 and

endemic equilibrium point is globally stable.

2.5 Conclusions

In this Paper, SEIRS mathematical model describing the dynamics of COVID-19 is

formulated and analyzed. The model is developed based on biologically reasonable

assumptions. The mathematical analysis has shown that if basic reproduction number is

less than one, then number of cases decrease over time and eventually the disease die

out, and if the basic reproduction number is equals to one, then cases are stable. On the

other hand, if the basic reproduction number is greater than one then the number of cases

increase over time gets worse, and the disease continue to spread more rapidly.

Moreover, Existence, Positivity and Boundedness of the solution of the model is shown

to clarify the model is biologically meaningful and mathematically well posed. Stability

analysis of the model is checked by computing the Jacobian matrix and its eigen values

and the global stability are proved by taking appropriate liapunove function.





Chapter 3

REVIEW OF SEIQR MODEL

3.1 Introduction

Mathematical models are useful to understand the behavior of an infection when it enters

a community and investigate under which conditions it will be wiped out or continued.

Currently, COVID-19 is of great concern to researches, governments, and all people

because of the high rate of the infection spread and the significant number of deaths that

occurred. This paper deals with the SEIQR model i.e, Susceptible - Exposed - Infected

- Quarantined - Recovered Model[25]. This paper helps us to under the Importance of

Isolating or quaranining the COVID-19 patients. By Isolation, futher transmission can

be stopped to a certain extent. Isolation can be done in the house(for the ones having

mild symptoms) and in the hospitals (for the ones having severe symptoms) . Now let us

study the SEIQR Model.[20, 3, 21]

35
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3.2 Mathematical Model Formulation

3.2.1 Assumptions

1. The total population is divided into five Compartments, namely,

• Susceptible Compartment S

• Exposed Compartment E

• Infected Compartment I

• Isolated / Quarantined Compartment Q

• Recovered Compartment R

2. Human to Human contact is the potential cause of outbreaks of COVID-19.

3. Interaction between the Exposed population and Infected population with the

susceptible population leads to rise in the number of cases.
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4. Exposed and Infected make contact with susceptible individuals in the same rate.

5. The Infected individuals and the Exposed individuals (i.e, individuals showing no

symptoms apparently but have the disease in weak form inside their bodies) must

be sent to Isolated Class in different rates.

3.2.2 Model Diagram

The Model Diagram is shown in figure :

Figure 3.1: Model Diagram
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Symbols Description
S Susceptible Population
E Exposed Population
I Infected Population
Q Isolated Population
R Recovered Population
β rate at which COVID-19 patients transfer from Compartment S to E & I
π rate at which COVID-19 patients transfer from Compartment E to I
γ rate at which COVID-19 patients transfer from Compartment E to Q
σ rate at which COVID-19 patients transfer from Compartment I to Q
θ rate at which COVID-19 patients transfer from Compartment Q to R
µ Natural Death Rate

Table 3.1: Symbols and Description

3.2.3 Model Equations

dS(t)
dt

= A−µS(t)−β (N)S(t)(E(t)+ I(t)) (3.1)

dE(t)
dt

= β (N)S(t)(E(t)+ I(t))−πE(t)− (µ + γ)E(t) (3.2)

dI(t)
dt

= πE(t)− (σ +µ)I(t) (3.3)

dQ(t)
dt

= γE(t)+σ I(t)− (θ +µ)Q(t) (3.4)

dR(t)
dt

= θQ(t)−µR(t) (3.5)

As the first four equations are independent of R(t), so omit without generality the

last equation for R(t) and the modified system becomes

dS(t)
dt

= A−µS(t)−β (N)S(t)(E(t)+ I(t))
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dE(t)
dt

= β (N)S(t)(E(t)+ I(t))−πE(t)− (µ + γ)E(t)

dI(t)
dt

= πE(t)− (σ +µ)I(t)

dQ(t)
dt

= γE(t)+σ I(t)− (θ +µ)Q(t)

For system, let N = A
µ
,s = S

N ,e =
E
N , i =

I
N , and q = Q

N , and rescale the system to get

the normalized form.

ds
dt

= µ −µs−βNs(e+ i) (3.6)

de
dt

= βNs(e+ i)− (π +µ + γ)e (3.7)

di
dt

= πe− (σ +µ)i (3.8)

dq
dt

= γe+σ i− (θ +µ)q (3.9)

with the initial conditions, s(0) = s0 ≥ 0, e(0) = e0 ≥ 0, i(0) = i0 ≥ 0, q(0) = q0 ≥ 0

3.3 Model Analysis

3.3.1 Positivity of solution

Theorem 3.3.1.1. Under the initial conditions, all the solutions (s,e, i,q) of the system

remain non-negative for t ≥ 0
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Proof: Positivity of the model variables is shown separately for each of the model

variables,s,e, i,&q.

Positivity of s :

The model equation given by ds
dt = µ −µs−βNs(e+ i) can be expressed without loss of

generality, after eliminating the positive terms (µ) which are appearing on the right hand

side, as an inequality as

ds
dt ≥−(µ +βNs(e+ i))s.

Using variables separable method and on applying integration,

∫ ds
s ≥

∫
−(µ +βNs(e+ i))dt

=⇒ ln(s)≥−(µ +βNs(e+ i))t + k1 ,where k1 is constant of integration.

=⇒ ln(s)≥−(µ +βNs(e+ i))t

taking anti-log on both sides, the solution of the foregoing differential inequality can be

obtained as s ≥ exp(−(µ +βNs(e+ i))t).

Recall that an exponential function is always non-negative irrespective of the sign of the

exponent, hence it can be concluded that s ≥ 0

Positivity of e :

The model equation given by de
dt = βNs(e+ i)− (π +µ + γ)e can be expressed without

loss of generality, after eliminating the positive terms (βNs(e+ i)) which are appearing

on the right hand side, as an inequality as

de
dt ≥−(π +µ + γ)e.
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Using variables separable method and on applying integration,

∫ de
e ≥

∫
−(π +µ + γ)dt

=⇒ ln(e)≥−(π +µ + γ)t + k2 ,where k2 is constant of integration.

=⇒ ln(e)≥−(π +µ + γ)t

taking anti-log on both sides, the solution of the foregoing differential inequality can be

obtained as e ≥ exp(−(π +µ + γ)t).

Recall that an exponential function is always non-negative irrespective of the sign of the

exponent, hence it can be concluded that e ≥ 0

Positivity of i :

The model equation given by di
dt = πe− (σ +µ)i can be expressed without loss of gen-

erality, after eliminating the positive terms (πe) which are appearing on the right hand

side, as an inequality as

di
dt ≥−(σ +µ)i.

Using variables separable method and on applying integration,

∫ di
i ≥

∫
−(σ +µ)dt

=⇒ ln(i)≥−(σ +µ)t + k3 ,where k3 is constant of integration.

=⇒ ln(i)≥−(σ +µ)t

taking anti-log on both sides, the solution of the foregoing differential inequality can be

obtained as i ≥ exp(−(σ +µ)t).

Recall that an exponential function is always non-negative irrespective of the sign of the
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exponent, hence it can be concluded that i ≥ 0

Positivity of q :

The model equation given by dq
dt = γe+σ i− (θ +µ)q can be expressed without loss of

generality, after eliminating the positive terms (γe+σ i) which are appearing on the right

hand side, as an inequality as

dq
dt ≥−(θ +µ)q.

Using variables separable method and on applying integration,

∫ dq
q ≥

∫
−(θ +µ)dt

=⇒ ln(q)≥−(θ +µ)t + k4 ,where k4 is constant of integration.

=⇒ ln(q)≥−(θ +µ)t

taking anti-log on both sides, the solution of the foregoing differential inequality can be

obtained as q ≥ exp(−(θ +µ)t).

Recall that an exponential function is always non-negative irrespective of the sign of the

exponent, hence it can be concluded that q ≥ 0

Therefore we have s ≥ 0, e ≥ 0, i ≥ 0 & q ≥ 0

3.3.2 Boundedness of solution

Consider the total population

N′(t) = S(t)+E(t)+ I(t)+Q(t)

dN′(t)
dt = dS(t)

dt + dE(t)
dt + dI(t)

dt + dQ(t)
dt
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dN′(t)
dt = µ −µs−βNs(e+ i)+βNs(e+ i)− (π +µ + γ)e+πe− (σ +µ)i+ γe+σ i−

(θ +µ)q

dN′(t)
dt = µ −µs−������

βNs(e+ i)+������
βNs(e+ i)−��πe−µe−��γe+��πe−��σ i−µi+��γe+��σ i−

(θ +µ)q

dN′(t)
dt = µ −µs−µe−µi− (θ +µ)q

dN′(t)
dt = µ −µ(s+ e+ i+q)−θq

dN′(t)
dt = µ −µN′−θq

dN′(t)
dt ≥ µ −µN′

dN′(t)
dt ≤ µ −µN′

Now solve using variable separable method
dN′(t)

(µ−µN′) ≤ dt

Integrate,
∫ dN′(t)

(µ−µN′) ≤
∫

dt

ln µ−µN′

−µ
≤ t + c

− ln(µ −µN′)≤ µt +µc

ln(µ −µN′)−1 ≤ µt +µc

take anti-log on both sides,

(µ −µN′)−1 ≤ e(µt+µc)

=⇒ 1
(µ−µN′) ≤Ceµt

=⇒ µ −µN′ ≥ 1
Ceµt

=⇒ µ −µN′ ≥ e−µt

C

=⇒ −µN′ ≥−µ + e−µt

C
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=⇒ µN′ ≤ µ − e−µt

C

=⇒ N′ ≤ µ

µ
− e−µt

Cµ

=⇒ N′ ≤ �µ

�µ
− e−µt

Cµ

=⇒ N′ ≤ 1− e−µt

Cµ

=⇒ N′(t)≤ 1−C1e−µt where C1 =
1

Cµ

At t = 0,N′(t) = N′(0)

=⇒ N′(0)≤ 1−C1e−µ(0)

=⇒ N′(0)≤ 1−C1

=⇒ N′(0)−1 ≤−C1

=⇒ N′(0)−1 ≤−C1 ≤C1

=⇒ N′(0)−1 ≤C1

=⇒ −(N′(0)−1)≥−C1

=⇒ −(N′(0)−1)e−µt ≥−C1e−µt

=⇒ 1− (N′(0)−1)e−µt ≥ 1−C1e−µt

=⇒ N′(t)≤ 1−C1e−µt ≤ 1− (N′(0)−1)e−µt

=⇒ N′(t)≤ 1− (N′(0)−1)e−µt

=⇒ N′(t)≤ 1+(1−N′(0))e−µt

It is clear that,

lim
t→∞

N′(t)≤ 1

and thus N′(t) is bounded with N′(t)≤ 1.
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Hence, we can see that the feasible region of model is

Ω = ((S,E, I,Q) ∈ R4
+ : N′ = S+E + I +Q ≤ 1) (3.10)

which is positively invariant region.

3.3.3 Existence of solution

The existence and uniqueness of solution of model can be proved by Derrick and Groos-

man theorem [11].

The model subject to non-negative initial values has a unique solution in Ω for all

t ≥ 0

The right hand side of the model can be written as follows:

g1 = µ −µs−βNs(e+ i) (3.11)

g2 = βNs(e+ i)− (π +µ + γ)e (3.12)

g3 = πe− (σ +µ)i (3.13)

g4 = γe+σ i− (θ +µ)q (3.14)

Suppose that x1 = s,x2 = e,x3 = i,x4 = q.

partially differentiate g1,g2,g3,g4 with respect to x1,x2,x3,x4
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∂g1
x1

= (−µ −βN(e+ i)) =⇒ |∂ f1
x1

|= |−−µ −βN(e+ i)|< ∞

∂g1
x2

=−βNs =⇒ |∂g1
x2

|= |−βNs|

∂g1
x3

= (−βN) =⇒ |∂ f1
x3

|= |−βN|< ∞

∂g1
x4

= 0 =⇒ |∂g1
x4

|= 0

∂g2
x1

= βNe+βNi =⇒ |∂g2
x1

|= |βNe+βNi|

∂g2
x2

= βNs−π −µ − γ =⇒ |∂g2
x2

|= |βNs−π −µ − γ|

∂g2
x3

= βNs =⇒ |∂g2
x3

|= |βNs|

∂g2
x4

= 0 =⇒ |∂g2
x4

|= 0

∂g3
x1

= 0 =⇒ |∂g3
x1

|= 0

∂g3
x2

= π =⇒ |∂g3
x2

|= |π|

∂g3
x3

=−(σ +µ) =⇒ |∂g3
x3

|= |− (σ +µ)|

∂g3
x4

= 0 =⇒ |∂g3
x4

|= 0

∂g4
x1

= 0 =⇒ |∂g4
x1

|= 0

∂g4
x2

= γ =⇒ |∂g4
x2

|= |γ|

∂g4
x3

= σ =⇒ |∂g4
x3

|= |σ |

∂g4
x4

=−(θ +µ) =⇒ |∂g4
x4

|= |− (θ +µ)|

Then, it can be shown that ∂gi
∂x j

is continuous and | ∂gi
∂x j

|< ∞ for all i, j = 1,2,3,4

∴ Based on Derrick and Groosman theorem the system satisfies Lipchitz’s condition.

Hence the model has a unique solution.
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3.3.4 Equilibrium points

Disease Free Equilibrium Point

As the name suggests, Disease Free Equilibrium Point or Virus Free Equilibrium means

that e = 0, i = 0, q = 0

ds
dt

= 0

=⇒ µ −µs−βNs(e+ i) = 0

Substitute e = 0, i = 0,q = 0 in the above equation

µ −µs−βNs(0+0) = 0

µ −µs−βNs(0) = 0

µ −µs = 0

µs = µ

��µs = ��µ

=⇒ s = 1

Therefore the Disease Free Equilibrium Point is

P0 = (1,0,0,0) (3.15)



48 REVIEW OF SEIQR MODEL

3.3.5 Reproduction Number

Now we find the Basic Reproduction Number R0 . Consider the following Matrices[13]

F =

βNs(e+ i)

0

 (3.16)

V =

 πe+µe+ γe

πe− (σ +µ)i

 (3.17)

Now we Calculate Jacobian of F and V at P0 = (1,0,0,0)

F =

βN βN

0 0

 (3.18)

V =

π +µ + γ 0

−π σ +µ

 (3.19)

Now let us calculate V−1

V−1 =
1
|V |

(ad j(V ))

|V |=

∣∣∣∣∣∣∣
π +µ + γ 0

−π σ +µ

∣∣∣∣∣∣∣

=⇒ |V |= (π +µ + γ)(σ +µ)
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ad j(V ) =

σ +µ 0

π π +µ + γ



∴V−1 =
1

(π +µ + γ)(σ +µ)

σ +µ 0

π π +µ + γ



V−1 =

 σ+µ

(π+µ+γ)(σ+µ) 0

π

(π+µ+γ)(σ+µ)
π+µ+γ

(π+µ+γ)(σ+µ)



V−1 =

 ���(σ+µ)
(π+µ+γ)���(σ+µ) 0

π

(π+µ+γ)(σ+µ)
����
(π+µ+γ)

����
(π+µ+γ)(σ+µ)



V−1 =

 1
(π+µ+γ) 0

π

(π+µ+γ)(σ+µ)
1

(σ+µ)



FV−1 =

βN βN

0 0


 1

(π+µ+γ) 0

π

(π+µ+γ)(σ+µ)
1

(σ+µ)


Now we use Matrix Multiplication and simplify,

FV−1 =

 βN
(π+µ+γ) +

βπN
(π+µ+γ)(σ+µ)

βN
σ+µ

0 0


Next find Eigen Values,

|FV−1 −λ I|= 0

=⇒

∣∣∣∣∣∣∣
( βN
(π+µ+γ) +

βπN
(π+µ+γ)(σ+µ))−λ

βN
σ+µ

0 −λ

∣∣∣∣∣∣∣= 0
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=⇒ ((
βN

(π +µ + γ)
+

βπN
(π +µ + γ)(σ +µ)

)−λ )(−λ )−0 = 0

=⇒ λ1 = 0 & λ2 = (
βN

(π +µ + γ)
+

βπN
(π +µ + γ)(σ +µ)

)

To Compute R0 we have to find the Spectral radius of the next generation matrix so we

find the Eigen Values,

(Spectral Radius is the maximum of all the eigenvalues of next-generation matrix.)

∴ R0 = ρ(FV−1) = max(λ1,λ2)

R0 = (
βN

(π +µ + γ)
+

βπN
(π +µ + γ)(σ +µ)

)

Simplify

R0 =
βN

(π +µ + γ)
(1+

π

σ +µ
)

Hence we get,

R0 = βN
σ +µ +π

(π +µ + γ)(σ +µ)
(3.20)

3.4 Stability Analysis

Theorem 3.4.0.1. The system is locally stable related to disease-free equilibrium point

P0, R0 < 1 and unstable if R0 > 1.
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Proof: For local Stability at P0, the Jacobian of the normalized system is

J =



−µ −βN −βN 0

0 −βN −π −µ − γ βN 0

0 π −(σ +µ) 0

0 γ σ −(θ +µ)


(3.21)

Using Block Matrix Technique to find eigen values,

Block 1:

−µ −λ = 0

=⇒ λ1 =−µ < 0

Block 2:

−(θ +µ)−λ = 0

=⇒ λ2 =−(θ +µ)< 0

Block 3:

JR =

−βN −π −µ − γ βN

π −(σ +µ)



Trace(JR) = (−βN −π −µ)+(−σ −µ)

Trace(JR) =−βN −π −µ −σ −µ

Trace(JR) =−βN −π −σ −2µ (3.22)
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Det(JR) =

∣∣∣∣∣∣∣
−βN −π −µ − γ βN

π −(σ +µ)

∣∣∣∣∣∣∣
Det(JR) = (−βN −π −µ − γ)(−σ −µ)− (βN)(π)

Finding Eigen values using the Trace and Determinant of JR

λ
2 −Trace(JR)λ +Det(JR) = 0

i.e, λ
2 − (−βN −π −σ −2µ)λ +(−βN −π −µ − γ)(−σ −µ)− (βN)(π) = 0

Using the quadratic formula to find roots (here, λ )

λ =
−b±

√
b2 −4ac

2a

i.e,

λ =
−(−βN −π −σ −2µ)±

√
(−βN −π −σ −2µ)2 −4(1)((−βN −π −µ − γ)(−σ −µ)− (βN)(π))

2(1)

λ =
−(−βN −π −σ −2µ)±

√
(−βN −π −σ −2µ)2 −4(1)((−βN −π −µ − γ)(−σ −µ)− (βN)(π))

2(1)
(3.23)

The Eigen Values λ3 < 0,λ4 < 0 if R0 < 1 .

Since all the eigen values are negative, the system is locally Stable.

It is unstable if R0 > 1
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Endemic Equilibrium Point or Positive Virus

There exists a unique positive virus equilibrium point P∗ = (s∗,e∗, i∗,q∗) for system , if

R0 > 1 [18]

Let the RHS of the model equations be equal to 0

µ −µs−βNs(e+ i) = 0

βNs(e+ i)− (π +µ + γ)e = 0

πe− (σ +µ)i = 0

γe+σ i− (θ +µ)q = 0

After solving this system we get

s∗ =
1

R0
(3.24)

e∗ =
(σ +µ)

π
i∗ (3.25)

i∗ =
πµ(R0 −1)

βN(π +σ +µ)
(3.26)

q∗ =
γ(σ +µ)+πσ

π(θ +µ)
i∗ (3.27)

notice that from the value of i∗ , it is obvious that all the values of s∗,e∗,q∗ are all positive

if R0 > 1

Theorem 3.4.0.2. If R0 < 1, then the system is globally stable.
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Proof: For the proof of this theorem, first, we construct the Lyapunov function L as

follows,

L = (e− e∗)+
βN

σ +µ
(i− i∗) (3.28)

Differentiating the above equation with respect to time and keeping the reality in mind

that R0 < 1 and 0 < s < 1, we obtained

dL
dt

=
de
dt

+
βN

σ +µ

di
dt

(3.29)

substitute for de
dt and di

dt

dL
dt

= βNse+βNsi− (π +µ + γ)e+
βN

σ +µ
(πe)+

βN
σ +µ

(σ +µ)i (3.30)

dL
dt

= βNse+βNsi− (π +µ + γ)e+
βN

σ +µ
(πe)+

βN

����σ +µ
�����(σ +µ)i (3.31)

dL
dt

= βNse+βNsi− (π +µ + γ)e+
βN

σ +µ
(πe)+βNi (3.32)

≤ βNe− (π +µ + γ)e+
βN

σ +µ
(πe) (3.33)

= (R0 −1)e (3.34)

Therefore, if R0 < 1, then dL
dt < 0, which implies that the system is globally stable

for R0 < 1
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3.5 Conclusion

In this work, we presented that isolation of the infected human overall can reduce the

risk of future COVID-19 spread. This SEIQR model shows that the coronavirus spreads

through contact and describes how fast something changes by counting the number of

people who are infected and the likelihood of new infections. Those new infections are

what induce the epidemic. For this reason, we think that this research may lead to better

guessing of the spread of this pandemic in the future. This paper is devoted to implement

the coronavirus mathematical model containing isolation class. The reproductive number-

related stability is discussed, which showed the impact of interaction of infected people

to susceptible population and proved graphically and analytically that if we control this

contact rate, the control of the current disease is possible, otherwise. State and territory

governments have different restrictions in place for public gatherings. Therefore, citizens

need to follow the directions from time to time to minimize the health risk. The more the

isolation, the lesser will be the transmission.





Chapter 4

REVIEW OF SEIQRD MODEL

4.1 Introduction

In this article we learn the about the Model Formulation and Model Dynamics of

another COVID-19 model.[9] Currently COVID-19 is attracting the attention of various

Mathematicians, researchers, Scholars government and general public due to its high

rate of disease transmisson and high number of deaths[22, 15]. As yet no medicine is

found to cure this disease. Many Mathematical Models are formulated to understand

the disease and take proper preventive measures. The SIR model is one of the simplest

mathematical model that has been formulated to study any disease. Several investigations

of COVID-19 SIR models have been studied in [17, 2]. Many Compartment Models

have been formed and modified to give accurate results and predictions.[19, 10, 8]. Now

let us study the SEIQRD model.

57
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4.2 Model Formulation

4.2.1 Assumptions

1. The total population is divided into 6 compartments, namely,

• Susceptible Class S

• Exposed Class E

• Infected Class I

• Quarantined Class Q

• Recovered Class R

• Death Class D

2. COVID-19 disease has Latency or Incubation Period. Hence the Exposed Class

E is included. Those people who have been infected but have not exhibited any
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disease symptoms and cannot transmit the disease are included in the Exposed

Class.

3. Quarantined Class Q cannot spread the disease to others as they have lost contact

with the susceptible people.

4. COVID-19 transmission occurs only when there is contact between susceptible

people and infected people with transmission rate being standard incident rate.

5. Deaths due to COVID-19 disease is considered in this model.

6. Recovery is seen in both infected and quarantined population.
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4.2.2 Model Diagram

Figure 4.1: Model Diagram

4.2.3 Model Equations

The Model Equations are

dS(t)
dt

= Λ−β
S(t)I(t)

N(t)
−µS(t) (4.1)

dE(t)
dt

= β
S(t)I(t)

N(t)
− (γ +µ)E(t) (4.2)

dI(t)
dt

= γE(t)− (σ +θ +δ +µ)I(t) (4.3)
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dQ(t)
dt

= σ I(t)− (ν +κ +µ)Q(t) (4.4)

dR(t)
dt

= θ I(t)+νQ(t)−µR(t) (4.5)

dD(t)
dt

= δ I(t)+κQ(t) (4.6)

with initial conditions S(0)> 0,E(0)≥ 0, I(0)≥ 0,R(0)≥ 0

Parameters Description

Λ Recruitment Rate

β Infection Rate

µ Natural Death Rate

γ Incubation Rate

σ Quarantine Rate

θ Recovery Rate of I

δ Death Rate of I induced by disease

ν Recovery Rate of Q

κ Death Rate of Q induced by disease

4.3 Model Analysis

4.3.1 Positivity and Boundedness

In this section,the Non-negativity (Positivity) and Boundedness of solution of model is

proved to show that the model is epidemiologically meaningful.[5, 18]
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Theorem 4.3.1.1. All solutions of model subject to non-negative initial values are non-

negative and ultimately bounded.

Proof: First let us show the non-negativity of the solutions of the model.

Non-negativity of S :

The model equation given by dS
dt = Λ−β

S(t)I(t)
N(t) −µS(t) can be expressed without loss

of generality, after eliminating the positive term Λ which is appearing on the right hand

side, as an inequality as

dS
dt ≥−(β I

N +µ)S.

Use variables separable method

dS
S ≥−(β I

N +µ)dt

Integrate,

∫ dS
S ≥

∫
−(β I

N +µ)dt

=⇒ ln(S)≥−(β I
N +µ)t +M1 ,where M1 is constant of integration.

=⇒ ln(S)≥−(β I
N +µ)t

take anti-log on both sides, the solution of the foregoing differential inequality will be

obtained as S(t)≥ e−(β I
N +µ)t .

Now recall that an exponential function is always non-negative irrespective of the sign of

the exponent.

Hence it can be concluded that S(t)≥ 0

Non-negativity of E :

The model equation given by dE
dt = β

S(t)I(t)
N(t) − (γ +µ)E(t) can be expressed without loss
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of generality, after eliminating the positive term β
S(t)I(t)

N(t) which is appearing on the right

hand side, as an inequality as

dE
dt ≥−(γ +µ)E.

Use variables separable method

dE
E ≥−(γ +µ)dt

Integrate,

∫ dE
E ≥

∫
−(γ +µ)dt

=⇒ ln(E)≥−(γ +µ)t +M2 ,where M2 is constant of integration.

=⇒ ln(E)≥−(γ +µ)t

take anti-log on both sides, the solution of the foregoing differential inequality will be

obtained as E(t)≥ e−(γ+µ)t .

Now recall that an exponential function is always non-negative irrespective of the sign of

the exponent.

Hence it can be concluded that E(t)≥ 0

Non-negativity of I :

The model equation given by dI
dt = γE(t)−(σ +θ +δ +µ)I(t) can be expressed without

loss of generality, after eliminating the positive term γE(t) which is appearing on the

right hand side, as an inequality as

dI
dt ≥−(σ +θ +δ +µ)I.

Use variables separable method

dI
I ≥−(σ +θ +δ +µ)dt

Integrate,
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∫ dI
I ≥

∫
−(σ +θ +δ +µ)dt

=⇒ ln(I)≥−(σ +θ +δ +µ)t +M3 ,where M3 is constant of integration.

=⇒ ln(I)≥−(σ +θ +δ +µ)t

take anti-log on both sides, the solution of the foregoing differential inequality will be

obtained as I(t)≥ e−(σ+θ+δ+µ)t .

Now recall that an exponential function is always non-negative irrespective of the sign of

the exponent.

Hence it can be concluded that I(t)≥ 0

Non-negativity of Q :

The model equation given by dQ
dt = σ I(t)− (ν +κ +µ)Q(t) can be expressed without

loss of generality, after eliminating the positive term σ I(t) which is appearing on the

right hand side, as an inequality as

dQ
dt ≥−(ν +κ +µ)Q.

Use variables separable method

dQ
Q ≥−(ν +κ +µ)dt

Integrate,

∫ dQ
Q ≥

∫
−(ν +κ +µ)dt

=⇒ ln(Q)≥−(ν +κ +µ)t +M4 ,where M4 is constant of integration.

=⇒ ln(Q)≥−(ν +κ +µ)t

take anti-log on both sides, the solution of the foregoing differential inequality will be

obtained as Q(t)≥ e−(ν+κ+µ)t .
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Now recall that an exponential function is always non-negative irrespective of the sign of

the exponent.

Hence it can be concluded that Q(t)≥ 0

Non-negativity of R :

The model equation given by dR
dt = θ I(t)+νQ(t)−µR(t) can be expressed without loss

of generality, after eliminating the positive term θ I(t)+νQ(t) which is appearing on the

right hand side, as an inequality as

dR
dt ≥−µR.

Use variables separable method

dR
R ≥−µdt

Integrate,

∫ dR
R ≥

∫
−µdt

=⇒ ln(R)≥−µt +M5 ,where M5 is constant of integration.

=⇒ ln(R)≥−µt

take anti-log on both sides, the solution of the foregoing differential inequality will be

obtained as R(t)≥ e−µt .

Now recall that an exponential function is always non-negative irrespective of the sign of

the exponent.

Hence it can be concluded that R(t)≥ 0

Therefore, S ≥ 0, E ≥ 0, I ≥ 0, Q ≥ 0 & R ≥ 0,
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Now let us prove Boundedness

NOTE: Total Population is generally defined as the number of living humans.

So therefore the total population is obtained by adding up all sub-populations in the

model except the sub-population D

Consider the total population

N(t) = S(t)+E(t)+ I(t)+Q(t)+R(t)

dN(t)
dt = dS(t)

dt + dE(t)
dt + dI(t)

dt + dQ(t)
dt + dR(t)

dt

dN(t)
dt = (Λ−β

SI
N − µS)+ (β SI

N − (γ + µ)E)+ (γE − (σ + θ + δ + µ)I)+ (σ I − (ν +

κ +µ)Q)+(θ I +νQ−µR)

dN(t)
dt = Λ−

�
��β
SI
N −µS+

�
��β
SI
N −��γE +µE +��γE −��σ I −��θ I −δ I −µI +��σ I −�

�νQ−κQ−

µQ+��θ I +�
�νQ−µR

dN(t)
dt = Λ−µ(S+E + I +Q+R)−δ I −κQ

dN(t)
dt = Λ−µN −δ I −κQ ∵ N = S+E + I +Q+R

dN(t)
dt ≤ Λ−µN

Now solve using variable separable method
dN(t)

(Λ−µN) ≤ dt

Integrate,
∫ dN(t)

(Λ−µN) ≤
∫

dt

ln Λ−µN
−µ

≤ t + c

− ln(Λ−µN)≤ µt +µc

ln(Λ−µN)−1 ≤ µt +µc
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take anti-log on both sides,

(Λ−µN)−1 ≤ e(µt+µc)

=⇒ 1
(Λ−µN) ≤Ceµt

=⇒ Λ−µN ≥ 1
Ceµt

=⇒ Λ−µN ≥ e−µt

C

=⇒ −µN ≥−Λ+ e−µt

C

=⇒ µN ≤ Λ− e−µt

C

=⇒ N ≤ Λ

µ
− e−µt

Cµ

=⇒ N(t)≤ Λ

µ
−C1e−µt where C1 =

1
Cµ

At t = 0,N(t) = N(0)

=⇒ N(0)≤ Λ

µ
−C1e−µ(0)

=⇒ N(0)≤ Λ

µ
−C1

=⇒ N(0)− Λ

µ
≤−C1

=⇒ N(0)− Λ

µ
≤−C1 ≤C1

=⇒ N(0)− Λ

µ
≤C1

=⇒ −(N(0)− Λ

µ
)≥−C1

=⇒ −(N(0)− Λ

µ
)e−µt ≥−C1e−µt

=⇒ Λ

µ
− (N(0)− Λ

µ
)e−µt ≥ Λ

µ
−C1e−µt

=⇒ N(t)≤ Λ

µ
−C1e−µt ≤ Λ

µ
− (N(0)− Λ

µ
)e−µt

=⇒ N(t)≤ Λ

µ
− (N(0)− Λ

µ
)e−µt



68 REVIEW OF SEIQRD MODEL

=⇒ N(t)≤ Λ

µ
+(Λ

µ
−N(0))e−µt

It is clear that,

lim
t→∞

N(t)≤ Λ

µ

and thus N(t) is bounded with N(t)≤ Λ

µ
.

Hence, we can see that the feasible region of model is

Ω = ((S,E, I,Q,R) ∈ R5
+∪ 0⃗ : N = S+E + I +Q+R ≤ Λ

µ
) (4.7)

which is positively invariant region.

4.3.2 Existence And Uniqueness of Solution

The existence and uniqueness of solution of model can be proved using Derrick and

Groosman theorem[11],which states that if Lipchitz’s condition as in Definition 1 is

satisfied, then the solution of the model exists and is unique.

Definition 1: f in system satisfies Lipchitz’s condition in Ω ⊆ R5
+ if there is a

positive con stant k such as

|| f⃗ (X⃗1)− f⃗ (X⃗2)||< k||X⃗1 − X⃗2|| ∀X⃗1, X⃗2 ∈ Ω (4.8)

The following theorem guarantees the existence and uniqueness of solution of model .
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Theorem 4.3.2.1. The model subject to non-negative initial values has a unique solution

in Ω for all t ≥ 0.

Proof: The right hand side of the model can be written as

f1 = Λ−β
S(t)I(t)

N(t)
−µS(t) (4.9)

f2 = β
S(t)I(t)

N(t)
− (γ +µ)E(t) (4.10)

f3 = γE(t)− (σ +θ +δ +µ)I(t) (4.11)

f4 = σ I(t)− (ν +κ +µ)Q(t) (4.12)

f5 = θ I(t)+νQ(t)−µR(t) (4.13)

f6 = δ I(t)+κQ(t) (4.14)

Suppose that x1 = S,x2 = E,x3 = I,x4 = Q & x5 = R.

partially differentiate f1, f2, f3, f4, f5, f6 with respect to x1,x2,x3,x4,x5

∂ f1
x1

= (−β I
N −µ) =⇒ |∂ f1

x1
|= |− β I

N −µ|< ∞

∂ f1
x2

= 0 =⇒ |∂ f1
x2

|= 0

∂ f1
x3

= (−β
S
N ) =⇒ |∂ f1

x3
|= |−β

S
N |< ∞

∂ f1
x4

= 0 =⇒ |∂ f1
x4

|= 0 < ∞

∂ f1
x5

= 0 =⇒ |∂ f1
x5

|= 0 < ∞

∂ f2
x1

= (β I
N ) =⇒ |∂ f2

x1
|= |β I

N |< ∞

∂ f2
x2

=−(γ +µ) =⇒ |∂ f2
x2

|= |− (γ +µ)|
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∂ f2
x3

= (β S
N ) =⇒ |∂ f2

x3
|= |β S

N |< ∞

∂ f2
x4

= 0 =⇒ |∂ f2
x4

|= 0 < ∞

∂ f2
x5

= 0 =⇒ |∂ f2
x5

|= 0 < ∞

∂ f3
x1

= 0 =⇒ |∂ f3
x1

|= 0 < ∞

∂ f3
x2

= γ =⇒ |∂ f3
x2

|= |γ|

∂ f3
x3

=−(σ +θ +δ +µ) =⇒ |∂ f3
x3

|= |− (σ +θ +δ +µ)|< ∞

∂ f3
x4

= 0 =⇒ |∂ f3
x4

|= 0 < ∞

∂ f3
x5

= 0 =⇒ |∂ f3
x5

|= 0 < ∞

∂ f4
x1

= 0 =⇒ |∂ f4
x1

|= 0 < ∞

∂ f4
x2

= 0 =⇒ |∂ f4
x2

|= 0

∂ f4
x3

= σ =⇒ |∂ f4
x3

|= |σ |< ∞

∂ f4
x4

=−(ν +κ +µ) =⇒ |∂ f4
x4

|= |− (ν +κ +µ)|< ∞

∂ f4
x5

= 0 =⇒ |∂ f4
x5

|= 0 < ∞

∂ f5
x1

= 0 =⇒ |∂ f5
x1

|= 0 < ∞

∂ f5
x2

= 0 =⇒ |∂ f5
x2

|= 0

∂ f5
x3

= θ =⇒ |∂ f5
x3

|= |θ |< ∞

∂ f5
x4

= ν =⇒ |∂ f5
x4

|= |ν |< ∞

∂ f5
x5

=−µ =⇒ |∂ f5
x5

|= |−µ|< ∞

∂ f6
x1

= 0 =⇒ |∂ f6
x1

|= 0 < ∞

∂ f6
x2

= 0 =⇒ |∂ f6
x2

|= 0

∂ f6
x3

= δ =⇒ |∂ f6
x3

|= |δ |< ∞
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∂ f6
x4

= κ =⇒ |∂ f6
x4

|= |κ|< ∞

∂ f6
x5

= 0 =⇒ |∂ f6
x5

|= 0 < ∞

Then, it can be shown that ∂ fi
∂x j

is continuous and | ∂ fi
∂x j

|< ∞ for all i = 1,2, ...,6 & j =

1,2, ...,5

∴ Based on Derrick and Groosman theorem the system satisfies Lipchitz’s condition.

Hence the model has a unique solution.

4.3.3 Equilibruim Points

Let X = (S,E, I,Q,R)T

Set

DX(t)
dt

= 0⃗ ,⃗0 = (0,0,0,0,0)

we get
dI
dt

= 0 (4.15)

=⇒ γE(t)− (σ +θ +δ +µ)I(t) = 0

=⇒ E(t) =
(σ +θ +δ +µ)

γ
I(t) (4.16)

dQ
dt

= 0

=⇒ σ I(t)− (ν +κ +µ)Q(t) = 0

=⇒ σ I(t) = (ν +κ +µ)Q(t)
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=⇒ Q(t) =
σ

(ν +κ +µ)
I(t) (4.17)

dR
dt

= 0

=⇒ θ I(t)+νQ(t)−µR(t) = 0

=⇒ µR(t) = θ I(t)+νQ(t)

R(t) =
θ I(t)+νQ(t)

µ
(4.18)

R(t) =
θ I(t)+ν( σ

(ν+κ+µ))I(t)

µ

R(t) =
(θ +ν( σ

(ν+κ+µ)))I(t)

µ
(4.19)

dE
dt

= 0

=⇒ βS(t)I(t)
N

− (γ +µ)E(t) = 0

Substitute eq (4.16) in above equation

=⇒ βS(t)I(t)
N

− (γ +µ)(
(σ +θ +δ +µ)

γ
)I(t) = 0

=⇒ (
βS(t)

N
− (γ +µ)

(σ +θ +δ +µ)

γ
)I(t) = 0

=⇒ I = 0∨ (
βS(t)

N
− (γ +µ)

(σ +θ +δ +µ)

γ
) = 0
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If I = 0 , then E = 0,Q = 0,R = 0

Also,
dN
dt

= 0

=⇒ Λ−µN −δ I −κQ = 0

(∵ I = 0 =⇒ Q = 0)

=⇒ Λ−µN = 0

Λ = µN

N =
Λ

µ

and

N = S+E + I +Q+R

=⇒ Λ

µ
= S+0+0+0+0

∴ S =
Λ

µ

If I ̸= 0

(
βS(t)

N
− (γ +µ)

(σ +θ +δ +µ)

γ
) = 0

S =
(γ +µ)(σ +θ +δ +µ)

βγ
N

Now,
dN
dt

= 0

=⇒ Λ−µN −δ I −κQ = 0
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=⇒ µN = Λ−δ I −κQ

=⇒ N =
Λ−δ I −κQ

µ

=⇒ N =
Λ−δ I −κ( σ

(ν+κ+µ)I(t))

µ

=⇒ N =
Λ− (δ −κ( σ

(ν+κ+µ)))I(t)

µ

Substitute S in dS
dt = 0

i.e, Substitute S in Λ− βSI
N −µS = 0

i.e,Λ− β I
N
(
(γ +µ)(σ +θ +δ +µ)

βγ
N)−µ(

(γ +µ)(σ +θ +δ +µ)

βγ
N) = 0

=⇒ Λ− ��β I

��N
(
(γ +µ)(σ +θ +δ +µ)

��βγ
��N)−µ(

(γ +µ)(σ +θ +δ +µ)

βγ
N) = 0

=⇒ Λ− (
(γ +µ)(σ +θ +δ +µ)

γ
)I −µ(

(γ +µ)(σ +θ +δ +µ)

βγ
N) = 0

=⇒ Λ− (
(γ +µ)(σ +θ +δ +µ)

γ
)I−

µ(
(γ +µ)(σ +θ +δ +µ)

βγ

(Λ− (δ −κ( σ

(ν+κ+µ))))I(t)

µ
) = 0

=⇒ Λ− (
(γ +µ)(σ +θ +δ +µ)

γ
)I−

��µ(
(γ +µ)(σ +θ +δ +µ)

βγ

(Λ− (δ −κ( σ

(ν+κ+µ))))I(t)

��µ
) = 0
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=⇒ Λ− (
(γ +µ)(σ +θ +δ +µ)

γ
)I−

(
(γ +µ)(σ +θ +δ +µ)(Λ− (δ −κ( σ

(ν+κ+µ))))

βγ
I(t)) = 0

=⇒ Λ− (
(γ +µ)(σ +θ +δ +µ)

γ
)I − (γ +µ)(σ +θ +δ +µ)Λ

βγ
+

(γ +µ)(σ +θ +δ +µ)(δ +κ( σ

(ν+κ+µ)))

βγ
= 0

=⇒ I =
(γ+µ)(σ+θ+δ+µ)Λ

βγ
−Λ

(γ+µ)(σ+θ+δ+µ)(δ+κ( σ

(ν+κ+µ)
))

βγ
− (γ+µ)(σ+θ+δ+µ)

γ

=⇒ I =
(γ+µ)(σ+θ+δ+µ)Λ−βγΛ

βγ

(γ+µ)(σ+θ+δ+µ)(δ+κ( σ

(ν+κ+µ)
))−(γ+µ)(σ+θ+δ+µ)β

βγ

=⇒ I =

(γ+µ)(σ+θ+δ+µ)Λ−βγΛ

��βγ

(γ+µ)(σ+θ+δ+µ)(δ+κ( σ

(ν+κ+µ)
))−(γ+µ)(σ+θ+δ+µ)β

��βγ

=⇒ I = (γ+µ)(σ+θ+δ+µ)Λ−βγΛ

(γ+µ)(σ+θ+δ+µ)(δ+κ( σ

(ν+κ+µ)
))−(γ+µ)(σ+θ+δ+µ)β

Denote I to be I∗

I∗ =
(γ +µ)(σ +θ +δ +µ)Λ−βγΛ

(γ +µ)(σ +θ +δ +µ)(δ +κ( σ

(ν+κ+µ)))− (γ +µ)(σ +θ +δ +µ)β

Now substitute I∗ in eq (4.16), (4.17), (4.18) to get S∗,E∗,Q∗,R∗

S =
(γ +µ)(σ +θ +δ +µ)

βγ
N
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=⇒ S =
(γ +µ)(σ +θ +δ +µ)

βγ
(
Λ− (δ −κ( σ

(ν+κ+µ))))I(t)

µ

=⇒ S =
(γ +µ)(σ +θ +δ +µ)Λ

βγµ
−

(
(γ +µ)(σ +θ +δ +µ)(δ +κ( σ

(ν+κ+µ))))I
∗

βγµ

denote S as S∗

S∗ =
(γ +µ)(σ +θ +δ +µ)Λ− (γ +µ)(σ +θ +δ +µ)(δ +( κσ

(ν+κ+µ)))I
∗

βγµ

E∗ =
(σ +θ +δ +µ)I∗

γ

Q∗ =
σ

ν +κ +µ
I∗

R∗ =
θ I∗+νQ∗

µ

∴ The Disease free equilibrium point is

E0 = (S0,0,0,0,0) with S0 =
Λ

µ

and the Endemic Equilibrium point is

E∗ = (S∗,E∗, I∗,Q∗,R∗) with S∗,E∗, I∗,Q∗,R∗are given as above
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4.3.4 Basic Reproduction Number

One of important epidemiology metric is the basic reproduction number (R0), which

measures the contagiousness or transmibility of infectious agents[4, 1].

The Reproduction Number can be determined by the next generation matrix method. For

that aim, consider

Z = (E, I,Q)T

then we have
dZ
dt

= F (Z)−V (Z)

where

F (Z) =


βSI
N

0

0

 and V (Z) =


(γ +µ)E

−γE +(σ +θ +δ +µ)I

−σ I +(ν +κ +µ)Q



The Jacobian Matrices of F and V evaluated at E0 are respectively given by F and

V as follows:

F =


0 β 0

0 0 0

0 0 0

 and V =


γ +µ 0 0

−γ σ +θ +δ +µ 0

0 −γ ν +κ +µ


Now we use the next generation. The next generation matrix is given by FV−1

First let us find V−1

V−1 =
1
|V |

(ad j(V ))
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|V |=

∣∣∣∣∣∣∣∣∣∣
γ +µ 0 0

−γ σ +θ +δ +µ 0

0 −γ ν +κ +µ

∣∣∣∣∣∣∣∣∣∣

=⇒ |V |= (γ +µ)((σ +θ +δ +µ)(ν +κ +µ)−0)−0+0

=⇒ |V |= (γ +µ)(σ +θ +δ +µ)(ν +κ +µ)

Now finding adjoint of V

Ad j(V ) =

∣∣∣∣∣∣∣∣∣∣
+|A11| −|A12| +|A13|

−|A21| +|A22| −|A23|

+|A31| −|A32| +|A33|

∣∣∣∣∣∣∣∣∣∣

T

Let us calculate the minors

+|A11|= (σ +θ +δ +µ)(ν +κ +µ)

−|A12|=−(−γ)(ν +κ +µ) = (γ)(ν +κ +µ)

+|A13|= σδ

−|A21|= 0

+|A22|= (γ +µ)(ν +κ +µ)

−|A23|=−(−σ)(γ +µ) = (σ)(γ +µ)

+|A31|= 0
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−|A32|= 0

+|A33|= (γ +µ)(ν +κ +µ)

therefore,

Ad j(V ) =

∣∣∣∣∣∣∣∣∣∣
(σ +θ +δ +µ)(ν +κ +µ) (γ)(ν +κ +µ) σδ

0 (γ +µ)(ν +κ +µ) (σ)(γ +µ)

0 0 (γ +µ)(ν +κ +µ)

∣∣∣∣∣∣∣∣∣∣

T

i.e,Ad j(V ) =

∣∣∣∣∣∣∣∣∣
(σ +θ +δ +µ)(ν +κ +µ) 0 0

(γ)(ν +κ +µ) (γ +µ)(ν +κ +µ) 0

σδ (σ)(γ +µ) (γ +µ)(ν +κ +µ)

∣∣∣∣∣∣∣∣∣
Now, V−1 = 1

|V |(Ad jV )

V−1 =
1

(γ +µ)(σ +θ +δ +µ)(ν +κ +µ)


(σ +θ +δ +µ)(ν +κ +µ) 0 0

(γ)(ν +κ +µ) (γ +µ)(ν +κ +µ) 0

σδ (σ)(γ +µ) (γ +µ)(ν +κ +µ)



=


(σ+θ+δ+µ)(ν+κ+µ)

(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)
0

(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)
0

(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)

(γ)(ν+κ+µ)
(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)

(γ+µ)(ν+κ+µ)
(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)

0
(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)

σδ

(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)
(σ)(γ+µ)

(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)
(γ+µ)(ν+κ+µ)

(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)



=


(((((
(σ+θ+δ+µ)����(ν+κ+µ)

(γ+µ)(((((
(σ+θ+δ+µ)����(ν+κ+µ)

0 0

(γ)����(ν+κ+µ)
(γ+µ)(σ+θ+δ+µ)����(ν+κ+µ)

���(γ+µ)����(ν+κ+µ)

���(γ+µ)(σ+θ+δ+µ)����(ν+κ+µ)
0

σδ

(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)
(σ)���(γ+µ)

���(γ+µ)(σ+θ+δ+µ)(ν+κ+µ)
���(γ+µ)����(ν+κ+µ)

���(γ+µ)(σ+θ+δ+µ)����(ν+κ+µ)


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V−1 =


1

(γ+µ) 0 0

γ

(γ+µ)(σ+θ+δ+µ)
1

(σ+θ+δ+µ) 0

σγ

(γ+µ)(σ+θ+δ+µ)
σ

(σ+θ+δ+µ)(ν+κ+µ)
1

(ν+κ+µ)



Now let us calculate FV−1

FV−1 =


0 β 0

0 0 0

0 0 0




1
(γ+µ) 0 0

γ

(γ+µ)(σ+θ+δ+µ)
1

(σ+θ+δ+µ) 0

σγ

(γ+µ)(σ+θ+δ+µ)
σ

(σ+θ+δ+µ)(ν+κ+µ)
1

(ν+κ+µ)


Now we use Matrix Multiplication and get

FV−1 =


βγ

(γ+µ)(σ+θ+δ+µ)
β

(σ+θ+δ+µ) 0

0 0 0

0 0 0


To Compute R0 we have to find the Spectral radius of the next generation matrix so we

find the Eigen Values,

(Spectral Radius is the maximum of all the eigenvalues of next-generation matrix.)

|FV−1 −λ I|= 0

=⇒

∣∣∣∣∣∣∣∣∣∣
βγ

(γ+µ)(σ+θ+δ+µ) −λ
β

(σ+θ+δ+µ) 0

0 −λ 0

0 0 −λ

∣∣∣∣∣∣∣∣∣∣
= 0

=⇒ (
βγ

(γ +µ)(σ +θ +δ +µ)
−λ )(λ 2) = 0
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=⇒ λ1 = λ2 = 0 & λ3 = (
βγ

(γ +µ)(σ +θ +δ +µ)
)

∴ R0 = ρ(FV−1) = max(λ1,λ2,λ3)

=⇒ R0 = λ3 = (
βγ

(γ +µ)(σ +θ +δ +µ)
)

Therefore

R0 =
βγ

(γ +µ)(σ +θ +δ +µ)

We observe that R0 is inversely proportional to the infected sub-population θ and the

quarantine rate σ .

The larger the value of θ or σ , the smaller the R0 value.

We see that I∗ can be written as

I∗ =
Λ(1−R0)

γ + κσ

ν+κ+µ
−β

If R0 > 1, then
βγ

(γ +µ)(σ +θ +δ +µ)
> 1

=⇒ β > (γ+µ)(σ+θ+δ+µ)
γ

> (σ +θ +δ +µ)> δ +σ > δ +σ
κ

ν+κ+µ

∴ β > δ +σ
κ

ν +κ +µ

Thus the Endemic Equilibrium I∗ exists if R0 > 1 since I∗ is positive when R0 > 1. I∗

does not exist if R0 < 1 as I∗ is negative which is not possible.
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4.4 Stability Analysis

Local Stability of Disease Free Equilibrium Point[1]

Theorem 4.4.0.1. The Disease Free Equilibrium Point (DFEP) E0 is locally Asymptoti-

cally stable in domain Ω if R0 < 1

Proof. The Jacobian matrix of system ** evaluated at E0 is given by

J(S,E, I,Q,R) =



∂ f
∂S

∂ f
∂E

∂ f
∂ I

∂ f
∂Q

∂ f
∂R

∂g
∂S

∂g
∂E

∂g
∂ I

∂g
∂Q

∂g
∂R

∂h
∂S

∂h
∂E

∂h
∂ I

∂h
∂Q

∂h
∂R

∂ i
∂S

∂ i
∂E

∂ i
∂ I

∂ i
∂Q

∂ i
∂R

∂ j
∂S

∂ j
∂E

∂ j
∂ I

∂ j
∂Q

∂ j
∂R



where ,

f = Λ−β
SI
N

−µS

g = β
SI
N

− (γ +µ)E

h = γE − (σ +θ +δ +µ)I

i = σ I − (ν +κ +µ)Q

j = θ I +νQ−µR
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J(S,E, I,Q,R) =



−β I
N −µ 0 −βS

N 0 0

β I
N −(γ +µ) βS

N 0 0

0 γ −(σ +θ +δ +µ) 0 0

0 0 σ −(ν +κ +µ) 0

0 0 θ ν −µ


At E0 = (Λ

µ
,0,0,0,0),

J(Λ

µ
,0,0,0,0) =



−µ 0 −
β (Λ

µ
)

N 0 0

0 −(γ +µ)
β (Λ

µ
)

N 0 0

0 γ −(σ +θ +δ +µ) 0 0

0 0 σ −(ν +κ +µ) 0

0 0 θ ν −µ



We know that at E0 , E(t) = I(t) = Q(t) = R(t) = 0

∴ N = S+E + I +Q+R = Λ

µ
+0+0+0+0 = Λ

µ

∴ J(E0) =



−µ 0 −β 0 0

0 −(γ +µ) β 0 0

0 γ −(σ +θ +δ +µ) 0 0

0 0 σ −(ν +κ +µ) 0

0 0 θ ν −µ


Next we find the Eigen values using Block Matrix Technique

Block 1:
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∣∣∣∣∣∣∣
−(ν +κ +µ)−λ 0

ν −µ −λ

∣∣∣∣∣∣∣= 0

=⇒ (−(ν +κ +µ)−λ )(−µ −λ )−0 = 0

=⇒ (−(ν +κ +µ)−λ )(−µ −λ ) = 0

=⇒ (−(ν +κ +µ)−λ ) = 0 , (−µ −λ ) = 0

=⇒ λ1 =−(ν +κ +µ)< 0,

λ2 =−µ < 0

Block 2:

−µ −λ = 0

=⇒ λ3 =−µ < 0

The remaining Eigen values λ4 and λ5 are the eigen values of the following matrix:

JL =

−(γ +µ) β

γ −(σ +θ +µ +δ )



Trace(JL) =−(γ +µ)+(−(σ +θ +µ +δ ))

=⇒ Trace(JL) =−γ −µ −σ −θ −µ −δ

=⇒ Trace(JL) =−(γ +σ +θ +µ +δ +2µ)< 0
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Det(JL) = (γ +µ)(σ +θ +µ +δ )−βγ

Det(JL) = 1− βδ

(γ +µ)(σ +θ +µ +δ )
= 1−R0

which implies that Det(JL)> 0 if R0 < 1

Thus if R0 < 1, then the real parts of λ4 and λ5 are negative. (i.e, −1
2(∗∗))

∴ λ1,λ2,λ3,λ4,λ5 are negative eigen values.

Consequently, the Disease Free Equilibrium Point E0 is locally Asymptotically stable if

R0 < 1

Next we discuss the global asymptotic stability of Disease Free Equilibrium Point

and Endemic Equilibrium Point.

Theorem 4.4.0.2. The Disease Free Equilibrium Point E0 is globally Asymptotically

stable if R0 < 1

Proof: We prove this Theorem by following the method of Castilo-Chavez et.al

published in his paper [7]

First we rewrite the model as follows:

dY
dt

= F1(Y,Z) =

Λ−β
SI
N −µS

θ I +νQ−µR


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dZ
dt

= F2(Y,Z) =


β

SI
N − (γ +µ)E

γE − (σ +θ +δ +µ)I

σ I − (ν +κ +µ)Q

 , F2(Y,⃗0) = 0⃗

where,

Y = (S,R) ∈ R2
+ indicates the number of non-infected individuals.

Z = (E, I,Q) ∈ R3
+ indicates the number of infected individuals.

let E0 = (Y 0 ,⃗0) with Y 0 = (Λ

µ
,0).

E0 is globally asymptotically Stable if R0 < 1 and the following conditions hold:

(H1:)Y 0 is globally asymptotically stable for system dY
dt = F1(Y,⃗0)

(H2:)F2(Y,⃗0) = 0⃗ and F2(Y,Z) = CZ − F̂2(Y,Z) where F̂2(Y,Z) ≥ 0 for any(Y,Z) ∈

Ω and C is the Jacobian Matrix (dF2
dz ) evaluated at E0

We notice that

C =

(
∂F2
∂E

∂F2
∂ I

∂F2
∂Q

)

i.e,C =


−(γ +µ) β 0

γ −(σ +θ +δ +µ) 0

0 σ −(ν +κ +µ)


and F̂2(Y,Z) is calculated as follows:

F2(Y,Z) =CZ − F̂2(Y,Z)

=⇒ F̂2(Y,Z) =CZ −F2(Y,Z)
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F̂2(Y,Z) =


−(γ +µ) β 0

γ −(σ +θ +δ +µ) 0

0 σ −(ν +κ +µ)




E

I

Q

−F2(Y,Z)

=


−(γ +µ)E +β I +0

γE − (σ +θ +δ +µ)I +0

0+σ I − (ν +κ +µ)Q

−


βSI
N − (γ +µ)E

γE − (σ +θ +δ +µ)I

σ I − (ν +κ +µ)Q



=


β I − βSI

N

0

0



=


β I
N (N −S)

0

0



=


β I
N (Λ

µ
−S)

0

0


It is clearly seen that elements of F̂2(Y,Z) are non-negative, hence (H2) is satisfied.

Next we consider,

dY
dt

= F1(Y,⃗0) =

 Λ− βS(0)
N −µS

θ(0)+ν(0)−µR


 dS

dt

dR
dt

=

Λ−µS

−µR


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i.e,
dS
dt

= Λ−µS and
dR
dt

=−µR

now solve using variable separable method,

solving the equation:
dS
dt

= Λ−µS (4.20)

dS
Λ−µS

= dt

∫ dS
Λ−µS

=
∫

dt

−Λ−µS
µ

= t + c

− ln(Λ−µS) = µt +µc

ln(Λ−µS) =−µt −µc

Taking anti-log on both sides,

Λ−µS = c1e−µt

−µS =−Λ+ c1e−µt

µS = Λ− c1e−µt

S =
Λ

µ
− c1

µ
e−µt

S(t) =
Λ

µ
− c2e−µt

At t = 0

S(0) =
Λ

µ
− c2

c2 =
Λ

µ
−S(0)
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=⇒ S(t) =
Λ

µ
− (

Λ

µ
−S(0))e−µt

=⇒ S(t) =
Λ

µ
+(S(0)− Λ

µ
)e−µt (4.21)

Now solving the Equation:
dR
dt

=−µR (4.22)

dR
−µR

= dt

∫ dR
−µR

=
∫

dt

− ln
−µR

µ
= t + k

ln
−µR

µ
=−t − k

ln(−µR) =−µt −µk

Taking Anti-log on both sides,

−µR = k1e−µt

µR =−k1e−µt

R =−k1

µ
e−µt

R(t) = K2e−µt

At t = 0

R(0) = k2

=⇒ R(t) = R(0)e−µt (4.23)
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Hence we get,

Y (t) =

S(t)

R(t)

=

Λ

µ
+(S(0)− Λ

µ
)e−µt

R(0)e−µt

 (4.24)

It is observed that as t −→ ∞ ,

S(t)−→ Λ

µ
& R(t)−→ 0

This shows that Y 0 is globally Asymptotically Stable. Hence (H1) is satisfied.

Therefore the Disease Free Equilibrium Point E0 is globally Asymptotically Stable

in domain Ω.

4.5 Conclusion

The SEIQRD model describing the spread of COVID-19 disease using the standard

incidence rate has been developed in this paper. The model consists of susceptible

(S), exposed (E), infected (I), quarantined (Q), recovered (R), and death caused by the

COVID-19 disease(D) sub-populations. The existence, uniqueness, positivity, and bound-

edness of solution have been proven, showing that the proposed model is biologically

feasible.

The model has two equilibrium points, namely the disease-free equilibrium point and

the endemic equilibrium point. Using the next generation matrix method, we have
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determined the basic reproduction number. The disease-free equilibrium point always

exists and it is locally and globally asymptotically stable if the basic reproduction number

is less than unity. If the endemic equilibrium point exists, i.e. when the basic repro-

duction number is greater than unity, then it is always globally asymptotically stable.

Furthermore, from the basic reproduction number formula and numerical simulation

results, the basic reproduction number can be reduced by increasing the rate of recovery

or quarantine of the infected sub-population. This shows that COVID-19 disease can be

controlled by treating infected individuals or by quarantining them.





Chapter 5

CONCLUSION

5.1 Conclusion

In this paper, we first formulated the model. Compartments were included to modify the

existing models. This modifications made the model more accurate in its predictions

and results. Next we Analyzed the models . The models were found to be biologically

meaningful and mathematically well posed since we were able to prove the positivity,

boundedness and existence of the solutions. Further, Equilibrium points were calculated

to study the behaviour or stability of the system of model equations. Two equilibrium

points each were found in chapter 2,3 and 4. The two equilibrium points are the DFEP

and EE points. We find equilibrium points to study the stability of the model. We

find the local stability and global stability of the model by using different methods like

Lyapunpov function, Castillo -Chavez [Chavez] method and so on. Lastly the Basic

93
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Reproduction Number is calculated to check on the disease transmission rate.

5.2 Further Scope

By taking Data from the Hospitals and related institutions, we can numerically simulate

and find accurate results according to the data used. this might be helpful to make proper

predictions to control the outbreak in a particular area.

The Models discussed in this paper can be further modified by adding more compart-

ments like Symptomatic, Asymptomatic, Hospitalized, Vaccinated and so on. This will

help us to formulate a better accurate model.
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