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Abstract

Density Functional Theory is a numerical method that simplifies the N-body electron Schrodinger equa-

tion by using electron density as a parameter. It is a go-to method to stimulate the materials’ electronic,

optical and mechanical properties. This work is to study the effect of Nitrogen doping on the electronic

properties of Mono Layer and Bilayer Graphene. Also, study how various hybrid functionals ( Van der

Waals functionals ) affect the inter-layer distance with different stacking geometries and its effect on band

structure.
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Chapter 1

Introduction

2D materials as of recent are very popular due to their unique properties such as high flexibility, elec-

trical conductivity and strength. Out of these materials Graphene is usually preferred due to the ease

of synthesis, high strength and electrical conductivity. It’s a popular precursor to create materials like

fullerenes and reduced graphene oxide which has wide applications in sensors, energy storage, electronics

and the lubrication industry. Density Functional Theory is a numerical method to solve the n-electron

Schrodinger equation. This is widely used to study or predict the electronic properties of the chosen mate-

rial. It’s very popularly used in material science due to ease and consistent results with the experimental

data obtained, although, in many cases it fails to predict correct properties.

1.1 Literature Review

Hartree, and Fock simplified the n body electron Hamiltonian and made it easy to solve for small

systems however infeasible for stimulating large systems. Kohn and Hohenberg laid two fundamental

theorems using electron density as a parameter and later improved by Kohn and Sham which paved

the way for foundations of density functional theory which made it possible to solve it computationally

and to calculate the electronic properties of the system, they also used the pseudo-potential and LDA

approximation, John Perdew, Kieron Burke, and Ernzerhof (PBE)[1] invented GGA approximation 1996

making it easy to solve whose electron keeps on changing. Stefan Grimme in 2004 introduced the new-

correctional functionals (dft-d or vdw-df) which were used to guess the nature of the vdw forces and

have since been modified and improved on. Graphene is chosen because of its high electron conductivity,

Young’s modulus and high thermal conductivity also it can be used to create other C-based allotropes

along with all of this it has a 0 band gap[2]. Studies carried out by M. Boujnah1 [3] on the AA and AB on

pristine BI-LAYER GRAPHENE(BLG) and A. Ahmed [4] on the pristine and N-doped MONO-LAYER

GRAPHENE with the help of PAW pseudo-potential without any vdw correctional functionals
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1.2. OBJECTIVES CHAPTER 1. INTRODUCTION

1.2 Objectives

1. Investigate the properties of monolayer graphene through Density Functional Theory.

2. Study bilayer graphene with various stacking configurations.

3. Use hybrid functionals to include interlayer van der Waals interactions to increase the accuracy of

calculations for bilayer Graphene.

4. Explore the influence of doping on both monolayer and bilayer graphene.

3



Chapter 2

Methodology

2.1 Hamiltonian of n electron system

Hamiltonian is used to describe the total energy for a system of particles, it is written as Ĥ = T̂ + V̂ ,

where T̂ , V̂ represent the kinetic and potential energy respectively. The Hamiltonian for n electron body

(Schrodinger equation) is

Ĥ =
−ℏ2

2m

∑
i

∇2
i −

∑
A

ℏ2

2MA
∇2

A −
∑
A,i

ZAe
2

4πϵ◦rAi
+

∑
A,BA>B

ZaZBe
2

4πϵ◦RAB
+

∑
i,ji>j

e2

4πϵ◦rij

i,j represents the electron position while A, B represents the atomic nuclei position, the 1st two terms

represent the kinetic energy of the system while the last 3 terms represent the potential energy of nuclei-

electron,nuclei-nuclei, and electron-electron respectively

Figure 2.1: different potential terms: figure 1 is the inter electron-nuclear term, figure 2 is the nuclear-
nuclear term, figure 3 is the electron-electron term

in the above Hamiltonian, we require a large amount of storage to store the necessary wave function,

it’s hard to solve the interaction term and practically impossible to know all the electron’s positions in

the system with high certainity

4



2.2. APPROXIMATIONS CHAPTER 2. METHODOLOGY

2.2 APPROXIMATIONS

Born Oppenheimer Approximation

The Hamiltonian can be decoupled into the electron and nuclear Hamiltonian and their coupling term is

zero

the kinetic energy of nuclear is very small with respect to the electron and the potential between two

nuclei is constant and smooth in nature

Independent Electron Approximation

the electron-electron interaction can be approximated to a mean-field

Central Field Approximation

the mean field of this electron cloud can be approximated as a central field Vcf (r⃗) = VN,e(R⃗, r⃗) + V cf
ee (r⃗)

1st term represents the potential of electron-nuclei and 2nd term represents the electron-electron potential

in a field and the Hamiltonian after all these approximations is

Ĥ = −ℏ2

2m

∑
i ∇2

i +Vcf (r̃)[5]

2.2.1 HARTREE FOCK method

1. Hartree and Fock used a non-interacting single electron model

2. Hartree-Fock assumptions

• born-Oppenhemier, independent electron and central field approximation are as-

sumed

• The electronic wave function can be written as a linear combination of single non-interacting

electrons in the form of a determinant

•

ψ(q⃗, R⃗) =
1√
N

∣∣∣∣∣∣∣∣∣
u1(1) .. u1(n)

u2(1) ui(qj) ..

un(1) .. un(n)

∣∣∣∣∣∣∣∣∣ (2.1)

• After finding the wave function, we use the variational principle subject to the condition with

the wave function found as our trial wave function.

δ⟨ΨN
∣∣HN

∣∣ΨN ⟩ = 0 under the constraint that ⟨ui|uj⟩ = δij

• we get a set of equations called Hartree fock equations, in operator form is written as

f(r⃗1)ui(r⃗1) = ϵiui(r⃗1)

5



2.3. DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODOLOGY

h(r1)ui(r⃗1) +
∑

j

[∫
dV2

u∗
j (r2)

r12
(ui(r⃗1)uj(r2))− δ(msi ,msj )(ui(r⃗2)uj(r⃗1))

]
= ϵiui(r⃗1)

ϵi is the energy of electron orbital,ui is the electron orbital,f is the Hamiltonian

• the above operator behaves similar to eigenvalue equation and hence it’s called a

pseudo eigen equation

2.2.2 Success and failure of Hartree-Fock

the electronic energy, electronic wave-function, orbitals and orbital energies, account for the Pauli ex-

clusion principle and take care of exchange-correlation terms, a good 1st order approximation for the

ground-state

it underestimates the true ground-state energy with a slight modification that can be corrected to

give a correct output i.e

E
′

HF =
∑

iϵi + Vee where
∑

iϵi =
∑N

i=1Hi +
∑N

i,j=1(Jij − kij)

Neglects electron correlation, requires high storage, not suitable for strongly correlated systems, we can’t

measure the wave function

2.3 Density Functional Theory

2.3.1 Electron density

We use the electron density to find the properties of the system/ and the electron density can be defined as

n(r) =
∣∣ψ2(r)

∣∣ all the information is embedded in this ψnew(r) which is equivalent to the old ψ(q, r),also

we use this now to solve the Schrodinger eqn

note the amount of storage is now significantly less and is better optimized to solve it

2.3.2 Foundations of dft: Kohn-Hohenberg theorems

Kohn-Hohenberg 1st theorem:it states that the external potential is uniquely determined by the ground

state electron density n◦

Kohn Hohenberg 2nd theorem :there exists a universal function for energy En in terms of electron

density which it can be uniquely mapped to any external potential, the true global min of this function

will give the true ground state energy and the corresponding density is the ground state density

E[ρ(r)] = F [ρ(r)] + Eext[ρ(r)] ≧ Egs

2.3.3 Reformulation of the Hamiltonian using Kohn Hohenberg theorems

• using electron density as the input ,this functional(electron density ) for single particles states is

given by F (n(r)) = κe(n(r)) +
∫∫

n(r)n(r
′
)drdr

′

2|r−r′ | + ϵxc

• kohn and sham using electron density functional. modified the Schrodinger eqn to get

E[n(r)] = κe[n(r)] +
1
2

∫∫ n(r)n(r′)

|r−r′ | drdr
′
+ ϵxc[n(r)] +

∫
νen(r)n(r)dr

6



2.3. DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODOLOGY

• we minimize the above expression with respect to n(r) to obtain ground state energy and subject

it to the constraint that the total number of electrons is constant i.e
∫
δn(r)dr = 0 and as well as

multiplying with a Lagrange multiplier ϵi

• the final Kohn sham equation is

{−∇2
r

2 + νeff [n(r)]}ϕi(r) = ϵiϕi(r)

• the effective potential νeff [n(r)] is given by

νeff [n(r)] = νen(r) +
∫ n(r′)

|r−r′|dr
′ + δϵxc[n(r)]

δn(r)

• 1st term represents external potential due to ions,2nd term is Hartree potential and 3rd term

represents the exchange-correlation potential,note that the 3rd is not known exactly so its usually

approximated:

νxc[n(r)] =
δϵ[n(r)]

δn(r)
,νxc represents the electron-electron interaction not accounted by the Hartree

term

2.3.4 Self-Consistent Field/Procedure for dft

self-consistent procedure for dft

1. Guess the initial electron density n

2. calculate the Hartree and exchange correlational function from the pseudo-potential for each type of

element present

3. Find the effective potential

4. use the above steps to solve the Hamiltonian and find the eigen values and eigen vectors to it

5. find the corresponding wave function and their electron density

6. Compare this with the initial value for a set error bar

7. If it lies outside this then use this new electron density as your new initial electron and repeat from

step 1 onwards

8. this is done until the initial and final electron density are within our error bar, once we reach this

stage we have successfully got our Ground state energy of the system

1

1self consistent image reference source http://shialchemy.blogspot.com/2012/09/scf-loop-in-quantum-espresso.

html
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2.3. DENSITY FUNCTIONAL THEORY CHAPTER 2. METHODOLOGY

Figure 2.2: scf procedure for dft

2.3.5 Pseudo-potentials: a need and its types

1. Pseudo-potential: The underlying potential experienced by electrons in solid has complex struc-

ture. An alternative potential is used to replicate the core electrons potential and produce an arti-

ficial potential that roughly approximates the valence electron potential and produces a smoother

potential. It is used to simplify dft calculations and approximate the unknown Exc of the material

and it is used to replace the inter nuclear-electron term in our original Hamiltonian and Kohn Sham

total energy with the pseudo-potential term is written as

EKS [ρ] = Ts[ρ] +
∫
ρ(r)Vext(r)dr +

∑
I

∫
ρI(r)Vps,Idr + EXC [ρ]

Ts is the kinetic energy of a non-interacting electron,ρI(r) is the partial electron density associated

with the pseudo-potential for nucleus I,Vps,I is the effective potential associated with the pseudo-

potential for nucleus I [5]

2. it can categorized into 3 main types of pseudo-potential

• norm conserving pseudo-potentials in this method a pseudo-wave-function is constructed

that matches or is highly identical to the all-electron(real wave-function ) wave-function after

a radius rc, they share the same eigenvalues, the same probability for all electron orbital and

pseudo orbital, the norm between the all-electron orbital and pseudo orbital is approximately

1 .we use it when we desire high accuracy, for optical properties of the material, bandstructure

and electronic properties, when we wish to conserve the norm, defects behaviour and surface

of a material

• ultrasoft pseudopotentials it is a method in which the norm condition is relaxed and fewer

numbers of plane waves are used and produces a smoother pseudo-potential compared to

norm-conserving pseudopotential. we can use it to study broader cases of elements without

recalibration while giving a good balance of accuracy, convergence and efficiency

8



2.4. VDW CORRECTIONALS CHAPTER 2. METHODOLOGY

• PAW(projector augmented wave): In this method, we approximate the true electron wave

function with a combination of localized atomic wave-like function and pseudo wave function.

we use the atomic wavelike function inside the core electron region and accurately describe the

true wave function while we use the pseudo wave function to describe the true wave function

outside the core wave region which is smoother and closely approximates the true electron

wave function of the material being considered[6]

2.3.6 exchange-correlational approximation

there are two main approximations for exchange correlational namely local density approximation:(LDA)

and generalized gradient approximation:(GGA)

1. LDA:it’s an approximation for the exchange-correlation functional ϵxc[n(r)] in a uniform elec-

tron gas(free electron gas).it states that if the n(r) is slowly varying then the exchange-

correlation of this density is equal to the exchange-correlation in a uniform free elec-

tron gas

ϵLDA
x [n(r)] =

∫
ϵx(r)n(r)dr where exchange energy ϵx(r) = C2n

1
3 (r)

exchange potential is given by

νx[n(r)] =
4
3C2n

1
3 (r),C2n

1
3 is effective electron-electron interaction due to exchange potential for a

many body system we also need to include the correlation term as well, so the

εLDA
xc [n(r)] =

∫
[ϵx(r) + ϵc(r)]n(r)

2. shortcomings of LDA: it does not work if n(r) varies rapidly and if n(r) shows spin-dependent

behaviour

3. GGA the most significant extension added to LDA is the generalized gradient approximationGGA

by Pedrew, Burke and Erzerhof deals by taking energy as a function of the electron density,

gradient n(r), spin term

4. the exchange term is written as,εGGA
x [n(r)] =

∫
ϵxn(r)Fx(s)dr and the correlation term is written

εGGA
c [n(r)] =

∫
[ϵcnuni(r) +H[n, ζ]]n(r),where ζ is the relative spin polarization

2.3.7 limitations of LDA and GGA

they always underestimate the band gap of the material, this since there’s a discontinuity in exchange

potential which LDA+GGA does not account for due to them being smooth functions and local function

of n(r) which give ∆xc = 0 at the discontinuity of exchange potential

2.4 vdw correctionals

these vdw corrections are added to the Exc to account for the long-range van der Waals interaction of

the materials such as graphene. The main focus of vdw correctional functionals will be vdw-df2 and

vdw-df-c6 which will be compared to pbe
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2.4.1 vdw-df2

in vdw-df2 we modify the exchange-correlational such that it is a function of the usual stuff in GGA

approximation along with some non-local functionals to account for the vdw forces, mathematically it is

written as

Exc =

∫
n(r)εvdw−df2

xc (n(r),∇n(r))

here εvdw−df2
xc represents exchange-correlation energy per electron as a functional of n(r) and ∇n(r).

εvdw−df2
xc = εLDA

xc + εnlxc

where εnlxc represents the non-local correlational energy which accounts for the vdw interactions and is a

function of n(r) and ∇n(r)

mathematically εnlxc=
∫
d3r

∫
d3r

′
n(r)ϕ(r, r

′
)n(r

′
)

where ϕ is called the internal functional and is semilocal which takes care of the εxc of a gradient-corrected

LDA at point r[7]

2.4.2 vdw-df-c6 or c6

vdw-df-c6 or c6 takes care of the London dispersion forces.we do this by modifying our Exc term

Ec6
xc= Edft

xc + Edisp

where Edft
xc is the standard exchange-correlation energy without any corrections and Edisp is the energy

of the London force/dispersion force between two atoms or molecules at ith and jth position[8]

Edisp =
∑

i<j
C6i,j

R6
i,j

where C6 is the coefficient of the dispersion relation between any two atoms (molecules) at the ith and

jth positions.

C6 is calculated in QE by C6 =
−∂2Exc

2∂n2

2.5 limitations of dft

it can not be used in strongly correlated systems like liquids, ferromagnetic systems etc.strongly corre-

lated meaning system where the coloumbic or potential term dominates over the kinetic energy term

variational principle cant be used to refine the results because the νxc is very sensitive to the initial input

It gives incorrect results for long non-covalent interactions example hydrogen bonding,π − π stacking.

Struggles with dynamic systems where nuclear-electron coupling can’t be ignored, non-static electron

density, nuclear and electron speeds are relative to one another

requires in-depth knowledge of the material to select the correct XC functional which may not be suit-

able for other materials and other parameters which isn’t always possible in simpler words your chosen

parameters have to be finely tuned for different types of material
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Chapter 3

Results

3.1 Mono-Layer Graphene (MLG)

from the figure below we can see that MLG is a honeycomb structure(simple hexagonal)[9]. also, we keep

the inter-unit distance c ∼ 10 or 15 Å to ensure the interaction between any two unit cells is very weak

and can be approximated to a non-interacting system.

The initially chosen coordinates for Graphene are (1/3,2/3,1/2) and (2/3,1/3,1/2)

.The experimental value of lattice constant a is ∼ 2.46 Å, band gap of 0 eV.

3.1.1 structure for graphene

pseudopotential type of approximation lattice constant in Å

C.pbe-n-kjpaw psl.1.0.0.UPF GGA+PAW 2.46

Table 3.1: pseudopotential, approximation and lattice constant

Figure 3.1: structure for unit cell for MLG and its extended version 3x3x1

we can see that the lattice obtained and experimental are in good agreement with one another.

11



3.2. OPTIMIZATION CHAPTER 3. RESULTS

3.2 Optimization

K-points optimization:it is the points in the reciprocal lattice with a constant equal spacing of 2π/a.

it’s a grid k*k*k that is numerically integrated in the 1st Brillouin zone and used to determine the energy,

electronic properties, and other properties of the material. It is optimized to reduce the number of k

points required to save computational time and storage along with high-accuracy results. the optimized

k points are carried by plotting k points vs scf energy and finding the point at which the energy saturates

at points with very low fluctuations, this point is the optimized k point grid. note that k points don’t

strictly decrease monotonically but oscillate near the saturation point[5]

Figure 3.2: K-point graph using PAW pseudo-potential

Ecut: it’s the maximum allowed kinetic energy of the plane waves being used within a radius rc. it

helps to determine the number of plane waves used for DFT calculations within the given k grid space,

high ecut value gives a highly accurate result but it is computationally slow and takes a huge amount of

storage which is the reason we optimize ecut value. it’s optimized similarly to k-point optimization

Figure 3.3: ecut graph for PAW

12



3.3. EXCITATION SPECTRA CHAPTER 3. RESULTS

smearing: it’s the artificial smoothing of electron density near the fermi level for metals is known as

smearing. smearing is done to prevent the fluctuations of electron density for metals and metal-like

materials during scf calculations. These fluctuations are caused due to the electrons near the fermi which

can cross to the conduction band in one calculation and remain at the valence band in the other which

causes the scf calculations to give incorrect results, it’s is done by creating smooth artificial function of

energy running from 0 to 1 to help stabilize the fluctuations of electron density. smearing is optimized

by carrying out scf calculations with different smearing functions with different values of the smearing

function (degauss) and plotted against the energy, the one which fluctuates the least is the optimized

smearing function

Figure 3.4: smearing here for PAW

all these steps along with relaxation(optimization of the unit cell) are to create an optimized scf file from

which our band structure and DOS are obtained from which the electronic properties of the materials

and other properties are inferred on and interpreted

3.3 excitation spectra

Bandstructure: the range of energy in a continuum in which electrons may occupy is called band

structure otherwise it’s also called the energy dispersion relation, this is a function of the K. band

structure is useful for telling whether the material is a metal, semiconductor, or insulator. it’s calculated

by first running scf calculations and finding the energy of each electron, then performing an NSCF

calculation to extract the eigen values and eigen vectors of those energies and convert them into a .gnu

file and extract the data from there, subtract the Fermi energy we obtain with the bandstructure so that

the zero aligns itself with the Fermi level. we use an external plotting application (Xmgrace/QTiplot) to

plot and interpret the data obtained

The experimental band gap for un-doped graphene is 0 eV and the one obtained is 0 eV. Also, note that

the experimental band gap obtained and the one we obtained from our DFT calculation perfectly match

each other. Note that the valence bands are filled and just touch the conduction bands at the Fermi level.

This point is reported in the literature review as the Dirac point

Density of states(DOS): it’s the energy occupied at a given electronic for a given dimension. DOS is

useful for telling how the number of electronic states is distributed within a given dimension(0-3) at a

given energy. it’s carried by first running a scf calculation and then we use this scf energies to integrate

13
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Figure 3.5: bandstructure of PAW

them using the tetrahedron method. in this method, the grid is subdivided into many tetrahedrons and

then numerically integrated to give the DOS of the system, we then the DOS.x commands to convert

this output into a spreadsheet is then plotted against the energy, we also subtract the Fermi level from

here to make the 0 align with the fermi level. this plot is then accordingly interpreted.We have chosen 4

High symmetry points Γ(k=0), K(k=0.6667), M(k=1.000), Γ(k=1.577)

The DOS at fermi level is 0 at the fermi level.

Figure 3.6: DOS of PAW

The DOS, band gap is 0 which is in line with the previous studies done.

3.4 Bi-layer Graphene(BLG)

For BLG we have two layers of Graphene sheets separated by a distance d in a single unit cell which has

the same C-C bond length of 1.42 Åbecause we have taken the same material and have increased the

number of layers. [10].
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3.4.1 AA Stacking

Structural Optimization and Relaxation

In AA stacking the graphene layers are perfectly aligned on top of each other. We have performed

structural relaxation optimization and found we optimized the K point grid, ecut and smearing. [9]

Figure 3.7: AA stacking structure: unit cell and 3x3x1

parameter K point Ecut Smearing
optimized value 72 50 MP

Table 3.2: optimized value for AA structure

Experimentally AA and AB have an inter-layer distance of 3.55 and 3.55 Å respectively from the

vdw functional pbe df2 c6

lattice constant in Å 2.46 2.49 2.46
fermi energy in eV 3.32 3.07 3.20

C-C bond length in Å 1.42 1.44 1.42

inter-layer distance in Å 4.38 3.61 3.43
relative error in inter-layer distance in % 23 1.7 3.4

Table 3.3: Data for different vdw functionals for AA

given data we can see that overall C6 is the best one over here for describing AA BLG. This was used

to calculate the band gap and DOS for pure AA and the obtained lattice parameters within 1.2 % of the

experimental value[3]

Band structure and DOS for AA stacking

we can see that the band structure of AA has a symmetric split at the K symmetry point with a band

gap of 0.1 eV This is explained due to the electronic inter-layer coupling. All 3 vdw show similar results

for the band gap

15



3.4. BI-LAYER GRAPHENE(BLG) CHAPTER 3. RESULTS

Figure 3.8: Band-structure for AA stacking with c6 vdw correctional and its zoomed version.-20 eV to
10 eV for the 1st image, right one is -5 to 5 eV range

Figure 3.9: The DOS of the above figures with the same energy range

vdw used pbe df2 c6
band gap in eV 0.11 0.03 0.11

Table 3.4: band gap with different vdw functionals for AA stacking

3.4.2 AB stacking

In AB stacking the 1st and 3rd layers are perfectly aligned while the 2nd layer and 4th layers are perfectly

aligned. B layer the hexagonal structure is slightly shifted to the centre of the vacant space in the A layer

This type of stacking is also known as Bernal stacking otherwise commonly called AB Stacking. This

stacking is the most preferred form of stacking by graphene in nature [11]

parameter K point Ecut Smearing
optimized value 72 50 MP

vdw functional pbe df2 c6
lattice constant 2.46 2.49 2.46

Fermi energy in eV 3.31 3.06 3.18

C-C bond length in Å 1.42 1.44 1.42

inter-layer distance in Å 3.70 3.56 3.42
relative error in inter-layer distance in % 10.38 6.2 1.95

Table 3.5: lattice constant, energy obtained for different vdw functionals for AB

from the given data we can see that df2 gives the result
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Figure 3.10: AB stacking: unit cell and 3x3x1

Band gap and DOS for AB stacking

Figure 3.11: Band structure for AB stacking with c6 vdw. energy range for the left one is -20 to 10 eV,
right one is -5 to 5 eV

This band nature can be explained since the lowest conduction and highest valence band meet exactly

at the fermi level.

Figure 3.12: DOS of the above figure with the same energy range
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vdw used pbe df2 c6
band gap in eV 0 0 0

Table 3.6: band gap with different vdw functionals for AB stacking

3.4.3 Comparsion between AA and AB stacking

band gap for AA and AB stacking

stacking pbe df2 c6
AA 0.11 eV 0.03 eV 0.11 eV
AB 0 eV 0 eV 0 eV

Table 3.7: band gap for different vdw functionals with AA and AB stacking for bi-layer graphene

AA has a band gap due to increased coloumbic repulsion between the pz electrons and slightly less

overlap between them for vdw forces. This leads AA to have less stability as compared to AB, this can

be observed from scf calculation that AA has an energy of -47.34 and AB has an energy of -47.89

inter layer distance

stacking pbe df2 c6
AA 4.3786 3.6141 3.4313
AB 3.6976 3.5578 3.4152

Table 3.8: inter-layer distance in Å for BLG

The Comparison of the inter-layer distance for AA and AB if we compare the experimental

and our obtained values for inter-layer distance, We can see that AA has more inter-layer distance than

AB. This is due to AA having a stronger repulsion from the pz electrons bands than AB

Figure 3.13: relative error for inter-layer distance for AA and AB stacking for different vdw functionals;
AA is blue while AB is orange.Experimental value for AA =3.55 Å and for AB=3.35 Å

from the above results, we can see that AB stacking for BLG gives identical results to graphite. At

the same time, AA is almost identical to AB aside from the symmetry breaking at the high symmetry
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point at K. Also it can be seen that vdw plays a significant role in determining the inter-layer distance

and band gap. We can see that df2 gives the most accurate result for AA and c6 gives the most accurate

result for Ab stacking. Even though AA Stacking has a band gap a very small one is almost identical

to AB stacking. The small splitting that we have observed in both AA and AB is due to the inter-layer

coupling present in BLG

3.5 Doping

3.5.1 Comparison between un-doped and doped MLG

a super-lattice of 2*a for MLG, BLG was constructed with the help of burai and then later optimized

using QE, this was then doped with N with the ratio of 1 N atom:7 C atoms for each layer, this doped

super-lattice was optimized and then studied for its electronic properties. N was chosen to be a dopant

due to the similar properties to C, high abundance, high carrier mobility, etc[12][4] . The decrease in

lattice constant can be explained due N’s higher electro-negativity.

pseudo-potential type of approximation lattice constant in Å

N.pbe-n-rrkjus psl.1.0.0.UPF GGA+US 4.89

C.pbe-n-rrkjus psl.0.1.UPF GGA+US 4.93

Table 3.9: pseudo-potential, approximation, and lattice constant

structure of doped and undoped graphene

Figure 3.14: structure of undoped and doped monolayer graphene

Band-stucture and DOS OF Undoped AND Doped MLG

. From the given figure we can see that the band gap has completely disappeared for Doped BLG and

now become metallic

bond type bond length in Å
N-C 1.414

C-C( near N atom) 1.413
C-C(away from N atom) 1.408

Table 3.10: obtained bond length for N doped MLG
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Figure 3.15: The different bond length diagram C-C ( N far), C-C(N near), N-C. atoms in green represent
the selected atoms

Figure 3.16: band structure and DOS of undoped and doped MLG.the red line is the lowest conduction
and highest valence band respectively

type undoped 1N doped
lattice constant 4.93 4.89

fermi energy in eV -1.7219 -0.6035
DOS at fermi level 0 3.65

Table 3.11: properties of undoped and doped MLG

. We have noticed that the lattice parameter has gotten smaller, this is expected behaviour due to

the higher electro-negativity of N than that of C. The change in the Fermi energy can be attributed to

the change in carrier concentration in MLG which has an equal number of electrons and holes but when

doped with N the concentration of electrons has increased and the number of holes has remained the

same, shifting the fermi energy closer to the conduction band now. The DOS which has changed from a
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zero for undoped to a non-zero value for the DOS [13] [14]

3.6 N-DOPED BI-LAYER GRAPHENE: N DOPED BLG

We will use the same pseudo-potential as before and keep the ratio of 1:7 per layer for our N-doped BLG

calculation. We used a 200 k grid with an ecut of 80 Ry with MP smearing.

vdw used pbe df2 c6

lattice constant Å 4.89 4.94 4.89

N-C bond length in Å 1.41 1.43 1.41

C-C bond length in Å 1.41 1.42 1.41

Table 3.12: N-doped AA BLG data

vdw used pbe df2 c6

lattice constant Å 4.89 4.94 4.89

N-C bond length in Å 1.42 1.43 1.42

C-C bond length in Å 1.41 1.42 1.41

Table 3.13: N-doped AB BLG data

Structure of AA and AB N-doped BLG

structure of AA and AB stacked N doped BLG

Figure 3.17: . we have used 3x3x1 repetition of the unit is used here

Inter-layer distance

NOTE

1. C-C (Near N) refers to the C-C bonds that have at least one N attached adjacent to one of the C

2. C-C (Far N) refers to C-C bonds that have no N attached adjacent to these C atoms under consideration

3. The order is as follows for the pictures: C-C (N far), C-C(N near), N-N, N-C

With the inclusions with df2 and c6 as vdw correction functionals, the inter-layer has reduced drasti-

cally and AA is now much lower than AB and for C6 we get the minimum amount of inter-layer distance
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Figure 3.18: different interlayer distance for different types of bonds for AA.

Figure 3.19: different interlayer distance for different types of bonds for AB.

Stacking AA AB

C-C(Near N) in Å 6.0342 4.2795

N-C in Å 6.0232 4.5058

C-C(Far N) in Å 6.0317 4.506

N-N in Å 6.6615 4.5044

Table 3.14: inter-layer distance for N doped BLG with pbe

Stacking AA AB

C-C(N near) in Å 3.418 3.8003

N-C in Å 3.409 3.794

C-C(N far) in Å 3.4145 3.8025

N-N in Å 3.6886 3.7998

Table 3.15: inter-layer distance for N doped BLG with DF2

Stacking AA AB

C-C(N near) in Å 3.1225 3.2667

N-C in Å 3.1134 3.5561

C-C(N far) in Å 3.1163 3.5629

N-N in Å 3.411 3.5521

Table 3.16: inter-layer distance for N doped BLG with C6 for vdw interaction.

Band structure of AA AND AB N-doped BLG

Without vdw corrections:pbe

Stacking AA AB
Fermi energy(scf) in eV 2.0264 4.6271
DOS at Fermi level 8.328 7.969

Table 3.17: DOS and Fermi energy obtained for AA and AB stacking for pbe
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Figure 3.20: AA on the left-hand side and AB on the right-hand side

The same metallic nature of the band gap has been observed as in the case of N-doped MLG. The

DOS at the Fermi level has increased by 49 and 46 % from the N-doped MLG this implies that N-doped

BlG is highly more metallic than N-doped MLG. Also now the Fermi energy has significantly increased

albeit there is a large discrepancy between AA and AB
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with vdw corrections: Df2 and C6

Figure 3.21: AA and AB stacking with df2 and c6 vdw correction
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Stacking AA AB
Fermi energy(scf) in eV 4.1901 4.2468
DOS at Fermi level 2.776 6.866

Table 3.18: Fermi energy and DOS obtained for AA and AB stacking with df2

Stacking AA AB
Fermi energy(scf) in eV 4.369 4.4723
DOS at Fermi level 2.457 6.472

Table 3.19: Fermi energy and DOS obtained for AA and AB stacking with c6

On adding vdw correction df2 and c6 we see that the DOS for AA and AB has decreased sharply,

the discrepancy between AA and AB has increased and the Fermi level has become comparable between

AA and AB. AA has a lower DOS to N-doped MLG and vice versa for AB. we notice a downward trend

from df2 to c6 in the Fermi energy for AA and AB and the opposite happens for DOS.

3.7 Summary

The electronic properties of Graphene were studied using Density Functional theory. Undoped Monolayer

Graphene and undoped AB stacked Graphene showed zero Bandgap at high symmetry K point as well

their DOS was found to be zero at the fermi level. The electronic repulsion by the pz electrons created a

small band gap near the high symmetry K point which increased the inter-layer distance and created a

small band gap for bi layer. Various Van der Waals functionals were used to increase the accuracy of the

inter-layer distance and Band gap and to check the role of Van der Waals interaction in the inter-layer

distance and band gap in bi layer graphene. We doped Graphene 2x2 super lattice with Nitrogen to

1:7 ratio per layer. This made it completely metallic and has a non-zero value of Density of states at

the fermi level, AB Stacking increased the density of states at the fermi level compared to the doped

mono-layer while a decrease in the density of states for AA stacking was observed. It also shifted the

fermi level towards the conduction band.
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