GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the 9th Special Meeting of the

X ACADEMIC COUNCIL

Day & Date

Saturday, 30th July, 2022

<u>Time</u>

10.00 a.m.

Council Hall Goa University

	Council.
	The proposed syllabus/structure for Semester III and Semester IV was deferred by the
	house.
	(Action: Assistant Registrar Academic – PG)
D 3.29	Minutes of the Board of Studies in Biotechnology meeting held on 20 th May 2022.
	The Academic Council approved the minutes of the Board of Studies in Biotechnology
	meeting held on 20 th May 2022 with the following suggestions:
	1. The Course Codes for the PG programme to be revised/Changed.
	2. Minimum two optional courses to be offered. Four credits of optional courses
	shall be added in semester I and two credits in semester II.
	3. Prerequisites for the Course to be added.
	4. Course objectives to be included.
	5. The Chairperson, Board of Studies was requested to resubmit the syllabus
	incorporating the suggestions and thereafter the Vice-Chancellor was authorized to approve the same on behalf of the Academic Council.
	6. The proposed syllabus/Structure for M.Sc. Biotechnology and M.Sc. Marine
	Biotechnology of Semester III and Semester IV was deferred by the house.
	(Action: Assistant Registrar Academic – PG)
D 3.30	Minutes of the Board of Studies in Food Technology meeting held on 27.07.2022.
	The Academic Council approved the minutes of the Board of Studies in Food Technology
	meeting held on 27.07.2022 with the following suggestions:
	1. The word '&' used in the Course Code of the Programme to be removed/deleted.
	 The Course Codes for the Programme to be revised/Changed. Programme structure to be changed.
	 4. The proposed syllabus/structure for Semester III and Semester IV was deferred by
	the house.
	(Action: Assistant Registrar Academic – PG)
D 3.31	Minutes of the Board of Studies in Zoology meeting held on 26.07.2022.
	The Academic Council approved the minutes of the Board of Studies in Zoology meeting
	held on 26.07.2022 with the following suggestions: 1. Number of credits for the course should be checked.
	 Number of credits for the course should be checked. The Course codes and the Hours to be clearly mentioned/formatted.
	3. The proposed syllabus/structure for Semester III and Semester IV was deferred by
	the house.
	(Action: Assistant Registrar Academic – PG)
D 3.32	Minutes of the Board of Studies in PGDCG & MLT meeting held on 26.07.2022.
	(Item Withdrawn)
	(Action: Assistant Registrar Academic – PG)
D 3.33	Minutes of the Board of Studies in Marathi meeting held on 27.07.2022.
	The Academic Council approved the minutes of the Board of Studies in Marathi meeting
	held on 27.07.2022 with the following suggestions:
	1. The Chairperson, Board of Studies was requested not to indicate the titles of the

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL UPDATED AGENDA

For the 9th Special Meeting of the

X ACADEMIC COUNCIL

Day & Date

30th July, 2022

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administration Block

		X AC- 9 (Special) 30.07.2022
	 Upgradation of M. Sc Botany Syllabus from contact hours from 12 to 15 hours per credi Introduction of TWO new Discipline Spec Botany Semester I & Semester II. Updated the Course Codes of M.Sc. Botany Updated the master panel of the examiners Updated the model question paper man Molecular Biology and Genetic Engineering 	t. ific Optional Courses for M. Sc. programme. s of UG Botany programme. rking scheme of paper BOC-109
	ii. The declaration by the Chairman, that the minu at the meeting itself.	tes were read out by the Chairman
	Date: 27.07.2022 Place: Goa University	Sd/- Signature of the Chairman
	 Part G. The Remarks of the Dean of the Faculty i) The minutes are in order. ii) The minutes may be placed before the Academic iii)May be recommended for approval of Academic iv)Special remarks if any. 	-
	Date: 27.07.2022 Place Goa University	Sd/- Signature of the Dean (Back to Index)
D 3.29	Minutes of the Board of Studies in Biotechnology mee	
	 Part A. i. Recommendations regarding courses of study in the undergraduate level: N.A. ii. Recommendations regarding courses of study in the postgraduate level: Reviewing the syllabus of M.Sc. Marine Biotect for 80 credits. 	n the subject or group of subjects at
	Part B i. Scheme of Examinations at undergraduate level ii. Panel of examiners for different examinations a iii. Scheme of Examinations at postgraduate level: iv. Panel of examiners for different examinations a	t the undergraduate level: : N.A. N.A.
	 Part C. i. Recommendations regarding preparation and preparation and preparation in the subject or group of subjects recommended for appointment to make the sel 	and the names of the persons
	Part D i. Recommendation regarding general academic of University or affiliated colleges. : N.A.	requirements in the Departments

	30.07.2022
	ii. Recommendations of the Academic Audit Committee and status thereof: : N.A.
	Part E.
	i. Recommendations of the text books for the course of study at undergraduate level: : N.A.
	ii. Recommendations of the text books for the course of study at post graduate level: Updated list of text books for First and Second Semester of M.Sc. Biotechnology and M.Sc .Marine Biotechnology proposed.
	Part F.
	Important points for consideration/ approval of Academic Council
	i) The important points/recommendations of BoS that require consideration/approval of Academic Council (points to be highlighted) as mentioned below
	M.Sc. Zoology 1. First ParendarSecond Semester courses (Theory and Practicals) for M.Sc. Biotechnology (<u>Annexure-I</u> 1023) and M.Sc. Marine Biotechnology (<u>Annexure-I</u> 1023) and M.Sc. Marine Biotechnology (<u>Annexure-II</u> 1053) programs.
	2. Scheme of courses for Third and Fourth Semester for M.Sc. Biotechnology (Annexure-I) and M.Sc. Marine Biotechnology (Annexure II) programs. The declaration by the chairman that the minutes were readout by the Chairman at the meeting itself.
	Date:27.07.2022
	Place: Goa University Sd/-
	Signature of the Chairman
	Part G . The Remarks of the Dean of School of Biological Sciences & Biotechnology i) The minutes are in order.
	 ii) The minutes may be placed before the Academic Council with remarks if any. iii) May be recommended for approval of Academic Council. iv) Special remarks if any.
	Date:27.07.2022 Sd/-
	Place. Goa University. Signature of the Dean (Back to Index)
D 3.30	Minutes of the Board of Studies in Food Technology meeting held on 27.07.2022. Part A.
	i. Recommendations regarding courses of study in the subject or group of subjects at the undergraduate level: NA
	 Recommendations regarding courses of study in the subject or group of subjects at the postgraduate level: MSc. In Food Technology Syllabus attached as <u>Annexure I</u> refer page no.1085
	Part B i)Scheme of Examinations at undergraduate level: NA ii)Panel of examiners for different examinations at the undergraduate level: NA

D 3.29 Minutes of the Board of studies in Biotechnology meeting held on 20th May 2022.

Annexure I

Proposed M.Sc. Biotechnology Proposed Scheme

M.Sc. Biotechnology 2022-23

Course			
Code	Courses		
	SEMESTER I		
	Course	Credits	Course
	Title		Level
GBC 181	Microbiology	3	100
GBO 182	Concepts in Biochemistry	2	100
GBC 183	Biophysical Principles & Analytical	2	100
CDC 104	Techniques	2	100
GBC 184	Immunology	3	100
GBO 185	Biostatistics	2	100
GBC 186	Lab I: Techniques in Microbiology.	3	100
GBC 187	Lab II : Immunology	2	100
ab a 100	LAB III: Biochemical and analytical	3	100
GBC188	techniques	20	
	Total	20	
CDC 100	Semester II	2	100
GBC 189	Environmental Biotechnology	3	100
GBC 190	Stem Cell Biology and regenerative	1	
CDC 101	medicine	2	100
GBC 191	Genetics and Molecular Biology Cell and Developmental Biology	3 3	100
GBC 192	Cen and Developmental Biology	3	100
GBO 193	Bioinformatics	2	200
GDO 175	Diomoniates	2	200
GBO194	Bio entrepreneurship	2	100
GD OI)		-	100
GBC 195	Lab IV: Genetics and Molecular Biology	2	
GBC 196	Lab V: Plant and Animal Tissue Culture	2	100
GBO 197	Lab VI: Lab in Bioinformatics	2	100
	Semester III		
GBRO 198	Recombinant DNA Technology	3	300
	Bioprocess Technology	3	300
	Waste Management	3	300
	IPR, Biosafety & Bioethics	3	100
	Food Technology	2	200
GBOG 203	Virology	2	200
GBOG 204	Lab in Bioprocess technology	2	300
	Lab VII: Lab in Recombinant DNA	2	300
	Technology		
	Semester IV		
GBOG 206	Research-based specialization	1	200
GBOG 207	Scuba Diving	2	200
GBSD 208	Dissertation	16	400

			30.07.20
GBOG 209	Field trip	1	200
	Optional Generic Course		
	Bio entrepreneurship	2	100
	Genomics & Proteomics	2	200
	Plant and Animal Biotechnology	2	300
	Emerging trends in wastewater treatment	1	200
	Solid waste Management	3	200
	Nanotechnology	2	100
	Lab in Environmental Biotechnology	3	100

Course level 100: No prerequisite for the course.

Course level 200: At least one prerequisite course is required.

Course level 300: More than two prerequisite courses are required

- GBC : Marine Biotechnology-specific core course.
- GBO : Marine Biotechnology specific-optional course
- GBOG: Marine Biotechnology-optional generic course
- GBRO: Marine Biotechnology research-specific optional course

GBSD: Marine Biotechnology-specific dissertation

SEMESTER- I

Course Code: GBC-181 Title of the Course: Microbiology Number of Credits: 3

Objective:	The objective of this course is to provide information abou	t the types	
Objective.	of microbes, nutrition, and general characteristics	t the types	
Learning	After completing this course, students should be able to-		
<u>Outcomes</u>	 explain the principle features of marine ecosystem microbial diversity in ecoans; 	ns and the	
	microbial diversity in oceans;2. describe and discuss marine microbes in terms of ph	weiglogical	
	capability and their biogeochemical role.	iysiological	
Contents:	MODULE I		
<u>contents.</u>			
	 A brief history of microbiology: discovery of the microbial world, controversy over spontaneous generation, the role of microorganisms in the causation of disease, development of pure enrichment culture methods. Modern /contemporary microbiology in the 21st century An overview of the organization and cell structure of Prokaryotes and Archaea: i) cell wall ii) outer membrane iii) cytoplasmic membrane iv) flagella & specialized movements in microbes v) cell inclusions iv) differences among the groups. 	15 hours	
	MODULE II		
	 Microbial nutrition: i) autotrophic & heterotrophic modes, ii) defining culture media to support growth, iii) Selective and differential culture media. Bacterial growth kinetics: i) growth curve, the mathematical expression of growth & measurement of growth ii) synchronous growth iii) factors affecting growth iv) chemostat & turbidostat. Microbial taxonomy: i) nomenclature ii) polyphasic identification, traditional & molecular, iii) Bergey's manual. 	15 hours	
	MODULE III		
	 i) Structure & classification. ● Algae ● Fungi 		
	 Fungi Cyanobacteria Bacteria 	15 hours	

	50.07.2022
	Viruses
	• Viroids & prions
	ii) Specialized microorganisms:
	Marine microbes
	•Extremophiles: barophiles, psychrophiles, thermophiles,
	halophiles, acidophiles
	Anaerobes
References/Readings	1. Tortora, G., Funke B., Case, C., 2018 Microbiology: An
	Introduction. Pearson.
	2. Madigan M., Bender K.M., Buckley D., Sattley W., Stahl D (2018)
	Brock Biology of Microorganisms. Pearsons
	3. Willey, J., Sherwood, L., Woolverton, C.J., (2016) Prescott's
	Microbiology. Mcgraw Hill.
	4. Harvey, R.A., Cornelisse, C.N., (2012) Lippincott Illustrated
	Reviews: Microbiology (Lippincott Illustrated Reviews Series)
	LWW publisher
	5. Madigan, M., Martinko & Parker, J (2010). Brock's Biology of
	microorganisms. Pearson Prentice Hall.
	6. G. Reed, Prescott & Dunn , (2004) Industrial Microbiology CBS
	Publishers .
	7. Pelczar M.J., Chan ECS and Krige (2004)Microbiology Tata
	Macgrw Hill
	8. Stanier, R.Y., Ingraham, J.L., (1999) General Microbiology.
	Palgrave Macmillan
	9. Ford T E (1993). Aquatic Microbiology: An ecological approach.
	Blackwell Scientific Publication.
	10. Atlas, R.M. (1989). Microbiology: Fundamentals and
	Applications. World Cat Publisher
	 G Reed, (1987) Prescott & Dunns Industrial Microbiology. CBS Publishers.
	12. Rheinhemer, G, (1980) Aquatic Microbiology Wiley and sons
	13. Collins, Granje J., Lyne, P M. Falkenheim J., (2004)
	Microbiology Methods Hodder Arnold Publication.

Course Code: GBO 182

Title of the course: CONCEPTS IN BIOCHEMISTRY

Course Objectives	The major objective of this course is to build upon the knowledge of basic biochemical principles with emphasis on different metabolic pathways and their integration. Attention is drawn to the structure-function relationships of biomolecules.
Learning	Gain fundamental knowledge in biochemistry and understand the role of

_		30.07.2022
Outcomes	enzymes in the regulation of metabolic pathways.	
Contents:	MODULE I	
	 Biochemistry: the molecular logic of life. Amino acids, proteins, nucleic acids, carbohydrates, and lipids. Vitamins and hormones. Forces that stabilize biomolecules: electrostatic and Vander Waal's interaction, hydrogen bonding. Interactions with solvents, Hydrophobic effect. Basic Thermodynamics: Laws of thermodynamics. Concepts of ΔG, ΔH, and ΔS. Chemical kinetics: Concepts of Order and molecularity of a chemical reaction. Derivation of first and second-order rate equation, measurement of rate constants. Concept of activation energy. Enzymology: Introduction and classification of enzymes. Types of enzymatic reaction mechanisms, Enzyme kinetics, enzyme inhibition, Regulatory enzymes. Isozymes, Zymogen and Ribozyme. Examples of enzymatic reactions. 	15 hours
	 MODULE II Basic concepts and design of metabolism - glycolysis, gluconeogenesis Pyruvate oxidation, Citric acid cycle Oxidative phosphorylation; the importance of electron transfer in oxidative phosphorylation; F₁-F₀ ATP Synthase; shuttles across mitochondria; regulation of oxidative phosphorylation, inhibitors of electron transport chain. Glyoxylate cycle The pentose phosphate pathway Fatty acid synthesis, β-oxidation; biosynthesis of membrane lipids and sterols with specific emphasis on cholesterol metabolism and the mevalonate pathway Amino acid metabolism; nucleotide metabolism Photosynthesis and photorespiration 	

	<u>X AC- 9 (Special)</u> 30.07.2022
References/ Reading	 Murray, R.K. et al (2022). Harper's Illustrated Biochemistry McGraw Hill publisher. Abali E. E., Cline S. D., Franklin D. S., Viselli S. M., (2021) Lippincott Illustrated Reviews: Biochemistry Wolters Kluwer publisher Miesfeld R. L., McEvoy M. M., (2020) Biochemistry. Worldwide publisher Stryer L; Berg J., Tymoczko J., Gatto G. (2019). Biochemistry New York, Freeman publisher. Voet, D., Voet, J.G., Charlotte W.P. (2018). Fundamentals of Biochemistry. Life at the molecular level. Wiley publisher. Papachristodoulou D., Snape A., Elliott W. H., and Elliott D. C. (2018). Biochemistry and Molecular Biology. Oxford University publisher. Nelson D.L. (2017) Lehninger Principles of Biochemistry. W.H. Freeman & Co. Voet, D., Voet, J.G., Charlotte W.P (2012). Principles of Biochemistry. Wiley publisher.

Course Code: GBC 183 Title of the course: BIOPHYSICAL PRINCIPLES & ANALYTICAL TECHNIQUES Number of the Credits: 2

Course	The course is designed to provide a broad exposure to basic techniques
Objectives	used in Modern Biology research. The goal is to impart basic conceptual understanding of principles of these techniques and emphasize biochemical utility of the same. Student is expected to have a clear understanding of all analytical techniques such that the barrier to implement the same is abated to a great extent.

X AC- 9 (Special)
30.07.2022

	30.07	.2022
Learning	Students will learn to combine previously acquired knowle	0 1 7
Outcomes	and chemistry to understand the biochemical processes in t	he cell.
		1
Contents:	MODULE I Description of Macromolecular Structure, Intermolecular and Intramolecular forces in protein, DNA and other biomolecules.	
	Diffusion, Brownian motion and sedimentation, determination of molecular weight from sedimentation and diffusion.	
	Concept and application of Chemical and Physical equilibria in biological system	
	Nature and Role of Ionic, Covalent and Non-covalent Interaction in molecular confirmation, scaffolding and packaging of protein and DNA	
	Thermodynamics of protein folding: Protein folding kinetics, Misfolding and aggregation.	15 hours
	Physical biochemistry of cell: Chemical forces translation and rotation, diffusion, directed movements, biomolecules as machines, work, power and energy, thermal, chemical and mechanical switching of biomolecules,	
	Biochemical and biophysical characterizations of biomolecules: Fluorescence from GFP), UV-VIS absorption and emission spectra resulting from intrinsic Tryptophan and GFP chromophores, Fluorescence quenching and polarization studies, Unfolding and refolding studies using CD. protein diffusion, dynamics by fluorescence correlation spectroscopy.	
	MODULE II Spectroscopy: Electromagnetic radiations in spectroscopic techniques. Beer-Lambert law, UV/Visible spectroscopy, Fluorescence spectroscopy, Emission, excitation, Quenching, Quantum Yield. Nuclear magnetic resonance Spectroscopy. Electron spin resonance spectroscopy.	
	Centrifuge: Basic concepts of centrifugation. Calculation of g value from RPM. Types of rotors used,	15 hours

	<u>X AC- 9 (Special)</u> 30.07.2022
	Differential centrifugation, Density gradient centrifugation. Rate-zonal centrifugation, Isopycnic centrifugation.
	Microscopy: Abbey's law, Resolution, Magnification, Phase-contrast microscopy, Confocal microscopy, High resolution microscopy, Nanoscopy: Atomic force Microscopy, Scanning-tunneling Microscopy, Scanning electron microscopy, Transmission electron microscopy and Cryo-electron microscopy
	X-ray diffraction
References/ Reading	1. Subramaniam, M. A (2021) Biophysics: Principle and techniques, MJP Publishers.
	 Bhavna P., Fulekar, M.H (2019), Bioinstrumentation, Wiley Int. Rodney C., (2017). Biophysics: An IntroductionWiley Int. Anders L. et al. (2016) Textbook of Structural Biology. World Scientific. Salman K., and Diaz, Z., (2016) Principal And Techniques of Bioinstrumentation, Intelliz Publisher Tinoco Jr. I. Sauer K., Wang J.C., Puglisi J. D., Harbison G., Rovnyak D. (2013) Physical Chemistry: Principles and Applications in Biological Sciences Pearson Publishers Atkins, de P. (2011) Physical Chemistry for the Life Sciences. W.H. Freeman. Van Holde K. E., Johnson, C. Ho P. S. (2005) Principles of Physical Biochemistry. Prentice Hall. Schulz GE and Schirmer RH, (1998) Principles of Protein Structure, Springer Verlag. Branden C., and Tooze J., (1998) Introduction to Protein Structure, Garland Science. Stout G.H., and Jensen L.H., (1989) X-ray Structure Determination: A practical guide. John Wiley and Sons Inc., New York.

Course Code: GBC-184 Title of the Course: Immunology Number of Credits: 3

Objective:	To provide a basic knowledge and to appreciate the components of the
	human immune response that work together to protect the host. 2) To
	understand the concept of immune-based diseases as either a
	deficiency of components or excess activity as hypersensitivity 3) To
	gain an insight into the mechanisms that lead to beneficial immune
	responses, immune disorders, and immune-deficiencies.

	30.07		
Learning Outcomes	The mode of continuous assessment and formulation of test	sts enables	
	students to handle competitive entrance exams. The basic overview of		
	Immunology strengthens their foundations for a	career in	
	Biotechnology.		
<u>Contents:</u>	MODULE I – Concepts and Basics		
	 Introduction – History and scope of immunology 		
	 Innate immunity:- factors, features, processes 		
	• Acquired:- the Specificity, memory, recognition of		
	self from non-self.		
	• Cells of the immune system: Hematopoiesis and		
	differentiation, Lymphoid and Myeloid lineage,		
	lymphocyte trafficking, B lymphocytes, T		
	lymphocytes, macrophages, dendritic cells, natural		
	killer and lymphokine-activated killer cells,	451	
	eosinophils and mast cells, lymphocyte	15 hours	
	subpopulations and CD markers.		
	Organization of lymphoid organs		
	MALT, GALT, SALT		
	Phagocytosis: oxygen-dependant/ independent		
	killing intracellularly.		
	Major histocompatibility complexStructure of		
	MHC molecules, basic organization of MHC in		
	human , haplotype-restricted killing.		
	• Nature and biology of antigens and superantigens:		
	haptens, adjuvants, carriers, epitopes, T		
	dependant and T independent antigens		
	MODULE II – Defence Components: Constituents of		
	immune system and response		
	 Theories of antibody formation and res 		
	 olution of antibody structure 		
	Humoral immunity: cells, antibody formation,		
	primary and secondary response.		
	• Immunoglobulins – structure, distribution and	15 hours	
	function.		
	 Antigen – Antibody interactions: forces, affinity, available values and kinetics 		
	avidity, valency and kinetics.The basics of immuno-diagnostics		
	MODULE III – Defence Strategies and Pitfalls: Effector		
	mechanisms of immune responses		
	• Complement system: mode of activation, classical,		
	alternate and MBL pathways. Structures of key		
	components.		

	<u>X AC- 9 (Special)</u> 30.07.2022	
	 Cell mediated immune responses: cell activation, cell-cell interaction and cytokines. Cell-mediated cytoxicity: Mechanism of T cell and NK cell mediated lysis, antibody-dependant cell-mediated cytotoxicity. 	
	 Hybridoma technology and monoclonal antibodies. 15 hours Hypersensitivity: An introduction to the different types. Introduction to autoimmune diseases. 	
References/Readings	 Kannan I (2021) Immunology. MJP Publishers. Hardeep Kaur H., Toteja R., Makhija. S., (2021) Textbook of Immunology Wiley Publisher Punt, J., Stranford, S., Jones, P., Owen, J.A., (2018) Kuby Immunology W.H. Freeman Roitt I.M. Delves P.J. Martin S. J., Burton D R, Roitt I.M. (2017) Essential Immunology Wiley-Blackwell Male D., Brostoff J., Roth D., Roitt I., (2013) Immunology. Elsevier Saunders publication. Luttmann W., Bratke K., Kupper M., and Myrtek D (2009). Immunology. Academic Press. 	

Course Code: GBO 185 Title of the course: BIOSTATISTICS

r		
Course Objec	The objective of this course is to introduce students to statistical methods and to understand underlying principles, as well as practical guidelines of "how to do it" and "how to interpret it" statistical data.	
Learning Outo	 Upon completing this course, students should be able to - understand how to summarize statistical data; 	
	 apply appropriate statistical tests based on an understandi study question, type of study, and type of data; 	ng of the
	 Interpret results of statistical tests. 	
Contents	MODULE I	15 hc
	1 Scope of Diastatictics	
	 Scope of Biostatistics Brief description and tabulation of data and its 	
	graphical representation, and frequency	
	distributions.	
	3. Measures of Central Tendency and dispersion:	
	mean, median, mode, range, standard deviation,	
	variance, coefficient of variation, skewness, kurtosis	
	 Displaying data: Histograms, stem and leaf plots, box plots 	
	5. Probability analysis: axiomatic definition, axioms	
	of probability: addition theorem, multiplication	
	rule, conditional probability, and applications in biology.	
	MODULE II	15 hc
	 Counting and probability, Bernoulli trials, Binomial distribution, and its applications, Poisson distribution 	
	3.Normal distribution, z, t, and chi-square tests, levels of significance	
	4.Testing of hypotheses: null and alternative	
	hypotheses, Type I and Type II errors	
	5.Simple linear regression and correlation	
References/	6.Analysis of variance	nd Doccoret
Reading	 Mahajan B.K., (2018), Methods in Biostatistics: for Medical Students a Worker. Jaype Brothers, 	and Research

3.	Kothari, C. R., (2013) Quantitative Techniques, Vikas Publishing House.
4.	Rao K. Surya (2010), Biostatistics for Health and Life Sciences, Himalaya Publishing House.
5.	Rastogi, V. B. (2009). Fundamentals of Biostatistics. Ane Books Pvt Ltd.
6.	Arora P.N. and Malhan, P.K. (2006), Biostatistics. Himalaya Publishing House.

Course Code:GBC 186

Title of the Course: Lab I: Techniques in Microbiology Number of Credits: 3

Objective:	This course involves learning techniques to culture microbes in the lab to form the basis for application in microbiological research studies.		
Learning Outcomes	Key hands-on experience of converting and applying theoretical knowledge to laboratory. Application of the varied interactions /reactions to be utilized in research. Students become familiar with microbiology techniques that are used in many scientific disciplines as well as clinical medicine.		
<u>Contents:</u>	 Sterilization and disinfection. Preparation of solid & liquid media: Isolation and maintenance of organisms: Streaking, slants and stabs cultures, storage of microorganisms. Differential and Selective media Enumeration: serial dilution methods, plating. Isolation of bacteria from seawater /sediments samples Study of morphology and cultural characteristics Biochemical tests for identification of bacteria. Sugar utilization test (minimal medium + sugar) Sugar fermentation test c. IMViC d. Enzyme detection – Gelatinase, Catalase, Oxidase e. Oxidative-fermentative test Bacteriological tests for potability of water MPN, Confirmed and Completed test. Membrane filter technique (Demonstration) 	30 hours	

	<u>X AC- 9 (</u>	
	30.07	.2022
	11. Staining methods:- Gram staining, Endospore staining, Metachromatic granules, Cell wall staining	30 hours
	12. Motility in bacteria using: Hanging drop method and swarming growth method.	
	13. Antimicrobial sensitivity tests :	
	Agar cup and Disc Diffusion methods	
	14. Drug resistance: comparative studies of different drugs/ disinfectants	
	15. Cultivation of fungi:	
	a.Slide	
	b. chunk	
	c. coverslip techniques	
	d. Wet mounts of fungal cultures	
References/Readings	1. Giltner W. (2017) Laboratory Manual in General	
	Microbiology Creative Media Partners, LLC	
	2. Harrigan W. F., McCance M E (2014). Laboratory	
	Methods in Microbiology Academic Press	
	3. Karwa A.S Rai M.K, Singh H.B (2012). Handbook of	
	Techniques in Microbiology: A Laboratory Guide to	
	Microbes Scientific Publishers	

Course Code: GBC 187 Title of the Course: Lab II: Techniques in Immunology Number of Credits: 2

Objective:	This course involves learning techniques to culture microbes and to
	identify immune reactions in the lab to form the basis for application
	in immunodiagnostics.
Learning Outcomes	Key hands-on experience of converting and applying theoretical
	knowledge to laboratory. Application of the varied interactions
	/reactions to be utilized in research. Students become familiar with
	immunologic techniques that are used in clinical medicine as well as
	immunology research laboratories.

			<u>X AC- 9 (</u>	
			30.07	.2022
<u>Contents:</u>	•	Determination of Antibody titer using De Immuno-diffusion assay	ouble	
	•	Assessment of Similarity between antige Ouchterlony's Double diffusion Test	ens using	
	•	Estimation Of Antigen Concentration usi Immuno Diffusion	ing Radial	30 hours
	•	Quantitative Precipitation Assay		
	•	DOT ELISA		
	٠	Latex Agglutination		
	•	Immunoelectrophoresis		
	•	Rocket Immunoelectrophoresis		
	•	Slide / Tube agglutination Tests.		30 hrs
References/Readings	1.	Talwar G.P Gupta S.K (2017) A Handl Clinical Immunology Vol I CBS Publisher		actical And
	2.	Detrick B., Hamilton R.G., Folds J.E Molecular and Clinical Laboratory Imr Press.	D. (2016) I	
	3.	Detrick B., Hamilton R.G.; Folds J.E Molecular and Clinical Laboratory Immunology ASM Press.	D. (2016) I	Manual of
	4.	Joshi, K.R., Osama, N.O. (2012) Immu	inology, Ag	robios Ltd,
	5.	India. Hay, F.C &, O.M.R. Westwood. (2008)	Practical In	nmunology
	6.	Oxford University Press Janeway, C.A., Travers, P., Walport, M	I. and Shlor	nchik, M.J.
		(2001) Immunobiology: The		
	7.	Hay F.C., Westwood. O.M.R., (2008) (2008) Wiley BlackWell Publishers		munology
		Immune System in Health and Diseas USA.	e, Garland	Publishing,

Course code: GBC 188 Title of the course: LAB III - BIOCHEMICAL & ANALYTICAL TECHNIQUES Number of credits: 3

r	56.67	.2022	
Course Object	The objective of this laboratory course is to introduce experimentation in biochemistry. The course is designed t utility of these experimental methods in a problem-oriented	o teach the	
Learning Outco	 Students should be able to: Elaborate concepts of biochemistry with easy-to-run experiments. Familiarize with basic laboratory instruments and understand principles underlying measurements using those instruments for experiments in biochemistry. 		
Contents	1. UV-Visible spectroscopic analysis.		
	2. Estimation of proteins by the Lowry/Bradford's method		
	3. Estimation of reducing sugars		
	4. Enzyme assay	30 hou	
	5. Ammonium sulfate precipitation and dialysis		
	 Specific activity, fold purification, percentage yield of enzyme 		
	 Protein subunit molecular weight determination by SDS-PAGE 		
	8. Thin-layer chromatography		
	 Column chromatographic techniques: ion exchange/Affinity/Gel filtration 		
	10. Biochemical assays using ELISA plate reader.		
	11. Compound and Fluorescence microscopy demonstration	30 hr:	
	12. Analysis of a biological specimen by SEM		
	13. Fluorescence imaging of fixed stained and live cells		
	14. Demonstration of fluorescence spectroscopy.		
	15. Density gradient ultracentrifugation		
<u> </u>			

	30.07.2022
References/ Re	1. John G., (2020), Biological Centrifugation CRC Press.
	2. Friedrich L., Engels, J. W. (2018) Bioanalytics: Analytical
	Methods and Concepts in Biochemistry and Molecular Biology.
	Wiley-VCH publisher
	3. Ulrich K., (2017) Fluorescence microscopy: From Principle to
	application, Wiley Int.
	4. James J.F. (2017), An Introduction to practical laboratory
	optics, Cambridge University press.
	5. Atkins, de Paula. (2015), Physical Chemistry for the Life
	Sciences (2nd Edition). W. H. Freeman
	6. Prakash S. Bisen, (2014), Laboratory Protocols in Applied Life
	Sciences., Taylor and Francis Publisher
	7. Tinoco, Sauer, Wang, and Puglisi. (2013) Physical Chemistry:
	Principles and Applications in the Biological Sciences. Prentice Hall,
	Inc.
	8. Jayaraman, J. (2011). Laboratory Manual of Biochemistry.
	New Age International Private Limited
	9. Atkins, de Paula. (2011) Physical Chemistry for the Life
	Sciences (2nd Edition). W.H. Freeman.
	10. Wilson, K., Walker, J. (Eds.). (2010). Principles and techniques
	of biochemistry and molecular biology.
	Cambridge university press.
	11. K. E. van Holde, C. Johnson, P. S. Ho (2005) Principles of
	Physical Biochemistry, 2nd Edn., Prentice Hall.
	12. Mu, P., & Plummer, D. T. (2001). Introduction to
	practical biochemistry. Tata McGraw-Hill Education.
	13. Boyer, R. (2000). Modern experimental biochemistry.
	Pearson Education India.

SEMESTER II

Title of the Course: Environmental Biotechnology Course Code: GBC 189 Number of Credits: 03

Objective:	The objective of this course is to impart knowledge on biotechno applications that can be used to tackle environmental issues en due to industrialization and globalization.	-
<u>Learning</u> outcomes	At the end of this course, students will be able to apply their kno for the application of biotechnological processes for bettern environment and sustainable development of the society.	0
Contents:	<u>Module 1:</u>	

		<u>X AC- 9</u>) (Special)
r		30.0	7.2022
	Introduction to environmental biotechnology: Basic concept of environment and its com Biotechnology for environment; definitions and facts Environment pollution: Sources of pollution a environmental impact. Hazardous wastes: Definition and characteristics, categorization, generation, co transport, treatment and disposal. Municipal solid Collection, segregation and transport of solid wastes, and segregation of wastes at source. Monitoring environmental pollution: Air, water sampling, Analyses of samples. Physical, chemical, B and molecular methods for the measurement of p Robust techniques and innovative new conce identifying and screening of toxins and pathogen environment (genetic and biochemical kits and CRISPR–Cas technology, and cellular models). Nucleic acid based techniques for analyses of structure and dynamics of microbial commu- wastewater treatment, Concept of biomarkers. Environmental impact assessment, Biodiversity conservation.	and their , sources ollection, l wastes: handling and soil pollution. epts for is in the reagents, diversity, unity in	15 hours
	Module II		
	Biochemistry and Microbiology of Aerobic and A	rocesses, naerobic eatment,	
	Treatment of Typical Industrial Effluents: Dairy, Sugar, and Antibiotic Industries.	Distillery,	
	Solid waste management: Treatment of m biomedical and agricultural solid waste. Biochemical processes and advanced methods: generation by anaerobic digestion, con Vermicomposting, Biofertilizers. Treatment of solid waste at wastewater treatmen Advanced methods - Anaerobic co-digestion of the sludge with liquid wastes such as septage, Novel con methods (such as terra preta of the sludge (biomass)	Methane nposting, at plants: e sewage mposting	15 hours
	<u>Module III:</u>		
	Resource management and environment conservat	ion:	

	30.07.2	2022
	Basic concept of saving of resources and energy through	
	biotechnology; Prevention of eutrophication using	
	macroalgae; biological control of mosquitos.	_
	Bioresource technology for clean environment:	ours
	Integrated waste management: Biomass (wood waste,	
	agricultural waste, municipal solid waste, manufacturing	
	waste, and Sewage sludge) as source of energy and bio-fuels.	
	Microalgae as a source for Biodiesel. Biodegradable plastic.	
	Environmental Pollution control: concepts of bioremediation,	
	bioaugmentation, biostimulation, biodegradation,	
	biosorption, Bio-mineralization.	
	 Meena, S. M. and Naik, M. M. (Ed.). (2019). Advance Biological Science Research: a practical app. Elsevier. 	es in
	2. King, R. B., Sheldon, J. K., and Long, G. M. (2019).Prac	ctical
	Environmental Bioremediation: The Field Guide, L	
	Publishers. CRC Press.	
	3. Willey, J. M., Sherwood, L. M., Woolverton, C. J. (20	017).
References/	Prescott,s Microbiology. Mcgraw-Hill Education. 4. Satyanarayana, T. Johri, B. and Anil, T. (Ed.). (20	012).
Readings	Microorganisms in Environmental Management. Spri	-
	Publishers.	
	5. Colin, M. (2011). Marine Microbiology: Ecology applications. Second edition. Garland science.	and
	6. Scragg, A. (2005). Environmental Biotechnology. Pea	arson
	Education Limited, Oxford University Press.	
	7. Chaterjee, A. K. (2000). Introduction to environme	ental
	biotechnology. PHI, India, 8. Rehm, H. J. and Reed, G. (Eds.). (1999). Biotechnolog	gv.a
	comprehensive treatise.	<i>,</i> , , ∽

Title of the Course: Stem Cell Biology and Regenerative medicine Course Code: GBC190 Number of Credits: 01

<u>Prerequisites</u>	Basic understanding of cell biology - cell types, growth media, cell division, cell growth, cell differentiation.
Objective:	The aim of the course is to bring together cellular, biochemical, anatomical, histological, physiological and evolutionary medical views of stem cells to a coherent picture in an experimental and clinical context.

		<u>X AC- 9 (</u>	
	Γ	30.07	.2022
<u>Contents:</u>	MODULE I		
	Definition, stem cell origins and plasticity, classif source of stem cells; Stem cell differentiation; cryopreservation, iPS technology; microRNAs cell regulation, Tumor stem cells, Overview of and adult stem cells for therapy. Human research: Ethical considerations; Stem c therapies: Pre-clinical regulatory considerations; patient advocacy.	Stem cells and stem embryonic stem cells cell based	15 hours
References/Readings	1. John Collins, (2017)Stem cells: From principles,. Hayle Medical		
	 Robert lanza, (2013) Essential of Stem publisher. 	cell Biolog	y, Elsevier
	 Robert lanza, (2011), Principle of Ti publisher 	ssue Engine	eering, AP
	4. Robert Lanza (2009) Essential stem cell n	nethods, Els	evier.
	 Robert Lanza (2006) Essential of Stem Press. 	Cell Biology,	Academic
	 A.D. Ho. R. Hoffman, (2006) Stem Cell T Process Therapy, Willy-VCH 	ransplantati	on Biology
Learning Outcomes	On completion of the course, students should be aware of basics of stem cell function in the body and their usage in the medical context.		

Course Code: GBC 191 Title of the Course: Genetics and Molecular biology Number of Credits: 3

Objective:	The aim of this course is to obtain and understand the fu knowledge of molecular and cellular processes such transcription, protein synthesis, mutation, epigenetic modif gene regulation.	n as RNA
Learning Outcomes	The students should be able to explain and summarize the scientific principles of the molecular biology of DNA, RNA and understand the role played in overall functioning of the cell.	
<u>Contents:</u>	 MODULE I Mendelian Genetics and Population genetics Structure of DNA - A,B, Z and triplex DNA; Organization of bacterial genome and eukaryotic chromosomes Heterochromatin and Euchromatin DNA melting and buoyant density; Tm; DNA reassociation kinetics (Cot curve analysis) Repetitive and unique sequences; Satellite DNA; DNase I hypersensitive regions; DNA methylation & epigenetic effects. 	15 hours

		(Special)
	30.07	7.2022
•	Structure and function of prokaryotic and eukaryotic mRNA, tRNA (including initiator tRNA), rRNA and ribosomes. Processing of eukaryotic hnRNA: 5'-Cap formation; 3'-end processing of RNAs and polyadenylation; loop model of translation; Splicing of mRNA. Gene transfer in bacteria-Conjugation, transformation and transduction. DNA mutation and repair, Transposons <u>MODULE II</u>	
•	Prokaryotic and eukaryotic transcription -RNA polymerase/s and sigma factors, Transcription unit, Prokaryotic and eukaryotic promoters, Promoter recognition, Initiation, Elongation and Termination (intrinsic, Rho and Mfd dependent) Gene regulation: Repressors, activators, positive and negative regulation, Constitutive and Inducible, small molecule regulators, operon concept: <i>lac, trp</i> operons, attenuation, anti-termination, stringent control, translational control. Eukaryotic transcription - RNA polymerase I, II and III mediated, General eukaryotic transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); assembly of pre-initiation complex for nuclear enzymes, interaction of transcription factors with the basal transcription machinery and with other regulatory proteins, mediator, TAFs. ; Silencers, insulators, enhancers, mechanism of silencing and activation.	15 hours
	MODULE III	
•	Translation in prokaryotes and eukaryotes, Regulatory RNA and RNA interference mechanisms, miRNA, non-coding RNA; Families of DNA binding transcription factors: Helix- turn-helix, helix-loop-helix, homeodomain; 2C 2H zinc finger, multi cysteine zinc finger, basic DNA binding domains (leucine zipper, helix-loop-helix), nuclear receptors.	
•	Interaction of regulatory transcription factors with DNA: properties and mechanism of activation and repression including Ligand-mediated transcription regulation by nuclear receptors. DNA replication. DNA recombination.	15 hours

		30.07.2022
References/Reading	1.	Clark DP. Pazdernik, NJ., McGehee, MR. (2019) Molecular Biology
		(3 rd) Elsevier Inc
	2.	Klug, W., Cummings, M, Spencer.C . (2019) Concepts of Genetics
		(12ed). Pearson publishers
	3.	Goldstein ES. , Stephen T. Kilpatrick J Krebs J. (2017) Lewin's
		GENES XII . Bartlett Publishers
	4.	Lodish HF; Berk A ; Kaiser C ; Krieger M ; Bretscher A . (2016).
		Molecular Cell Biology (8 ed) Freeman MacMillan publisher
	5.	Russell PJ, iGenetics: A Molecular Approach. (2016) (3 ed)
		Pearson publisher.
	6.	Karp G., Iwasa J., Marshall W., (2016) Karp's Cell and Molecular
		Biology: Concepts and Experiments, (8 ed) Wiley Publisher
	7.	Strickberger, M. (2015) Genetics, (3 ed) by Pearson publishers
	8.	Simmons M J., Snustad P. (2015). Principles of Genetics (7 ed).
		Wiley Student Edition.
	9.	Watson JD, Baker TA, Bell SP, Gann A, Levine M & Losick R (2014)
		Molecular Biology of the Gene, (7 ed), Cold Spring Harbor
		Laboratory Press, New York
	10.	Weaver RF (2012) Molecular Biology (5th ed) McGraw Hill Higher
		Education publisher.

Course Code: MBC 192 Title of the course: CELL AND DEVELOPMENTAL BIOLOGY Number of Credits; 3

Course Objectives	The cells being "the fundamental building blocks of all organisms", a comprehensive understanding of the cell and cellular function is essential for all biologists. This course will hence provide a conceptual overview of a cellular system and its functioning in animals and plants. The course will also highlight a conceptual overview of how developmental patterns arise. Using examples from different model systems regulatory networks involved are highlighted, aiming to project the molecular basis of developmental patterns.
Learning Outcomes	Understanding major concepts in cell and Developmental biology with an awareness of experimental approaches and how they are applied in cell biology research.
Contents:	MODULE I Biochemical organization of the cell; diversity of cell size and shape; cell theory, and the emergence of modern Cell Biology. Principles underlying microscopic techniques for the study of cells.
	Structure and diversity of biological membranes; mechanisms of membrane transport. Self-assembly of lipids, micelle, bio membrane organization - sidedness

	X AC- 9 (Special) 30.07.2022
and function; membrane assembly.	
 The plant cell wall; extracellular matrix in plants animals Cell lysis and subcellular fractionation Structural organization and functions of cell organization and functions of cell organization, mitochondria, Golgi bodies, endoplasming reticulum, lysosomes, Chloroplast, peroxisomes vacuoles. Cytoskeletons structure and motility for Cellular communication: General principles of certain communication, cell adhesion and roles of different adhesion molecules, tight junctions, communication; junctions, integrins, neurotransmission, and its regulation. 	15 hours ganelles: mic es, function cell erent cating
MODULE II	
 Protein localization – synthesis of secretory and membrane proteins, import into nucleus, mitochondria, chloroplast, and peroxisomes, re- mediated endocytosis. Proteasomes; structure and function Cell division and cell cycle: Mitosis and meiosis, regulation, Cell cycle, and its regulation, Apopto Necrosis, and Autophagy. Cell signaling Cell fusion techniques Molecular chaperones: types, characteristics, ar functional significance Cell transformation and cancer, oncogenes and oncogenes, tumor suppressor genes, metastasi 	eceptor- 15 hours their osis, nd proto-
MODULE III	
 Potency, commitment, specification, induction, or determination and differentiation; morphogenetic gr fate and cell lineages; stem cells; genomic equivalencytoplasmic determinants; imprinting; mutants and tr analysis of development. Production of gametes, cell surface molecules in recognition in animals; zygote formation, cleava formation, embryonic fields, gastrulation, and format layers in marine animals. Cell aggregation and differentiation in <i>Dictyosteliur</i> pattern formation in <i>Drosophila</i>, amphibia; organoger 	gradients; cell15 hoursence and the gransgenics ininn sperm-egg age, blastula ation of germinm; axes andin
formation in <i>Caenorhabditis elegans</i> , eye lens ind development and regeneration in vertebrates; differ neurons, post-embryonic development- larval	duction, limb erentiation of

	<u>X AC- 9 (Special)</u> 30.07.2022
	metamorphosis; environmental regulation of normal development; sex determination.
References/ Reading	 Amon, A., Krieger, M., Lodish, H., Bretscher, A., Kaiser, C. A., Berk, A., Martin, K. C., Ploegh, H. (2016). Molecular Cell Biology. United Kingdom: W. H. Freeman.
	 Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J, Johnson, G. (2016). Cell biology E-book. Elsevier Health Sciences.
	 Karp, G., Iwasa, J., Marshall, W. (2018). Cell Biology Global Edition. United States: Wiley.
	 J.D. Watson, M.,Levine, T. A. Baker, A. Gann, S. P. Bell, R.L. Watson (2014) Molecular Biology of the Gene, Pearson Education.
	 Turner, B. M. (2008). Chromatin and gene regulation: molecular mechanisms in epigenetics. John Wiley & amp; Sons.
	 Kilpatrick, S. T., Krebs, J. E., Goldstein, E. S. (2017). Lewin GENES XII. Japan: Jones; Bartlett Learning.
	7. Gilbert, S. F. (2010). Developmental biology. Sinauer Associates, Inc.
	 Subramanian, M. A. (2022). Developmental Biology. India: MJP Publisher. Cooper, G. M., Hausman, R. E. (2013). The Cell: A Molecular Approach. United States: Sinauer Associates.
	10. C. Smith & amp; E. Wood (2005) Cell Biology, Chapman Hall .
	11. Wolpert, L. (2011). Developmental Biology: A Very Short Introduction.
	OUP Oxford.
	12. Slack, J. M. W. (2009). Essential Developmental Biology. Germany: Wiley.
	 Lodish et al., (2000) Molecular Cell Biology, W.H.Freeman & Company Smith & Wood (2005) Cell Biology, Chapman & Hall London

Course Code:GBO-282 Title of the Course: Bioinformatics Number of Credits:2

Objective:	The objectives of this course are to provide students with theory and practical experience of use of common computational tools and databases which facilitate investigation of molecular biology and evolution-related concepts
Learning Outcomes	Student should be able to:
	 develop an understanding of basic theory of these computational tools. gain working knowledge of these computational tools and methods. appreciate their relevance for investigating specific contemporary biological questions.
<u>Contents:</u>	MODULE I

	<u>X AC- 9 (</u> 30.07	
•	Introduction, Primary & Secondary database, Sequence file formats, Introduction to structures, Protein Data Bank (PDb), Molecular Modelling Database (MMDb), Structure file formats, Collection of sequences, sequence annotation, sequence description.	
•	Evolutionary basis of sequence alignment, optimal alignment methods, Substitution scores & gap penalties, Statistical significance of alignments,	
•	Database similarity searching, FASTA, BLAST, Low complexity regions, Repetitive elements, Multiple Sequence Alignment: Progressive alignment methods, Motifs and patterns, Clustal, Muscle; Scoring matrices, Distance matrices.	15 hours
•	Alignment, tree building and tree evaluation, Comparison and application of Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbour Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood (ML) methods, Bootstrapping, Jackknife;	15 110013
•	Software for Phylogenetic analysis. DNA barcoding: Methods tools and databases for barcoding across all species, Applications and limitations of barcoding, Consortium for Barcode of Life (CBOL) recommendations, Barcode of Life Database (BOLD).	
	MODULE II	
	3-D structure visualization and simulation, Basic concepts in molecular modeling: different types of computer representations of molecules; External coordinates and Internal Coordinates, Molecular Mechanics, Force fields <i>etc.</i> Secondary structure elucidation using Peptide bond, phi, psi and chi torsion angles, Ramachandran map, anatomy of proteins – Hierarchical organization of protein structure –like CATH (class, architecture, topology, homology), SCOP (Structural Classification of Proteins), FSSP (families of structurally similar proteins).	
•	Fundamentals of the methods for 3D structure prediction (sequence similarity/identity of target [1047]	

	<u>X AC- 9 (Special)</u>
	30.07.2022 proteins of known structure, fundamental
	principles of protein folding <i>etc.</i>) Homology/comparative modeling, fold recognition, threading approaches, and ab initio structure prediction methods; CASP (Critical Assessment of protein Structure Prediction); Computational design of promoters, proteins & enzymes.
	 Chemical databases like NCI/PUBCHEM; Fundamentals of Receptor-ligand interactions; Structure-based drug design: Identification and Analysis of Binding sites and virtual screening; Ligand based drug design: Structure Activity Relationship– QSARs & Pharmacophore; In silico predictions of drug activity and ADMET.
	 Designing of oligo probes; Image processing and normalization; Microarray data variability (measurement ad quantification); Analysis of differentially expressed genes; Experimental designs.
References/Readings	1. Perambur S Neelakanta (2020) A Textbook of Bioinformatics: Information-theoretic Perspectives of Bioengineering and
	 Biological Complexes World Scientific Publisher. Baxevanis A. D., Bader,G.D., Wishart D.S. (2020) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins Wiley Publisher.
	3. Arthur L (2019) Introduction to Bioinformatics. Oxford University Press.
	4. Jonathan Pevsner (2015) Bioinformatics and Functional Genomics. Wiley Blackwell Publication.
	5. Ignacimuthus. S. (2013) Basic Bioinformatics Alpha Science International Ltd
	 Essential Bioinformatics Paperback – 2007 by Jin Xiong Cambridge University Press; First edition.
	 Bioinformatics databases and algorithms (2007) N. Gautham. Xiong J. (2006). Essential Bioinformatics. Cambridge University Press
	 Bioinformatics: A modern approach . (2005) V.R. Srinivas. Bioinformatics:concepts skills and applications (2004).S.C.
	Rastogi, N. Mendiratta and P. Rastogi. 11. Statistical methods in Bioinformatics: An introduction. (2005). W.
	Even and G. Grant.

Objective:	Research and business belong together and both are needed. I developing life science industry, there is an urgent need for p combine business knowledge with an understanding of technology. Bio-entrepreneurship, an interdisciplinary course around the central theme of how to manage and develop I companies and projects. The objectives of this course are to teac about concepts of entrepreneurship including identifying a winnir opportunity, gathering funding and launching a business, gra- nurturing the organization and harvesting the rewards.	eople who science & e, revolves ife science th students ng business
Learning	Students should be able to gain entrepreneurial skills, unde	rstand the
outcomes	various operations involved in venture creation, identify the entrepreneurship in biosciences and utilize the schemes promote knowledge centers and various agencies. The knowledge pe management should also help students to be able to build u network within the industry.	ed through rtaining to
	Module I.	
Contents:	Fundamentals of Entrepreneurship. Mission, vision, entrepreneurial qualities. How to innovate, Design Thinking, Design-Driven Innovation, Systems thinking, Open innovation, How to start a start-up? Statutory and legal requirements for starting a company/venture (IPR, GST, Labor law), E business setup, management. Dos & Donts in entrepreneurship. Business plan: Making a business proposal/Plan for seeking loans from Generative inertial inertial parties.	15 hours
Contents:	financial institution and Banks; Approach a bank for a loan; Sources of financial assistance; Funds from bank for capital expenditure and for working. Funding new ventures – bootstrapping, crowd sourcing, Angel investors, VCs, debt financing, and due diligence, Incubation and acceleration, Government incentives for entrepreneurship. Budget planning and cash flow management; Negotiations/Strategy With financiers, bankers etc.; Profit & Loss statement, Balance sheet, Cash flow, Cost-volume-profit & Bread-Even analysis, Capital budgeting.	
	<u>Module II</u>	
	Marketing management:	
	Assessment of market demand for potential product(s) of interest; Market conditions, segments; Prediction of market changes; Identifying needs of customers including gaps in the	15 hours

X AC- 9	(Special)
30.07	.2022

	30.07.2	.022
	 market, packaging the product; Market linkages, branding issues; Developing distribution channels; Pricing/Policies/Competition; Promotion/ Advertising; Services Marketing Dispute resolution skills Human Resource management in startups: Human Resource Development (HRD) Leadership skills; Managerial skills; Organization structure, pros & cons of different structures; Team building, teamwork; Appraisal; Rewards in small scale set up. External environment/changes; Crisis/ Avoiding/Managing; Broader vision–Global thinking. 	
Reference Books	 Shimasaki, C. D. (2014). Biotechnology Entrepreneurship: Starting, Managing Companies: Creating Value and Competitive Advantage with the Milestone Bridge.Routledge. Jordan, J. F. (2014). Innovation, Commercialization, and Start-Ups in Life Sciences. London: CRC Press. Ramsey David (2011). Entre Leadership: 20 Years of Practical Business Wisdom from the Trenches. New York: Howard Books Byrne John A. (2011). World Changers: 25 Entrepreneurs Who Changed Business as We Knew it. New York: Penguin Desai, V. (2009). The Dynamics of Entrepreneurial Development and Management. New Delhi: Himalaya Pub. House. Adams, D. J., & Sparrow, J. C. (2008). Enterprise for Life Scientists: Developing Innovation and Entrepreneurship in the Biosciences. Bloxham: Scion. Lynn Jacquelyn (2007). The Entrepreneur's Almanac: Fascinating Figures, Fundamentals and Facts at your Fingertips. Canada: Entrepreneur Media Inc. 	

Title of the Course: Lab IV Genetics and Molecular Biology Course Code: GBC 195

Objective:	The objective of this course is to provide students with experimental	
	knowledge of molecular biology and genetic engineering.	
Learning Outcomes	Students should be able to gain hands-on experience on ge protein expression and purification. This experience wo	-
	them to begin a career in industry.	
Contents:	1. UV/Chemical mutagenesis and survival curve.	
	2. Isolation of amino acid auxotroph by replica	
	plating.	
		30 hours

		(Special) 7.2022
		.2022
	3. Phage infection and burst size; types of plaque	
	formation	
	4. Transduction	
	5. Genetic Transfer-Conjugation, gene mapping.	
	6. Genomic DNA isolation	
	7. DNA quantification and gel electrophoresis	
	8. RNA isolation	
	9. RNA denaturing gel electrophoresis.	
	10. Mitosis.	30 hours
	11. Meiosis	50 110015
<u>References/Readings</u>	1. Sharma R.K., Sangha S.P.S (2020) Basic Tech	
	Biochemistry and Molecular Biology Dream Tech Pre	
	2. Gakhar S.K., Miglani M., Kumar A., (2019) Molecular	^r Biology: A
	Laboratory Manual. Rupa Publications.	
	3. Hofmann A. (2018) Wilson and Walkers Princ	-
	Techniques Of Biochemistry And Molecular Biology.	Cambridge
	University Press	
	4. Green R. , Sambrook J. (2012) Molecular Cloning: A	Laboratory
	Manual (Fourth Edition): Three-volume set	
	5. Laboratory Manual for GENETIC ENGINEERING 2	Lst Edition
	(2009) S. JOHN Vennison PHI Learning	

Course Code: GBC-196

Title of the Course: Lab V-Plant and Animal Tissue Culture

Objective:	A comprehensive understanding of the cell and cellular functions;plan	ıt
	and animal tissue culture.	
	To come out and interpret our griments in Diget and onimal tion.	_
Learning Outcomes	To carry out and interpret experiments in Plant and animal tissu	e
	culture.	
Contents:	1. Preparation of starting material (Biosafety cabinet, 30 hours	;
	solutions, media, cell sample etc.):	
	Cell stock preparation (glycerol stock), storage,	
	freezing, thaw and subculture,	
	contamination and precautions	
	2. Animal cell culture: Secondary cell culture HeLa and	
	non-cancerous cell lines HEK293, COS-7	
	3. Transfection and co-transfection: Calcium-	
	phosphate method and Lipofection	
	4. Cell fixation and staining: Immunolabeling,	
	mounting, fluorescence imaging	

			<u>X AC- 9 (</u>	
	r		30.07	.2022
	1. Tis	ssue culture medium preparation, contamir	nation and	30 hrs
	preca	utions in plant tissue culture		
	2. Ca	lus induction from different explants such a	as rice and	
	carro	t		
	3. pla	ntlet regeneration.		
	4. So	matic embryogenesis		
	5. Siı	ngle cell suspension.		
	6. Pr	otoplast isolation		
<u>References/Readings</u>	1.	Freshney I.R. and Capes-Davis A., (2021)	Freshney's	Culture of
		Animal Cells: A Manual of Basic Techn	nique and S	Specialized
		Applications. Wiley Blackwell Publisher		
	2.	Freshney R.I and Masters. J.R.W. (2000)) Animal c	ell culture
		(2000) – A Practical Approach Oxford Univ		
	3.	Sherathiya, H., (2013) Practical manual fo		
		Basic Techniques of Plant Tissue Culture a	ind Molecul	ar Biology.
		Grin Verlag		
	4.	Smith R. (2012) Plant tissue culture Techn	iques and ex	xperiment.
		Academic Press.		

Course Code: GBO-197 Title of the Course: Lab VI- Bioinformatics Number of Credits: 2

Objective:	The aim is to provide practical training in bioinformatics and statistical methods including accessing major public sequence databases.
Learning Outcomes	 On completion of this course, students should be able to: describe contents and properties of important bioinformatics databases, perform text- and sequence-based searches, analyse and discuss results in the light of molecular biology knowledge; explain major steps in pairwise and multiple sequence alignment, explain its principles and execute pairwise sequence alignment by dynamic programming; predict secondary and tertiary structures of protein sequences; perform and analyse various statistical tools available to analyse the data.
Contents:	
	1. Using NCBI and UniProt web resources.
	 Introduction and use of various genome databases. Sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/TrEMBL, UniProt.

	X AC- 9 (Special)
	30.07.2022
	 4. Similarity searches using tools like BLAST and interpretation of results. 5. Multiple sequence alignment using ClustalW. 6. Phylogenetic analysis of protein and nucleotide sequences. 7. Use of gene prediction methods (GRAIL/Genscan,/Glimmer). 8. Use of various primer designing and restriction site prediction tools.
	 9. Use of different protein structure prediction databases (PDB, SCOP, CATH). 10. Construction and study of protein structures using RASMOL/Deepview/PyMol. 11. Homology modelling of proteins. 12. Whole-genome assembly from NGS raw data sequence and annotation 13. 16S rRNA sequence analysis and use of BioEdit 14. Molecular docking
References/Readings	 Baxevanis A. D., Bader,G.D., Wishart D.S. (2020) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins Wiley Publisher. A.D. Baxevanis and B.F.F. Ouellette (Eds). (2002), Bioinformatics: a Practical Guide to the Analysis of Genes and Proteins, John Wiley and Sons
	 Wiley and Sons. D.W. Mount, (2001), Bioinformatics: Sequence and Genome Analysis, Cold Spring Harbor Laboratory Press. Jones & Peuzner, (2004); Introduction to Bioinformatics Algorithms; Ane Books, India.
	 Statistical methods in Bioinformatics: An introduction. (2005). W. Even and G. Grant Bioinformatics: A Practical Approach 2007 Shui Qing (Chapman & Hall/CRC Mathematical and Computational Biology)

(Back to Index) (Back to Agenda)

Annexure II

Proposed Scheme For

M.Sc. Marine Biotechnology

(Applicable from 2022-23)

Course Codes	Courses		
SEMESTER I			
	Course	Credit	Course
	Titles	S	Level

			30.07.202
MBC 181	Marine Microbiology & Ecology	3	100
MBO 182	Concepts in Biochemistry	2	100
MBC 183	Biophysical Principles & Analytical Techniques	2	100
MBC 184	Immunology and Marine pathogenesis	3	100
MBO 185	Biostatistics	2	100
MBC 186	Lab I: Techniques in Microbiology and	3	100
NDC 107	Marine Biology and Chemistry	2	100
MBC 187	Lab II : Immunology & Marine Pathogenesis	2	100
	LAB III: Biochemistry and analytical	3	100
MBC188	techniques		
	Total	20	
	Semester II		
MBC 189	Oceanography and Marine Bioresources	3	100
MBC 190	Aquaculture Technology	3	200
MBC 191	Genetics and Molecular Biology	3	100
MBC 192	Cell and Developmental Biology	3	100
MBO 193	Bioinformatics	2	200
MBC 195	Lab IV: Genetics and Molecular Biology	2	200
MBC 196	Lab V: Plant and Animal Tissue Culture	2	100
MBO 197	Lab VI: Lab in Bioinformatics	2	200
	Semester III		
MBRO 198	Recombinant DNA Technology	3	300
	Bioprocess Technology and Marine	3	300
MBOG 200	Bioprocessing Potential of Marine Biotechnology	3	300
	IPR, Biosafety & Bioethics	3	100
	Marine Food Technology	2	200
MBOG 202 MBOG 203		2	200
	Lab in Bioprocess technology and	$\frac{2}{2}$	300
NIDOG 204	marine bioprocessing	2	300
MBRO 204	Lab VII: Lab in Recombinant DNA	2	300
	Technology		
	Semester IV	1	200
	Research-based specialization	$\frac{1}{2}$	200
	Scuba Diving	2	200
	Dissertation	16	400
MROG 209	Summer/ Winter Training Assessment	1	200
	Optional Generic Course	2	100
	Bio entrepreneurship		100
	Stem Cell Biology Genomics & Proteomics	$\frac{1}{2}$	200 200
	Plant and Animal Biotechnology	2	300
	Emerging trends in wastewater treatment		200
		2	200
	Solid waste Management Nanotechnology	2	200
<u> </u>	Inanotechnology	2	200

Course level 100: No prerequisite for the course. Course level 200: At least one prerequisite course is required. Course level 300: More than two prerequisite courses are required

- MBC : Marine Biotechnology-specific core course.
- MBO : Marine Biotechnology specific-optional course
- MBOG: Marine Biotechnology-optional generic course
- MBRO: Marine Biotechnology research-specific optional course
- MBSD: Marine Biotechnology-specific dissertation

<u>SEMESTER- I</u>

Course Code: MBC 181 Title of the Course: MARINE MICROBIOLOGY & ECOLOGY Number of Credits: 3

Course Objectives	The objective of this course is to provide information about the microbes available in the aquatic environment, their role and interaction with the marine environment
Learning Outcomes	 Explain the principle features of marine ecosystems and the microbial diversity in oceans; Describe and discuss marine microbes in terms of physiological capability and their biogeochemical role.

		<u>9 (Special)</u> 07.2022
Contents:	MODULE I	
	Classification of the marine environment.	45 h a aa
	Marine microbial habitats, Estuarine Ecosystems: Rocky	15 hours
	shores, Sand dunes, Salt marshes, Deep Sea,	
	 hydrothermal vents, mangroves, and coral reefs. Diversity of Marine microorganisms: Archaea, Bacteria, 	
	Cyanobacteria, Algae, Fungi, Viruses, Viroids, and Prions.	
	 Characteristics of marine microorganisms. 	
	 Specialized microorganisms: actinomycetes anaerobes. 	
	 Extremophiles: barophiles, thermophiles, psychrophiles, halophiles, polyextremophiles, 	
	 An overview of the organization and cell structure of 	
	prokaryotes and Archaea:	
	i) cell wall ii) outer membrane iii) cytoplasmic	
	membrane iv) flagella & specialized movements in	
	microbes v) cell inclusions iv) differences among the groups.	
	MODULE II	
	. Tashuinu as in Masina using hislanu	
	Techniques in Marine microbiology: Sempling: Water, Sediments	
	 Sampling: Water, Sediments. Direct observation and enumeration of microbes: Light 	15 hours
	and electron microscopy to study morphology and structure of microbes.	
	 Culture-base methods for isolation and identification of microbes. Phenotypic and Genotypic testing, polyphasic methods of identification. Chemotaxonomy, 	
	 Metagenomics. Bergey's manual & identification of marine bacteria. 	
	• bergey s manual & identification of marine bacteria.	
	MODULE III	
	Microbial nutrition: i) autotrophic & heterotrophic	
	modes, ii) defining culture media to support growth, iii) selective and differential culture media.	
	 Bacterial growth kinetics: i) growth curve, the 	
	mathematical expression of growth & measurement of growth ii) synchronous growth iii) factors affecting	15 hours
	growth iv) Chemostat & Turbidostat.	
	Flagella and specialized movements in microbes, Quorum	
	sensing, Chemotaxis, Phototaxis, Bioluminescence and	
	indicator species and Biological Rhythms.	
References/	1. Munn, C.B., (2020) Marine Microbiology: Ecology and App	lications_CRC
		Citoris. Cito

Reading	Press
	2. Kirchman, D.L, Gasol, J.M., (2018), Microbial ecology of the Oceans. Wiley- Blackwell, New York.
	 Paul, J., (2001) Methods in Microbiology: Marine microbiology, Academic Press.
	4. Gram, L., (2009) Microbial Spoilage of Fish and Seafood, Springer
	5. Pelczar M.J. Jr., Chan E.C.S. and Kreig N.R. (2001) Microbiology. CBS Publishers.
	6. Surajit D., Hirak Ranjan D., (2018) Microbial Diversity in the Genomic Era, Elsevier
	7. Horikoshi K., Antranikian G., Bull A. T, Robb F. T. and Stetter, K. O., (2011) Extremophiles handbook, Springer
	8. Madigan. M.T., Buckley, D.H., Sattley, W.M., Stahl, D.A.(2021) Brock Biology of Microorganisms, Pearson Publisher.

Course Code: MBO 182

Title of the course: CONCEPTS IN BIOCHEMISTRY

Course Objectives	The major objective of this course is to build upon the knowledge of basic biochemical principles with emphasis on different metabolic pathways and their integration. Attention is drawn to the structure-function relationships of biomolecules.	
Learning Outcomes	Gain fundamental knowledge in biochemistry and understand the role o enzymes in the regulation of metabolic pathways.	

) (Special) 7.2022
Contents:	MODULE I	15 hours
	Biochemistry: the molecular logic of life.	
	• Amino acids, proteins, nucleic acids, carbohydrates, and	
	lipids.	
	 Vitamins and hormones. 	
	 Forces that stabilize biomolecules: electrostatic and van der Waal's interaction, hydrogen bonding. Interactions with solvents, Hydrophobic effect. 	
	• Basic Thermodynamics: Laws of thermodynamics. Concepts of Δ G, Δ H, and Δ S.	
	 Chemical kinetics: Concepts of Order and molecularity of a chemical reaction. Derivation of first and second-order rate equation, measurement of rate constants. Concept of activation energy. 	
	• Enzymology: Introduction and classification of enzymes. Types of enzymatic reaction mechanisms, Enzyme kinetics, enzyme inhibition, Regulatory enzymes. Isozymes, Zymogen and Ribozyme. Examples of enzymatic reactions.	
	MODULE II	
	 Basic concepts and design of metabolism - glycolysis, gluconeogenesis 	
	 Pyruvate oxidation, Citric acid cycle Oxidative phosphorylation; the importance of electron transfer in oxidative phosphorylation; F₁-F₀ ATP Synthase; shuttles across mitochondria; regulation of oxidative phosphorylation, inhibitors of electron transport chain. 	15 hours
	Glyoxylate cycle	
	The pentose phosphate pathway	
	 Fatty acid synthesis, β-oxidation; biosynthesis of 	
	membrane lipids and sterols with specific emphasis on	
	cholesterol metabolism and the mevalonate pathway	
	 Amino acid metabolism; nucleotide metabolism Photosynthesis and photorespiration 	
References/	 Murray, R.K. et al (2022). Harper's Illustrated Biochemistry 	McGraw Hill
Reading	publisher.	
	2. Abali E. E., Cline S. D., Franklin D. S., Viselli S. M., (2021)	Lippincott
	Illustrated Reviews: Biochemistry Wolters Kluwer publisher	
	3. Miesfeld R. L., McEvoy M. M., (2020) Biochemistry. Worldwid	•
	4. Stryer L; Berg J., Tymoczko J., Gatto G. (2019). Biochemistr	y New York,
	Freeman publisher. 5 Voot D. Voot LG. Charlotto W.B. (2018) Euroda	montals of
	 Voet, D., Voet, J.G., Charlotte W.P. (2018). Funda Biochemistry. Life at the molecular level. Wiley publisher. Papachristodoulou D., Snape A., Elliott W. H., and Elliott D 	

Biochemistry and Molecular Biology. Oxford University publisher.
7. Nelson D.L. (2017) Lehninger Principles of Biochemistry. W.H. Freeman
& Co.
8. Voet, D., Voet, J.G., Charlotte W.P (2012). Principles of Biochemistry.
Wiley publisher.

Course Code: MBC 183 Title of the course: BIOPHYSICAL PRINCIPLES & ANALYTICAL TECHNIQUES Number of the Credits: 2

Course Objectives	The course is designed to provide a broad exposure to base used in Modern Biology research. The goal is to impart a base understanding of the principles of these techniques and e biochemical utility of The students are expected to understanding of all analytical techniques such that the implement the same is abated to a great extent.	sic conceptual emphasize the have a clear	
Learning	Students will learn to combine previously acquired knowledge of physics		
Outcomes	and chemistry to understand the biochemical processes in th	ne cell.	
Contents	MODULE I	15 hours	
	 Description of Macromolecular Structure, Intermolecular and Intramolecular forces in protein, DNA and other biomolecules. Diffusion, Brownian motion and sedimentation, determination of molecular weight from sedimentation and diffusion. Concept and application of Chemical and Physical equilibria in biological system Nature and Role of Ionic, Covalent and Non-covalent Interaction in molecular conformationon, scaffolding and packaging of protein and DNA Thermodynamics of protein folding: Protein folding kinetics, Misfolding and aggregation. Physical biochemistry of cell: Chemical forces translation and rotation, diffusion, directed movements, biomolecules as machines, work, power and energy, thermal, chemical and mechanical switching of biomolecules, Biochemical and biophysical characterizations of biomolecules: Fluorescence from GFP), UV-VIS absorption and emission spectra resulting from 		

	X AC- 9 (Special)	
	30.07.2022	
	intrinsic Tryptophan and GFP chromophores, Fluorescence quenching and polarization studies, Unfolding and refolding studies using CD. protein diffusion, dynamics by fluorescence correlation	
	spectroscopy. MODULE II 15 hours • Spectroscopy: Electromagnetic radiations in spectroscopic techniques. Beer-Lambert law, UV/Visible spectroscopy, Fluorescence spectroscopy, Emission, excitation, Quenching, Quantum Yield. Nuclear magnetic resonance Spectroscopy. Electron spin resonance spectroscopy. 15 hours	
	 Centrifuge: Basic concepts of centrifugation. Calculation of g value from RPM. Types of rotors used, Differential centrifugation, Density gradient centrifugation. Rate-zonal centrifugation, Isopycnic centrifugation. 	
	 Microscopy: Abbey's law, Resolution, Magnification, Phase-contrast microscopy, Confocal microscopy, High resolution microscopy, Nanoscopy: Atomic force Microscopy, Scanning-tunneling Microscopy, Scanning electron microscopy, Transmission electron microscopy and Cryo-electron microscopy 	
	X-ray diffraction	
References/	1. Subramaniam, M. A (2021) Biophysics: Principle and techniques, MJP	
Reading	Publishers. 2. Bhavna P., Fulekar, M.H (2019), Bioinstrumentation, Wiley Int.	
	 Rodney C., (2017). Biophysics: An IntroductionWiley Int. Anders L. et al. (2016) Textbook of Structural Biology. World Scientific. Salman K., and Diaz, Z., (2016) Principal And Techniques of Bioinstrumentation, Intelliz Publisher Tinoco Jr. I. Sauer K., Wang J.C., Puglisi J. D., Harbison G., Rovnyak D. (2013) Physical Chemistry: Principles and Applications in Biological 	
	 Sciences Pearson Publishers 7. Atkins, de P. (2011) Physical Chemistry for the Life Sciences. W.H. Freeman. 8. Van Holde K. E., Johnson, C. Ho P. S. (2005) Principles of Physical 	
	Biochemistry. Prentice Hall. 9. Schulz GE and Schirmer RH, (1998) Principles of Protein Structure, Springer Verlag. 10. Branden C., and Tooze J., (1998) Introduction to Protein Structure,	

Garland Science.
11. Stout G.H., and Jensen L.H., (1989) X-ray Structure Determination: A
practical guide. John Wiley and Sons Inc., New York.

Course Code: MBC-184 Title of the Course: Immunology & Marine Pathogenesis Number of Credits: 3

-		
<u>Course</u> <u>Objectives:</u> <u>Learning</u> <u>Outcomes</u>	 To provide a basic knowledge and appreciate the components of the human immune response that work together to protect the host. To understand the concept of immune-based diseases as either a deficiency of components or excess activity as hypersensitivity To gain an insight into the mechanisms that lead to beneficial immune responses, immune disorder and immune deficiencies. To introduce the common fish/shellfish pathogens, understand their growth characteristics and control and preventive measures. The mode of continuous assessment and formulation of tests enables students to handle competitive entrance exams. The basic overview of Immunology and Marine Pathogenesis strengthens their foundations for a career in Biotechnology and Marine Biotechnology. 	
<u>Content:</u>	 MODULE I – Concepts and Basics Introduction – History and scope of immunology Innate immunity:- factors, features and processes Acquired:- the Specificity, memory, recognition of self from non-self. Cells of the immune system: Hematopoiesis and differentiation, Lymphoid and Myeloid lineage, lymphocyte trafficking, B lymphocytes, T lymphocytes, macrophages, dendritic cells, natural killer and lymphokine-activated killer cells, eosinophils and mast cells, lymphocyte subpopulations and CD markers. Organization of lymphoid organs:-MALT, GALT, SALT Phagocytosis: oxygen-dependent/ independent killing intracellularly. Major histocompatibility complexStructure of MHC molecules, basic organization of MHC in human, haplotype-restricted killing. Nature and biology of antigens and super antigens: haptens, adjuvants, carriers, epitopes, T-dependant and T-independentt antigens 	15 hours

	<u>X AC- 9 (</u> 30.07	
	30.07	.2022
	 Humoral immunity: cells, antibody formation, primary and secondary response. Immunoglobulins – structure, distribution and function. Antigen – Antibody interactions: forces, affinity, avidity, valency and kinetics. The basics of Immuno-diagnostics. Complement system: mode of activation, classical, alternate and MBL pathways. Structures of key components. Cell mediated immune responses: cell activation, cell- cell interaction and cytokines. Cell-mediated cytoxicity: Mechanism of T cell and NK cell mediated lysis, antibody-dependant cell-mediated cytoxicity 	15 hours
	 Hybridoma technology and monoclonal antibodies. Hypersensitivity: An introduction to the different types. Introduction to autoimmune diseases. MODULE III – Marine Pathogens and Disease Control Introduction to finfish and shellfish diseases: bacterial, fungel, parasitie, putritional, environmental, and their 	
	 fungal, parasitic, nutritional, environmental and their control. Prevention of Fish diseases Human bacterial Pathogens associated with fishes and their products - Aeromonas spp., Clostridium spp., Listeria spp., Plesiomonas, Salmonella spp., Staphylococcus aureus, Vibrio spp. and common Enterobacteriaceae Marine Biotoxins as biological hazards associated with fish and fishery products. 	15 hours
<u>References/</u> <u>Readings</u>	 Parthiban F., Felix S. (2018) Microbiology of Fish a Products, Daya Publishing House. Punt, J., Stranford, S., Jones, P., Owen, J.A.,(2 Immunology W.H. Freeman Roitt I.M. Delves P.J. Martin S. J., Burton D R, Roitt Essential Immunology Wiley-Blackwell Male D., Brostoff J., Roth D., Roitt I., (2013) Im Elsevier Saunders publication Ward, D.R. and Hackney, C.A., (2012). Microbiology food products. Springer Science Woo, P. T. K., Bruno, D. W (2011). Fish diseases and Volume 3: viral, bacterial and fungal infecti 	018) Kuby I.M. (2017) munology. y of marine I disorders.

Publishing. 7. Luttmann W., Bratke K., Kupper M., and Myrtek D (2009). Immunology. Academic Press
ininunology. Academic Pless

Course Code: MBO 185 Title of the course: BIOSTATISTICS

Course Obje	The objective of this course is to introduce students to statistical methods and to understand principles, as well as practical guidelines of "how to do it" and "how to interpret it" statistical data		
Learning Ou	 Upon completing this course, students should be able to – understand how to summarize statistical data; apply appropriate statistical tests based on an understanding of the study question, type of study, and type of data; Interpret results of statistical tests. 		
Contei	MODULE I		
	 Scope of Biostatistics Brief description and tabulation of data and its graphical representation, and frequency distributions. Measures of Central Tendency and dispersion: mean, median, mode, range, standard deviation, variance, coefficient of variation, skewness, kurtosis Displaying data: Histograms, stem and leaf plots, box plots Probability analysis: axiomatic definition, axioms of probability: addition theorem, multiplication rule, conditional probability, and applications in biology. 	15 hc	
	MODULE II • Counting and probability, Bernoulli trials, Binomial distribution, and its applications, • Poisson distribution • Normal distribution, z, t, and chi-square tests, levels of significance • Testing of hypotheses: null and alternative hypotheses, Type I and Type II errors • Simple linear regression and correlation • Analysis of variance	15 hc	
References / Reading	 Mahajan B.K., (2018), Methods in Biostatistics: for Medical Stu Research Worker. Jaype Brothers, 	udents and	
	 Samuels, JA Witmer (2016) Statistics for the Life Sciences. Pren Kothari, C. R., (2013) Quantitative Techniques, Vikas Publishing 	tice Hall	

X AC- 9 (Special)
30.07.2022

House.
4. Rao K. Surya (2010), Biostatistics for Health and Life Sciences, Himalaya Publishing House.
5. Rastogi, V. B. (2009). Fundamentals of Biostatistics. Ane Books Pvt Ltd.
6. Arora P.N. and Malhan, P.K. (2006), Biostatistics. Himalaya Publishing House.

Course Code: MBC 187

Title: LAB I -TECHNIQUES IN MICROBIOLOGY, MARINE BIOLOGY AND CHEMISTRY Number of Credits: 3

[1065]

X AC- 9 (Special) 30.07.2022

		30.07.2022	
Course Obj	To introduce the students to methods to isolate and culture bacteria using different medium, I sampling methods and measure the physical and chemical parameters of the marine aquatic system		
Learning Ou	Upon completion of the course, the student will be able to		
	 Use appropriate media to isolate bacteria from different ecosystems. 		
	 Study and group bacteria on the basis of morphological and biochemical testing. 		
	 Understand the various techniques used for marine s 	sampling.	
	estimate the planktons and elemental composition in	n sea water	
Conter	 Preparation of solid & liquid media, Differential and Selective media: Isolation of bacteria from seawater /sediments samples, Enumeration: serial dilution methods, plating. Maintenance of organisms: Streaking, slants and cultures Study of morphology and cultural characteristics. Gram staining. 	stabs 30 ł	າວເ
	 Motility Antimicrobial sensitivity test and demo of drug resistar Cultivation of fungi: Slide, chunk and coverslip technique 		
	 Samplers: water samplers, dredges, grabs, snappers. Sampling (Field trips) and identification: Phytoplankton & Zooplankton Nekton Benthos Estimations: Chlorophyll Nutrients: nitrates, nitrites, phosphates, silicates Dissolved oxygen Salinity, pH & alkalinity. 	30 h	າວເ

X AC- 9 (Special)

	1. Sastry, A. (2021). Essentials of Practical Microbiology. India: Jaypee Brothers
References/	Medical Publishers Pvt. Limited.Yuncong Li, Kati M., (2019) Water Quality
	Concepts, Sampling, and Analyses. CRC Press LLC.
	2. Sattley, W., Madigan, M., Bender, K., Stahl, D., Buckley, D. (2017). Brock
	Biology of Microorganism. Pearson Education.
	3. Baird R., Eaton A. D., Rice E. W., Bridgewater L. (2017) Standard methods for
	the examination of water and wastewater. American Public Health
	Association
	4. McCance, M. E., Harrigan, W. F. (2014). Laboratory Methods in Microbiology. Elsevier Science.
	5. Leo M.L. Nollet, Leen S. P. Gelder De (2013) Handbook of Water Analysis. CRC
	Press.
	 Grasshoff K., Kremling K., Ehrhardt, M., (2009) Methods of Seawater Analysis, Wiley Publisher .
	7. Vasanthakumari R., (2009) Practical Microbiology. (2009). India: B.I.
	Publications Pvt. Limited.
	8. Bakus, G. J., Bakus, G. J. (2007). Quantitative Analysis of Marine Biological Communities: Field Biology and Environment. Wiley publisher.
	9. Eleftheriou A, and McIntyre A., (2005) Methods for the Study of Marine
	Benthos.Wiley Publisher.
	10. Omori, M., Ikeda, T. (1992). Methods in Marine Zooplankton Ecology. Krieger
	Publisher

Course Code: MBC 187

Title of the course : LAB VII - IMMUNOLOGY & MARINE PATHOGENESIS Number of credits: 2

		.2022	
Course Object	This course involves learning techniques to identify reactions in the lab that form the b application in immunodiagnostics and also to gain an insight into the evaluation ma		
Learning Outco	Key hands-on experience of converting and applying theoretical knowledge to the laborato become familiar with techniques involved in immunology as well as in the study of marine		
Contents:	1. Determination of antibody titer using the double immunodiffusion		
	Assessment of similarity between antigens using Ouchterlony's double diffusion test		
	 Estimation of antigen concentration using radial immunodiffusion 		
	4. Quantitative precipitation assay	30 h	
	 DOT ELISA Latex agglutination 		
	7. Immunoelectrophoresis		
	8. Rocket immunoelectrophoresis		
	9. Sampling of fish and shellfish for disease diagnosis		
	10. Identification of bacteria- staining techniques and		
	biochemical techniques		
	11. Observation of cellular components of fish blood and		
	shrimp hemolymph		
	12. Isolation and characterization of fungi from fish & slide	30 h	
	culture of fungi ^{30 h}		
	13. SDS-PAGE analysis of fish proteins		
	14. Fish/shrimp cell culture.		
	 15. Identification of fish pathogens using various techniques. 		
References/ Re	1. Talwar G.P., Gupta S.K (2017) A Handbook Of Practical Ar	nd Clinical	
References/ Ref	Immunology Vol I CBS Publishers.		
	2. Thanwal. R., (2014) A Handbook of Diseases, Astha Publishers &		
	Distributors.		
	 Bullock, G.L., (2014) Diseases of Fisheries . Narendra Publishing House . 		
	4. Joshi, K.R., Osama, N.O. (2012) Immunology, 5 th Edition, A	Agrobios	
	Ltd, India. 5. Edward J. Noga, (2010). Fish Disease: Diagnosis and treati	ment, Wiley	
	Blackwell.		
	6. Janeway, C.A., Travers, P., Walport, M. and Shlomchik, M. Immunobiology: The Immune System in Health and Disea		
	Garland Publishing, USA. 7. Freshney. I.R., (1998). Culture of Animal Cells. Wiley-Black	well	
	8. Inglis, V., (2013) Bacterial Diseases of Fish, Wiley Publications		

Course code: MBC 188 Title of the course: LAB III - BIOCHEMICAL & ANALYTICAL TECHNIQUES Number of credits: 3

[1068]

	50.07	
Course Object	The objective of this laboratory course is to introduce students to experimentation in biochemistry. The course is designed to teach the utility of these experimental methods in a problem-oriented manner.	
Learning Outco	 Students should be able to: Elaborate concepts of biochemistry with easy-to-run experiments. Familiarize with basic laboratory instruments and understand principles underlying measurements using those instruments for experiments in biochemistry. 	
Contents:	16. UV-Visible spectroscopic analysis.	
	17. Estimation of proteins by the Lowry/Bradford's method	
	18. Estimation of reducing sugars	
	19. Enzyme assay	30 hou
	20. Ammonium sulfate precipitation and dialysis	
	21. Specific activity, fold purification, percentage yield of enzyme	
	22. Protein subunit molecular weight determination by SDS-PAGE.	
	23. Thin-layer chromatography.	
	24. Column chromatographic techniques: ion exchange/Affinity/Gel filtration	
	25. Biochemical assays using ELISA plate reader.	
	26. Compound and Fluorescence microscopy demonstration	
	27. Analysis of a biological specimen by SEM	30 hou
	28. Fluorescence imaging of fixed stained and live cells	
	29. Demonstration of fluorescence spectroscopy.	
	30. Density gradient ultracentrifugation	

	30.07.2022
References/ Re	1. John G., (2020), Biological Centrifugation CRC Press.
	2. Friedrich L., Engels, J. W. (2018) Bioanalytics: Analytical Method
	and Concepts in Biochemistry and Molecular Biology. Wiley-VC
	publisher
	3. Ulrich K., (2017) Fluorescence microscopy: From Principle t
	application, Wiley Int.
	4. James J.F. (2017), An Introduction to practical laboratory optic
	Cambridge University press.
	5. Atkins, de Paula. (2015), Physical Chemistry for the Life Sciences (2r
	Edition). W. H. Freeman
	 Prakash S. Bisen, (2014), Laboratory Protocols in Applied Li Sciences., Taylor and Francis Publisher
	7. Tinoco, Sauer, Wang, and Puglisi. (2013) Physical
	Chemistry: Principles and Applications in the Biological
	Sciences. Prentice Hall, Inc.
	8. Jayaraman, J. (2011). Laboratory Manual of Biochemistry. New Ag
	International Private Limited
	9. Atkins, de Paula. (2011) Physical Chemistry for the Life Sciences (2r
	Edition). W.H. Freeman.
	10. Wilson, K., Walker, J. (Eds.). (2010). Principles and techniques
	biochemistry and molecular biology.
	Cambridge university press.
	11. K. E. van Holde, C. Johnson, P. S. Ho (2005) Principles of Physic
	Biochemistry, 2nd Edn., Prentice Hall.
	12. Mu, P., & Plummer, D. T. (2001). Introduction to
	practical biochemistry. Tata McGraw-Hill Education.
	13. Boyer, R. (2000). Modern experimental biochemistry. Pearso
	Education India.

SEMESTER II

Title of the Course: Oceanography and Marine Bioresources Course Code: MBC 189. Number of Credits: 03

Course Objective:	Introduce students to the marine environment and its physical features; Introduce students to marine life, their habitats and adaptations.	
	At the end of this course, students will be able to:	
Learning	1. Understand the status and trends of major marine resources	
Outcomes	2. Understand how oceans influence the climate.	
	 Familiarise with marine life and factors influencing primary and secondary production. 	
Contents:	Module 1: (Marine life diversity and processes)	
	 Classification of the marine environment 	

		<u>(Special)</u> 7.2022
Marine bioresources.	30.0	1.2022
 Marine microbes (viruses, bacteria, archaea, protis 	ts, fungi)	
 Plankton (phytoplankton and zooplankton) 		
 Marine algae and plants (seaweeds, sea grasses, r 	nangrove	
plants) Invertebrates: sponges, cnidarians, pol-	ychaetes,	
	noderms,	
arthropods, Non-craniate (non-vertebrate) chordate	S,	
Vertebrates		
-Marine fishes (bony, cartilaginous, jawless fishes)		15
 Marine tetrapods (amphibians, reptiles, birds, mam Adaptations of organisms to different habitats 	imais)	hours
 Marine biomass and productivity - primary productivity 	oduction,	
photosynthetic efficiency; secondary production, pro		
distribution in ocean environment, Mechanism an	d factors	
affecting primary production.		
 Bio-communication in oceans, Quorum sensing, microbe interaction, Microbe-seaweed interaction, 		
metazoan interaction, Population connectivity	IVITETODE	
• Species abundance, richness and diversity	indices,	
Biogeography, Recruitment, Growth, Mortality.		
 Food web dynamics and ecosystem functioning, 		
 loop - Role of microbes in marine food web dynamic Biogeochemical processes: Nutrient cycling, carb 	-	
Nitrogen cycle, Sulphur cycle, Iron cycling, Phosphore		
and other cycles.	, 0	
 Culture of microalgae and invertebrates. 		
Module 2: (Physical Oceanography)		
•Ocean atmosphere interface		
 Circulation: Coriolis effect, Ekman transport, circulation. 	Langmuir	15 hours
 Planteray waves: Kelvin and Rossby waves. 		
Climate variability: Pacific decadal oscillation, North		
oscillation, and Arctic oscillation, thermohaline circu		
 El Niño-Southern Oscillation: El Niño & La Niña and on global climate 	its effect	
 Ocean currents: Antarctic Circumpolar Current, De 	ep ocean	
(density-driven), Western boundary currents (Gul		
Kuroshio Current, Labrador Current, Oyashio Current	, Agulhas	
Current, Brazil Current, East Australia Current);		
Boundary currents (California Current, Canary Curr Current, Benguela Current)	ent, Peru	
 Ocean gyres: Major gyres, Tropical gyres, Subtropi 	cal gyres.	
Subpolar gyres		
 Tides, Tsunamis, Wind waves and its effects 		

	2	<u>X AC- 9 (Special)</u> 30.07.2022
	 Plate tectonics, Mid-oceanic ridge spreading and convection 	15 hours
	Module 3: (Chemical Oceanography)	13 110013
	 Seawater composition and its properties Characterization of sediments: constituents, texture mass properties Types of Biogeochemical cycles in oceans (trace elemented isotope geochemistry) Oceanic anoxic events and dead zones Biological pump Ocean acidification and its significance 	
References/ Readings	 Ocean aciditication and its significance Beer, T. (2017). Environmental Oceanography. CRC (1995) Global Biodiversity Assessment. UNEP, C Press Trujillo A. P., and Thurman H. V., (2017) Essentia Pearson Publisher Knauss, J. A., & Garfield, N. (2016). Introc oceanography. Waveland Press. Pickard, G. L., & Emery, W. J. (2016). Descriptive ph an introduction. Elsevier. Bertness, M. D., Bruno, J. F., Silliman, B. R., & Sta (2014). Marine community ecology and co Associates, Incorporated. Chambers, R. C., & Trippel, E. A. (Eds.). (2012). E recruitment in fish populations (Vol. 21). Springer Media Kortzinger, (2004). The Ocean takes a Breath, Science Jeffrey S. Levinton, C. D., (2001). Marine Biology: Fu Ecology . OUP, USA publication Naskar K. and Mandal R., (1999) Ecology and Environm Corporation, 	Cambridge University als of Oceanography. duction to physical hysical oceanography: achowicz, J. J. (Eds.). inservation. Sinauer Early life history and r Science & Business ce 306(5700):1337 unction, Biodiversity, siodiversity of Indian

Course Code: MBC 190: Title of the course: AQUACULTURE TECHNOLOGY Number of Credits: 3

Course Objectives	This course is aimed to teach sustainable use of aquatic resources with various approaches in biotechnology.
Learning	On completion of this course, students should be able to:
Outcomes	• Explain fundamental principles of aquaculture biotechnology;

		30.07.	2022
	 Identify the role of aquaculture biotechnology in so 	ciety.	
Content	<u>MODULE I</u>		
	 Importance of coastal aquaculture; Aqua farms; Design construction; Criteria for selecting cultivable spiculture systems and management practices – exters semi-intensive and intensive culture practices. production in controlled condition; Types; Design management of hatchery –induced spawning; production of seeds; feed formulation; Arrinsemination - <i>in vitro</i> fertilization; Fish Feed Technology: Types of feed, conventional feeds; Principles of feed formulation in manufacturing, diets suitable for application in diffiaquaculture systems; feed formulation ingredients; Unatural and synthetic carotenoids; feed additives; R additives; Feed processing: Gelatinization, extra Technology, pellet dressing with heat liable nutrients evaluation; Feeding schedule to different actorganisms, check tray operation and feed manage Biomass calculation based on feed intake; Post-ha Biotechnology: Fundamental aspects of freezing, me of freezing; Delaying of spoilage. Molecular Too Conservation of Fisheries Resources: Arr Hybridization: Heterosis, Control of fish disease selection; selective breeding of disease resistant fish. Culture of Live food organisms: Candidate speciphytoplankton & zooplankton as live food organisms; resen algae, dia rotifers and brine shrimp. 	eccies; ensive, Seed n and Mass tificial eed vs n and ferent Jse of ole of rusion ; Feed quatic ment, arvest ols in tificial es by	15 hours
	MODULE II		
	Male and female of finfish and shellfish; Primary secondary sex characters; Process of Oogenes Spermatogenesis, metabolic changes of gametogenesis; neuroendocrine system in crustace molluscs & its role in control of reproduction; mech of hormone synthesis, release, transport & a Pheromones & reproductive behaviour; environn factors influencing reproduction; Advances in	sis & during ean & anism action; nental	15 hours

	<u>X AC- 9 (</u> 30.07.	
	Breeding: Hypophysation, cryopreservation technique, genetic basis of determination of sex; chromosome manipulation: ploidy induction, sex reversal; gynogenesis and androgenesis; Broodstock management; Application of cross breeding in aquaculture; Selective breeding: qualitative and quantitative traits for selection, methods of selection; Inbreeding and heterosis in various economic characters; hormone induced ovulation; Synthetic hormones for induced breeding- GnRH analogue structure and function. <u>MODULE III</u> Bio-floc technology; Aquaponics; Zero water exchange aquaculture system; Aqua mimicry; Hydroponics; Raceway system of aquaculture; Bioremediation in Aquaculture systems: Genetically modified organisms in waste water	15 hours
	treatment; Bioremediation for soil and water quality improvement; Micro-algae- indoor and mass-culture methods, Biotechnological approaches for the production of important microalgae and other commercial important products.	
References/ Reading	 Stickney R.R., Gatlin D., (2022) Aquaculture: An Introducto Publishing Krishnaveni, G., and Veeranjaneyulu, K., (2016) RECENT TEC IN FISH AND FISHERIES Rigi Publications Se-kwon Kim, (2015) Handbook of Marine Biotechnology, Patel, A., and Pathak S.N., (2010) Textbook of Aquaculture. Internationals. Felix,S,(2010) Handbook of Marine and Aquaculture B AGROBIOS INDIA. Gautam, N,C, (2007) Aquaculture Biotechnology, Shree Pu Distributors Kutty, M.N., and Pillay T.V., (2005) Aquaculture: Principles a (Wiley Blackwell) Stickney, R.R., (2000) Encyclopedia of Aquaculture Wiley International (2000) 	CHNOLOGIES Springer Pacific Book iotechnology ublishers and and Practices

Course Code: GBC 191

Title of the Course: Genetics and Molecular biology

Course Objective:	The aim of this course is to obtain and understand the fundamental								
	knowledge	of	molecular	and	cellular	processes	such	as	RNA

X AC- 9 (Special)	
30.07.2022	

	30.07	7.2022
	transcription, protein synthesis, mutation, epigenetic modi	fication and
	gene regulation.	
Learning Outcomes	The students should be able to explain and summarize the principles of the molecular biology of DNA, RNA and under role played in overall functioning of the cell.	
<u>Contents:</u>	 MODULE I Mendelian Genetics and Population genetics Structure of DNA - A,B, Z and triplex DNA; Organization of bacterial genome and eukaryotic chromosomes Heterochromatin and Euchromatin DNA melting and buoyant density; Tm; DNA reassociation kinetics (Cot curve analysis) Repetitive and unique sequences; Satellite DNA; DNase I hypersensitive regions; DNA methylation & epigenetic effects. Structure and function of prokaryotic and eukaryotic mRNA, tRNA (including initiator tRNA), rRNA and ribosomes. Processing of eukaryotic hnRNA: 5'-Cap formation; 3'-end processing of RNAs and polyadenylation; loop model of translation; Splicing of mRNA. Gene transfer in bacteria-Conjugation, transformation 	
	 and transduction. DNA mutation and repair, Transposons <u>MODULE II</u> Prokaryotic and eukaryotic transcription -RNA polymerase/s and sigma factors, Transcription unit, Prokaryotic and eukaryotic 	
	 Franscription unit, Frokaryotic and eduaryotic promoters, Promoter recognition, Initiation, Elongation and Termination (intrinsic, Rho and Mfd dependent) Gene regulation: Repressors, activators, positive and negative regulation, Constitutive and Inducible, small molecule regulators, operon concept: <i>lac, trp</i>operons, attenuation, anti-termination, stringent control, translational control. Eukaryotic transcription - RNA polymerase I, II and III 	15 hours
	mediated, General eukaryotic transcription factors; TATA binding proteins (TBP) and TBP associated factors (TAF); assembly of pre-initiation complex for nuclear enzymes, interaction of transcription factors with the basal transcription machinery and with other regulatory proteins, mediator, TAFs. ; Silencers, insulators, enhancers, mechanism of silencing and activation. <u>MODULE III</u>	

		(Special)
		.2022
	 Translation in prokaryotes and eukaryotes, Regulatory RNA and RNA interference mechanisms, miRNA, non-coding RNA; Families of DNA binding transcription factors: Helixturn-helix, helix-loop-helix, homeodomain; 2C 2H zinc finger, multi cysteine zinc finger, basic DNA binding domains (leucine zipper, helix-loop-helix), nuclear receptors. Interaction of regulatory transcription factors with DNA: properties and mechanism of activation and repression including Ligand-mediated transcription regulation by nuclear receptors. DNA replication. DNA recombination. 	15 hours
<u>References/Reading</u>	 Clark DP. Pazdernik, NJ., McGehee, MR. (2019) Molecular Biology (3 rd) Elsevier Inc Klug, W., Cummings, M, Spencer.C. (2019) Concepts of Genetics (12ed). Pearson publishers Goldstein ES., Stephen T. Kilpatrick J Krebs J. (2017) Lewin's GENES XII. Bartlett Publishers Lodish HF; Berk A ; Kaiser C ; Krieger M ; Bretscher A. (2016). Molecular Cell Biology (8 ed) Freeman MacMillan publisher Russell PJ, iGenetics: A Molecular Approach. (2016) (3 ed) Pearson publisher. Karp G.,Iwasa J., Marshall W., (2016) Karp's Cell and Molecular Biology: Concepts and Experiments, (8 ed) Wiley Publisher Strickberger, M. (2015) Genetics, (3 ed) by Pearson publishers Simmons M J., Snustad P. (2015). Principles of Genetics (7 ed). Wiley Student Edition. Watson JD, Baker TA, Bell SP, Gann A, Levine M & Losick R (2014) Molecular Biology of the Gene, (7 ed), Cold Spring Harbor Laboratory Press, New York Weaver RF (2012) Molecular Biology (5th ed) McGraw Hill Higher Education publisher. 	

Course Code: MBC 192 Title of the course: CELL AND DEVELOPMENTAL BIOLOGY Number of Credits: 3

Course	The cells being "the fundamental building blocks of all organisms", a
Objectives	comprehensive understanding of the cell and cellular function is essential for all biologists. This course will hence provide a conceptual overview of a
	cellular system and its functioning in animals and plants. The course will also

X AC- 9 (Special)	
30.07.2022	

	30.0	07.2022
	highlight a conceptual overview of how developmental patter examples from different model systems regulatory networ highlighted, aiming to project the molecular basis of developr	ks involved are
Learning Outcomes	Understanding major concepts in cell and Developmental l awareness of experimental approaches and how they are biology research.	•.
Contents:	MODULE I Biochemical organization of the cell; diversity of cell size and shape; cell theory, and the emergence of modern Cell Biology. Principles underlying microscopic techniques for the study of cells.	
	Structure and diversity of biological membranes; mechanisms of membrane transport. Self-assembly of lipids, micelle, bio membrane organization - sidedness and function; membrane assembly.	
	 The plant cell wall; extracellular matrix in plants and animals Cell lysis and subcellular fractionation Structural organization and functions of cell organelles: nucleus, mitochondria, Golgi bodies, endoplasmic reticulum, lysosomes, Chloroplast, peroxisomes, vacuoles. Cytoskeletons structure and motility function Cellular communication: General principles of cell communication, cell adhesion and roles of different adhesion molecules, tight junctions, communicating junctions, integrins, neurotransmission, and its regulation. 	15 hours
	MODULE II	
	 Protein localization – synthesis of secretory and membrane proteins, import into nucleus, mitochondria, chloroplast, and peroxisomes, receptor- mediated endocytosis. Proteasomes; structure and function Cell division and cell cycle: Mitosis and meiosis, their regulation, Cell cycle, and its regulation, Apoptosis, Necrosis, and Autophagy. Cell signaling Cell fusion techniques Molecular chaperones: types, characteristics, and 	15 hours
	 Molecular chaperones: types, characteristics, and functional significance Cell transformation and cancer, oncogenes and proto- 	

	X AC- 9 (Special)
	30.07.2022
	oncogenes, tumor suppressor genes, metastasis.
	MODULE III
	 Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in analysis of development. Production of gametes, cell surface molecules in sperm-egg recognition in animals; zygote formation, cleavage, blastula formation, embryonic fields, gastrulation, and formation of germ layers in marine animals. Cell aggregation and differentiation in <i>Dictyostelium</i>; axes and pattern formation in <i>Drosophila</i>, amphibia; organogenesis – vulva formation in <i>Caenorhabditis elegans</i>, eye lens induction, limb development and regeneration in vertebrates; differentiation of neurons, post-embryonic development- larval formation, metamorphosis; environmental regulation of normal development; sex determination.
References/ Reading	 Amon, A., Krieger, M., Lodish, H., Bretscher, A., Kaiser, C. A., Berk, A., Martin, K. C., Ploegh, H. (2016). Molecular Cell Biology. United Kingdom: W. H. Freeman. Pollard, T. D., Earnshaw, W. C., Lippincott-Schwartz, J, Johnson, G. (2016). Cell biology E-book. Elsevier Health Sciences. Karp, G., Iwasa, J., Marshall, W. (2018). Cell Biology Global Edition. United States: Wiley. J.D. Watson, M.,Levine, T. A. Baker, A. Gann, S. P. Bell, R.L. Watson (2014) Molecular Biology of the Gene, Pearson Education. Turner, B. M. (2008). Chromatin and gene regulation: molecular mechanisms in epigenetics. John Wiley & amp; Sons. Kilpatrick, S. T., Krebs, J. E., Goldstein, E. S. (2017). Lewin GENES XII. Japan: Jones; Bartlett Learning. Gilbert, S. F. (2010). Developmental biology. Sinauer Associates, Inc. Subramanian, M. A. (2022). Developmental Biology. India: MJP Publisher. Cooper, G. M., Hausman, R. E. (2013). The Cell: A Molecular Approach. United States: Sinauer Associates. C. Smith & amp; E. Wood (2005) Cell Biology, Chapman Hall . Wolpert, L. (2011). Developmental Biology: A Very Short Introduction. OUP Oxford. Slack, J. M. W. (2009). Essential Developmental Biology. Germany: Wiley. Lodish et al., (2000) Molecular Cell Biology, W.H.Freeman & Company 4. Smith & Wood (2005) Cell Biology, Chapman & Hall London

Course Code:GBO-282

Title of the Course: Bioinformatics

 develop an understanding of basic theory of these computational tools. gain working knowledge of these computational tools and methods. appreciate their relevance for investigating specific contemporary biological questions Contents: MODULE 1 Introduction, Primary & Secondary database, Sequence file formats, Introduction to structures, Protein Data Bank (PDb), Molecular Modelling Database (IMMDb), Structure file formats, Collection of sequences, sequence annotation, sequence description. Evolutionary basis of sequence alignment, optimal alignment methods, Substitution scores & gap penalties, Statistical significance of alignments, Outpatible Sequence Alignment: Progressive alignment methods, Motifs and patterns, Clustal, Muscle; Scoring matrices, Distance matrices. Alignment, tree building and tree evaluation, Comparison and application of Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbour Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood (ML) methods, Bootstrapping, Jackknife; Software for Phylogenetic analysis. DNA barcoding: Methods tools and databases for barcoding across all species, Applications and limitations of barcoding, Consortium for Barcode of Life Database (BOLD). 	Objective:	The objectives of this course are to provide students with practical experience of use of common computational databases which facilitate investigation of molecular b evolution-related concepts	tools and
 Introduction, Primary & Secondary database, Sequence file formats, Introduction to structures, Protein Data Bank (PDb), Molecular Modelling Database (MMDb), Structure file formats, Collection of sequences, sequence annotation, sequence description. Evolutionary basis of sequence alignment, optimal alignment methods, Substitution scores & gap penalties, Statistical significance of alignments, Database similarity searching, FASTA, BLAST, Low complexity regions, Repetitive elements, Multiple Sequence Alignment: Progressive alignment methods, Motifs and patterns, Clustal, Muscle; Scoring matrices, Distance matrices. Alignment, tree building and tree evaluation, Comparison and application of Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbour Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood (ML) methods, Bootstrapping, Jackknife; Software for Phylogenetic analysis, DNA barcoding: Methods tools and databases for barcoding across all species, Applications and limitations of barcoding, Consortium for Barcode of Life (CBOL) recommendations, Barcode of Life Database (BOLD). 	Learning Outcomes	tools.gain working knowledge of these computational tools andappreciate their relevance for investigating specific con	d methods.
MODULE II	Contents:	 MODULE I Introduction, Primary & Secondary database, Sequence file formats, Introduction to structures, Protein Data Bank (PDb), Molecular Modelling Database (MMDb), Structure file formats, Collection of sequences, sequence annotation, sequence description. Evolutionary basis of sequence alignment, optimal alignment methods, Substitution scores & gap penalties, Statistical significance of alignments, Database similarity searching, FASTA, BLAST, Low complexity regions, Repetitive elements, Multiple Sequence Alignment: Progressive alignment methods, Motifs and patterns, Clustal, Muscle; Scoring matrices, Distance matrices. Alignment, tree building and tree evaluation, Comparison and application of Unweighted Pair Group Method with Arithmetic Mean (UPGMA), Neighbour Joining (NJ), Maximum Parsimony (MP), Maximum Likelihood (ML) methods, Bootstrapping, Jackknife; Software for Phylogenetic analysis. DNA barcoding: Methods tools and databases for barcoding across all species, Applications and limitations of barcoding, Consortium for Barcode of Life (CBOL) recommendations, Barcode of Life Database 	15 hours

			- 9 (Special)
	•	3-D structure visualization and simulation, Ba concepts in molecular modeling: different types computer representations of molecules; Extern coordinates and Internal Coordinates, Molecu Mechanics, Force fields <i>etc.</i> Secondary structu elucidation using Peptide bond, phi, psi and o torsion angles, Ramachandran map, anatomy proteins – Hierarchical organization of prote structure –like CATH (class, architecture, topolog homology), SCOP (Structural Classification Proteins), FSSP (families of structurally simil proteins).	of nal lar ure chi of ein gy, of
	•		tal c.) bld tio cal n);
	•	Chemical databases like NCI/PUBCHE Fundamentals of Receptor-ligand interaction Structure-based drug design: Identification a Analysis of Binding sites and virtual screenin Ligand based drug design: Structure Activ Relationship– QSARs & Pharmacophore; <i>In sill</i> predictions of drug activity and ADMET.	ns; nd ng; ity
	•	Designing of oligo probes; Image processing and normalization; Microarray data variability (measurement ad quantification); Analysis of differentially expressed genes; Experimental designs.	
References/Readings	1.	Perambur S Neelakanta (2020) A Textbook Bioinformatics: Information-theoretic Perspectiv	
	2	of Bioengineering and Biological Complexes Wo Scientific Publisher.	rld
		Baxevanis A. D., Bader,G.D., Wishart D.S. (2020) Bioinformatics: A Practical Guide to the Analysis Genes and Proteins Wiley Publisher. Arthur L (2019) Introduction to Bioinformatics. Oxford University Press.	

	<u>X AC- 9 (</u>	
	30.07	.2022
4. Jonathan Pevsner (2015) Bioinformatics	and	
Functional Genomics. Wiley Blackwell P	ublication.	
5. Ignacimuthus. S. (2013) Basic Bioinform	natics	
Alpha Science International Ltd		
6. Essential Bioinformatics Paperback – 2	007 by Jin	
Xiong Cambridge University Press; First	edition.	
7. Bioinformatics databases and algorithm	s (2007) N.	
Gautham.		
8. Xiong J. (2006). Essential Bioinformatics		
Cambridge University Press		
9. Bioinformatics: A modern approach .	2005) V.R.	
Srinivas.		
10. Bioinformatics:concepts skills and a	pplications	
(2004).S.C. Rastogi, N. Mendiratta and F		
11. Statistical methods in Bioinform	0	
introduction. (2005). W. Even and G. Gr	ant.	

Title of the Course: Lab IV Genetics and Molecular Biology Course Code: MBC 194

Objective	The objective of this course is to provide students with ex-	norimontal	
Objective:	The objective of this course is to provide students with experimental		
	knowledge of molecular biology and genetic engineering.		
Learning Outcomes	Students should be able to gain hands-on experience on gene cloning,		
	protein expression and purification. This experience would enable		
	them to begin a career in industry.		
Content:	7. UV/Chemical mutagenesis and survival curve.		
	8. Isolation of amino acid auxotroph by replica	30 hrs	
	plating.		
	9. Phage infection and burst size; types of plaque		
	formation		
	10. Transduction		
	11. Genetic Transfer-Conjugation, gene mapping.		
	12. Genomic DNA isolation		
	13. DNA quantification and gel electrophoresis		
	14. RNA isolation		
	15. RNA denaturing gel electrophoresis.	30 hrs	
	16. Mitosis.		
	17. Meiosis		
References/Readings	1. Sharma R.K., Sangha S.P.S (2020) Basic Techniques		
	in Biochemistry and Molecular Biology Dream Tech		
	Press.		
	2. Gakhar S.K., Miglani M., Kumar A., (2019)		
	Molecular Biology: A Laboratory Manual. Rupa		
	Publications.		

	30.07.2022
3. Hofmann A. (2018) Wilson and Walke	ers Principles
And Techniques Of Biochemistry An	nd Molecular
Biology. Cambridge University Press	
4. Green R. , Sambrook J. (2012) Molec	cular Cloning:
A Laboratory Manual (Fourth Edit volume set	ion): Three-
5. Laboratory Manual for GENETIC ENG	NEERING 1st
Edition (2009) S. JOHN Vennison PHI	Learning

Course Code: MBC-195

Title of the Course: Lab V Cell and Tissue Culture

Objectives			
Objective:	A comprehensive understanding of the cell and cellular functions;plant		
	and animal tissue culture.		
Learning Outcomes	To carry out and interpret experiments in Plant and animal tissue		
	culture .		
Contents:	1. Preparation of starting material (Biosafety cabinet,		
	solutions, media, cell sample etc.):		
	2. Cell stock preparation (glycerol stock), storage,		
	freezing, thaw and subculture,		
	3. contamination and precautions		
	4. Animal cell culture: Secondary cell culture HeLa and		
	non-cancerous cell like	30 hours	
	5. HEK293, COS-7		
	6. Transfection and co-transfection: Calcium-		
	phosphate method and Lipofection		
	7. Cell fixation and staining: Immunolabeling,		
	mounting, fluorescence imaging		
	1. Tissue culture medium preparation, contamination		
	and precautions in plant tissue culture		
	2. Callus induction from different explants such as rice		
	and carrot		
	3. Plantlet regeneration.	30 hrs	
	4. Somatic embryogenesis		
	5. Single cell suspension.		
	6. Protoplast isolation		

	50.07.2022	
References/Readings	1. Freshney I.R. and Capes-Davis A., (2021) Freshney's Culture of	
	Animal Cells: A Manual of Basic Technique and Specialized	
	Applications. Wiley Blackwell Publisher	
	2. Freshney R.I and Masters. J.R.W. (2000) Animal cell culture	
	(2000) – A Practical Approach Oxford University Press	
	3. Sherathiya, H., (2013) Practical manual for Plant Tissue Culture:	
	Basic Techniques of Plant Tissue Culture and Molecular Biology.	
	Grin Verlag	
	4. Smith R. (2012) Plant tissue culture Techniques and experiment.	
	Academic Press.	

Course Code: MBO-196 Title of the Course: Lab VI- Bioinformatics Number of Credits: 2

Objective:	The aim is to provide practical training in bioinformatics and	d statistical	
	methods including accessing major public sequence databases.		
		505.	
Learning Outcomes	 On completion of this course, students should be able to: describe contents and properties of important bioinformatics databases, perform text- and sequence-based searches, analyse and discuss results in the light of molecular biology knowledge; explain major steps in pairwise and multiple sequence alignment, explain its principles and execute pairwise sequence alignment by dynamic programming; predict secondary and tertiary structures of protein sequences; perform and analyse various statistical tools available to analyse the data. 		
<u>Contents:</u>	 Using NCBI and Uniprot web resources. Introduction and use of various genome databases. Sequence information resource: Using NCBI, EMBL, Genbank, Entrez, Swissprot/ TrEMBL, UniProt. Similarity searches using tools like BLAST and interpretation of results. Multiple sequence alignment using ClustalW. Phylogenetic analysis of protein and nucleotide sequences. Use of gene prediction methods (GRAIL/Genscan,/Glimmer). Use of various primer designing and restriction site prediction tools. Use of different protein structure prediction databases (PDB, SCOP, CATH). Construction and study of protein structures using RASMOL/Deepview/PyMol. 	30 hrs	

		<u>X AC- 9 (Special)</u> 30.07.2022	
	 Homology modelling of proteins. Whole-genome assembly from NGS raw dat 16sRNA sequence analysis and use of Bioed Molecular docking 	-	30 hours
<u>References/Readings</u>	 Baxevanis A. D., Bader,G.D., Wishart D.S. (2020) Bioinformatics: Practical Guide to the Analysis of Genes and Proteins Wile Publisher. A.D. Baxevanis and B.F.F. Ouellette (Eds). (2002), <i>Bioinformatics:</i> <i>Practical Guide to the Analysis of Genes and Proteins</i>, John Wile and Sons. D.W. Mount, (2001), <i>Bioinformatics: Sequence and Genom</i> <i>Analysis</i>, Cold Spring Harbor Laboratory Press. Jones & Peuzner, (2004); <i>Introduction to Bioinformatic</i> <i>Algorithms</i>; Ane Books, India. Statistical methods in Bioinformatics: An introduction. (2005). W Even and G. Grant Bioinformatics: A Practical Approach 2007 Shui Qing (Chapman & Hall/CRC Mathematical and Computational Biology) 		eins Wiley ormatics: a ohn Wiley I Genome nformatics (2005). W.

(Back to Index) (Back to Agenda)