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ABSTRACT

Condensed matter physics often relies on simplied models to understand complex

systems due to the challenges of directly studying large systems. This study looks at

the response of a one-dimensional bi-layered ladder system to an induced ux using

the Bose-Hubbard model, extending beyond conventional density limits. The system

is analyzed using two numerical techniques: Cluster Mean-Field Theory (CMFT) and

Density Matrix Renormalization Group (DMRG).

By adjusting the hopping strengths (ta↪ tb↪ tp), a phase dierence is induced in the

lattice, eectively creating a ux within the system. Through analysis, three distinct

phases are identied: the Chiral Mott Insulator, Regular Mott Insulator, and Chiral

Superuid Phase. These phases are characterized by examining the current-current

correlation function (ji ∗ jk), superuid order parameter (ψ), and variation in perpen-

dicular hopping (tp).

The study concludes that a non-zero current correlation function indicates the pres-

ence of chirality in the system. When the superuid order parameter is zero, the

system is in an insulator phase, while a nite order parameter signies superuidity.

The study reveals a transition from the Chiral Mott Insulator to the Mott Insulator

phase as the onsite interaction strength (u) increases. Additionally, chirality persists

in the superuid phase regardless of variations in u.
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Chapter 1

INTRODUCTION

1.1 Background

Ultracold atomic physics has opened up the world of physics and has led to various

discoveries. It has paved the way for researchers to discover new phenomena as

well as nd fresh approaches to analyze known phenomena in depth. You might

be curious as to how one studies ultracold atoms. To do so, we form a lattice by

trapping atoms in a box. We then have to cool the atoms present in the lattice with

the help of lasers. How this is done is relatively simple. Lasers are used to trap

the atoms. The laser beam is expanded and sent through several holes, this creates

interference patterns due to the interference of light. Atoms view this interference as

an optical potential. Atoms are cooled and trapped in this optical potential. Research

in ultracold physics has shown the existence of articial gauge elds. The reason for

it being called “articial” is because although there is no magnetic eld applied to the

1
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system. In the presence of the laser, there is a eld created wherein the center of mass

of the neutral atoms present mimic charged particles in a magnetic eld[1]. Magnetic

trapping leads to the formation of a potential well where atoms are independent of

the exterior conditions i.e. atoms do not touch the walls of the enclosed space and

therefore they remain unaected by the room temperature. Within the lattice, lasers

are used for cooling the atoms. Previous research in the domain has been able to show

the existence of three phases, namely: Chiral Mott Insulator(CMI), Mott Insulator

(MI), and Chiral Superuid(CSF) using just a single numerical technique, Density

Matrix Renormalization Group(DMRG) [2]. Chirality implies the breaking of the

time-reversal symmetry.

1.2 Aim and Objectives

Our main aim in this research paper is to obtain and analyze the phase transitions

and properties obtained using the simple Bose-Hubbard model for a one-dimensional

ladder with ux induced through hopping, without xing the density value. We

explore densities other than unity in our experiment because xing density within

the trap of an optical lattice is challenging. By investigating non-unit densities, we

aim to extend our understanding beyond ideal experimental conditions.

The Hamiltonian that we worked with is described below in detail.

H = −ta
∑

(a+i ai+1 + a+i+1ai) + tb
∑

(b+i bi+1 + b+i+1bi)− tp
∑

(a+i bi + b+i ai)

+ua

∑
(na

i (n
a
i − 1) + ub

∑
(nb

i(n
b
i − 1)− µ

∑
(na

i + nb
i)

(1.1)
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In equation 1.1 a+i creates and ai annihilates a boson at site i in layer a respectively.

Similarly, b+i creates and bi annihilates a boson at site i in layer b respectively. The

number operators at site i in layer a and b are denoted as na
i = a+i ai and nb

i = b+i bi

respectively . ta↪ tb, and tp are the the hopping parameters, where ta and tb are hopping

along the chains a and b respectively, and tp is the perpendicular hopping between

the two chains. ua and ub are the onsite interaction terms and µ is the chemical

potential. In the project we consider the onsite interaction terms to be identical and

denote them as u.

The choice of the model comes from the fact that the Bose-Hubbard model is simple.

The Bose-Hubbard model provides a framework for understanding the behaviour

of interacting bosonic atoms in a lattice. In our setup, we consider two layers of

bosons conned to move along a one-dimensional lattice structure. Flux is introduced

through a phase dierence between the hopping in dierent directions, adding an

additional degree of freedom to the system.

In this research paper, the two numerical techniques that we make use of to simplify

the Hamiltonian 1.1 are: CMFT and DMRG.

Cluster Mean Field Theory (CMFT) is a mean-eld approach used to study the be-

haviour of strongly correlated systems. In CMFT, the lattice is divided into its central

site and its neighbouring sites. The interactions between the central site and its neigh-

bours are treated exactly, while the interactions between dierent clusters are treated

at a mean-eld level that provides a computationally ecient way to capture the

essential physics of the system while incorporating some degree of correlation eects.
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Density Matrix Renormalization Group (DMRG): is a powerful numerical technique

used to study the ground-state properties of one-dimensional quantum lattice systems.

It is particularly well-suited for systems with strong correlations. DMRG iteratively

constructs a low-rank approximation of the reduced density matrix to capture the

most relevant states of the system. By systematically truncating the least important

states, DMRG can accurately describe the ground state and low-energy excitations

of the system.

The Bose-Hubbard model for a bilayer one-dimensional system with an induced ux

presents a variety of quantum phenomena. Numerical techniques such as Cluster

Mean Field Theory (CMFT) and Density Matrix Renormalization Group (DMRG)

provide valuable tools for investigating the ground-state properties and phase transi-

tions of such systems. By combining the theoretical model with numerical techniques,

we can gain insights into the behaviour of strongly correlated bosonic systems.

1.3 Research Question

Varying some of the parameters of the system, such as the onsite interaction strength

(u), chemical potential (µ), and hopping strengths (ta↪ tb↪ tp), will induce phase tran-

sitions between dierent phases present in the system, including the transition from

Chiral Superuid to Chiral Mott Insulator and Chiral Mott insulator to regular Mott

insulator. We hope to answer the questions on how these changes in the system pa-

rameters, inuence the phase transitions observed in our model, and what are the

critical behaviors associated with these transitions?
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1.4 Literature Review

For newcomers exploring the realm of physics concerning optical lattices, Greiner and

Folling,2008 in their paper [3] simplify various aspects of condensed matter physics,

particularly the how, why, and what regarding optical lattices. They emphasize the

experimental convenience that lattices oer to researchers, allowing for easy manipu-

lation of parameters and scalability of the system. The study of lattices commenced

in the 1990s and continues to oer signicant potential for physicists. The Hubbard

Model holds particular signicance due to its ability to illustrate the transition be-

tween the superuid (SF) and Mott insulator (MI) phases. In the superuid phase,

particles move freely and exhibit delocalized behavior. In contrast, the Mott insu-

lator phase restricts particle movement, causing them to localize at specic sites.

Tokuno and Georges (2014)[1] conducted a study utilizing the same model as ours,

a Bose Hubbard ladder with an articial magnetic eld. They used Density Ma-

trix Re-normalization Group (DMRG) techniques to demonstrate transitions among

three identied phases: CMI (Chiral Mott Insulator), MI (Mott Insulator), and CSF

(Chiral Superuid). Their ndings revealed that transitions between CSF and CMI

exhibited Berezinskii-Kosterlitz-Thouless (BKT) characteristics, while transitions be-

tween CMI and MI had characteristics of an Ising transition, and transitions between

CSF and MI were of a second-order nature. Interestingly, they identied the tricritical

point where these phases meet. To do this they used Luttinger parameters because

this tricritical point was a feature not observable through DMRG alone. Dhar et

al. (2012-2013) [2, 4] highlight crucial aspects of the aforementioned phases. They

emphasize the signicance of the staggered current in discerning the three distinct
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phases observed in the Bose-Hubbard ladder model under an articial magnetic ux.

This current is present in both the CMI and CSF phases but vanishes in the MI

phase. This paper uses DMRG as well as Monte Carlo simulations for the study. It

can be seen that depending on the Hubbard repulsion(U) and chemical potential µ

we can dierentiate the three phases.

All papers alike emphasize the importance of studying the phase diagrams of the sys-

tem to achieve signicant results. However, it’s worth noting that existing research

has primarily focused on scenarios where density remains xed. Leveraging the in-

sights from the literature, we intend to push the boundaries further by exploring the

Bose-Hubbard system under conditions where density is not rigidly constrained.



Chapter 2

METHODS

2.1 Introduction

In this project, we used Fortran programming to analyze data and understand phase

diagrams. In this chapter, we will elaborate on the methods and data being ana-

lyzed. We looked at a specic kind of model called a 1-dimensional Bose Hubbard

ladder. The model in 1.1 is simplied using two numerical techniques, CMFT(Cluster

Mean Field Theory) and DMRG(Density Matrix Renormalization Group) which are

described below. Our goal is to explore how this model behaves when there is a ux

induced and the density is not limited to 1.

7
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2.2 Numerical Techniques

In this section, we have described the numerical techniques that we have employed

for our research.

Cluster Mean Field Theory which we will often refer to as CMFT in the paper,

is a numerical technique used commonly in condensed matter physics to simplify the

interactions between particles in many-body systems. It approximates the interac-

tions by treating each particle as if it were independent of the others. We assume that

it interacts only with a mean eld. The advantage of this method is that it reduces

the computational complexity while still capturing important features of the system.

Density Matrix Renormalization Group we will further often refer to asDMRG

throughout the paper. It is a numerical technique used to eectively study one-

dimensional quantum systems. It’s particularly helpful for systems with strong cor-

relations, like the Bose Hubbard ladder model. It is an iterative method used to

optimize a reduced density matrix to keep the most relevant states of the system

while discarding less important ones.DMRG is a method helpful in describing the

ground state and low-lying excited states of the system.

In this paper, we use the combination of the two numerical techniques mentioned

above: CMFT and DMRG.

CMFT provides an initial approximation of the system’s ground state by simplifying

the interactions between particles. This approximation acts as a starting point for

further DMRG calculations. DMRG takes this initial approximation and renes it,
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iteratively optimizing the reduced density matrix to capture more accurately the

relevant states of the system. DMRG can handle strong quantum correlations that

CMFT might overlook, thus providing a more accurate description of the system.

2.3 Mean Field Calculations

Our starting point is the Hamiltonian mentioned in equation1.1,

The mean eld approximation is applied as follows:

a+i = ψ∗

i + δa+i

ai = ψi + δai

Where, ψi =< ai > is the superuid order parameter and <> denotes average over

the ground state. The mean eld is felt only by the sites at the extremities of the

cluster. We apply the above approximation to the Hamiltonian mentioned in 1.1

H = −ta
∑

(a+i ai+1 + a+i+1ai) + tb
∑

(b+i bi+1 + b+i+1bi)

−tp
∑

(a+i bi + b+i ai) + ua

∑
(na

i (n
a
i − 1))

+ub

∑
(nb

i(n
b
i − 1))− µ

∑
(na

i + nb
i)

and ignore terms outside the cluster and those consisting solely of the uctuations.

When we do this we achieve a system decoupled and simplied my mean eld ap-

proximation.
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Dividing the Hamiltonian into parts and applying the mean-eld approximation we

get the following:

Part I:

−ta
∑

(a+i ai+1 + a+i+1ai) = −taψa(ai + a+i ) + taψ
2

ai
− ta(a

+

i ai+1 + a+i+1ai)

Part II:

tb
∑

(b+i bi+1 + b+i+1bi) = tb(ψb(bi + b+i )− tbψ
2

bi
+ tb(b

+

i bi+1 + b+i+1bi)

The rest remains the same, unaected by the Mean Field.

Part III:

ua(n
a
i (n

a
i − 1)) + ub(n

b
i(n

b
i − 1))− µ(na

i + nb
i)

The mean eld approximation aims to simplify the study of complex systems by

approximating interactions between individual components as if they were only inu-

enced by an average or mean eect of the rest of the system.

The Hamiltonian after Mean eld approximation is applied becomes,

H =
∑

i

−taψa(ai + a+i ) + taψ
2

ai
− ta(a

+

i ai+1 + a+i+1ai) + tb(ψb(bi + b+i )

−tbψ
2

bi
+ tb(b

+

i bi+1 + b+i+1bi)− tp(a
+

i bi + b+i ai)

+ua(n
a
i (n

a
i − 1)) + ub(n

b
i(n

b
i − 1))− µ(na

i + nb
i)
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CMFT is used to simplify the Hamiltonian by decoupling the terms. DMRG is then

used to truncate/reduce the number of states to an order we can handle in our code.

Before delving into the code’s functionality, let’s discuss its underlying concept and

approach to addressing our current problem. We have a 1-dimensional Bose Hubbard

ladder that we have now simplied using the Mean eld approximation. The sub-

sequent step involves diagonalizing the Hamiltonian to determine the ground state

energy (eigenvalue) and wave function (eigenvector). We then employ a self-consistent

method to minimize the superuid order parameter, ψ. We divide our system into

two identical blocks (Left and Right) and utilize the concept of density matrix to

construct a reduced density matrix of the left block, ρL, achieved by integrating out

the right block. We then diagonalize the reduced density matrix of the left block ρL

to nd the eigenvalues and vectors. From the numerous states N >> n, we select "n"

states with the highest energy values to truncate our density matrix system size from

N to n. We assume symmetry between the Left and Right blocks. In this process, we

perform calculations for the left block and then replicate the same block on the right

side when forming our lattice to reduce computational complexity. We then add one

(two) site(s) in the center for odd (even) lattice lengths to create a superblock which

we calculate the Hamiltonian and diagonalize until our desired length is achieved.

For a lattice with an odd number of sites, if we initiate with 3 sites, considering 2

for the left block and symmetry for the right block, we then append one site to the

cluster. Consequently increasing the lattice by 2 at each step. Below is an outline of

how the building of a superblock takes place for an even number of sites.
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Figure 2.1: Building a superblock

(a) The above picture has been taken from "Density matrix renormalization group (DMRG) for cyclic
and centrosymmetric linear chain", a paper by Kumar et al. (2016)[5]

In 2.1a, they start with a 4-site cluster and divide it equally into two parts. Then, one

site is added to each part, resulting in an increase in length by 2 sites. This process

is repeated until the ideal length of the superblock is achieved.
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2.4 Unveiling the Inner Workings

In this section, we outline the setup of the codes, describing their organization and

structure. A comprehensive outline is provided, detailing the functions of both the

main code and the subroutines used for various tasks.

Figure 2.2: Mind map for the ow of codes

Let’s thoroughly examine the code breakdown.

Section I:

We start with SRC, which serves as the repository for our source code, organized
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within a single folder. The ve primary programs are outlined as follows:

Program name Function

Hcy0
Constructs the one site Hamiltonian and then stores the whole
Hamiltonian in sparse form

Omatlt Constructs the reduced density matrices

Hmatlt Used to change basis using the reduced density matrix

Hcy1
Used to increase the length of the ladder by adding sites in the
middle of the cluster block in steps and generating the new Hamil-
tonian on each addition of a cluster

Makele.lx
Used to compile all the codes with a single command and gives the
path to the executable les

Table 2.1: Source Codes

Below are the various subroutines that constitute integral parts of the aforementioned

main programs:
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Subroutine
name

Function

Inputdata
Reads input data such as maximum matrix size, multiplicity, etc.
and stores it in a common block for global access

Onesite Generates the operators for a single site

Hcy3 Hamiltonian of the whole lattice is calculated

SparseEigenSolve
Diagonalizes the Hamiltonian using the Davidson code and returns
the eigenvalues and eigenvectors

Averages
Calculates averages of operators(creation, annihilation, and number
operators)

Matexpand
Takes a matrix represented in sparse form, where only nonzero ele-
ments are stored and expanded to a full matrix with zero elements
in their respective positions.

Matmulnorm Renormalizes the operators written in the new basis

Matmultb Changes the operators into the new basis

Matnonzero Turns a matrix into a sparse representation

Table 2.2: Subroutines used in the Source Code

Section 2:

Under DSQ(Data, Setup, and Quality) we have 3 subfolders with the following func-

tionalities:
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Folder name Function

Data
Stores all the necessary data after the codes have been complied
and executed

DSQ
Stores run les that contain initial and nal parameter values and
execution instructions

OBJ
Objective les generated during the compilation of the main OBJ
le are transferred to this folder to facilitate their utilization during
code execution.

Table 2.3: DSQ les

As mentioned the main OBJ folder contains the objective les created when the codes

are compiled.

2.5 Phases

Returning to the core objective of our project, our focus revolves around examining

phase diagrams derived from the 1-Dimensional Bose Hubbard Model, with the incor-

poration of an induced ux. To discern the dierent phases, our investigation centers

on analyzing the following plots:

• ψ and ρ vs µ, to identify if there is a change of phase (From Superuid(SF) to

Mott Insulator(MI))

• current-current correlation function vs length to see if there exists a nite cur-

rent in the lattice and if it has a staggered nature.
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The dierent phases we look at are :

Superuid Phase: In this phase, particles exhibit coherent motion without any re-

sistance. It’s characterized by a non-zero order parameter (ψ) and the absence of

long-range order. Particles exhibit uid-like behavior, moving freely throughout the

system

Chiral Superuid Phase: This phase is distinguished by the breaking of time-reversal

symmetry, resulting in a preferred direction of circulation within the superuid. It’s

characterized by a non-zero current, indicating the presence of a net circulation of

particles as well as a non-zero superuid order parameter (ψ).

Mott Insulator Phase: In this phase, the interaction between particles dominates over

their kinetic energy, leading to a localization of particles at each lattice site. As a re-

sult, each site becomes occupied by a xed number of particles. Particles are strongly

conned to their respective sites and cannot move freely between neighboring sites.

The Mott insulator phase typically arises in systems with strong on-site repulsion

between particles.

Chiral Mott Insulator Phase: This phase combines the properties of the Mott insulator

with chiral behavior. While the particles are localized at each lattice site as in the

Mott insulator, there’s also a preferred direction in the ow of currents within the

system. This can arise due to an external factor like the induced ux in our case.

In the following table, we have tabulated the distinct features of the various phases

we were hoping to identify with our model:
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Phase Features

Superuid(SF)
Superuid order parameter (ψ) is non-zero and no stag-
gered current (j) in the lattice

Chiral Superuid(CSF)

Similar to superuid but the order parameter of the
two layers have magnitudes equal but opposite direc-
tions and there is a nite staggered current (j) in the
lattice

Mott insulator(MI)
Superuid order parameter (ψ) is zero and no staggered
current (j) in the lattice

Chiral Mott Insulator(CMI)
Superuid order parameter (ψ) is zero and there is a
nite staggered current (j) in the lattice

Table 2.4: Various phases and their properties

2.6 Current

Current is an important observable for us to nd in this project to show chirality

in the system. In [2] current is calculated using the following method wherein the

methods of DMRG and Monte Carlo simulations were employed.

jai↪i+1 = −ita(a
+

i ai+1 − a+i+1ai)

jbi↪i+1 = −itb(b
+

i bi+1 − b+i+1bi)

jabi = −itp(a
+

i bi − b+i ai) (2.1)

[(i) denotes the site, (j) denotes current, and (a,b) denotes the leg of the ladder]
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The equations presented above provide the current generated at each bond, Inter-layer

jab between layers a and b, and intra-layer ja↪ jb between two sites of the same layer.

By summing over one loop as seen in 2.3, encompassing two sites of the lattice, both

interlayer and intralayer currents contribute to determining the current direction. For

the presence of staggered currents to be evident, it’s imperative that adjacent loops

exhibit currents owing in opposing directions.

Figure 2.3: Direction of the current ow

In the depicted diagram, site 1 occupies the far left position within the lattice, whereas

site 5 resides at the far right end, i.e. where the mean eld is felt. Sites 2, 3, and

4 are positioned centrally, equidistant from both ends of the lattice. Symmetry is

maintained across the lattice concerning site 3, under the assumption of identical left

and right blocks. A particle has the potential to transition between sites a and b, with

varying probabilities for each direction, thus establishing a directional bias conducive

to current ow. Our analysis primarily centers on the behavior of particles within the

three central sites. Letting the loop formed by sites 2 and 3 be called the left loop

and the loop formed by sites 3 and 4 be the right loop. Current within these loops
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are calculated as follows, using the equations in 2.1.

Left− loop : b+2 a2 + b+3 b2 + a+3 b3 + a+2 a3 (2.2)

Right− loop : a+3 b3 + a+4 a3 + b+4 a4 + b+3 b4 (2.3)

The equations mentioned above are formed under the assumption of a staggered

nature in the ow of current.

Above is the background of current calculations so far. As current is a real quantity,

we can deduce from 2.1 that the term within the bracket is a complex. Consequently,

in our project, computing the precise value of current in the system poses a challenge.

As an alternative, we utilize the current-current correlation function -the product of

the current at two sites- to ascertain the presence of staggered current within the

system. Additionally, we check whether this correlation vanishes for high values of

U when ψ = 0, indicating a transition from the Chiral Mott Insulator phase to the

Mott Insulator phase.

The current-current correlation function is given as:

jijk = −itp(a
+

i bi − b+i ai) ∗ −itp(a
+

k bk − b+k ak)

jijk = −t2p[(a
+

i bi − b+i ai) ∗ (a
+

k bk − b+k ak)] (2.4)

[i and k denote two sites over which the current-current correlation function is calculated]

To conclude this chapter, From the above methods and equations we must examine
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the obtained results to ascertain the phases identiable within the 1-Dimensional Bose

Hubbard Model featuring induced ux through hopping terms using two numerical

techniques mentioned above in detail(CMFT and DMRG). We analyze the superuid

order parameter ψ, density ρ, and current correlation relative to variations in chemical

potential µ and on-site interaction u, aiming to identify the various phases present in

our system.



Chapter 3

RESULTS AND ANALYSIS

3.1 Introduction

In the previous chapters, we explored the project’s conceptual framework and outlined

our approach to addressing the research problem. In this chapter, we will delve into

the outcomes and conclusions derived from extensive data collection. To reiterate,

our focus is on the 1-dimensional Bose Hubbard model, where we introduced a ux

through the hopping terms and allowed for varying density. We utilized the methods

of Central Mean Field Theory and Density Matrix Renormalization Group (CMFT

and DMRG) to analyze the system.

22
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3.2 Even Lattice Lengths and Site Clusters

In this section, we examine the outputs obtained using programs for even-length

lattices, starting with a 4-site cluster. At each iteration, the length of the lattices

increases by 2. We use 35 density matrix states, onsite interaction(u)=5, and the

length of the lattice goes from 4 sites up to 300 sites in our results.

(a) Superluid phase(U=5, µ=0.6)

(b) Mott Insulator phase(U=5, µ=1.4)

Figure 3.1: Convergence of ψ and ρ at the lattice edge 1 and center L
2
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From 3.1, it is clear that various parameters tend to converge as the length of the

lattice over which they are calculated increases. In 3.1a when µ = 0▷6, a disparity

exists in the Superuid(SF) phase regarding the density ρ between the center of the

lattice (L
2
) and its edges (1), with ρ exhibiting an increase from the edges towards

the center. The SF order parameter ψ at the edges is higher than at the center due

to the eect of the Mean Field, which overestimates its value at the edges. In 3.1b,

we observe that the SF order parameter ψ goes to zero at the center where the Mean

Field is not felt, and the SF phase density ρ converges to one, both at the center and

at the edges. These features indicate that the system enters the Mott Insulator phase

at µ = 1▷4.

The above plots were generated using the following parameters: ta = 1↪ tb = −1↪ tp =

0. This choice of parameters ensures that both intralayer hopping terms are in the

same direction. This is because we have considered a Hamiltonian where these terms

are opposing in nature 1.1.

In the later stages of the study, we found it necessary to transition to odd-cluster sys-

tems. This adjustment became imperative when we encountered diculties discerning

the system’s nature, particularly when ta and tb pointed in opposite directions. The

even-cluster conguration proved inadequate in capturing the staggered character-

istics of the order parameters ψa↪ ψb. Conversely, the odd-size cluster conguration

eectively captured the essence of this staggered nature as depicted in the diagram

below.
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Figure 3.2: Even cluster drawback

Since we consider the left block identical to the right block, in the case of the even

cluster at the center, there exists a disparity between what is observed and what

the expected outcome should have been. This occurs because two identical sites are

inserted in the middle. In contrast, for an odd number of sites, only one site is added

to the center of the lattice, preserving the staggered nature.
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3.3 Odd Lattice Lengths and Site Clusters

(a) ρ vs µ for various values of one site re-
pulsion(U) (b) ρ vs µ for U=4.5,5,5.5,6

(c) ψa vs µ for various values of one site re-
pulsion(U) (d) ψb vs µ for U=4.5,5,5.5,6

(e) ψb vs µ for various values of one site re-
pulsion(U) (f) ψb vs µ for U=4.5,5,5.5,6

Figure 3.3: ρ and ψ as a function of µ for varying U
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The gures in, 3.3 illustrate the behavior of ψ and ρ for varying values of µ at dierent

u conditions. On the left-hand side, graphs are plotted for u values ranging from 4 to

6, while on the right-hand side, we focus solely on graphs corresponding to a select

few u values. This selective approach enables a more nuanced understanding of the

system’s behavior.

We can identify two phases: The Mott insulator phase, characterized by ψ = 0 and

ρ = 1, and the Chiral-Superuid phase where ψ assumes nite values and ρ increases

with µ. Chirality arises from the equal but opposite nature of ψa and ψb, but to

conrm the chiral order, we need to verify if the current is nite within the phase.

Similarly, we have to verify whether the Mott insulator exhibits chiral behaviour.

It becomes evident that as u increases, the system goes into the Mott insulator phase

at higher µ values and remains within this phase over a longer range of chemical

potential µ. Furthermore, calculating the current is necessary to conrm the chirality

of the system.
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3.4 Varying perpendicular hopping

(a) ψa vs length ,tp = 0 SF phase (b) ψb vs length ,tp = 0 SF phase

(c) ψa vs length ,tp = 0▷5 SF phase (d) ψb vs length ,tp = 0▷5 SF phase

(e) ψa vs length ,tp = 1 SF phase (f) ψb vs length ,tp = 1 SF phase

Figure 3.4: Varying tp in the Superuid (SF) phase to observe the behavior of ψ as a
function of length
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(a) ψa vs length ,tp = 1▷5 SF phase (b) ψb vs length ,tp = 1▷5 SF phase

Figure 3.5: Varying tp in the Superuid (SF) phase to observe the behavior of ψ as a
function of length

tp |ψa
3 |− |ψa

2 | |ψb
3|− |ψb

2|

0.0 0.00 0.00

0.5 0.06 0.06

1.0 0.12 0.12

1.5 0.16 0.16

Table 3.1: Variation of order parameter ψ with tp

We see that increasing the perpendicular hopping tp within the superuid phase

enhances tunneling between dierent chains of the ladder structure. This enhanced

tunneling is reected by a larger amplitude of the order parameter ψ, indicating that

the bosons become more delocalized and exhibit greater coherence across the ladder.

As a result, the system demonstrates stronger superuid behavior, with bosons able

to ow more freely between chains, contributing to a more robust superuid phase.

The gures demonstrating its nature are given in 3.4 and 3.5.
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3.5 Current-current correlation function

(a) ψ vs µ(U=5)
(b) Current-current Correlation Function vs
µ(U=5)

(c) ψ vs µ(U=7.5)
(d) Current-current Correlation Function vs
µ(U=7.5)

(e) ψ vs µ(U=10)
(f) Current-current Correlation Function vs
µ(U=10)

Figure 3.6: Value of Current-current correlation function and ψ as a function of u
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Figure 3.7: Current-current Correlation Function vs µ for various u

In 3.6 and 3.7 we present plots for increasing values of u. On the left, we’ve graphed

the order parameter ψ against µ to clarify the system’s phases. It is evident that when

ψ = 0, the system behaves as an insulator, whereas in other regions, it demonstrates

a superuid phase. On the right, we’ve analyzed the current-current correlation

function to discern the system’s chiral characteristics. Observing the gures, we note

that at U = 5, nite current-current correlations persist consistently implying that

the phases that are present are the Chiral Superuid phase(CSF) and Chiral Mott

Insulator phase(CMI). However, as U increases, these correlations tend towards zero

and there is a phase transition from the Chiral Mott Insulator(CMI) to the regular

Mott Insulator phase(MI).

From the graphs above, we can conclude that our system exclusively exhibits the chiral

superuid phase, as opposed to the regular superuid phase when ψ is nite. This

conclusion is supported by the fact that the system consistently maintains a nite
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staggered order parameter ψ along with nite current-current correlation function

values throughout our observations. Conversely, in the insulator region where ψ = 0,

we observe a transition from the Chiral Mott insulator (CMI), characterized by nite

current correlation, to the regular Mott Insulator (MI) phase, where the current

correlation tends towards zero as u increases.

We examined the current correlation function between two sites, i and k, in equation

2.4 to identify the staggered pattern of current within the lattice.

Current-current correlation

j2 ∗ j3 j2 ∗ j4

0.409595 -0.246191

0.399491 -0.230475

0.405419 -0.245394

0.409213 -0.249794

Table 3.2: The current-current correlation function between rst and second neighbors

The subscript numbers correspond to the site numbers of the lattice, with 2, 3, and 4 posi-

tioned at the center of the lattice length.

As can be seen in 3.2, we observe a change in sign as we transition from the current

correlation of one site to the next in the lattice. This variation indicates the staggered

nature and the continuous shift in directional preference of the current within the

lattice.
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CONCLUSIONS

4.1 Introduction

In this Chapter, we will conclude our research paper by summarizing the ndings

derived from our results and discussing potential future endeavors in this eld that

may have broader implications for the eld of physics.

4.2 Conclusions

In summary, our study of the one-dimensional Bose-Hubbard ladder model with an

induced ux has provided insights into the behavior of quantum systems under the

inuence of perturbations. Through the combined use of Cluster Mean Field Theory

(CMFT) and Density Matrix Renormalization Group (DMRG) techniques, we have

33
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been able to understand the interplay between particle interactions and ux-induced

eects.

Our results shed light on key phenomena, including the emergence of special phases

such as the Chiral Mott insulator (CMI), regular Mott Insulator(MI), and Chiral

Superuid(CSF) phases when ux is induced through hopping. By systematically

varying parameters such as the onsite interaction strength (u), chemical potential

(µ), and inter-layer and intra-layer hopping strengths ta↪ tb↪ tp, we have identied the

critical behaviour of our system. Our study has uncovered features unique to the

one-dimensional Bose-Hubbard ladder model where the induced ux introduces an

additional degree of freedom.

We conclude that using the techniques of combined Central Mean Field Theory(CMFT)

and Density Matrix Renormalization Group(DMRG) we have been able to show

the existence of unique phases. At small interactions(U) we see that Chiral Su-

peruid(CSF) transitions into Chiral Mott insulator(CMI) as µ increases. At higher

interaction values(u) in the insulator region, we see a transition from Chiral Mott

Insulator(CMI) to regular Mott Insulator(MI). Chirality which is a time reversal

symmetry is identied in our system from nite values of the current-current corre-

lation function.
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4.3 Future work

Looking ahead, our ndings lay the groundwork for future research directions in this

domain. There is scope in calculating the current-current correlation function across

the entire lattice length as the distance between the two sites i and k in 2.4, over

which we calculate current correlations tends to innity to understand its features

and identify points where it vanishes in the Mott Insulator phase and remains nite

in the Chiral Mott and Chiral Superuid phases. Plotting the phase diagrams of the

system will provide signicant insight into the signicance of each phase as functions

of µ and u. We can anticipate two sections within a Mott lobe: a Chiral Mott part

where current exists and a regular Mott section where current vanishes.

Exploring the connections between the one-dimensional Bose-Hubbard ladder model

and other quantum systems, such as spin model systems, could result in interesting

insights into aspects of quantum phase transitions.

In summary, our research contributes to the ongoing task of understanding the com-

plexities of quantum matter and provides a platform for future explorations. By

addressing fundamental questions in quantum physics, we aim to contribute to the

advancement of scientic knowledge.
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4.4 Drawbacks

• A higher number of density matrix states was causing the code to slow down,

and at around 45 states, it encountered a segmentation error due to insucient

space for allocation.

• There have been few studies on ultracold atoms utilizing the combined tech-

niques of CMFT with DMRG, resulting in limited available literature on the

subject.

• Current is a complex quantity, so in a system where we have assumed real

quantities, we are unable to calculate the true value of the current present.
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