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PREFACE

This Project Report has been prepared in partial fulfilment of the requirement for the Subject:
MAT - 651 Discipline Specific Dissertation of the programme M.Sc. in Mathematics in the

academic year 2023-2024.

The topic assigned for the research report is: " Permutable Subgroups." This survey is
divided into four chapters. Each chapter has its own relevance and importance. The chapters
are divided and defined in a logical, systematic and scientific manner to cover every nook

and corner of the topic.

FIRST CHAPTER :

This chapter consists of all the preliminary results which will be used in this dissertion.

SECOND CHAPTER :

This chapter deals with the paper [8]. The goals of this chapter are twofold. One is to look at
the behavior of the collections of permutable subgroups and S-permutable subgroups under
the intersection map into a fixed subgroup of a group. The other is to locally analyze the

intersection map in connection with T -, PT -, and PST -groups.

THIRD CHAPTER:

This chapter deals with the paper [18]. The main aims of this chapter is to classify the
family of all nearly S-permutable subgroups for certain groups and study the direct product
of their subgroups. Moreover, we prove that the direct product of certain nearly S-permutable

subgroups is necessary nearly S-permutable.

FOURTH CHAPTER:

In this chapter we conjecture that for G = S,, where n > 4,|P(H) | /| G|
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ABSTRACT

This proposal revolves around Some topics of Group Theory, specifically Permutable sub-
groups. Permutable subgroups in group theory facilitate the study of group structures, aiding
in the analysis of relationships between subgroups and contributing to a deeper understanding
of overall group behavior. These papers give an introduction to T-Groups, Subnormal sub-
groups, Intersection map, Finite groups, Permutable subgroups, Sylow subgroups, Normal
subgroups, S-permutable subgroups, Nearly S-permutable subgroups, and Direct product of
subgroups.

A subgroup H is said to be S-permutable in G if it permutes with all Sylow subgroups of G.
A subgroup H of G is called nearly S-permutable in G if for every prime p such that gcd(p,
|H|) = 1 and for every subgroup K of G containing H, the normalizer Nx(H) contains some
Sylow p-subgroup of K. The main aims of this article is to classify the family of all nearly
S-permutable subgroups for certain groups and study the direct product of their subgroups.
Moreover, we prove that the direct product of certain nearly S-permutable subgroups is
necessary nearly S-permutable.

Papers referred for the dissertation are[8] "The intersection map of subgroups and certain
classes of finite groups" by James C. Beidleman (University of Kentucky) and Matthew
F. Ragland (Auburn University Montgomery) and [18] "On the direct product of Nearly
S-permutable subgroups" by Bilal N. Al-Hasanat, Awni F. Al-Dababseh, Baheej R. Al-

Shuraifeen (Al Hussein Bin Talal University) and Khaled A. Al-Sharo (Al al-Bayt University).

Keywords: T-Groups; Subnormal; Intersection map; Finite groups; Permutable Sylow sub-
groups; normal subgroup; subnormal subgroup; S-permutable subgroup; nearly S-permutable

subgroup; direct product of sub-groups
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Chapter 1

Preliminaries

In this section we present certain facts and results that are needed to prove some Theo-

rems.The following lemma is a well known result of Kegel’s.

Lemma 1.0.1. [8] Let G be a group. If H and K are S-permutable in G, then H N K is
S-permutable in G.

Lemma 1.0.2. [8] Let L be the nilpotent residual of the solvable group G and let H be any
subgroup of G.

1. If Gis a PST -group, then LH is S-permutable in G.

2. If Gis a PT -group, then LH is permutable in G.

Proof: Let G be a PT -group (PST -group). Using Theorem 2.1.1, we see G/L is an Iwasawa
group (nilpotent group). Thus LH/L is permutable (S-permutable) in G/L. Hence LH is
permutable (S-permutable) in G.

It is worth mentioning that if G is a T -group with nilpotent residual L, then L H <G for any
subgroup H of G. This result is not needed in our work, however, it is used in the proof of

Theorem 2.1.5.

Definition 1.0.3. A group G is called an SC-group if all its chief factors are simple.



SC-groups were introduced and classified by Robinson [17].

Lemma 1.0.4. [8] Let G be a group such that every normal subgroup of G is permutable

sensitive in G. Then G is an SC-group.

Proof: Let M be a minimal normal subgroup of G. Then every normal subgroup of G/M is
permutable sensitive in G/M. By induction, G/M is an SC-group, and thus it is enough to
show M is a simple chief factor.

First assume that M is an elementary abelian p-group for some prime p and let P be a Sylow
p-subgroup of G. Let x be a non identity element of M N Z(P). Then (x) is a permutable
subgroup of M so that there is a permutable subgroup Y of G such that Y N M = (x) . By
Lemma 1.0.1, (x) is S-permutable in G. Let Q be a Sylow g-subgroup of G, q # p. Then (x)
Q = Q(x) and (x) is a subnormal Sylow p-subgroup of Q(x) . Thus (x) is normal in Q(x) and
OP(G) normalizes (x) . Hence (x) is normal in G and we deduce M is simple.

Now assume that M is non abelian. Then M = M| x M5 X --- x M; where each M; is a non
abelian simple group. Since M, is permutable in M there is a permutable subgroup Y of
G such that Y " M = M;. By Lemma 1.0.1, M; is S-permutable in G. Let R be a Sylow
r-subgroup of G for some prime r. Then M;R = RM; and MK = M, (MR NR). Thus MR /M, is
an r-group. But Mf is a direct product of non abelian simple groups and so Mf = M;. Thus

R normalizes M; and we deduce M) is normal in G. So M = M the proof is complete.

The following concepts and results of Robinson [17] are needed to prove part (2) of Theorem

2.2.3.

Lemma 1.0.5. [17] Let D be the solvable residual of a group G. G is an SC-group if and only
if G/D is supersolvable, D/Z(D) is a direct product of G-invariant simple groups, and Z(D)
is supersolvably embedded in G (that is, there is a G-admissible series in Z(D) with cyclic

factors).

Definition 1.0.6. Let p be a prime.

1. A group G satisfies condition N, if, for all solvable normal subgroups N of G, the

pl—elements of G induce power automorphisms on O,(G/N).

2. A group G satisfies condition P, if, for all solvable normal subgroups N of G, each

subgroup of O,(G/N) is permutable in a Sylow p-subgroup of G/N.



Theorem 1.0.7. [17] Let D be the solvable residual of a group G. G is a PT-group if and only
if

1. G/D is a solvable PT -group;
2. DIZ(D) = U1/Z(D)x---xU/Z(D) where U; is normal in G and U; /Z(D) is simple;

3. if {if,iz,...,ir} € {1,2,...,k} where 1 < r <k, then G/U,,U,, ... U, satisfies N,, for
all p € ©(Z(D)) and P, for all p em(D).

Proof:Only the sufficiency of the three conditions is in doubt. So assume that G satisfies the
conditions but is not a PT-group, and that of all such groups G has smallest order. Let H be a
subnormal subgroup of G which is not permutable.

Case (a): H is insoluble. Then (H N D)Z/Z is non-trivial and subnormal in D/Z. By (2) it must
contain some U;/Z, and therefore H' > (HND)Z' > U! . Passing to G/ U/, which inherits the
hypotheses on G, we conclude that H/U! is permutable in G/U}, that is, H is permutable in G,
a contradiction.

Case (b): H is soluble. Here H is contained in the soluble radical S of G. Put K = Y..(S),
the limit of the lower central series of S. We claim that H N K <1 G. Since G/D is a soluble
PT-group, KD/D is abelian by Zacher’s theorem. Also K ND < Z(K) since [D, S] = [D’, S]
<[D, S, D] = 1. Hence K is nilpotent, and it is enough to show that H NK},<1 G for all primes
p. If K, <Z :=Z(D), then [K,, S] = 1 and [K, S] # K. Hence K, ﬁ Z and so K, ;{ D. We
can assume that p € 7(Z). For otherwise K,N D =1 and K, ~ KpD/ D < y(G/D); therefore
elements of G induce power automorphisms in K, and H NKp<1 G.

Since 1 # K,D/D < y.(G/D), which is a Hall subgroup of G/D, we see that p cannot
divide |G/D : yo(G/D). NOW consider G/C;(Kp); by N, the p’-elements in this group
form a normal subgroup V/Cg(Kp) and G/ V is a p-group. Therefore y..(G/D) < V/D and
consequently V = G, so that H NK),<1 G, as required.

Now pass to the group G/H N K and use minimality of order to conclude that H N K = 1.
Hence H is nilpotent, and obviously we can suppose it is a p -group. It is enough to show
that H (g) = (g) H where g is either a p-element or a p’-element. Let g be a p’-element. If p
€ m(Z), the condition N, implies that H 8 =H. If on the other hand p & n(Z), then H 6nz=1,
so that HN'D = 1 and H® ~ H°D/D. Since g induces power automorphisms in O, (G/D),



we again obtain H = H5.

Finally, suppose that g is a p-element. Let P be a Sylow p-subgroup containing g; then of
course H < P. If p € m(D), we have H (g) = (g) H by condition P,. If p ¢ m(D) on the other
hand, PN D = 1 and P ~ PD/D, showing that P is modular and H (g) = (g) H.

Corollory 1.0.8. /8] X, and C;, are subgroup-closed classes.

Lemma 1.0.9. [7] A group G satisfies X), if and only if a Sylow p-subgroup P of G is modular

and the p’-elements of Ng(P) induce power automorphisms in P.

Proof:Assume that G satisfies X,,. Then a Sylow p-subgroup P of G is clearly modular.
Let a € P and let x be a p’-element of Ng(P). Then a® = a1 (a)(x)= (x) since P N(x) = 1.
Thus x induces a power automorphism in P. Conversely, these conditions clearly imply that

G satisfies X,

Lemma 1.0.10. [7] Let N be a Normal Hall subgroup of a G and assume that the following
hold:

1. G/N is a PT-group.

2. Every subnormal subgroup of N is normal in G.

Then G is a PT-group.

Proof: Let H be a subnormal subgroup of G. We show that H is permutable. By (2) H N N is
normal in G and G/H N N satisfies (1) and (2). By induction on | G | we can assume that H N
N = 1. By the Schur—Zassenhaus theorem N has a complement M in G and all complements
are conjugate to M. Since (H|,|N|) = 1 and H is subnormal, H < M. Also note that [H, N] =
1. It is enough to show that H permutes with any subgroup T of G of order p" where p is a
prime and n is a positive integer. If p divides | N |, then T < N and HT = TH.

Assume that ( p,|N|) = 1. Then T is contained in some conjugate of M, say M*, where x € G.
By (1), M* is a PT-group and H < M*, so that TH = HT and the result follows.

Theorem 1.0.11. [1] A group G is a PST group if and only if G is a PST, group for every

prime.



Proof:Clearly every PST-group is a PST),-group for every prime p. In order to prove the
converse statement, let G be a non-PST-group which satisfies PST), for every prime p.
There exists a subnormal subgroup H of G such that H does not permute with some Sylow
subgroup of G. Let us assume H to be chosen of minimal order. It is not difficult to see
that H has exactly one maximal normal subgroup; it there would exist two maximal normal
subgroups H; and H, of H, then the minimal choice of H would imply that both H; and
Hj, would permute with every Sylow subgroup of G. This is not possible since H = H|H>.
Let Hy be this unique maximal normal subgroup of H. Clearly |H : Hy = p for some prime
p. Therefore o (H) = H and H is p’-perfect. Therefore H permutes with every Hall p’
-subgroup G, of G since G satisfies the property PST),.

Theorem 1.0.23:Let p be a prime. A group G is a U-group if and only if G is a PST)-group.
Let G be a group and p a prime. We say that G is a U,-group if it is p-supersoluble and all its
p-chief factors form a single isomorphism class of G-modules.

Moreover, we can say by applying Theorem 1.0.23 that G is a U,-group.

Lemma 1.0.24: Let p be a prime, and let G be a p-super soluble group. If O,/ (G) = 1, then

the derived subgroup G of G is a p-group. In particular, G has a unique Sylow p-subgroup.

If Op/ (G) = 1, we would have as a consequence of Lemma 1.0.24 that G has a unique Sylow
p-subgroup, P, say. Note that there must exist a Hall p’-subgroup G,y of G such that HG,y =G,
since otherwise HG ,y would be a PST-group by induction (note that the class of PST,-groups
is subgroup-closed). Therefore H would permute with every Sylow r-subgroup of G for r # p
as well as with P, a contradiction.

Consequently P must be contained in H. Arguing again by induction on |G, it is clear that G/P
is a PST-group, and therefore H permutes with TP for every Sylow t-subgroup T of G, where
t # p.

Since P < H, we can conclude in fact that H permutes with every such T. But H permutes

with P as well, and thus we reach a contradiction.

Therefore we can assume that Op' (G) # 1. Using a similar argument to that used above, we
can easily obtain that Coreg (H)is trivial. Let then N be a minimal normal subgroup of G
contained in OP/ (G). The quotient group G/N is a PST-group, by induction.

Therefore it is clear that HN permutes with every Sylow subgroup of G.



Moreover, there must exist a prime r and a Sylow r-subgroup R of G such that (HN)R =G,
since otherwise we could see by using induction that H would permute with every Sylow
subgroup of G. Note that the index |G : HN|is a power of . Since H is not a normal subgroup
of G, it is easy to see that HN cannot be the whole group G. Clearly, then, for every prime q
# r and every Sylow g-subgroup Q of G, (HN)Q must be a proper subgroup of G.
Consequently H permutes with every Sylow g-subgroup of G, for each q # r.

We shall see next that r = p.

If r # p, then H permutes with every Sylow p-subgroup of G. Since (HN)R= G and N is a
p-group, clearly every Sylow subgroup of H is a Sylow subgroup of G. Let P be a Sylow
p-subgroup of H. For every g € G, we have that HP, < G, and therefore P, is in fact contained
in H. The normal closure PG is thus contained in H, but since Coreg (H) = 1, necessarily P=
1. Then G is a p’-group, and consequently 0" (H) = 1 and thus H = 1, a contradiction.

The previous discussion allows us to state that r = p and thus we can write G = (HN)P for any
Sylow p-subgroup P of G. Let q be the prime dividing |V| (note that q # p) and let Gy, ;1 be
any Hall {p,q}'-subgroup of G. Clearly, (HN)Gy, 4y 1s a proper subgroup of G, since the
index |G : HN|is a power of p. We have then that H permutes with Gy, ;1. Since every Hall
{p,q} -subgroup of H is again a Hall {p,q}’ -subgroup of G, using an argument similar to
that above we would conclude that H = 1 if we assumed that Gy, ;1 #1. As aresult of these
facts, we have that G is a { p, ¢ }-group.

Let us now consider the nilpotent group H/H", where HY denotes the nilpotent residual of H.
The normality of its Sylow p-subgroup implies that, given a Sylow p-subgroup H,, of H, we
have that H pHN is a normal subgroup of H. Clearly, H/H pHN is a g-group, and hence O4(H)
< H,H" < H. But 04(H)= O (H)= H, and thus H= H,H".

On the other hand, we have that G is p-supersoluble, and therefore G is a p-nilpotent group.
Clearly H' and H" are p-nilpotent as well. Let H, be a Sylow g-subgroup of H contained in
HY. Thus H, is a normal subgroup of HY. Since H, is a Sylow g-subgroup of HY it is not
only normal but also characteristic in H". Consequently H, is a normal subgroup of H.

It follows that G = O,,(G)P. Note finally that H; is a subnormal subgroup of G. The subgroup
0,/,(G) can be seen as O,y,(G)= 0,(G)B, where B is a Sylow p-subgroup of O,,,(G), and
thus G= 0,,(G)P. That fact forces O,/(G) to be a Sylow g-subgroup of G, and hence G is

a p-nilpotent group. We will denote O,/(G) as Q. We recall that N is any minimal normal



subgroup of G contained in Q. We have Q = H;N. The subnormality of H, in G implies that
N normalizes H,, and thus H, is a normal subgroup of Q.

We can assume that the Frattini subgroup ®(Q) of Q is trivial. Certainly, if ®(Q) # 1, we
could choose N to be contained in ©(Q) , and therefore Q would be equal to H,. We would
have in such a case that H, permutes with P as well as H), does, and hence the whole H would
permute with P,a contradiction. Therefore Q is an abelian group.

We are now in a good position to complete the proof; we can write G = [Q]P, where Q can be
seen as a completely reducible P-module, giving the expression G = [Q1 D 0> D ... D O,|P.
But since G is a PST;-group, it is also a U, -group and then the g-chief factors of G are
G-isomorphic.

We can conclude that P normalizes each subgroup of Q, and in particular that P normalizes

H,. Therefore both H), and H, permute with P, a final contradiction.

Theorem 1.0.12. [5] A p-soluble group is a PST),, group if and only if it satisfies ¥),.

Proof: Assume that G satisfies p. We prove that G is a PST),-group by induction on |G|. Denote
0,/(G) by A and suppose that A # 1. Let H be a p'-perfect subnormal subgroup of G and let
B be a Hall p’-subgroup of G. Then A < B and B/A is a Hall p’-subgroup of G/A

Since G/A is a PST),-group, it follows that HA/A permutes with B/A. Consequently H
permutes with B and hence G is a PST),-group. Therefore we may assume that A= O0,,(G)= 1.
Let N be a minimal normal subgroup of G. Then N is a p-group because G is p-soluble.

If Ny is a subgroup of N, then Ny is S-permutable in Ng(IN) = G. This means that if Q is a
Sylow g-subgroup of G for q # p, then N is a Sylow p-subgroup of NyQ and so Q normalizes
No.

Therefore O”(G) normalizes every subgroup of N. Let P be a Sylow p-subgroup of G and let
N1 be a minimal normal subgroup of P contained in N. Then PO?(G) = G normalizes N1 and
so N1 = N. This means that N is cyclic of order p.

Lemma 1.0.25:Let G be a group.

1. If G has property y, and A is a normal p-subgroup of G, then G/A has property y,.

2. If G has property y, and N is a normal p’-subgroup of G, then G/N has property y,,.

By Lemma 1.0.25, we know that G/N has p. Therefore G/N is a PSTp-group by induction.



Corollory 1.0.13. [7] Let G be a finite soluble PT-group. Then if H is a subgroup of G, then
H is a PT-group.

Theorem 1.0.14. [7] Let p be the smallest prime divisor of the order of G. Then G has X, if

and only if G is p-nilpotent and Sylow p-subgroups of G are modular.

Theorem 1.0.15. [21] A soluble group G is a PT-group if and only if it has an abelian normal
Hall subgroup L of odd order such that G/L is a nilpotent modular group and elements of G

induce power automorphisms in L.

Theorem 1.0.16. [15]If G is a finite group, the following are equivalent statements.

1. G is soluble T-group.
2. Gisa T/-group.
3. G satisfies C), for all p

Lemma 1.0.17. [14] Let G be a finite p-group. Then G has modular subgroup lattice if and
only if each of its sections of order p> does. Therefore if G is not an M-group, then there
exist subgroups H, K of G with K<H such that H/K is dihedral of order and or nonabelian of

order p? and exponent p for p > 2.

Theorem 1.0.18. [16] Let G be a periodic soluble group and let H be S-permutable in G. If

H satisfies min-p for all primes p, then H is serial in G.
Theorem 1.0.19. [6] G is a T*-group if and only if G is a PST -group.

Theorem 1.0.20. [5]Let G be a group. Suppose that p is a prime number and that H is
an S-permutable p-subgroup of G. If the Sylow p-subgroups of G are Dedekind, then H is

normal in G.

Proof: Let A be a subgroup of G and denote T = ,H). Since H is S-permutable in T, H is
a subnormal subgroup of T and H is contained in O, T, which is contained in every Sylow
p-subgroup P of T. Therefore T = (H,A) < (0,T,A)= O,(T)A < T. Let A, be a Sylow
g-subgroup of A for a prime q # p, and let G, be a Sylow g-subgroup of G containing A,,.
We have that A, is a Sylow g-subgroup of T, and A, = G, N T because A, < G, N T. Hence



HA,=H(G,NT)=HG, NTis asubgroup of T. Moreover, O,(T) N HA, = H. Therefore
H is normalized by A,. On the other hand, since P is Dedekind, we have that H is normalized
by a Sylow p-subgroup A, of A. Therefore H is normalized by all Sylow subgroups of A. In

particular, H is normalized by A. This implies that H is a normal subgroup of G.

Theorem 1.0.21. [S]Let G be a group. Suppose that p is a prime number and that H is
an S-permutable p-subgroup of G. If the Sylow p-subgroups of G are modular, then H is

permutable in G.

Proof: Let A be a subgroup of G and denote T = ,H). Since H is S-permutable in T, H is
a subnormal subgroup of T and H is contained in O, T, which is contained in every Sylow
p-subgroup P of T. Therefore T = (H,A) < (0,T,A)= O,(T)A < T. Let A, be a Sylow
g-subgroup of A for a prime q # p, and let G, be a Sylow g-subgroup of G containing A,.
We have that A, is a Sylow g-subgroup of T, and A, = G, N T because A, < G, N T. Hence
HA,=H(G,NT)=HG,; NTis asubgroup of T. Moreover, O,(T) N HA, = H. Therefore
H is normalized by A,. On the other hand, since P is modular, we have that H permutes
with a Sylow p-subgroup A, of A. Therefore H permutes with all Sylow subgroups of A. In

particular, H permutes with A. This implies that H is a permutable subgroup of G.

Theorem 1.0.22. [12]Let G be a group of order p" and let X be a finite G-set.
Then X = X [ (mod p)

Where X = {x € X| xg=x forall g € G}

Proof: In the notation of the equation

X[ = |Xa| + i %G| (1.1)
i=s+1
Theorem 1.0.26 : [12]X be a G-set and let x € X. Then [xG| = (G : Gx). we know that
|x;G| = (G : Gy) by Theorem 1.0.26. But (G : G.) divides (G), and consequently p divides
thus divides |x;G| for s + 1 <i <r. Equation 1.1 then shows |X| — |X| is divisible by p, so
X| = |Xg| (mod p)
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Theorem 1.0.27. (Gaschiitz, Schenkman, Carter) Let G be a finite soluble group and denote
by L the smallest term of the lower central series of G. If N is any system normalizer in G,

then G = NL. If in addition L is abelian, then also N N L = 1 and N is a complement of L. .

Proof: Form a principal series of G through L by refining 1 << G.

Theorem 1.0.29:(P. Hall). If N is a system normalizer of a finite soluble group G, then N
covers the central principal factors and avoids the noncentral principal factors of G. Since G
/L is nilpotent, principal factors "above" L wil I be central and hence are covered by N (by
Theorem 1.0.29). Therefore G =NL. Now assume that L is an abelian. Then it is sufficient to
prove that no principal factor of G "below" L is central: for the system normalizer N will
avoid such factors and N N L will be trivial. We shall accomplish this by induction on |L| >1.
By the induction hypothesis, it suffices to show that LN € G = 1.

IfC=Cg (L), thenL < C < Gsince L =[L, G] # 1. Hence G/C is nilpotent; we now choose
a nontrivial element gC from the center of G/C,noting that [L , [g, G] ] = 1. We deduce from

this relation and one of the fundamental commutator identities that if a € L and x € G, then

a,g]" = [a*, 8" = [a", [x,g™"]g] = a",g]

Hence the mapping 6 : L — L defined by a®= [a,g] is a nonzero G-endomorphism of L, and
Ker0< G. Since LN % G < Ker6, we may assume Kerf # 1, so that (L/Ker0) N € (Ker8/
G) is trivial by induction. Also L/Ker60 ~C L9 from which it follows that LN € G = 1.
Now 1 # L% < G and (L/L?) N € (G/L?) is trivial by induction. Therefore, LN € G = 1, as

required.

Theorem 1.0.28.(Carter) Let G be a finite soluble group of nilpotent length at most 2.Then

the system normalizers coincide with the Carter subgroups of G.

Proof: By hypothesis there exists a normal nilpotent subgroup M such that G/M is nilpotent.
If A is a system normalizer of G, then A covers every central principal factor by Theorem
1.0.29 we have G = NM . Denote by py,..., pr the distinct prime divisors of IGl. Let N;
and M; be the unique Sylow p/} subgroups of the nilpotent groups N and M respectively.
Then Q; = M;N; is a Hal 1 p-subgroup of G since G =NM. Thus {Qy,...,0} is a Sylow
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system of G. Now M;<1 G; hence N normalizes Q; and N < Ng(Q;) for all i. Since all system
normalizers have the same order, being conjugate, it follows that N :ﬂle Ng(Qi) . If g
normalizes N, it also normalizes N; and hence Q;. Thus g € N and N is self-normalizing,
which means that N is a Carter subgroup. Since system normalizers and Carter subgroups are

conjugate, the theorem follows.



Chapter 2

The Intersection Map Of Subgroups And

Certain Classes Of Finite Groups

2.1 Introduction

All groups considered are finite. All unexplained notation and terminology is standard and
can be found in [20]. A group G is a T -group if normality is transitive; that is if H <K <1 G,
then H <1 G. A subgroup H of G is said to be permutable in G if H K = K H for all subgroups
K of G. Ore [13] proved that a permutable subgroup is subnormal. A group G is a PT -group
if permutability is transitive; that is, if H is permutable in K and K is permutable in G, then
H is permutable in G. By Ore’s result, G is a PT -group if and only if every subnormal
subgroup of G is permutable in G. A subgroup H of G is called Sylow-permutable in G, or
S-permutable, if H permutes with every Sylow subgroup of G. Kegel [11] showed that an
S-permutable subgroup is subnormal. A group G is said to be a PST -group if S-permutability
is a transitive relation in G. Applying Kegel’s result, a group G is a PST -group if and only
if every subnormal subgroup of G is S-permutable in G. The basic structures of solvable T
-, PT -, and PST -groups were established by Gaschiitz [10], Zacher [33], and Agrawal [4],

respectively, and are presented in the following theorem.

12
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Theorem 2.1.1. Let L be the nilpotent residual of a group G. Then

1. [4]G is a solvable PST -group if and only if L is an abelian Hall

subgroup of G on which G acts by conjugation as a group of power automorphisms.

2. [21] G is a solvable PT -group if and only if G is a solvable PST -group and G/L is an

Iwasawa group.

3. [10] G is a solvable T -group if and only if G is a solvable PST - group and G/L is a
Dedekind group.

A group G is called an Iwasawa group if every subgroup of G is permutable in G. If every

subgroup of G is normal in G, then G is called a Dedekind group

Definition 2.1.2. Let G be a group and p a prime. Then

1. GisaY),-group if, for all p-subgroups H and K of G such thatH < K, H is S-permutable
in N, G (K ) .

2. G is an X,,-group if each subgroup of a Sylow p-subgroup P of G is permutable in
Ng(P).

3. Gis a Cp-group if each subgroup of a Sylow p-subgroup P of G is normal in N (P).

Theorem 2.1.3. Let G be a group.

1. [5] G is a solvable PST -group if and only if G is a Y),-group for all primes p.

2. [7] G is a solvable PT -group if and only if G is an X),-group for all primes p.

3. [15] Gis a solvable T -group if and only if G is a Cj,-group for all primes p.
Proof 1): Assume that G is a soluble PST-group.

Theorem 1.0.11: A group G is a PST group if and only if G is a PST), group for every prime.
Then G is a p-soluble PST),-group for all prime p by theorem 1.0.11.
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Theorem 1.0.12: A p-soluble group is a PST), group if and only if it satisfies Y),.

By theorem 1.0.12, it follows that G is a Y),-group for all primes p.

Conversely, Suppose that G satisfies Y,,-group for all primes p.

Then every subgroup has the same property.

Therefore, if G is a group with least order subject to not being a soluble PST group, then
every proper subgroup of G is a soluble PST group.

According to Agarwal’s theorem,

Every soluble PST group is supersoluble.

Therefore, either G is supersoluble or G is a minimal non- supersoluble group. In both cases,
we have G is soluble.

Since Y), coincides with PST), in the p-soluble universe by theorem 1.0.12.

It follows that G is a PST), group for all p.

Then G is a PST group by theorem 1.0.11.

Proof 2): Corollary 1.0.13: Let G be a finite soluble PT-group. Then if H is a subgroup of G,
then H is a PT-group. A soluble PT-group satisfies X, for all primes p by Corollary 1.0.13.
Conversely, assume that G satisfies X, for all primes p, and G is of least order subject to not
being a soluble PT-group. Let p be the smallest prime divisor of G.

Theorem 1.0.14: Let p be the smallest prime divisor of the order of G. Then G has X, if and
only if G is p-nilpotent and Sylow p-subgroups of G are modular.

By Theorem 1.0.14, G is p- nilpotent and 0lp(G) # G.

Put K = Olp(G), let q be a prime divisor of K, and let Q be a Sylow g-subgroup of G.
Lemma 1.0.9: A group G satisfies Xp if and only if a Sylow p-subgroup P of G is modular
and the p -elements of Ng(P) induce power automorphisms in P.

Then Lemma 1.0.9 shows that Q is modular and the q/-elements of Nk(Q) induce power
automorphisms in Q.

Applying Lemma 1.0.9 again, we see that K satisfies Xp.

It follows from the minimality of G that K is a soluble PT-group, and so G is certainly soluble.
LetL =Y* (K)

Theorem 1.0.15: A soluble group G is a PT-group if and only if it has an abelian normal

Hall subgroup L of odd order such that G/L is a nilpotent modular group and elements of G
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induce power automorphisms in L.

By Theorem 1.0.15, L is an abelian normal Hall subgroup of K in which K induces power
automorphisms.

Let r be a prime divisor of [L jand let R be a Sylow r-subgroup of L.

Then R is a normal Sylow r- subgroup of G.

By X, the r -elements of G induce power automorphisms in R.

Hence all the elements of G induce power automorphisms in L.

Suppose that L # 1.

Then G/L inherits the hypotheises of the theorem and so G/L is a soluble PT-group.
Lemma 1.0.10: Let N be a Normal Hall subgroup of a G and assume that the following hold:

1. G/N is a PT-group.

2. every subnormal subgroup of N is normal in G.

Then G is a PT-group.

By Lemma 1.0.9, G is a PT-group, a contradiction.

Hence L = 1 and so K is nilpotent.

Finally, let T be a Sylow subgroup of K. Then T is also a Sylow subgroup of G.
As in the previous paragraph, if T # 1,

then G/T is a PT-group and G induces a group of power automorphisms in T.
Again G is a PT-group by Lemma 1.0.9.

This means that K = 1 so that G is a modular p-group, a final contradiction.

Proof 3): Let T’ denote the class of all groups G for which

H <K <L <G always implies that H < L :

in short 7' is the largest subclass of T that is closed with respect to forming subgroups.
Now every finite soluble T-group is a T/—group and it is obvious that a finite Tl—group satisfies
C), for all p, since every subgroup of a finite p-group is sub-normal.

Theorem 1.0.16: If G is a finite group, the following are equivalent statements.

1. G is soluble T-group.
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2. Gisa T/—group.

3. G satisfies C), for all p.

By theorem 1.0.16, converse of the theorem is implied.

Definition 2.1.4. A subgroup H of a group G is said to be normal sensitive in G if the map
N — H NN sends the lattice of normal subgroups of G onto the lattice of normal subgroups

of H, that is, if {L|IL<H} = {HNN|N < G}.

Theorem 2.1.5. Every subgroup of G is normal sensitive in G if and only if G is a solvable T

-group.

2.2 The intersection map and the classes T , PT , and PST

First let us define the analogues of normal sensitivity for permutability and S-permutability.

Definition 2.2.1. A subgroup H of a group G is said to be

1. permutable sensitive in G if the following holds:

{N'N is permutable in H} = {H NW|W is permutable in G}.

2. S-permutable sensitive in G if the following holds:

{N N is S-permutable in H} = {H N"W| W is S-permutable in G}.

The collection of S-permutable subgroups of a group G is a sublattice of the lattice of a
subnormal subgroups [11] of G so that a subgroup H of G is S-permutable sensitive if the
map W — H N W sends the lattice of S-permutable subgroups W of G onto the lattice of
S-permutable subgroups H "W of H. Although the collection of permutable subgroups of a
group G is a subset of the lattice of subnormal subgroups of G, they need not be a sublattice,
as the example (found through the use of GAP [16]) below illustrates. Thus the intersection
map, in the case of permutable subgroups in G, need not be a lattice mapping.

One purpose here is to establish the following result which is the analogue of Theorem 2.1.5

for solvable PT - and PST -groups.
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Theorem 2.2.2. Let G be a group.

1. Gis asolvable PST -group if and only if every subgroup of G is S-permutable sensitive

in G..

2. Gis a solvable PT -group if and only if every subgroup of G is permutable sensitive in

G.

Proof 2): Suppose every subgroup of G is permutable sensitive in G.

Further, suppose G is minimal with respect to not being aPT -group. Let K < H < G. Then K
is permutable sensitive in G. So if L is permutable in K then L = KN N where N is permutable
in G. Now NN His permutablein Hand L=KNN=KNHNN.

So K is permutable sensitive in H. Thus, by minimality, we can assume every proper subgroup
of G is a solvable PT -group.

Hence every proper subgroup of G is supersolvable. By a result of Huppert (10.3.4 of
[20]),that is every maximal subgroup of a finite group G is super-soluble, then G is soluble.
G must be solvable.

Let N<1 G with K/N permutable in H/N < G/N . Then K is permutable in Hand so K = LNH
with L permutable in G. But then K/N = LN H /N with L/N permutable in G/N. So we can
assume every proper factor group of G is a PT -group. Suppose G is a p-group. Since G is
not a PT -group, G is not an Iwasawa group.

Lemma 1.0.17: Let G be a finite p-group. Then G has modular subgroup lattice if and only
if each of its sections of order p> does. Therefore if G is not an M-group, then there exist
subgroups H, K of G with K<H such that H/K is dihedral of order and or nonabelian of order
p> and exponent p for p > 2.

By Lemma 1.0.17, G possesses a section H/K isomorphic to either the dihedral group of
order eight or, for p odd, to the nonabelian p-group of order p> with exponent p.

Since all proper subgroups and all proper factor groups of G are PT -groups, we must have H
=G and K = 1. It is a straight forward argument to show that the dihedral group of order 8
and all nonabelian p-groups of order p? with exponent p do not satisfy the hypothesis.
Theorem 1.0.18:Let G be a periodic soluble group and let H be S-permutable in G. If H
satisfies min-p for all primes p, then H is serial in G.

So, we can now apply Theorem 1.0.18, and deduce that G = Px Q with Q a cyclic g-group
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and P <1 G where P is either an abelian p-group, p# q, or P is the quaternion group of order
8,2+#q.

Let A be subnormal in G with A not permutable in G. Then A is core free since proper
quotients of G are PT -groups. First suppose that A is a g-group. Then A is a subnormal
Sylow g-subgroup of P A. Hence P normalizes A yielding A <1 G.

So we can assume p divides |A|. Let A, be a Sylow p-subgroup of A. A, is normal in P and
so there is a subgroup T permutable in G with P 1T = A,,. Note that A, must be a Sylow
p-subgroup of T . So T =A,, T, with T, a Sylow g-subgroup of T .

By choosing conjugates and renaming Q, we can assume 7, < Q. Now, T permutable in G
yields QT =TQ = A, Q. Hence Q normalizes A, and thus A,<1 G. Thus G/ A, is a PT -group
so that A/ A, is permutable in G/ A,. We can deduce A is permutable in G and this gives a
final contradiction.

Conversely, assume G is a solvable PT -group and let L be the nilpotent residual of G. By
Theorem 2.1.1, L is a normal abelian Hall subgroup of G. Let C be a system normalizer of G.
Theorem 1.0.27:(Gaschiitz, Schenkman, Carter) Let G be a finite soluble group and denote
by L the smallest term of the lower central series of G. If N is any system normalizer in G,
then G = NL. If in addition L is abelian, then also N N L =1 and N is a complement of L .
By a result of Theorem 1.0.27 (Gaschiitz, Schenkmen, and Carter), Let G be a finite soluble
group and denote by L the smallest term of the lower central series of G. If N is any system
normalizer in G, then G = NL. If in addition L is abelian, then also NN L =1and Nisa
complement of L . Thus, G=LC and C N L = 1. Note that all the complements of L in G are
system normalizers of G and hence are conjugate in G.

Theorem 1.0.28:(Carter) Let G be a finite soluble group of nilpotent length at most 2. Then
the system normalizers coincide with the Carter subgroups of G.

By a result of Theorem 1.0.28 (Carter), Let G be a finite soluble group of nilpotent length at
most 2. Then the system normalizers coincide with the Carter subgroups of G. Thus, all the
complements to L in G are necessarily Carter subgroups of G.

Also notice that C is a Hall subgroup of G. Let us show every subgroup H of G is permutable
sensitive in G. Let T be a permutable subgroup of H. Since factor groups of PT -groups
are again PT -groups, we can assume T is core free. Using Lemma 1.0.2, we have T L is

permutable in G. Assume that T L# G. By Theorem 2.1.1, T L is a solvable PT -group. Note
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that T is permutable in H NT L.

By induction, there exists K permutable in T L suchthat HNTLNK=Tsothat HNK=T.
But K is permutable in T L and T L is permutable in G which implies K is permutable in G.
Therefore, we may assume T L = G. T core free and T L = G imply that T is a complement to
L in G. Hence T is a Carter subgroup of G. T permutable in H and T self-normalizing in G

yields T = H. Therefore we have G N H = T completing the proof.

Proof 1:)Suppose every subgroup of G is S-permutable sensitive in G. Using an argument
similar to that used in the proof of part (2) of Theorem 2.2.2, we can argue that the hypothesis
is inherited by subgroups. Now let us argue that G is a subgroup closed PST -group.

Let H be any subgroup of G and suppose N is S-permutable in K with K S-permutable
in H. Then N = KNL for some L. S-permutable in H. By Lemma 1.0.1, we have K N L is
S-permutable in H. Thus N is S-per H and we have H is a PST -group.

Since subgroup closed PST -groups are solvable PST -groups ( Corollary 5 of [3]), Gis a
solvable PST -group. The argument for the converse is similar to the argument used in the

proof of part (2) of Theorem 1.0.7.

The assumption in Theorem 2.2.2 that every subgroup of G is S-permutable or permutable
sensitive is needed to guarantee the solvability of the group G. Similarly, Theorem 2.1.5 uses
the assumption of every subgroup being normal sensitive to force sol- vability. However, if
we restrict the S-permutable, permutable, or normal sensitivity to the subnormal subgroups of
G, then we can still deduce that G is a PST -, PT -, or T -group, respectively. In fact, for PST
-groups and T -groups, we can even restrict S-permutable and normal sensitivty, respectively,

to the normal subgroups. This is the content of our next theorem.

Theorem 2.2.3. Let G be a group.

1. Gis a PST -group if and only if every normal subgroup of G is S-permutable sensitive

in G.
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2. Gis a PT -group if and only if every subnormal subgroup of G is permutable sensitive

in G.

3. GisaT -group if and only if every normal subgroup of G is normal sensitive in G.

Proof 1):Let G be a group.

Assume that G is a PST-group.

And let K be S-permutable in U with U a normal subgroup of G.

It is clear that U is S-permutable sensitive in G because K, being subnormal in G, is necessar-
ily S-permutable in G.

Conversely, assume that every normal subgroup of G is S-permutable sensitive in G.

Let U and V be subgroups of G such thatU <V <1 G.

Then there exists an S-permutable subgroup X of G such that XNV =U.

Lemma 1.0.1: Let G be a group. If H and K are S-permutable in G, then H NK is S-permutable
in G.

By Lemma 1.0.1, U is S-permutable in G.

Theorem 1.0.19: G is a T*-group if and only if G is a PST -group.

Therefore, by Theorem 1.0.19, G is a PST -group.

Proof 2): Let G be a group.

Assume that G is a PT -group and let K be permutable in U with U a subnormal subgroup of
G.

It is clear that U is permutable sensitive in G because K, being subnormal in G, is necessarily
permutable in G.

Conversely, assume that every subnormal subgroup of G is permutable sensitive in G.As in
the second paragraph of the proof of part (1), one can argue G is a PST - group.

If we assume that G is a p-group for some prime p, then every subgroup of G is permutable
sensitive in G so that G is an Iwasawa group by part (2) of Theorem 2.2.2.

Assume that G is not a p-group.

Note that all the subnormal subgroups and all the factors groups of G satisfy the hypothesis

of the theorem.
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Lemma 1.0.4: Let G be a group such that every normal subgroup of G is permutable sensitive
in G. Then G is an SC-group.

By Lemma 1.0.4, G is an SC-group. Let D be the solvable residual of G and assume D = 1.
Then G/D is a PT -group.

Lemma 1.0.5: Let D be the solvable residual of a group G. G is an SC-group if and only
if G/D 1is supersolvable, D/Z(D) is a direct product of G-invariant simple groups, and Z(D)
is supersolvably embedded in G (that is, there is a G-admissible series in Z(D) with cyclic
factors).

By Lemma 1.0.5, D/Z(D) = U,/Z(D) x---x U /Z(D) where U; <G and U; /Z(D) is a simple
(nonabelian) group. Note that U; = 1 for all 1.

Therefore, if {ij,i,...,i;}C {1,2,...,k} where 1 <r <k,

then G/Ul-'1 Ul-'2 » .Ui,r is a PT -group.

And hence satisfies N, and P, for all primes p.

By Theorem 1.0.7, G is a PT -group.

Now let us assume G is solvable.

By Lemma 1.0.4, G is supersolvable and hence contains a normal Sylow p-subgroup P where
p is the largest prime divisor of the order of G.

Now both P and G/P are PT -groups by induction. This means that P and the Sylow subgroups
of G/P are Iwasawa groups.

But G is a solvable PST -group so it must be a PT -group by Theorem 2.1.1.

This completes the proof.

Proof 3):Let G be a group.

Assume G is a T-group.

Let K<H and H < G.

— KG.

By theorem 2.1.5, Every subgroup of G is normal sensitive in G if and only if G is a solvable
T -group.

Therefore, Every subgroup of G is normal sensitive.

— Every normal subgroup of G is normal sensitive.
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Conversely, Assume that every normal subgroup of G is normal sensitive in G.
Let U and V be subgroups such thatU <V < GandV <G

Then there exists a normal subgroup X of G such that,

XNnv=U

Therefore, U is a normal subgroup in G.Therefore, G is a T- group.

We now turn to some local considerations for the concepts of normal, permutable, and

S-permutable sensitivity. Consider the following definitions.
Definition 2.2.4. Let G be a group and p a prime. Then
1. GisaY,-group if, for each p-subgroups K of G, each subgroups H of K is S-permutable
sensitive in Ng(K).

2. Gisan Xj;-group if each subgroup of a Sylow p-subgroup P of G is permutable sensitive

in NG (P )
3. Gis aCpy-group if each subgroup of a Sylow p-subgroup P of G is normal sensitive in

Ng(P).

We establish the following result which localizes the different sensitivity concepts in T -, PT-,

and PST -groups.

Theorem 2.2.5. Let G be a group.

1. Gis a solvable PST -group if and only if G is a ¥;-group for all primes p.
2. Gis asolvable PT -group if and only if G is an X,-group for all primes p.

3. Gisasolvable T -group if and only if G is a Cj-group for all primes p.

Theorem 2.2.5 is a consequence of Theorem 2.1.3 and the following result.

Theorem 2.2.6. Let p be a prime.

L ¥p=
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2. X, =X

3. C,=C}

Proof 1): Assume that G is a Y),-group.

Let L, H, and K be p-subgroups of G with L < H < K.

Then L is S-permutable in N = Ng(K).

Thus H is S-permutable sensitive in N.

Thus, G is a Y -group.

Conversely, assume that G is a Y, -group.

And let H and K be p-subgroups of G with H < K.

Then K is S-permutable sensitive in N = Ng(K).

And since H is S-permutable in K there exists an S-permutable subgroup L of N such that
H=LNK.

L and K are both S-permutable subgroups of N and hence, by Lemma 1.0.1,
H = LNK is S-permutable in N.

It follows that G is a ¥),-group.

Proof 2): Throughout, let P be a Sylow p-subgroup of G and put N = Ng(P).

Assume that G is an X -group.

First let us argue that P is an Iwasawa group.

It is enough to show that P is a PT -group.

LetH <P.

If C is a permutable subgroup of H, then C = H N L with L permutable in N since G is an
X,-group.

Since C = HN(PNL) and PN L is permutable in P, we see that H is permutable sensitive in
P. Applying part (2) of Theorem 2.2.2, we see that P is a PT -group and hence an Iwasawa
group.

LetX <P.

Since P is an Iwasawa group, we have X permutable in P. Thus, there exists a permutable

subgroup Y of N such that Y NP = X.
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By Lemma 1.0.1, X is S-permutable in N.

Theorem 1.0.21:Let G be a group. Suppose that p is a prime number and that H is an
S-permutable p-subgroup of G. If the Sylow p-subgroups of G are modular (respectively,
Dedekind), then H is permutable (respectively, normal)in G.

Now we can apply theorem 1.0.21 and deduce X is permutable in N.

Thus G is an X),-group.

Conversely, assume that G is an X),-group.

That G is an X; -group follows from the fact that P is an Iwasawa group.

Proof 3): Throughout, let P be a Sylow p-subgroup of G.

Assume that G is an C-group.

First let us argue that P is a Dedekind group.

It is enough to show that P is a T -group.

LetH <P.

If C is a normal subgroup of H, then C = H N L with L normal in N since G is an C,,-group.
Since C = HN(PNL) and PN L is normal in P, we see that H is normal sensitive in P.
Applying Theorem 2.1.5, Every subgroup of G is normal sensitive in G if and only if G is a
solvable T -group.

We see that P is a T -group and hence a Dedekind group.

Let X <P.

Since P is an Dedekind group, we have X normal in P.

Thus, there exists a normal subgroup Y of N such that Y NP = X.

X is normal in N.

Thus G is an C)-group.

Conversely, assume that G is an Cp-group.

That G is an C;; -group follows from the fact that P is a Dedekind group.



Chapter 3

On The Direct Product Of Nearly

S-Permutable Subgroups

3.1 Introduction

One of the earliest results about permutable subgroups found in [7] by Isaacs,stated that every
permutable subgroup is subnormal. The term S-permutable subgroup introduced by Ore in
[13] as a subgroup H is said to be S-permutable in G if it permutes with all Sylow subgroups
of G. In [11], Kegel proved that S-permutable subgroups are necessarily subnormal. In [19],
Al-Sharo introduced the notion nearly S-permutable subgroup, as a subgroup H of G is called
nearly S-permutable in G if for every prime p such that ged(p, |H|) = 1 and for every subgroup
K of G containing H, the normalizer Nx(H) contains some Sylow p-subgroup of K. Then
he showed that the nearly S-permutable subgroup need not be subnormal in general. Next,
Ikram in [1] studied the lattices of nearly S-permutable subgroups, in particular an example
was constructed to show that the set of all nearly S-permutable subgroups of a group need
not distributive nor modular lattices. In this article, we study the direct product of nearly

S-permutable subgroups and discuss some algebraic properties of this product.

25



3.2 Preliminaries 26

3.2 Preliminaries

Our notions are fairly standard, all groups in this research are finite. The next definitions and
results elaborate the terms: permutable, S-permutable and nearly S-permutable subgroups.

These terms will be studied in the next sections.

Definition 3.2.1. [9]Let G be a group, and let H and K be two subgroups of G. We say that H
permutes with K if HK = KH.

Definition 3.2.2. [9] Let G be a group and let H be a subgroup of G. Then H is said to be

permutable if it satisfies the following equivalence conditions:

1. It permutes (commutes) with every subgroup of G.
2. Its product with every subgroup of G is a subgroup.
3. It permutes with every cyclic subgroup.

Definition 3.2.3. [12] A subgroup H of a group G is called p-subgroup of G, if every element

in H has order a power of p.

Theorem 3.2.4. [12] Let G be a finite group and p be a prime that divides |G | Then G has an

element of order p and, consequently, a subgroup of order p.

Proof: We form the set X of all p-tuples (g1, g2, ..., g&p) of elements of G having the property
that the product of coordinates in G is e.

That is, X={ (g1, &2, ..., &p)|gi € Gand g| g> ... g, =€}

We claim p divides [X].

In forming p-tuples in X we may let g1,82,...,gp—1 be any elements of G, and g, is then
uniquely determined as (g1,82,---,8p—1) .

Thus X/ =GP~

And since p divides |G|, we see that p divides [X].

Let o be the cycle (1,2,3,...,p)in S,,.

We let o act on X by

(gla g27 cet gp) G=(g1 o, 82 67 cet gp G)=(g2’ g3a ""gp—l’ gl)
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Note that (g2,£3,...,8p—1,81) € X for g1 (g2,83...&p)= € implies that
81=(22,83---8p)" ', 50 (82, 83 .. &p)g1= e also.

Thus o acts on X, and we consider the subgroup (o) of S, to act on X by iteration in the
obvious way.

(o)l=p.

Theorem 1.0.22: Let G be a group of order p” and let X be a finite G-set.

Then [Xi= Xl (mod p)
So we may apply Theorem 1.0.22, and we know that [X|= X/ )| (mod p).

Now,

Since p divides [X]

, it must divide P(<G>| also.

Let us examine X (5.

Now (g1, 82, ..., gp) is left fixed by o, and hence by (o), if and only if g1= go=...=g,,.
We know atleast one element in X<G>, namely (e, e, ..., e).

Since p divides [X/4)

, there must be atleast p elements in X4).
Hence there exists some elements a € G, a # e, such that (a, a, ..., a) € X<G>
aP= e, so a has order p.

Ofcourse, (a) is a subgroup of G of order p.

Corollory 3.2.5. [12] Let H be a finite subgroup. Then H is a p-subgroup if and only if |H |is

a power of p.
Remark 3.2.6. 1. The set of all Sylow p-subgroups of a group G is denoted by Sy/,(G).
2. Every Sylow p-subgroup is p-subgroup, but the converse not necessary true.

3. Let p be a prime. If p { |G|, then the only Sylow p-subgroup of G is the trivial subgroup
{e}.

4. If |G| = p",n € N, then G itself is the only Sylow p-subgroup of G.

Definition 3.2.7. [11]Let H be a subgroup of a group G. Then H is Sylow permutable

(S-permutable) if it permutes with all Sylow p-subgroups of G for all primes p.

Remark 3.2.8. Every subgroup of an abelian group is S-permutable.

Proof:Let H be a subgroup of an abelian group G and K be a Sylow subgroup of G. Then:
HK = {hk|h € H,k € K}
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HK = {kh|h € H,k € K} (G is abelian)
HK = KH

Hence, H is S-permutable.

Remark 3.2.9. Every normal subgroup of a group is permutable.

Remark 3.2.10. For a group G there are at least two S-permutable subgroups, the trivial

subgroup and the group itself.

Proof:Consider a group G, and let {e} be the trivial subgroup.
Then {e}H = H{e} = H and GH = GH = G for any Sylow p-subgroup H of G.

Remark 3.2.11. S-permutability does not imply permutability.

Example 3.2.12. For any p-group G and a non permutable subgroup H, the only Sylow
p-subgroup of G is G itself, which is permute with every subgroup.

2, r3s}

Let G=Dy=[e 3, s, rs,
and H ={e, rs}

If K= {e, s}, and K < H, then
HK ={e, s, rs, r} and KH = {e, s, rs,r> }
Therefore HK #+ KH, so H is not permutable.

But H is S-permutable since HG = GH = G and G is the only Sylow p-subgroup of G.
Remark 3.2.13. [11] Every S-permutable subgroup is subnormal.
Corollory 3.2.14. Every permutable subgroup is subnormal.

Definition 3.2.15. [19] Let H be a subgroup of a group G. We say that H is nearly S-
permutable in G if for every prime p with ged(p, |H|) = 1 and for every subgroup K of G

containing H, the normalizer Ng(H) contains some Sylow p-subgroup of K.
Remark 3.2.16. Nearly S-permutability does not implies S-permutability.

Example 3.2.17. For the symmetric group Sy, consider the subgroup H as
H={()(1,2)(1,4)(24)(1,4 2)(1 2 4)}.

Certainly, H is a nearly S-permutable subgroup but not permutable.
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Theorem 3.2.18. Every subgroup of nilpotent group is nearly S-permutable.

Lemma 3.2.19. [19] Let H be a S-permutable subgroup of G. Then H is S-permutable
subgroup of K, wherever H < K < G.

Lemma 3.2.20. [2]Let H be a nearly S-permutable subgroup of G. Then H is nearly S-

permutable subgroup of K, wherever H < K < G.

Now, we state the following result.

Theorem 3.2.21. Every S-permutable subgroup of a group G is nearly S- permutable.

Proof: :Let H be a S-permutable subgroup of G.

Suppose on the contrary that H is not nearly S-permutable subgroup in G.
So, there exists a prime p such that ged(p, |H)) = 1

And there exists a subgroup K of G such that H < K <G,

But P not contained in Ng(H), for all P € Syl,(K).

Using Lemma 3.2.19, H is S-permutable subgroup of K,

that is HP = PH, for all P € Syl,(K).

So, P is a subgroup of Nx(H), which is a contradiction.

Hence, H is S-permutable subgroup in G.

Remark 3.2.22. [2] Let us denote by 7(n) the set of all prime divisors of n. If H is subgroup
of G such that w(|H|) = m(|G|), then H is nearly S-permutable in G.

Remark 3.2.23. 1. Permutability implies S-permutability, and S-permutability implies

nearly S-permutability.
2. The trivial subgroup and the improper subgroup are nearly S-permutable.

Remark 3.2.24. Every subgroup of an abelian group is nearly S-permutable.

Proof:Let H be a subgroup of an abelian group G.
Then H is normal, and so H is permutable.

This implies that H is nearly S-permutable.

Remark 3.2.25. Let G be a p-group. Then all subgroups of G are nearly S-permutable.



3.2 Preliminaries 30

Remark 3.2.26. The intersection of two nearly S-permutable subgroups not necessary nearly

S-permutable, as the next example shows.

Example 3.2.27. Consider G=S4 and and the nearly S-permutable subgroups:
H, ={(1,4),(1,4,3)) and H, = ((3,4),(2,4,3)).

Now n(G) = n(Hy) = n(H>)

Which implies that Hy an Hy are nearly S- permutable subgroups of G.

But HiNH, = ((3,4)), which is not nearly S-permutable.

We denote the set of all S-permutable (nearly S-permutable) subgroups of a group G by
SP(G) (NSP(G)).We denote the number of S-permutable (nearly S-permutable) subgroups of
a group G by #SP(G) (#NSP(G)).

Remark 3.2.28. Clearly, Z, is an abelian group, so by Remark 24 we have that all subgroups
of Z, are nearly S-permutable subgroups.

In this case #NSP(G) is number of subgroups of G.

For Z,,, p-prime, we have #NSP(Z,)= 2.

In general, #NSP(Z,) = T(n), where T(n) is the number of prime divisors of the integer n.

Example 3.2.29. The following table shows some groups and their #SP(G) and #NSP(G):

G | #SP(G) | #NSP(G)

¢
B QW = W] W] W N
| | W = 00| W W] W N

Remark 3.2.30. [2] Nearly S-permutable subgroups need not to be sub- normal.

Example 3.2.31. Let G = D13, which contains 3 subgroups of order 6, these subgroups are

nearly S-permutable in G but not subnormal.
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S-Permutable

Permutable

Figure 3.1: The relation between: Permutability, S-permutability, Nearly S-permutability,
Normality and Sub-normality using Venn Diagram.

3.3 Direct Product of Nearly S-permutable subgroups

In this part, we study the permutability of the direct product of S-permutable subgroups. This

can be shown by the next theorem.

Theorem 3.3.1. Let G| and G be two groups with relatively prime orders. Then the direct

product of nearly S-permutable subgroups of G| and G is nearly S-permutable subgroup.



3.3 Direct Product of Nearly S-permutable subgroups 32

Proof:Let A; be a nearly S-permutable subgroup in G| and A, be a nearly S-permutable
subgroup in G;. Suppose on the contrary that A = A; X A; is not nearly S-permutable
subgroup in G = G| x G.

Then there is a prime p such that gcd(p, |A|) = 1 and a subgroup K in G such thatA < K < G
and Ng(A) does not contain P = P; x P, where P is the Sylow p-subgroup of K.

Since K contains A; X Aj, then K must factor as a product of two subgroups K; x K = K,
where A; <k; < Gjand Ay < Ky < Ga.

Moreover, Nk, xk, (A1 X A2) = Nk, (A1) X Nk, (A2)

and P = P; x P, where P; € Syl,(K;) and P> € Syl,(K>).

Since P is not contained in Ng(A), then either P; is not contained in Nk, (A) or P, is not
contained in Nk, (A2).

But this implies that either A; is not nearly S- permutable subgroup in G| or A; is not nearly
S-permutable subgroup in G,

Which is a contradiction. Hence the claim.

Remark 3.3.2. The direct product of non nearly S-permutable subgroups could be nearly

S-permutable subgroup.

Example 3.3.3. Consider the symmetric group S4, and the non nearly S-permutable sub-
groups Hy = ((1,2)) and H, = ((1,2,3)). It is clear that H) x Hy = ((1,2),(1,2,3)) is nearly
S-permutable subgroups of S4 x Sa, since it is of order 2 - 3 and S4 x S4 of order 25-32
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Conjecture

4.1 Conjecture
Let G be a group. Let H be subgroup of G.
Let P(H) = {K is a subgroup of G/ HK = KH }

To find P(H) for all subgroups H of various finite groups like S3,S4, D4, D), etc
And find groups for which |P(H) | /|G|

1. G=S3 = D3 = {e,a,ab,ab’,b,b*}

Following are the subgroups of G

* Hy = {e}
* Hy={e,a}
* Hy = {e,ab}
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» Hy = {e,ab?}
o Hs={e,b,b*}
* Ho =83 =D3

Following are the P(H) of all H

* P(Hy) ={H,,H>,H3,Hy,Hs,Hg}
* P(Hy) ={H,,H>,Hs,Hs}
* P(H3) ={H,,H3,Hs,Hs}
* P(H4) ={H,,H4,Hs,Hg}
* P(Hs) ={H,,H,,H3,Hy,Hs,Hg}
* P(Hg) ={H,,H,,H3,Hy,Hs,Hg}

Here, only orders of P(H;), P(Hs) and P(Hg) divides order of G.
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2. G =Dy = {e,a,ab,ab’,ab’ b,b* b’}

Following are the subgroups of G

« H =1}
« Hy={e,a}

e Hy = {e,ab}
s Hy={e,ab?}
« Hs = {e,ab’}

Hg = {e,b,b? b’}

b H7:D4

Following are the P(H) of all H

° PHI ={H1:H27H37H47H57H67H7}

* P(H, :{H15H23H47H67H7}

~

* P(Hy :{H15H27H47H67H7}

(H1)
(H2)
(Hs) ={Hy,Hs,Hs,He, H7}
(Ha)
* P(Hs)

Hs) ={H,,H3,Hs,He,H7}
» P(Hy) ={H,H>,H3,Hs,Hs,Ho,H7}

* P(H7) ={H,,H»,H3,Hs,Hs,Hc,H7}

Here, no orders of P(H) divides order of G.
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3. G=D,={e, a, ab,ab?,...,ab?~1 b, b?, ... P71}

Following are the subgroups of G

* Hy={e}

* H, ={e,a}

* Hy={e,ab}

s Hy={e,ab?}

* Hy_p ={e,ab’ '}

© Hy_ ={e,b,b?,....0°P~ 1}

° HZk :Dp

Here, order of P(H;) divides order of G. And order of P(Hy;_1) and P(Hy;_5) divides

order of G, when p=2, where k=1,2, ..., p.

4. G =S54 ={I,(1234),(1243), (1324), (1342), (1423), (1432), (123), (132),
(124), (142), (134), (143),(234),(243), (12), (13), (14),(23), (24), (34),
(

(12)(34),(13)(24), (14)(23)}

Here, all orders of P(K), V¥ subgroup K € G, divides order of G.

We conjecture that for G = S, where n > 4, |P(H) | /| G|
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