GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023 & Thursday, 23rd February, 2023

<u>Time</u>

10.00 a.m.

Venue Council Hall, Administrative Block Goa University Prof. Sunder N. Dhuri, Director, Directorate of Internal Quality Assurance, Goa University sought leave of absence for the meeting held on 14.02.2023.

The Adjourned meeting of the Standing Committee of the Academic Council was held on 23.02.2023 at 2.30 p.m. Prof. Koshy Tharakan, Dean, School of Sanskrit, Philosophy & Indic Studies, Goa University, Prof. K. S. Priolkar, Dean, School of Physical and Applied Sciences, Goa University, Prof. Filipe Rodrigues e Melo, Principal, Sant Sohirobanath Ambiye Govt. College of Arts & Commerce, Virnoda, Pernem, Prof. K. S. Priolkar, Dean, School of Physical and Applied Sciences, Goa University, Prof. Aparajita Gangopadhyay, Dean, School of International and Area Studies, Goa University sought leave of absence for the meeting.

The Chairperson (Vice-Chancellor) welcomed the members to the fifth meeting of the Standing Committee of the X Academic Council and in particular to all the Deans of the Faculties and Schools who were attending the meeting as special invitees.

The Chairperson (Vice-Chancellor) informed the House that due to the implementation of the New Education Policy 2020 for the Post Graduate General Education Programmes offered at the University Campus and Affiliated Colleges, the agenda for the meeting was rather large and therefore requested the members to discuss only Semester III and Semester IV.

The Chairperson (Vice-Chancellor) also informed that as the agenda for the meeting was large, agenda items pertaining to Board of Studies and Affiliation Inquiry Committee required to be deliberated upon, if required the meeting would be adjourned and reconvened.

The meeting was adjourned and reconvened on 23.02.2023 at 2.30 p.m.

Thereafter, the agenda was taken up for discussion.

D	DISCCUSSION
D 3	BOARDS OF STUDIES
D 3.1	Minutes of the Board of Studies in Chemistry (PG) meeting held on 27.10.2022. The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Chemistry (PG) meeting held on 27.10.2022. (Action: Assistant Registrar Academic-PG)
D 3.2	Minutes of the Board of Studies in Women's Studies meeting held by circulation.
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Women's Studies meeting held by circulation with the following suggestions:
	 Uniform format for References/Readings to be followed. Under Research Methodology for PhD in Women's Studies, Sensitive Analysis to be added under content of Module 2.
	(Action: Assistant Registrar Academic-PG)

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL AGENDA

For the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administrative Block Goa University

Fifth meeting of the Standing Committee of the X Academic Council

Date: 14.02.2023

Time: 10.00 a.m.

Venue: Conference Hall, Administrative Block, Goa University

D	DISCUSSIONS
D 3	BOARDS OF STUDIES
D 3	 BOARDS OF STUDIES Minutes of the Board of Studies in Chemistry (PG) meeting held on 27.10.2022. Part A. i. Recommendations regarding courses of study in the subject or group of subjects at the undergraduate level: NIL ii. Recommendations regarding courses of study in the subject or group of subjects at the postgraduate level: (Detailed minutes of the BOS meeting may please be seen). 1. Approval of SEM-III & IV syllabus of 80-credit M.Sc. Chemistry course designed as per NEP applicable from AY 2023-24 After due deliberations and incorporating the suggestions made by the members, the BOS unanimously resolved to approve the draft syllabus of semester III and IV of all four branches (Organic, Inorganic, Physical and Analytical) of M.Sc. Chemistry program based on NEP. The approved syllabus of SEM. III & IV of all four branches of M.Sc. Chemistry program is attached as <u>Annexure I</u> (Refer page No. 1). Approval of SEM III & IV syllabus of 80 credit Pharmaceutical Chemistry under NEP-2020 applicable from AY 2023-24 After due deliberations and incorporating the suggestions made by the members, the BOS unanimously resolved to approve the draft syllabus of semester III and IV of M.Sc. Pharmaceutical Chemistry program based on NEP-2020. The approved syllabus of SEM. III & IV of M.Sc. Pharmaceutical Chemistry program is attached as <u>Annexure II</u> (Refer page No. 94). Approval of syllabus for the Ph.D. Coursework paper in Research Methodology, (Paper-I; 4 Credits) for Research Scholars
	(Paper-I; 4 Credits) for Research Scholars After due deliberations and incorporating the suggestions made by the members, the BOS unanimously resolved to approve the draft syllabus of 4 credit Paper-I titled "Research methodology" for the Ph.D. Coursework for research scholars in Chemistry. The BOS approved syllabus of Ph.D. coursework in Research Methodology is attached as <u>Annexure III</u> (Refer page No. 123).
	Part Bi. Scheme of Examinations at undergraduate level:NILii. Panel of examiners for different examinations at the undergraduate level:NIL

iii. Scheme of Examinations at postgraduate level: NIL

iv. Panel of examiners for different examinations at post-graduate level: NIL

Part C

i. Recommendations regarding preparation and publication of selection of reading material in the subject or group of subjects and the names of the persons recommended for appointment to make the selection: NIL

Part D

- i) Recommendations regarding general academic requirements in the Departments of University or affiliated colleges:NIL
- ii) Recommendations of the Academic Audit Committee and status thereof: NIL

Part E.

- i. Recommendations of the text books for the course of study at undergraduate level: NIL
- ii. Recommendations of the text books for the course of study at post graduate level: NIL

Part F.

Important points for consideration/approval of Academic Council

i. The important points/recommendations of BoS that require consideration/approval of Academic Council as mentioned below

a) PART-A (ii)

ii. The declaration by the Chairperson:

Hereby, it is declared that the minutes were readout by the Chairperson at the meeting itself.

Date: 27.10.2022	Sd/-
Place: Taleigao Plateau	Prof. V. M. S. Verenkar
	Signature of the Chairperson
Part G.	

Ρ

- The Remarks of the Dean of the Faculty
- i. The minutes are in order.
- ii. The following important points / recommendations of BOS may be considered / approved by the Academic Council.
 - Attention of the Academic Council is drawn to item Nos. PART-A (ii)
- iii. May be recommended for approval of Academic Council.
- iv. Special remarks if any: NIL

Date: 27.10.2022

Place: Taleigao Plateau

Sd/-

Prof. V. M. S. Verenkar Dean, School of Chemical Sciences

(Back to Index)

- D 3.2 Minutes of the Board of Studies in Women's Studies meeting held by circulation. The Academic Council may recall that in its meeting held on 19.09.2022 the minutes of the Board of Studies in Women's Studies meeting held by circulation were approved with the following suggestions :
 - 1) The Credits for the Research Methodology Course to be increased to 4 Credits (60 hours).

D 3.1 Minutes of the Board of Studies in Chemistry (PG) meeting held on 27.10.2022.

Annexure I

		SEM III 8. IV	
		Research Specific Elective (RSE) Courses	
Sr. No.	Subject code	Paper title	Credits
1.	CHOR-511	Practical Course in Organic Chemistry-III	4
2.	CHOR-512	Practical Course in Organic Chemistry-IV	4
3.	CHOR-513	Retrosynthesis and Heterocyclic Chemistry	4
4.	CHOR-514	Chemistry of Natural Products	4
5.	CHIR-511	Practical Course in Inorganic Chemistry-III	4
6.	CHIR-512	Practical Course in Inorganic Chemistry-IV	4
7.	CHIR-513	Principles and applications in catalysis	4
8.	CHIR-514	Topics in Inorganic Chemistry	4
9.	CHAR-511	Practical Course in Analytical Chemistry-III	4
10.	CHAR-512	Practical Course in Analytical Chemistry-IV	4
11.	CHAR-513	Advanced Mass Spectrometry	4
12.	CHAR-514	Selected Topics in Analytical Chemistry	4
13.	CHPR-511	Practical Course in Physical Chemistry-III	4
14.	CHPR-512	Practical Course in Physical Chemistry-IV	
15.	CHPR-513	Heterogeneous Catalysis: Fundamentals and Applications	4
16.	CHPR-514	Applied Electrochemistry	4
17.	CHCR-511	Research Methodology and instrumental techniques-	4
18.	CHCR-512	Research Methodology and instrumental techniques- II	4
19.	CHCD-511	Discipline Specific Dissertation	16
		Generic Elective (GE) Courses	
Sr. No.	Subject code	Paper title	Credits
1.	CHOG-511	Polymer Chemistry: Concepts, Synthesis and Processing of Polymers	4
2.	CHOG-512	Concepts in Medicinal Chemistry	4
3.	CHOG-513	Concepts in Green Chemistry	4
4.	CHOG-514	Chemistry of Life	4
5.	CHOG-515	Organometallic Chemistry and Rearrangement Reactions	4
6.	CHIG-511	Bioinorganic Chemistry	4
7.	CHIG-512	Chemistry of p-block elements & their compounds	4

M.Sc. Organic/Inorganic/Analytical/Physical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV) based on NEP 2020

8.	CHIG-513	Environmental Chemistry	4
9.	CHIG-514	Inorganic Chemistry: Industrial Perspective	4
10.	CHAG-511	Fundamentals of Crystallography	4
11.	CHAG-512	Advanced NMR and combined Spectroscopy	4
12.	CHAG-513	Bioanalytical Techniques	4
13.	CHAG-514	Calibration and Validation in Analytical Chemistry	4
14.	CHPG-511	Solid State Chemistry: Concepts and Applications	4
15.	CHPG-512	Nanoscience: Concepts and Applications	4
16.	CHPG-513	Physical aspects of Polymer Chemistry	4
17.	CHPG-514	Colloids and Surface Chemistry	4
		Dissertation	
1.	CHCD-511	Discipline Specific Dissertation	16

M.Sc. Organic Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

SEM III (Organic Chemistry)			
Sr. No.	Subject code	Paper title	Credits
1.	CHOR-511	Practical Course in Organic Chemistry-III	4
2.	CHOR-512	Practical Course in Organic Chemistry-IV	4
3.	CHCR-511	Research methodology and instrumental techniques-	4
4.	CHCR-512	Research methodology and instrumental techniques- II	
5.	CHOG-511	Polymer Chemistry: Concepts, Synthesis and Processing of Polymers	4
6.	CHOG-512	Concepts in Medicinal Chemistry	4
7.	CHOG-513	Concepts in Green Chemistry	4
8.	CHOG-514	Chemistry of Life	4
9.	CHOG-515	Organometallic Chemistry and Rearrangement Reactions	4
SEM IV (Organic Chemistry)			
1.	CHOR-513	Retrosynthesis and Heterocyclic Chemistry	4
2.	CHOR-514	Chemistry of Natural Products	4
3.	CHCD-511	Discipline Specific Dissertation	16

(Back to Index) (Back to Agenda)

Programme: M. Sc. Part-II (Organic Chemistry)			
Course Code: CHOR-511			
Title of the Course: Practical Course in Organic Chemistry-III			
Number of Credits: 04	Total Hours: 120	Effective from AY: 2023-24	

Prerequisites for	Should have studied organic chemistry practical course at M.Sc. Part-I.
the course	
Course Objective:	1. To translate certain theoretical concepts learnt earlier into experimental
	knowledge

	2. To provide hands-on experience of laboratory techniques i	required for
	organic syntheses, organic mixture separations and purification	າ.
Course Outcome:	1. Students will be in a position to perform separation of organic	components
	2 Students will be in a position to understand stoichiometric regi	urements in
	organic syntheses	an ements in
	3. Students will be able to monitor progress of reaction by chrou	matographic
	techniques.	
	4. Students will be able to carry out purification of reaction product	ts by column
	chromatography.	-
Content		Hours
1. Organic ternai	y mixture separation (Minimum 10 experiments of 6h each)	60
Three componen	t mixture separation based upon differences in the physical and the	
chemical proper	ies of the components. Elemental and functional group analysis,	
determination of	physical constant and derivative preparation-its recrystallization and	
melting point/bo	ling point of any one compound.	
2. Organic synthe	esis (Any Six)	36
a. Benzophen	one oxime to benzanilide (Beckmann rearrangement)	
b. Benzil to hy	drobenzoin (NaBH4 reduction)	
c. Diels - Ald	er reaction of anthracene and maleic anhydride using microwave	
irradiation		
d. Friedel- Cra	fts acylation of anisole	
e. 2-methyl be	nzimidazole from <i>o</i> -phenylene diamine	
f. Dicoumarol	from coumarin derivative	
g. Halogenatio	on using NBS: preparation of 9-bromoanthracene (or benzylic	
bromides)		
h. Resolution	of racemic phenyl ethylamine using tartaric acid	
i. Ferric chlor	de oxidative coupling of 2-naphthol to [1,1'-binaphthalene]-2,2'-diol]	
j. Dimedone f	rom mesityl oxide (Dieckmann condensation)	
k. KMnO₄ oxio	ation of toluene assisted by microwave	
I. 2-phenylind	ole from acetophenone (Fisher indole synthesis)	
3. Polarimetry ar	d column chromatography	24
, Any 4 experimer	ts of 6h from ' sections a and b ')	
a. Enantiomeri	c excess by Polarimetry	
Determinat	ion of optical rotation and enantiomeric excess of enantiomers and	
unknown m	ixtures of:	
i. Amino a	cids	
ii. Drugs		
iii. Carboh	yarates	
IV. Uther I	eauliy available chiral compounds	
j Mixture	of ortho and para nitrophenols	
	of bonzil and bonzoin	
III. Mixture	of acetophenone and benzylideneacetophenone	

iv. Mixture of	benzophenone and benzanilide	
v. Other chira	al natural product mixtures	
Pedagogy	Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment.	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook	
/Readings	of Practical Organic Chemistry, 5 th Ed., Prentice Hall, 2011.	
	2. N. K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010.	
	3. K. Tanaka, Solvent-free Organic Synthesis, 2 nd Ed., Wiley-VCH, 2009.	
	 L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 	
	5. K. L. Williamson, K. M. Masters, <i>Macroscale and Microscale Organic Experiments</i> , 6 th Ed., Cengage Learning, 2010.	
	 R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 	
	7. S. Delvin, Green Chemistry, Sarup & Sons, 2005.	
	8. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry Laboratory	
	<i>Standard and Microscale Experiments</i> , 3 rd Ed., Saunders College Publishing, 2009.	
	9. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014.	
	10. G. J. Shugar, J. T. Ballinger, Chemical Technicians Ready Reference	
	Handbook, McGraw-Hill, Inc. 1996.	
	11. D. P. Shoemaker, Experimental Physical Chemistry, McGraw-Hill, 1989.	

Programme: M. Sc. Part-II (Organic Chemistry) Course Code: CHOR-512 Title of the Course: Practical Course in Organic Chemistry-IV Number of Credits: 04 Total Hours: 120 Effective from AY: 2023-24

Prerequisites for the	Should have studied organic chemistry practical course at M.Sc. Part-I.
course	
Course Objective:	1. To translate certain theoretical concepts learnt earlier into experimental
	knowledge
	2. To provide hands on experience of laboratory techniques required for
	organic syntheses and organic mixture separations.
Course Outcome	1. Students will be in a position to adopt Safe and good laboratory practices,
	handling laboratory glassware, equipment and chemical reagents.
	2. Students will be in a position to understand and calculate stoichiometric
	requirements during organic syntheses.

3. Students will be in a position to perform separation of organic components		omponents
based on chemical nature, solubility and boiling points.		
Content		Hours
1. Organic ternary m	nixture separation and identification (Minimum 14 experiments of	84
6h each)		
Three component	mixture separation based upon differences in the physical and the	
chemical propertie	es of the components. Elemental and functional group analysis and	
preparation, its re	crystallization and m. p. of each component and characterization of	
each component a	and its derivative by m. p. comparison.	
2. Organic synthesis	(Any Six)	36
a. 1,2,3,4 - tetrah	ydrocarbazole from cyclohexanone (Fischer indole synthesis).	
b. Resolution of r	acemic phenylethylamine using tartaric acid.	
c. Trans - Stilben	e by Wittig reaction.	
d. Enamine alkyla	ation: 2-methyl cyclohexanone pyrrolidine enamine with CH ₃ I.	
e. Chlorobenzylic	lene rhodanine (Perkin reaction).	
f. Diels-Alder re	action of anthracene and maleic anhydride using microwave	
irradiation. Ox	idation of a primary / secondary alcohol to carbonyl compound by	
polymer suppo	orted chromic acid (Amberlyst A-26, chromate form).	
g. Phenytoin fror	n benzil and urea.	
h. Isoborneol fro	m camphor (NaBH4 reduction)	
i. 3 -Methyl -2-p	henyl-2-butanol from 2-bromopropane and acetophenone	
j. Triphenyl carbinol from benzophenone or ethyl benzoate (Grignard reaction).		
k. Benzidine from	n hydrazobenzene (benzidine rearrangement).	
I. Methyl orange	red from sulphanilic acid/anthranilic acid (diazotization).	
m. Reduction of N	litrobenzene to aniline by Sn/HCl.	
n. LAH reduction	of Anthranilic acid.	
o. Norborneol to	norcarnphor using chromium trioxide/sulfuric acid	
p. Benzhydrol fro	om benzaldehyde (Grignard reaction)	
q. Diethyl 4-buty	I malonate by malonic ester condensation	
Pedagogy	Students should be given suitable pre- and post-lab assignment	nents and
	explanations revising the theoretical aspects of laboratory experiment	nents prior
References	to the conduct of each experiment.	s Taythook
/Readinas	of Practical Organic Chemistry, 5 th Ed. Prentice Hall, 2011	STEXIDOOK
,	2 N. K. Vishnoi Advanced Practical Organic Chemistry, South /	sia Books
	2. N. K. Visinioi, Advanced Practical Organic Chemistry, South A	<i>1310 DOOK3,</i>
	3. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 nd Ed.,	2009.
	4. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 th Ed. D	. C. Heath,
	1992.	
	5. K. L. Williamson, K. M. Masters, Macroscale and Microsca	le Organic
	Experiments, 6 th Ed., Cengage Learning, 2010.	

(5. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5 th Ed., New Age
	International, 2016.
	7. S. Delvin, Green Chemistry, Sarup & Sons, 2005.
8	B. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry Laboratory
	Standard and Microscale Experiments, Saunders College Publishing, 3rd
	Ed., 2009.
<u>c</u>	9. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014.

Programme: M.Sc. Part-II (Organic Chemistry) Course Code: CHOR-513 Title of the course: Retrosynthesis and Heterocyclic Chemistry Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24

Prerequisites for the	Students should have studied Organic Chemistry courses at M.S.	c. Part-I	
course	level.		
	1.To apply the knowledge gained in organic synthesis for maki	ng new	
	molecules.		
Course Objectives	2. To understand various strategies involved in retrosynthesis of	organic	
Course Objective:	molecules		
	3. To understand the concepts in heterocyclic chemistry and its appl	ications	
	4. To be able to propose routes for synthesis of heterocycles		
	1.Students will be in a position to understand how a carbon-carbo	on bond	
	can be constructed and/or cleaved		
	2.Students will be in a position to understand how retrosynthesis can be		
	used in finding out easily available chemical precursors for	making	
	organic molecules		
Course Outcome:	3.Students will be in a position to apply retrosynthetic strategies and		
	propose routes for synthesis of organic molecules and heterocycles		
	4.Students will be able to understand and apply the concepts	of the	
	reactivity of heterocycles towards electrophilic, nucleophilic, r	educing	
	and oxidizing reagents.		
Content	Content		
1. Disconnection appro	ach – Introduction, types of disconnection	15	
a. One-group disco	nnection		
b. Disconnection	of simple alcohols and compounds derived from alcohols,		
disconnections o	disconnections of simple olefins, simple/aryl ketones and carboxylic acids		
c. Two-group disco	. Two-group disconnection		
d. Disconnection of	. Disconnection of 1,3-dioxygenated skeletons, β -hydroxy carbonyl compounds, α , β -		
unsaturated carb	unsaturated carbonyl compounds, 1,5-dicarbonyl compounds, Mannich reaction		
e. 'Illogical' Two-gro	oup disconnection		

 f. Disconnection of the 1,2-dioxygenated skeleton, α-hydroxy carbonyl compounds, 1,2-diols, 'Illogical' electrophiles, disconnection for the 1,4-dioxygenated pattern in 1,4-dicarbonyl compounds, γ-hydroxy carbonyl compounds, Other 'Illogical' synthons, disconnection for the 1,6-dicarbonyl compounds, synthesis of lactones 	
(General review problems to be discussed for above approaches)	
2. Disconnection strategies	15
a. Disconnection of heteroatom and heterocyclic compounds such as ethers, amines,	
heterocycles, amino acids	
b. Disconnection strategies of few pericyclic reactions	
c. Convergent and divergent synthesis	
d. Strategic devices for carbon-heteroatom bonds, polycyclic compounds: the	
common atom approach	
e. Considering all possible disconnections	
f Alternative FGI's before disconnection- the cost of synthesis	
g Eastures which dominate strategy functional group addition and molecules with	
uprelated functional groups	
2 Heterosyclic compounds	15
a Introduction classification and nomenclature of mono- and hisyclic beteroaromatic	13
h Dhysical properties dipole moment esidity besicity promoticity electron density	
b. Physical properties, dipole moment, actuity-basicity, aromaticity, electron density	
distribution and reactivity of furan, thiophene, pyrrole, indole, pyridine, pyridine-N-	
oxide, quinoline, isoquinoline, diazines and triazines, 1,3- and 1,2- azoles	
4. Synthetic strategies for heterocycle synthesis	15
General methods of synthesis of the following: furan, thiophene, pyrrole, indole, pyridine,	
Quinoline, isoquinoline, chromones, initidazoles, oxazoles, thiazoles	oonts /
presentations / self-study or a combination of some of these can also h	
ICT mode should be preferred. Sessions should be interactive in na	ature to
enable peer group learning.	
<i>Textbooks/</i> 1. S. Warren, <i>Designing Organic Synthesis</i> , John Wiley & Sons, 2009.	
References / 2. G. S. Zweifel, M. H. Nantz, P. Somfai, Modern Organic Synthe	esis: An
Readings Introduction, 3 rd Ed. W. H. Freeman and Company, New York, 2022.	
3. J. Clayden, N. Greeves & S. Warren, Organic Chemistry, Oxford, 2016	5.
4. J. A. Joule, K. Mills & G. F. Smith, <i>Heterocyclic Chemistry</i> , 3 rd Ed., 199	5.
5. J. A. Joule & K. Mills, <i>Heterocyclic Chemistry</i> , Wiley-Blackwell, 5 th Ed.	, 2010.
6. I. L. Glichrist, Heterocyclic Chemistry, Pitman Publishing, 2005.	nounda
Iohn Wiley and Sons 3 rd Ed 1977	pounus,
8. D. W. Young, <i>Heterocyclic Chemistry</i> , Longman Group Ltd., London	1975.
9. R. O. C. Norman and J. M. Coxon. <i>Principles of Organic Synthesis</i> . CR	C Press.
3 rd Ed., 2009.	,

Programme: M.Sc. Part-II (Organic Chemistry) Course Code: CHOR-514 Title of the course: Chemistry of Natural Products Number of Credits: **04** Total Hours: 60

Effective from AY: 2023-24

Prerequisites for the course:	Students should have studied Organic Chemistry courses at M.Sc. Par	t-I level.	
	1. To study the main classes of natural products.		
Course Objectives:	2. To understand the different methods that are used in natural	product	
	chemistry, including extraction, isolation and structural elucidat	ion.	
	3. To understand the key biosynthetic pathways for the biosynt	hesis of	
	terpenes, alkaloids and steroids.		
	1. Students will be able to identify different types of natural produ	cts	
	2. Students will be able to describe the properties and structure of	natural	
	products, their occurrence, biosynthetic pathways		
Course Outcomes:	3. Students will be able to carry out independent investigations	of plant	
	materials and natural products	•	
	4. Students will be able to understand and explain the synthesis	of some	
	classes of natural products.		
Content		Hours	
1. Source and isolation	n of natural products	2	
General methods of is	solation: The modern distillation process, maceration, enfleurage,		
extraction by cold press	sing and extraction with solvents		
2. General methods of purification and structure elucidation of Natural Products 4		4	
a. Fractionation of the crude extracts and purification of the individual compounds from			
the respective fractions using chemical and chromatographic techniques such as			
Column Chromatography, TLC, Preparative TLC, HPLC, etc.			
b. Chemical methods based on the functional groups present: Bicarbonate extraction,			
sodium bisulphite adduct formation, derivatization, etc.			
c. General approach	to structure elucidation of the isolated pure compounds using UV,		
IR, NMR spectros	copy, MS spectrometry, optical polarimetry.		
3. Structure elucidatio	n by classical chemical methods	12	
a. Terpenolds: α-ceo	drene		
b. Alkaloids: Morphine, thebaine and codeine			
c. Steroids: Choleste	erol, bile acids		
4. Structure elucidation by combination of chemical and spectral methods		10	
a. Terpenoius. u- an	nia luvenile hermone, hrevisemin and frontalin		
D. Hormones. Cecro	b. Hormones: Cecropia Juvenile hormone, brevicomin and frontalin		
c. Oxygen neterocycles. Anatoxin-b1, rotenone		0	
a Terpenoids: Ment	thol and hardwickiic acid	0	
h Alkaloids: Reservene			
6. Synthesis of selecte	6. Synthesis of selected natural products, planning and execution 14		
		· - ·	

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

a. Terpenoids: Lo	ngifolene (E. J. Corey), Caryophyllene (E J Corey) Nootkatone (A.	
Yoshikoshi), Me	enthol (Tagasago)	
b. Alkaloids: Reser	pine (R. B. Woodward), Morphine (Marshall Gates)	
c. Hormones: Cec	ropia JH (Edward), Progesterone	
d. Prostaglandins:	Prostaglandin E2 (E. J. Corey)	
e. Antibiotics: Cep	halosporin (R. B. Woodward)	
7. Biogenesis and bio	osynthesis of natural products	10
a. Terpenoids and	Steroids: General approach towards biosynthesis of mono-, sesqui-,	
di-, tri-, tetrat	erpenoids and steroids through mevalonate pathway with special	
reference to the	e biosynthesis of terpenoids and steroids included in topics 3 to 6	
b. Alkaloids: The	shikimate pathway formation of hydroxybenzoic acid derivatives,	
aromatic amin	o acids, L-phenylalanine, L-tyrosine, phenolic oxidative coupling,	
biosynthesis of	thebaine, codeine and morphine.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignm	nents /
	presentations / self-study or a combination of some of these can also b	be used.
	ICT mode should be preferred. Sessions should be interactive in na	ature to
Taxt Books/	enable peer group learning.	Natural
References /	1. I. L. Final, Organic Chemistry. Stereochemistry and the Chemistry of Broducts, Boarson Education India, 2002	Ναταιαί
Readinas	Products, Pearson Education India, 2002.	
5	2. R. Nakanishi, Naturul Product Chemistry, Academic Press, 2013.	
	3. D. R. Dalton, The Alkaloids. New York: M. Dekker, 1979	70
	4. Barton and Olis, <i>Comprehensive Organic Chemistry</i> , Pergamon, 197	9.
	5. D. Paul, Medicinal Natural Products: A Biosynthetic Approach, Jon	n wiley
	dilu Solis, 2002.	
	6. M. Paolo, Biosynthesis of Natural Products, Wiley, 2010	
	1992.	ia Sons,
	8. E. J. Corey & X-M. Cheng, The Logic of Chemical Synthesis	, Wiley
	Interscience, a division of John Wiley and Sons Inc, 1995.	-
	9. K. C. Nicolaou & E. J. Sorensen, <i>Classics in Total Synthesis</i> , Weinhe	m: VCH,
	1996.	ŕ
	10. R. O. C. Norman and J. M. Coxon. Principles of Organic Synthesis, CR	C Press,
	3 rd Ed., 2009.	ž

Programme: M. Sc. Part-II (Chemistry)Course Code: CHOG-511Title of the Course: Polymer Chemistry: Concepts, Synthesis and ProcessingNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites for the	Students should have studied M.Sc. Part-I Chemistry.
course	
Course Objective:	1. To introduce various concepts in organic polymer chemistry.

	2. To understand the synthesis, polymer processing and applications.		
Course Outcome:	e Outcome: 1. Students will be in a position to understand and evaluate the differences in		
	structures and properties of small molecules and macromolecules.		
	2. Students will be in a position to apply concepts involved i	n polymer	
	synthesis, characterization and processing.		
	3. Students will be in a position to understand and apply concepts of	of synthesis	
	and applications of organic polymers.	-	
Content:		Hours	
1. Brief history of na	atural and synthetic polymers	5	
Classification & nome	enclature of polymers, functionality concept- linear, -branched and -		
cross linked polymers	s. Introduction to biodegradable polymers.		
2. Methods and cher	nistry of polymerization	12	
Bulk, solution, susp	ension, emulsion, addition, condensation polymerizations. Free-		
radical, Ionic and coo	ordination polymerization reactions. Introduction to controlled free		
radical polymerizatio	n. Carothers equation in condensation polymerizations.		
3. Properties of poly	mers	10	
a. Number and	weight average molecular weights, Molecular weight distribution,		
polydispersity	И.		
b. Glassy state a	nd glass transition temperature, crystallinity in polymers.		
c. Characterizat	ion of polymers.		
4. Resources for mor	nomers, manufacture of important monomers and reagents	12	
Ethylene, propylene,	butadiene, isoprene, styrene, divinyl benzene, acrylonitrile, vinyl		
chloride, adipic acid,	urea, bisphenol-A, melamine, phthalates, glycol, glycerol, ethylene		
oxide, epichioronyar	in, e-caprolactum, di-isocyanates, pentaerythritol, allylic carbonate		
5 Synthesis propert	ies and applications of polymers	1/	
a. Vinvl polyme	ers- IDPE, HDPE, PVC, PVA, polyvinyl acetate, polyacrylates.		
methacrylate	s polystyrene teflon ABS SBR SAN		
h Condensation	nolymers- Nylons nolyesters nolyurethanes nolycarbonates		
c Thermoset no	nycarbonates like CP-39 Cellulose esters- cellulose acetate nitrates		
c. memoset pt	ityratos		
d Thermoset re	sins- nhanol-formaldahyda, malamina-formaldahyda, anovy racins -		
their curing	sins-phenol-tormaldenyde, melamine-tormaldenyde, epoxy resins -		
Natural rubba			
		7	
6. Additives in polym	ners and Polymer processing	/	
a. Lubricants, pr	asticizers, stabilizers, antioxidant, me retardants, blowing agents,		
h later duction	its, crossiniking agents, ov-vis degradants etc.		
D. Introduction	to compounding, and processing techniques like calendaring,		
casting, moul	aing and spinning in polymer processing.		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assig	gnments /	
	presentations / self-study or a combination of some of these can als	so be used.	
	anable poor group learning	nature to	
	l enable heet group learning.		

Text	Books/	1. V. R. Gowarikar, N.V. Vishwanathan, J. Sreedhar, Polymer Science, New Age
References	/	International, 2015.
Readings		2. J. R. Fried, Polymer Science and Technology, PHI Pvt. Ltd., 2000.
		3. R. Sinha, <i>Outlines of Polymer Technology: Manufacture of Polymers</i> , PHI Pvt Ltd., 2000.
		4. K. Y. Saunders, <i>Organic Polymer Chemistry</i> , Chapman and Hall, UK, 1976.
		5. H. R. Kircheldorf, <i>Handbook of Polymer Synthesis, PART Aand B,</i> Marcel Dekkar Inc., 1992.
		6. R. P. Brown, <i>Handbook of Plastic Test Methods</i> , 2 nd Ed., George Godwin Ltd., 1981.
		7. M. P. Stevens, <i>Polymer Chemistry- An Introduction</i> , 2 nd Ed., Oxford Univ. Press, 1990.
		8. W.Y. Mijs, <i>New Methods in Polymer Synthesis</i> , PelnumPress Ltd., NY, 1992.
		9. M. Arora, Polymer Chemistry, Anmol Publications 2001.
		10. C. E. Carraher, <i>Polymer Chemistry,</i> New York M. Dekker 2005.
		11. P.C. Hiemenz, Polymer Chemistry, CRC Press, 2007.
		12. V. K. Selvaraj, <i>Advanced Polymer Chemistry</i> , New Delhi Campus books, CRC Press, 2008.
		13. A. Ravve, Principles of polymer Chemistry, Springer 2012.
		14. J. David , <i>Polymers,</i> Oxford University Press 2015.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHOG-512 Title of the course: Concepts in Medicinal Chemistry Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24

Prerequisites for the	Students should have studied the chemistry courses in M.Sc. Part I level.		
course:			
	1. To understand the concepts of drug discovery and development	-	
Course Objective:	2. To learn drug screening, target identification, lead discove	ry,	
Course Objective:	optimization		
	3. To understand molecular basis of drug design and drug action		
	1. Students will be able to explain classes of drugs and their structure activ	ity	
	relationship with examples of some important class of drugs.		
	2. Students will be able to explain mechanism of action of the drugs.		
	3. Students will be able to describe the therapeutic uses of drugs and speci	fic	
Course Outcome:	side effect of 'Drug Substances'.		
	4. Students will be able to explain physico-chemical properties related	to	
	QSAR.		
	5. Students will be able to describe various approaches in designing of dr	ug	
	molecules including prodrug and combinatorial chemistry.		
Content Hours		rs	

A later de l'en la Deve	45		
1. Introduction to Drugs	15		
Requirement of an ideal drug, sources of drugs, important terms used in chemistry of drugs,			
assification and nomenciature of drugs, drugs and the medicinal chemists.			
a. Didg Design. Analogues and pro-didgs, concept of lead compounds, read			
	50,		
conjunction, tailoring of drugs, cimetidine – a rational approach to drug design.			
b. Drug Development: Screening of natural products, isolation and purification	on,		
structure determination, structure-activity relationship, QSAR, synthetic analogu	les,		
- a case study	ine		
2 Mechanism of drug action	10		
Introduction enzyme stimulation enzyme inhibition membrane-active dru			
polymorphism and drug delivery.	18-37		
3. Study of Pharmacodynamic Agents (minimum two examples for each)	15		
a. Local anesthetics			
b. Analgesics : narcotic and non-steroidal anti-inflammatory, narcotic antagonists			
c. Antiepileptic drugs			
d. Antiparkinsonism drugs			
e. Antihistaminics			
f. Seditives and hypnotics			
g. Antipsychotics			
h. Cardiovascular agents : Cardiovascular diseases, Antianginal agents and vasodilate	ors,		
Antihypertensive agents, Antiarrhythmic drugs, Adrenergic blocking agents			
i. Antihyperlipidemic and antiatherosclerotic agents			
j. Anticoagulants, blood coagulation and anticoagulant mechanism			
k. Diuretics			
I. Antidiabetic drugs : Synthetic hypoglycemic agents			
4. Study of Chemotherapeutic Agents and Antibiotics	15		
a. Chemotherapeutic Agents (with examples)			
i. Sulfonamides			
ii. Antitubercular and Antilepral agents			
iii. Antiamoebics			
iv. Anthelmintics			
v. Antimalarials			
vi. Antiviral agents			
vii. Antineoplastic Agents			
b. Antibiotics : General information, mode of action and applications			
i. β-Lactam antibiotics : Penicillins and Cephalosporins			
ii. Aminoglycocides : Streptomycin, Neomycin			
iii. Tetracyclines			
iv. Macrolides : Erythromycin, Rifamycin, Lincomycin			
v. Polypeptides : Bacitracin			
vi. Unclassified antibiotics : Chloramphenicol			

5. New Developm	ents in Drug Discovery 5		
Introduction, gene therapy, drug resistance, antisense drugs, cytokines, drugs to combat			
AIDS.			
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments		
	presentations / self-study or a combination of some of these can also be used.		
	ICT mode should be preferred. Sessions should be interactive in nature to		
	enable peer group learning.		
Text Books	5/ 1. R. F. Doerge, J. B. Lippincott, Wilson and Gisvold's Text book of Organic		
References	/ Medicinal and Pharmaceutical Chemistry, 8 th Ed, Philadelphia, USA, 2010		
Readings	2. M. E. Wolff, Burger's Medicinal Chemistry, Part I and II, 4 th Ed., John Wiley,		
	1980		
	3. W. O. Foye, Principles of Medicinal Chemistry, 7th Ed., K. M. Varghese and		
	Co., Bombay, 2012.		
	4. Lednicer and Mitscher, Organic Chemistry of Drug Synthesis, Vols I and II,		
	John Wiley, 1980.		
	5. G. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press,		
	Oxford, 1998.		
	6. D. J. Abraham, Burgers Medicinal Chemistry and Drug Discovery, Vol. I, 6 th		
	Ed.,, John Wiley and Sons, New Jersey, 2003.		
	7. J. Janata, Z. Kamenik, R. Gazak, S. Kadlcik and L. Najmanova, Nat. Prod.		
	Rep., 2018 , 35, 257–289		

Programme: M.Sc. Part-II (Chemistry)Course Code: CHOG-513Title of the course: Concepts in Green ChemistryNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites for the	Students should have studied M.Sc. Part-I Chemistry/Biochemistry.	
course:		
	1. To understand various concepts involved in Green synthesis	
Course Objective:	2. To understand green technologies used in chemistry	
Course Objective:	3. To learn application of green chemistry approaches to ch	nemical
	industry	
	1. Students will be in a position to understand how chemistry	can be
	done using greener alternatives	
Course Outcome:	2. Students will be in a position to apply green technologie	es as a
	sustainable solution for making molecules	
	3. Students will be able to understand and apply the concepts o	f green
	chemistry to develop scalable processes in industry	
Content		Hours
1. Principles and Concepts of Green Chemistry 6		6
a. Introduction, twelve green principles, sustainable development and green chemistry.		
b. Atom Economy: atom economic reactions- rearrangement and addition reactions.		

с.	Atom un-economic reactions- substitution, elimination and Wittig reactions.			
	Reducing toxicity.			
2. Wa	ste: Production, Problems and Prevention	6		
a.	Introduction, Some problems caused by waste, sources of waste from the chemical			
	industry and the cost of waste.			
b.	Waste minimization techniques: the team approach and process design for waste			
	minimization, minimizing waste from existing processes.			
с.	On-site waste treatment: Physical, chemical and biotreatment.			
d.	Design for degradation: degradation and surfactants, DDT, polymers and some rules			
	for degradation.			
e.	Polymer recycling: separation and sorting, incineration, mechanical recycling and			
	chemical recycling to monomers.			
3. Me	easuring and Controlling Environmental Performance	6		
a.	The importance of measurement: Lactic acid production, safer gasoline.			
b.	Introduction to life cycle assessment and green process metrics.			
с.	Environmental management systems: ISO and European Eco-Management and Audit			
	Scheme, eco-labels, green chemical supply, Strategies, Legislation and integrated			
	pollution prevention and control.			
4. Cat	alytic processes and Green Chemistry	10		
a.	. Introduction to catalysis and comparison of catalyst types.			
b.	Heterogeneous catalysts: Basics of heterogeneous catalysis, Zeolites and the bulk			
	chemical industry, heterogeneous catalysis in the fine chemical and pharmaceutical			
	industries. Catalytic converters.			
с.	. Homogeneous catalysis: Transition metal catalysts with phosphine ligands, greener			
	Lewis acids and asymmetric catalysis.			
d.	Phase transfer catalysis: Hazard reduction, C – C bond formation and oxidation using			
	hydrogen peroxide.			
e.	Biocatalysis and photocatalysis.			
5. Org	anic Solvents: Environmentally Benign Solutions			
a.	Organic solvents and volatile organic components, solvent free systems.			
b.	Supercritical fluids: supercritical carbon dioxide and supercritical water.			
с.	Water as a reaction solvent and water-based coatings.	10		
d.	Ionic liquids as catalysts and solvents.			
e.	Fluorous biphase solvents.			
f.	Deep eutectic solvents			
6. Ren	ewable Resources			
a.	Biomass as a renewable resource. Energy: Fossil fuels, biomass, solar power, fuel cells			
	and other forms of renewable energy.	6		
b.	Chemicals and polymers from renewable feedstock.			
с.	Alternative economies: the syngas economy and the biorefinery.			
7. Gre	ener Technologies and Alternative Energy Sources	10		
a.	Design for energy efficiency	10		

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

b.	Photochemical reactions: advantages of and challenges faced by photochemical			
	processes, examples of photochemical reactions.			
с.	Chemistry usi	Chemistry using Microwaves: microwave heating and microwave-assisted reactions.		
d.	Sonochemistr	Sonochemistry and green chemistry examples.		
e.	Electrochemic	Electrochemical synthesis and examples.		
f.	Flow chemistr	Flow chemistry		
8. Indi	ustrial case stu	dies		
a.	A brighter sha	de of green: synthesis of stilbene intermediates for optical brightners.		
b.	Greening of a	cetic acid manufacture, EPDM rubbers and Vitamin C.		
с.	Leather manu	facture: tanning and fatliquoring.		
d.	Dyeing to be	green: some manufacturing and products improvement and dye	6	
	application.			
e.	Polyethene: R	adical process, Ziegler – Natta and metallocene catalysis.		
f.	Eco-friendly p	esticides.		
Pedag	ogy	Mainly lectures and tutorials. Seminars / term papers /assignm	ents /	
		presentations / self-study or a combination of some of these can also b	e used.	
		ICT mode should be preferred. Sessions should be interactive in nat	ture to	
Touth	! /	enable peer group learning.	ام بين ما جرم	
I EXTDO Refere	DOKS/	1. IVI. Lancaster, Green Chemistry, The Royal Society of Chemistry, Cam	briage,	
Readi	nas /			
neuun	195	2. V. K. Aniuwalia, Green Chemistry: Environmentally Benigh Reaction	ns, Ane	
		Books India, New Delhi, 2006.		
		3. A. S. Matlack, Introduction to Green Chemistry, Marcel Dekker, Ind	c., New	
		York, 2001.		
		4. P. T. Anastas and T. C. Williamson, <i>Green Chemistry: Frontiers in</i>	benign	
		chemical synthesis and processes, Oxford University Press, Oxford, Ec	. 1998.	
		5. R. Sanghi and M. M. Srivastava, <i>Green Chemistry: Environment F</i>	Friendly	
		Alternatives, Narosa Fublishing House, Ed. New Delhi, 2007.		
		 Samuel Delvin, Oreen Chemistry, WT Fublishing House, Denn, 2000. V. K. Abluwalia and M. Kidwai. New Trands in Croon Chemistry. And Complexity of the Chemistry of the Chemistry. 		
		Publishers New Delhi 2004	lannaya	
		8 P. G. Jesson and W. Leitner, Chemical Synthesis using Supercritical	l fluids	
		Wiley – VCH, Verlag, Ed., Weinheim, 1999.	jiulus,	
		9. K. Tanaka, <i>Solvent Free Organic Synthesis</i> , Wiley – VCH GmbH and Co	. KgaA,	
		Weinheim, 2003.	0. /	
		10. P. T. Anastas and J. C. Warner, <i>Green Chemistry, Theory and Practice</i> .	Oxford	
		University Press, N. York, 1998.		
		11. C - Jun Li and T – Hang Chan. Organic Reactions in Aqueous Media	a, John	
		Wiley and Sons INC., N. York, 2001.	,	
		12. F. Z. Dorwald. Organic Synthesis on Solid Phase. Wiley – VCH	Verlag.	
		 P. I. Anastas and J. C. Warner, Green Chemistry, Theory and Practice, University Press, N. York, 1998. C - Jun Li and T – Hang Chan, Organic Reactions in Aqueous Media Wiley and Sons INC., N. York, 2001. F. Z. Dorwald, Organic Synthesis on Solid Phase, Wiley – VCH 	Oxford a, John Verlag,	

15

13. P. Wasserscheid and T. Welton, Ionic Liquids in Synthesis, Wiley – VCH
Verlag, Ed., Weinheim, 2003.
14. A. Loupy, Microwaves in Organic Synthesis, Wiley – VCH Verlag, Weinheim,
(Ed.), 2002.
15. R. V. Eldik and F. G. Klarner, High Pressure Chemistry, Wiley – VCH Verlag,
(Eds.), Weinheim, 2002.
16. F. Darvas, G. Dorman, V. Hessel, Flow Chemistry - Fundamentals: Vol.1, De
Gruyter, 1st Ed. 2014.

Programme: M.Sc. Part-II (Chemistry)			
Course Code: CHOG-514			
Title of the course: Chemist	ry of Life		
Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24			

	-	
Prerequisites for the course	Students should have studied M.Sc. Part-I Chemistry/Biochemistry.	
 Course Objective: 1. Introduction to the chemistry of amino acids, proteins, carbohydr lipids and their applicability in daily life. 2. Understanding chemicals used in food production through processing, storage and cooking. 3. Understanding food analysis and the chemistry of the digestion of and energy provided by food. 		
Course Outcome:	 Students will be in a position to predict type of proteins, lipit carbohydrates available in food. Students will be in a position to explore the chemical structur functionality for the macronutrient categories like carbohydrates and proteins in food Student will be able to design experiments through an inquiry-or food chemistry focused laboratory program. The students will be able to identify the essential chemical comp of food and have knowledge of their analyses, and gain knowledge chemistry of lipids, carbohydrates and proteins 	ds and ire and , lipids, riented, onents e of the
Content		Hour s
1. Chemistry of Proteins	s: Structure, function and food analysis mino acids and role of polar, non-polar, acidic and basic side chainsa	10
	mine delas ana role or polar, non polar, delale ana basic side chamsa,	1

- their properties and Isoelectric point
 b. Introduction to peptides, dipeptides and proteins, types of proteins [primary (1°), secondary (2°), tertiary, (3°) and Quaternary (4°)]: hydrogen bonding, salt bridges, hydrophobic non-polar interactions and disulfide linkages
- c. Protein folding, denaturation and functional properties of proteins.
- d. Food Proteins Source of Proteins, Analysis of amino acids and proteins in food

2. Chemistry of Nucleic Acids

Brief history of sugars and bases, conformation of sugar-phosphate backbone, hydrogen bonding by bases, the double belix: A B, and Z double belices, stability of double belix, DNA			
intercalators, chemical synthesis of DNA, catalytic RNA, siRNA, micro RNA			
3. Chemistry of Carbo	3. Chemistry of Carbohydrates and Linids: Structure, function and food Analysis 20		
a. Carbohvdrates	······································		
i. Introduction to	o mono-, di- and oligosaccharides, polysaccharides: starch, dietary, viscal function.		
ii. Fischer project	ions, Haworth Projections, stereoisomerism in carbohydrates.		
iii. Food Carbohyd	drates – Source of carbohydrates, Analysis of carbohydrates in food		
iv. Sugars: Hydrol	ysis, thermal degradation, Maillard reaction (non-enzymic browning		
reaction betwe	een reducing carbohydrates and proteins), Amadori Rearrangement		
and Analysis of	f Sugars, Mutarotation		
b. Lipids			
i. Introduction to	plipids, types of lipids and fatty acids		
ii. Monoglyceride	es, diglycerides, triglycerides, polar lipids		
iii. Reactions of fa	tty acids - Oxidative and hydrolytic rancidity		
iv. Sources of fats	and analysis in food		
4. Chemistry of Enzym	nes	15	
a. Introduction to	o Enzyme Catalysis and Kinetics		
b. The Catalytic T	riad		
c. Enzyme Inhibit	ion and Drug design		
d. Enzymes in Or	ganic Synthesis		
e. Antibody Catal	ysed Organic Reaction		
f. Enzyme Model	s: Biomimetic Polyene Cyclisation and Squalene Biosynthesis		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignm	ents /	
	presentations / self-study or a combination of some of these can also b	e used.	
	ICT mode should be preferred. Sessions should be interactive in nat	ture to	
	enable peer group learning.		
Textbooks/	1. J. Clayden, N. Greeves, & S. Warren. <i>Organic Chemistry</i> , 2 nd Ed.,	Oxford	
Readinas	2 T. P. Coultate Food - The Chemistry of its Components Royal Soc	viety of	
neuunigs	Chemistry 5 th Ed. 2009	Jely OI	
	3 H. D. Belitz & W. Grosch Food Chemistry 4 th Ed. Springer 2009		
	A B Solinger Chemistry in the Marketnlace 3rd Ed. Harcourt Brace 1	086	
	5. O. R. Eennema Eood Chemistry Ath Ed. Marcel Dekker 2008	.900.	
	6 H. Dugas, Biographic Chemistry - A Chemical Approach to Enzyme	Action	
	2 rd Ed. Springer 1000	Αιτισπ,	
	7 P. R. Silverman. The Organic Chemistry of Enzyme-catalyzed Rec	actions	
	Academic Press San Diego 717 nn 2000		
	8 S Davies Amino acids Pentides and Proteins Royal Society of Che	mistry	
	LIK Vol 35 4 2006	mistry,	
	9 Stryer M Berg and Tymoczko <i>Riochemistry</i> 5th Ed	wн	
	Freeman & Co Ltd, 2002.	vv. II.	
	,		

Programme: M.Sc. Part-II (Chemistry)Course Code: CHOG-515Title of the course: Organometallic Chemistry and Rearrangement ReactionsNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequi	prequisites for the Students should have studied chemistry courses at M.Sc. Part-I level.		
course:	course:		
Course Objective:		1. To understand concepts and various strategies involved in organic chemistry.	ometallic
		2. To apply organometallic chemistry in the formation of carbor	n-carbon,
	ssjeenve.	carbon-hetero atom bonds.	
		3. To understand and apply molecular rearrangements for	synthetic
		applications.	
		1. Students will be in a position to understand how a carbon-car	bon and
		carbon-hetero atom bonds can be constructed using organ	ometallic
		chemistry.	
Course C	<i>Outcome:</i>	2. Students will be able to understand and apply the con	cepts of
		organometallic chemistry in syntheses of organic molecules.	
		3. Students will be in a position to write synthetic routes for organic n	nolecules
		using various molecular rearrangements.	
Content			Hours
1. Introd	duction to orga	anometallic chemistry	08
a.	Introduction	to Organometallic Chemistry, Definitions, Types of Metal-carbon	
	bonds with m	ain-group metals and transition metals	
b.	Sigma and pi	bonds: linear pi system and cyclic pi system	
с.	Organic ligano	ds, Nomenclature, heptacity, Electron counting and 18-electron rule	
d.	Orbital intera	ctions and bonding	
e.	Kinetic stabili	ty	
2. Orgar	nometallic con	npounds of main group elements	12
a. P	Preparation, p	roperties and applications of Lithium Magnesium, Cadmium, Zinc,	
0	Cerium, Mercu	ry and Chromium Compounds.	
b. H	leteroatom di	rected lithiation reactions	
3. Role o	of transition m	etals in organic synthesis	20
a. F	Preparation an	d properties of Copper, Palladium, Nickel, Rhodium, Ruthenium and	
0	Gold reagents/	complexes.	
b. N	Mechanisms a	nd applications of Mizoroki-Heck, Suzuki, Stille, Hiyama, Negishi,	
S	Sonogashira, V	Vacker, Kumada, Buchwald-Hartwig, carbonylation, homogenous	
r	nydrogenation,	carbonylation, allylic substitution)	
4. Mole	cular rearrang	ements and their synthetic applications	20
a. L	Jnifying princip	ples and mechanisms of rearrangements taking place at an electron	
c	deficient and el	lectron rich substrates.	
b. F	Rearrangement	ts taking place at carbon: Arndt-Eistert, Wagner-Meerwein, benzil-	
b	penzilic acid,	Pinacol-pinacolone, semipinacol, Tiffeneau Demjanov, dienone-	

phenol, W	ittig, Favorskii, Stevens, Wolff, Baker-Venkatraman, Barton		
decarboxylat	tion, Pummerer rearrangement.		
c. Rearrangeme	ents at nitrogen: Hofmann, Curtius, Lossen, Schmidt, Beckmann, Neber,		
Stieglitz rear	rangement.		
d. Rearrangeme	ents at oxygen: Payne (including aza- and thia-Payne) rearrangement,		
hydroperoxic	de rearrangement, Criegee rearrangement, Baeyer–Villiger oxidation		
e. Aromatic rea	arrangements: Benzidine, Fries, Von Richter, Sommelet-Hauser, Smile's,		
Jacobsen. R	earrangement on aniline derivatives- Bamberger rearrangement,		
Fischer-Hepp	o, Orton, Hofmann-Martius, Reilly-Hickinbottom, rearrangements of N-		
arylazoanilin	es, Phenylnitramines, Phenylsulfamines.		
f. Rearrangeme	ents involving fragmentations: Eschenmoser fragmentation.		
Pedagogy	Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.		
Textbooks/	1. A. Edward, Comprehensive Organometallic Chemistry, 2 nd Ed., 14 vols.		
References /	Pergman, 1995.		
Readings	2. F. R. Hartley, <i>Chemistry of Metal-Carbon Bond</i> , 6 vols. Wiley, 1982-83.		
	3. M. Schlosser, Organometallics in Synthesis - A Manual, John & Wiley, 1994.		
	4. R. H. CraJohn, <i>The Organometallic Chemistry of the Transition Metals</i> , Wiley, 1994.		
	5. G. R. Stephenson, <i>Transition Metal Organometallics for Organic Synthesis</i> , Cambridge University Press, 1991.		
	 L. S. Liebeskind, Advances in Metal Organic Chemistry, Vols. 1 and 2 (Ed.), JAI Press, 1989. 		
	7. J. P. Colliman, L. S. Hegedus, J. R. Norton & R. G. Finke, <i>Principles and Applications of Organotransition Metal Chemistry</i> , University Science Books, 1987.		
	8. A. Yamamoto, Organotransition Metal Chemistry - Fundamental Concepts and Applications, Wiley, 1986.		
	9. A. J. Pearson, Metallo-Organic Chemistry, John Wiley, 1985.		
	10. W. Caruthers & I. Colddham, <i>Modern Methods of Organic Synthesis</i> , 4th Ed.,		
	Campinge University Fless, 2010.		
	12. E. A. Carey & P. L. Sundherg, Advanced Organic Chemistry, Oxioiu, 2016.		
	Ed. Springer India Private Limited 2007		
	12 P. O. C. Norman & I. M. Covon <i>Dringinlas</i> of Organic Syntheses, 2 rd Ed. CDC		
	Dross Inc. 2000		
	riess III, 2009.		
	Mechanism and Structure, 6 th Ed., Wiley, 2006.		

Programme: M.Sc. Part-II (Chemistry)

Course Code: CHCR-511

Title of the course: **Research Methodology and instrumental techniques-I**

Number of Credits: 04Total Hours: 60Effective from AY: 2023-24			
Prerequisites for the	Students should have studied chemistry courses at MSc-I level.		
course:			
Course Objective:	1. To introduce various aspects of research methodology.		
	2. To provide understanding ethics & scientific conduct.		
	3. To introduce academic writing.		
	4. To introduce databases used in chemistry.		
	5. To provide understanding and importance of lab safety.		
	6. To understand the usefulness of various instrumental tec	hniques in	
	characterization of chemical compounds.		
Course Outcome:	1. Students will be able to apply research methodology concept	s.	
	2. Students will be able to apply computer technology to	solve their	
	research problems in chemistry.		
	3. Students will know in advance the safety precautions to be t	aken in the	
	chemical lab.		
	4. Students will gain fundamental knowledge on chara	acterization	
	techniques.		
Content			
1. Introduction to Rese	arch Methodology	5	
a. Research- meaning,	a. Research- meaning, objectives, motivation, types and methodology.		
b. Process- formulatin	b. Process- formulating the research problem; literature survey; developing the		
hypothesis and the research design; sample design and collection of the data:			
execution of the pro	execution of the project; analysis of data; testing of hypothesis: generalizations and		
interpretation, and preparation of the report or presentation of the results &			
conclusions.	conclusions.		
2. Scientific conduct an	d ethics	5	
a. Ethics: definition, nature of moral judgements and reactions, Ethics with respect to			
science and research.			
b. Intellectual honesty	b. Intellectual honesty and research integrity.		
c. Scientific misconduc	c. Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP).		
d. Redundant publicat	d. Redundant publications: duplicate and overlapping publications.		
e. Selective reporting and misrepresentation of data.			
3. Academic writing 5			
a. Publication ethics: c	lefinition, introduction and importance		
b. Conflicts of interest	b. Conflicts of interest		
c. Publication miscon	duct: definition, concept, problems that lead to unethical		
behaviour and vice	versa		
d. Violation of publicat	tion ethics, authorship and contributorship		
e. Identification of put	e. Identification of publication misconduct, complaints and appeals		

f. Predatory publis	hers and journals		
4. Data bases and re	esearch metrics	3	
a. Databases: 1. Indexing databases 2. Citation databases: Web of Science, Scopus, UGC-			
Care List etc.			
b. Research Metrics: 1. Impact Factor of journal as per Journal Citation Report. SNIP. SJR.			
IPP, Cite Score 2	. Metrics: h-index, g index, i10 index etc		
5. Safety aspects in	Chemistry	5	
a. Good laboratory	practices.		
b. Handling of vario	ous chemicals, solvents & glassware.		
c. Fires and fighting	g with fires.		
d. Hazardous subst	ances, classification and handling		
e. Safety Data Shee	et		
6. Softwares in Che	mistry	7	
a. Data plotting			
b. Structure Drawin	ng		
c. Reference mana	gement software		
7. Instrumental met	7. Instrumental methods of analysis:30		
Demonstration and/ or data analysis in following techniques:			
a. Elemental analys	a. Elemental analysis: CHNS analysis and AES		
b. Infrared (IR), Rar	b. Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)		
c. Nuclear magneti	c. Nuclear magnetic resonance (¹ H, ¹³ C)		
d. Chromatographi	d. Chromatographic techniques: HPLC, GC,		
e. Hyphenated Tec	e. Hyphenated Techniques: LC-MS & GC-MS,		
f. Diffraction meth	ods: XRD		
g. Thermal analysis	g. Thermal analysis: DSC		
h. Microscopy: SEN	h. Microscopy: SEM, TEM		
i. Methods for determination of magnetic & dielectric properties.			
j. Cyclic voltamme	try		
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discussions,	seminars,	
	internal exams/ assignments, / demonstration/ self-study or a com	bination of	
	some of these. ICT mode should be preferred. Sessions should be in	teractive in	
Textbooks/	1 C B Kothari Research Methodology: Methods & Technique	ς Νοω Δαο	
References /	I. C. N. Kothan, Research Methodology. Methods & rechnique	s, new Age	
Readings	2 Bird Philosophy of Science Routledge 2006		
	2. Bild, I missiphily of science, Routledge, 2000.	munication	
	of Scientific Information American Chamical Society Washing	aton DC 9	
	OVEORD University Proce New York 2006	ISTON, DC Q	
	A V K Singh Eundamentals of Passarch Mathadalasu & Star	tistics Now	
	4. T. K. Singh, Fundamentals of Research Methodology & Stat	ustics, new	
	Age international PVt. Ltd., 2006.		

Programme: M.Sc. Part-II (Chemistry)Course Code: CHCR-512Title of the course: Research Methodology and instrumental techniques-IINumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites for the	Students should have studied chemistry courses at MSc-I.
course:	
Course Objective:	1. To introduce various aspects of research methodology.
	2. To provide understanding ethics & scientific conduct.
	3. To introduce academic writing.

		4. To introduce databases used in chemistry.		
		5. To provide understanding and importance of lab safety.		
		6. To understand the usefulness of various instrumental techniques in		
		characterization of chemical compounds.		
Course C	Dutcome:	1. Students will be familiar with research methodology con-	cepts.	
		2. Students will be able to apply computer technology to	solve their	
		research problems in chemistry.		
		3. Students will know in advance the safety precautions to	be taken in	
		the chemical lab.		
		4. Students will gain fundamental knowledge on char	acterization	
		techniques.		
Cont	ent		Hours	
1. Resea	rch Methodolo	ogy, Scientific conduct, ethics & academic writing	15	
a. R	lesearch- mean	ing, objectives, motivation, types and methodology.		
b. P	rocess- formul	ating the research problem; literature survey; developing the		
h h	ypothesis and	the research design; sample design and collection of the data;		
e	execution of the	e project; analysis of data; testing of hypothesis; generalizations		
a	nd interpretati	on, and preparation of the report or presentation of the results		
8	k conclusions.			
C. E	thics: definition	n, nature of moral judgements and reactions, Ethics with respect		
t	to science and research.			
d. Ir	ntellectual hone	esty and research integrity.		
e. S	Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP).			
f. R	edundant publ	ications: duplicate and overlapping publications.		
g. S	elective report	ing and misrepresentation of data.		
h. P	ublication ethic	cs: definition, introduction and importance		
i. C	. Conflicts of interest			
j. P	ublication mise	conduct: definition, concept, problems that lead to unethical		
b	ehaviour and v	ice versa		
k. V	k. Violation of publication ethics, authorship and contributorship			
l. Io	I. Identification of publication misconduct, complaints and appeals			
m. P	m. Predatory publishers and journals			
2. Softw	ares in chemist	try, Data bases and Research metrics	10	
a. D	oata plotting us	sing GNU plot; Structure Drawing using ChemSktech; Reference		
n	nanagement so	ftware such as Mendeley and Zotero.		
b. D	Databases: Inde	exing databases, Citation databases: Web of Science, Scopus,		
L	JGC-Care List, S	cimago etc.		
c. R	esearch Metric	cs: Impact Factor of journal as per Journal Citation Report, SNIP,		
S	JR, IPP, Cite Sco	ore; Metrics: h-index, g-index, i10-index etc		
d. N	/lolecular Docki	ing software		
3. Safety	practices in Cl	hemical research	5	

a.	Introduction to lab safety.		
b.	Handling of various chemicals, solvents & glassware.		
с.	Fires and fighting with fires.		
d.	Hazardous substances, classification and handling		
e.	Safety Data Sheet		
4. Insti	rumental me	thods	30
a.	UV-Visible spectroscopy in elucidation of mechanisms of C-H activation		
	reactions, e	poxidation etc by transition metal catalyst.	
b.	Understand	ing water oxidation reaction using Cyclic voltammetry (CV) & Linear	
	Sweep volta	immetry (LSV)	
c.	Determining (GCD)	g capacity of supercapacitors using Galvanostatic Charge-Discharge	
d.	Electrochem	nical Impedance Spectroscopy (EIS)	
e.	Resonance I	Raman and isotope labelling studies.	
f.	Infrared (IR)	spectroscopy applications	
g.	¹ H, ¹³ C- NMI	R spectroscopy and applications	
h.	Selected chr	romatographic techniques such as HPLC, GC.	
i.	Hyphenated	Techniques/applications: LC-MS, GC-MS, LC-NMR-MS, GC-IR, ICP-	
	MS		
j.	Diffraction r	nethods: High temperature XRD	
k.	Thermal and	alysis: TG/DTA/DSC	
I.	I. Microscopy: Fe-SEM, HR-TEM		
m. Methods for determination Ms, Mr. Hc. Tc. ε^{I} and Tan δ .			
n. Potentiometry			
Pedago	oqy	Mainly lectures/recorded video lectures/ tutorials, discussions	, seminars,
		internal exams/ assignments, / demonstration/ self-study or a con	nbination of
		some of these. ICT mode should be preferred. Sessions should be ir	nteractive in
		nature to enable peer group learning.	
Textbo	oks/	1. C. R. Kothari, Research Methodology: Methods & Technique	es, New Age
Refere	nces /	International PVt. Ltd., 2004.	
Reduin	iys	2. Bild, Fillosophy of Science, Roulledge, 2006. 3. M. Coghill & L. R. Garson, The ACS Style Guide: Effective Con	omunication
		of Scientific Information. American Chemical Society Washi	ngton, DC &
		OXFORD University Press New York, 2006.	
		4. Y. K. Singh, Fundamentals of Research Methodology & Statisti	ics, New Age
		International Pvt. Ltd., 2006.	
		5. National Research Council, Prudent practices in the laborato	ry: handling
		and management of chemical hazards, The National Acade	emies Press,
		USA, 2011. 6 B S Eurniss A I Hannaford D W G Smith & A D Tatcholl	Vogel's Text
		book of Practical Organic Chemistry 5 th Ed · Longmann 1980	
		7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock. <i>Structural</i>	Methods in
		Inorganic Chemistry, Blackwell Scientific Publishers. 1986.	

8. R. S. Drago, <i>Physical Methods in Chemistry</i> , 2 nd Ed. W. B. Saunders Co. Ltd. 2016
9. R. M. Silverstein, F. X. Webster; <i>Spectrometric identification of Organic Compounds</i> ; 6 th Ed, Wiley, 2011.
10. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, <i>Vogel's Textbook of Quantitative Chemical Analysis</i> , 6 th Ed.; Pearson Education Asia, 2002.
11. H. V. Keer, <i>Principles of the Solid State</i> , 1 st Ed. New Age International (P) Ltd., 2005.
12. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
13. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, <i>Fundamentals of Analytical Chemistry</i> , 9 th Ed.; Cengage learning.
14. Skoog, F. J. Holler, S. R. Crouch, <i>Principles of Instrumental Analysis</i> , 7 th Ed.; Cengage learning.
15. Pavia, G. Lampman, G. Kriz and J. Vyvyan, <i>Introduction to Organic Spectroscopy</i> , 5 th Ed.; Cengage Learning, 2015.
16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart,
Chem. Educ. ACS, 2018, 95, 197–206.
17. V. Rajaraman, <i>Computer Programming in Fortran 90 And 95</i> , PHI Learning Pvt. Ltd., 2013.
18. Attila Szabo, Neil S. Ostlund, <i>Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory</i> , Dover Publications, Inc. Mineola, 1989.
19. A. Leach, Molecular Modelling, Principles and applications, Longman, 1998.
20. W. Nam et al, <i>Dioxygen activation by Metalloenzymes & models</i> , Accounts of Chemical Research, 2007, Volume 40 & references cited therein.

Programme: **M.Sc. Part-II (Chemistry)** Course Code: **CHCD-511** Title of the course: **Discipline Specific Dissertation** Number of Credits: **16**Total Hours: **480** Effective fro

Effective from AY: 2023-24

Prerequisites		Students should have studied chemistry courses at MSc-I level.	
for the course:			
Course		To develop the skills of preparing and conducting independent research.	
Objective:			
Course		Students will be able to understand and apply the tools and techn	iques of chemistry
Outcome:		in conducting independent research.	
Content			Hours
As per OA-35			480
Pedagogy	Dis	sertation carried out individually by each student throughout the	academic year.
Textbooks/	As	required for the development of review and methodology.	
References			
/ Readings			

SEM III (Inorganic Chemistry)			
Sr. No.	Subject code	Paper title	Credits
1.	CHIR-511	Practical Course in Inorganic Chemistry-III	4
2.	CHIR-512	Practical Course in Inorganic Chemistry-IV	4
3.	CHCR-511	Research methodology and instrumental techniques-I	4
4.	CHCR-512	Research methodology and instrumental techniques-II	4
5.	CHIG-511	Bioinorganic Chemistry	4
6.	CHIG-512	Chemistry of p-block elements & their compounds	4
7.	CHIG-513	Environmental Chemistry	4
8.	CHIG-514	Inorganic Chemistry: Industrial Perspective	4
SEM IV (Inorganic Chemistry)			
1.	CHIR-513	Principles and applications in catalysis	4
2.	CHIR-514	Topics in Inorganic Chemistry	4
3.	CHCD-511	Discipline Specific Dissertation	16

M.Sc. Inorganic Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

Programme: M.Sc. Part-II (Inorganic Chemistry)

Course Code: CHIR-511

Title of the course: Practical	Course in Inorganic Ch	emistry-III
Number of Credits: 04	Total Hours: 120	Effective from AY: 2023-24

Prerequisites	Should have studied Inorganic chemistry practical course at M.Sc. Pa	art-I.	
for the			
course:			
Course Objective:	 To introduce practical knowledge in Inorganic Chemistry. To learn techniques of crystallization and synthesis of coordination To learn characterization of compounds using different instrumen To provide experience of synthesis and characterization of materia To introduce analysis of ores for metal content. 	n compounds. ts. als.	
Course Outcome:	 Students will be in a position to purify ligands and will apply synthesize coordination compounds. Students will be able to study properties of coordination co different instruments. Students will apply knowledge to synthesize solid state material and properties. Students will be in position to separate metal ions by chromatography. Students apply knowledge to separate and analyze metals pres alloys. 	y knowledge to mpounds using d can study their ion exchange ent in ores and	
Content Hours		Hours	
Minimum 23 experiments from the list shall be conducted.			
Unit – 1 Experiments in coordination chemistry: complex synthesis, metal 30 analysis (Any Five)			
a. Purification (distillation/recrystallisation) of ligands like acacH, en, carboxylic			
acids etc.	acids etc.		

	1
b. Preparation of manganic tris(acetylacetonate) and estimation of manganese.	
c. Preparation of tris(thiourea)copper(I) sulfate and estimation of copper.	
d. Preparation of isomers; cis and trans-dichloro(ethylenediamine)cobalt(III)	
chloride and estimation of cobalt.	
e. Preparation and resolution of tris(ethylenediamine)cobalt(III) ion and	
estimation of cobalt.	
f. Preparation of cis and trans-potassium dioxalatodiaquochromate(III) and	
estimation of chromium.	
g. Preparation of nitro and nitrito-pentaaminecobalt(III) chlorides and estimation	
of cobalt.	
h. Preparation cobalt(III) porphyrin complex and estimation of cobalt.	
i. IR spectral characterization of free ligands and coordinated ligands.	
NOTE: In complex synthesis, the student is expected to recrystallise the product,	
record IR spectra and carry out metal analysis. Spectral analysis can be carried over.	
Unit –2 Experiments in Solid state chemistry (Any Eight)	36
a. Preparation of spinel oxides by precursor method.	
b. Estimation of metals in precursors and oxides.	
c. Characterization of precursors by thermal analysis.	
d. Characterization of precursors and oxides by infrared analysis.	
e. X-ray diffraction studies of metal oxides.	
f. Direct current electrical resistivity of semiconductor (Ge/Si) by Four Probe	
method.	
g. Curie temperature determination of dielectric material (PZI) by measurement	
of dielectric constant v/s temperature.	
h. Measurement of saturation magnetization, Ms, Mr and Hc of ferromagnetic	
materials.	
I. Determination of Curie temperature of magnetic oxides by A.C. susceptibility	
studies.	
J. Preparation of CuO/SiO ₂ or NiO/SiO ₂ by wet impregnation method.	20
2. Determination of stability constant of Eq(III) - soliculic acid compound (Job's	30
Method)	
b Determination of stability constant of Fe(III) – thiocyanate compound	
c. Determination of stability constant of $Fe(II) = 1.10$ -phenanthroline compound	
d Determination of instability constant for the reaction between Ag^+ and NH_2	
e. Determination of instability constant for the reaction between Ag ⁺ and en.	
f Determination of instability constant for the reaction between Cu^{2+} and NH_2	
g. Determination of instability constant for the reaction between Cu ²⁺ and en.	
h. Ion exchange chromatography:	
Separation of Mg^{2+} and Co^{2+} by anion exchange column.	
Separation of transition metal cations by anion exchange column.	
Unit – 4 Ore / Alloy / commercial sample separation and analysis using Titrimetry	24
/ Gravimetry / spectroscopy method (Any Four)	
a. Analysis of Goan Iron ore: Hematite / magnetite	
b. Analysis of Devardas alloy	
c. Analysis of solder (Pb and Sn)	
d. Analysis of Pyrolusite	

e. Analysis	of Nickel-Aluminium alloy		
f. Analysis	f. Analysis of Brass alloy		
g. Analysis	of Bauxite		
h. Analysis	of Magnesite		
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical aspects of		
	laboratory experiments prior to the conduct of each experiment.		
Text	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1 & 2, 1963.		
Books/	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations, Reactions and		
References	Instrumental Methods, 2 nd Ed.; Chapman & Hall, 1974.		
/ Readings	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.		
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds, Prentice-		
	Hall, INC, 1970.		
	5. A. J. Elias, General Chemistry Experiments, Revised Ed.; University Press, 2008.		
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text Book of		
	Quantitative Chemical Analysis, 6 th Ed.; Pearson, 2002.		
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7th Ed.; Pearson,		
	2011.		
	8. G. Marr, B. W. Rockett, Practical Inorganic Chemistry, Van Nostrnad Reinhold		
	London, 1972.		

Programme: M.Sc. Part-II (Inorganic Chemistry)

Course Code: CHIR-512

Title of the course: Practical Course in Inorganic Chemistry-IV

Number of Credits: 04 Total Hours: 120 Effective from AY: 2023-24

Prerequisites	Should have studied Inorganic chemistry practical course at M.Sc. Pa	art-I.	
for the course:			
	1. To introduce to practical knowledge in Inorganic Chemistry.		
Course	2. To learn techniques of crystallization and synthesis of coordination	n compounds.	
Objective	3. To learn characterization of compounds using different instruments.		
Objective.	4. To provide experience of synthesis and characterization of mater	ials.	
	5. To introduce analysis of ores for metal content.		
	1. Students will be in a position to explain general aspects involved i	in purification	
	of ligands and will apply knowledge to synthesize ligands and	coordination	
	compounds.		
	2. Students will be able to characterize coordination comp	ounds usinf	
Course	instrumental techniques.		
Outcome:	3. Students will be in a position to prepare solid state materials ar	nd study their	
	properties.		
	4. Students will apply knowledge to separate metal ions by i	on exchange	
	chromatography.		
	5. Students will be able to analyze metals in ores and alloys		
Content		Hours	
Minimum 20 experiments from the list shall be conducted.			

	26
Unit-1 Preparation of ligands (including distillation / recrystallization) / metal-	36
ligand compounds / inorganic compounds (Any 6)	
a. Preparation of Schiff's base and characterization by IR. EX. Condensation of simple	
aldenydes with diammines (ethylene diammine, 1,3-propanediammine)	
b. Preparation of substituted benzoic acids and characterization.	
c. Preparation of acetylacetonate complexes of Co(II) and Co(III) and estimation of	
cobalt.	
d. Preparation of ammonium dichromate and ammonium heptamolybdate.	
e. Preparation of aluminium(III)tris(acetylacetonate) and estimation of aluminium.	
f. Preparation of potassium dihydroxodioxalatotitanate(IV) and estimation of	
titanium.	
g. Preparation of manganic acetate and estimation of manganese	
h. Preparation of chromium(II) acetate hydrate and estimation of chromium.	
i. Preparation of $K_2ON(SO_3)_2$ (Fremy's salt).	
Note: Wherever possible IR and other spectral studies should be undertaken for	
prepared compounds.	
Unit -2 : Syntheses, characterization and solid state study of ABO ₃ /AB ₂ O ₄ oxides	36
(Any 6)	
a. Preparation of Perovskite/Spinel oxide by oxalate precursor method.	
b. Characterization of precursor using CHN Analyser and estimation of metals in the	
precursors and oxides by gravimetric and volumetric analysis.	
c. Characterization of precursor and Perovskite/Spinel oxide by FTIR.	
d. Thermal analysis (TG/DTA) of prepared precursors.	
e. Isothermal Mass Loss Studies.	
f. X-ray diffraction studies of Perovskite/Spinel oxide prepared.	
g. Electrical resistivity measurement of the prepared oxide by Two probe / Four	
Probe method.	
h. Dielectric studies of prepared oxide: Dielectric constant and dielectric loss V/s I)	
Frequency and II) Temperature.	
i. Magnetic Characterization of prepared Spinel oxide by i) Hysteresis loop data (Ms,	
Mr, Hc) and ii) A.C Susceptibility.	
Note: Wherever possible IR and other spectral studies should be undertaken.	2.5
Unit – 3: Instrumental experiments/separation of metal ions by ion exchange resins	36
(Any b)	
a. Determination of stability constant of Fe(III)-Suitosalicylic acid compound in the	
solution.	
b. UV-visible spectroscopy study of transition metal complexes.	
c. Potentiometric determination of cobalt/ nickel /zinc by EDTA.	
a. conductance measurements: preparation and electrical conductivity	
Determination of magnetic suscentibility of Mn(III). Cu(III) etc. solts (complexes	
f. Colorimotric estimation of Ha/Cd	
a. Separation of transition motal sations by sation asychange shromate graphy	
g. Separation of transition metal cations by cation – exchange chromatography	
n. IK and INIVIK studies of inorganic compounds. EX. VU(acac) ₂	
i. Cyclic voltammetry experiment (lerrocene/nexacyanatorerrate).	12
method (Any 2)	12

a. Analysis of Malanchite			
b. Analysis of Ilmenite			
c. Analysis o	f Nickel Steel alloy		
d. Analysis o	f Rolled Gold		
e. Analysis o	f Gun Metal		
f. Analysis o	f magnalium		
g. Analysis o	f Bronze		
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical aspects of		
	laboratory experiments prior to the conduct of each experiment.		
Text Books/	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1 & 2, 1963.		
References	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations, Reactions		
/ Readings	and Instrumental Methods, 2 nd Ed.; Chapman & Hall, 1974.		
3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.			
	4. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds, Prentice-		
	Hall, INC, 1970.		
	5. A. J. Elias, <i>General Chemistry Experiments</i> , Revised Ed.; University Press, 2008.		
	6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text Book of		
	Quantitative Chemical Analysis, 6 th Ed.; Pearson, 2002.		
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th Ed.; Pearson,		
	2011.		
	8. G. Marr. B. W. Rockett. Practical Inorganic Chemistry. Van Nostrnad Reinhold		
	London, 1972.		

Programme: M.Sc. Part-II (Inorganic Chemistry)

Course Code: CHIR-513

Title of the course: **Principles and applications in catalysis**

Number of Credits: **04** Total Hours: **60** Effective from AY: **2023-24**

Prerequisites	Students should have studied chemistry courses at M.Sc. Part-I.	
for the		
course:		
Course Objective:	 To understand the fundamentals concepts of chemical reactions over the catalysts. To understand energy saving and making green processes in chemical reactions. To understand fundamentals and basic concepts of chemical reactions for developing higher productivity and viability. To provide knowledge on applications of heterogeneous, homogenous and other catalytic processes. To make aware of catalytic approaches in environmental pollution control processes. 	
	1. Students will be able to explain concepts and general properties of different types	
Course Outcome:	 Students will be able to explain concepts and general properties of dimerent types of catalysts. Students will be able to explain the catalytic reaction mechanisms and green catalytic processes. Students will be in position to prepare and characterized catalysts. 	

4. Students will apply knowledge to develop reaction specific catalysts using basic				
concepts.				
5. Students will apply k	nowledge to develop catalysts for useful cher	nical reactions		
and environmental p	ollution control processes.			
Content		Hours		
1. Origin and development of catalysts		5		
a. Introduction to heterogeneous, homogeneous and bio-catalysis, importance of				
catalysis in chemical reactions and its industrial applications.				
b. Concepts of Atom Economy, Turno				
2. Heterogeneous Catalysis	23			
a. Introduction to heterogeneous cata				
gas, general mechanisms such as La				
b. Adsorptions: Physical and chemical				
surfaces, nature of adsorbed layer,				
and sticking, simple adsorptions isotherm, Langmuir adsorption, the BET				
adsorption isotherm and Surface area determination.				
c. Types of Catalysts: Preparations a				
micro porous materials, nano mat				
related molecular sieves, support				
regeneration, activity and life of the catalysts, active centers, promoters and				
poisons, catalyst deactivations.				
d. Characterization of solid catalysts:	Structure and surface morphology, porosity,			
pore volume and diameter, partic	le size, X-ray diffraction , Thermal analysis			
(DTA/TG and DSC), SEM, TEM, X-r				
Electron Spectroscopy to surface				
catalysts.				
e. Heterogeneous reactions: Thermo				
mechanism of catalytic reactions				
reactions, CO oxidation, N ₂ O decor	nposition, Fisher tropsch catalysis, selective			
catalytic reduction, method of find				
steps.				
f. Theories of Catalysis: Boundary	ayer theory, catalysis by semiconductors,			
Wolkenstein theory, Balanding's a	approach, electronic factors in catalysis by			
metals, molecular orbital approach				
3. Homogeneous Catalysis		12		
a. Homogeneous catalytic reactions,	merits and demerits, intermediate stages in			
homogenous catalysis, energy pi	ofile diagram, activation energy, general			
scheme for calculating kinetics of the	ne reactions.			
b. Decomposition of hydrogen peroxi	de, acid-base catalysis.			
c. Homogeneous catalytic reactions: Hydrogenation, hydroformylation,				
isomerization, Monsanto acetic ac	d process, Carboxylation reactions, Wacker			
reaction, coupling reactions and as	ymmetric oxidations.			
4. Photo-catalysis	3			
Homogeneous photo-catalysis, photo				
heterogeneous photo-catalysis, sem				
hydrogen by photo-catalysts and harnessing solar energy, photo-degradation of				
dyes.				
5. Catalytic p	olymerizations	5		
--	---	------------------------	--	--
Homogen				
examples)	, Ziegler – Natta catalyst in polymerizations reactions.			
6. Bio-catalys	sis	3		
Nomenclatu	are and classification of enzymes, metal ions and metalloenzymes,			
general pro	perties, enzymatic reactions such as redox and decomposition, action			
of enzymes	, mechanistic pathways of few enzymatic reaction, factors affecting			
enzymes an	d enzyme applications.			
7. Phase tran	sfer catalysis	3		
Mechanism	of PTC, types of phase transfer catalysis with selected examples,			
advantages	and disadvantage.			
8. Catalyst fo	r energy and environment	6		
Catalytic ga	asification, electricity from gas turbine, steam reforming, electro-			
catalysis, fu	el cells for energy production like methanol, molten carbonate and			
solid oxide	fuel cells, catalysts for environmental pollution in emission control and			
selective ca	talytic reduction.			
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / p	presentations /		
	self-study or a combination of some of these can also be used. ICT m	ode should be		
	preferred. Sessions should be interactive in nature to enable peer grou	up learning.		
Text Books/	1. A.V. Salker, Catalysis: Principles and Basic Concepts, Scientific Inter	national, 2019.		
References	2. P. H. Emmett, <i>Catalysis</i> , Vol I, Reinhold,1955.			
/ Readings	3. D. K. Chakraborty, Adsorption and Catalysis by Solids, New Age In	ternational (P)		
	Ltd., 2008.			
	4. J. M. Thomas, W.J. Thomas, Heterogeneous Catalysis, VCH publicat	ion, 1997.		
	5. A. Clark, The Theory of Adsorption and Catalysis, Academic Press, 1	970.		
6. E. R. Rideal, Concept in Catalysis, Academic Press, 1968.				
	7. G. M. Panchenov, V. P. Lebedev, Chemical Kinetics and Catalysis, N	Air publication,		
	1976.			
	8. S. J. Thomson, G. Webb, Heterogeneous Catalysis, Oliver and Boyd Publications,			
	1968.			
	9. R. A. Van Santen, J. W. Niemantsvedict, Chemical Kinetics and Cat	<i>talysis,</i> Plenum		
	Press, 1995			
	10. M. Beller, A. Renken, R. van Santen, <i>Catalysis</i> , Wiley VCH, 2012.			
(Back to Index) (Back to Agenda)				

Programme: M.Sc. Part-II (Inorganic Chemistry) Course Code: CHIR-514

Title of the course: Selected Topics in Inorganic Chemistry

Number of	Credits: 04	Total Hours: 60	Effective from AY: 2023-24
Prerequisites for the	Students should	d have studied Inorga	nic chemistry courses at M.Sc. Part-I
course:			
Course Objective:	 To study the To learn the To understar To study the materials. 	amorphous and glass properties of refracto d the concepts of Ino important instrumen	materials. ries and solid lubricants and their applications. rganic electrochemistry. tal techniques for characterization of Inorganic

	1. Students will be able to explain different amorphous and glass mate	erials and their
	properties.	
	2. Students will be able to differentiate between the types of refracto	ories and solid
Course	lubricants.	.
Outcome:	3. Students will be able to analyse a cyclic voltammogrames	of inorganic
	compounds.	dala harantan
	4. Students will apply knowledge to characterize inorganic mater	rials by using
Contont	instrumental techniques.	110.000
Lontent	and Class Matarials	HOUIS
1. Amorphous	and Glass Materials	/
a. Introduction	on to amorphous materials	
D. Glasses	rition tomporature	
d. Compositi		
	on or glasses	
e. viscosity	in a math a da	
I. Glass form	al glasses	
g. Commerci	di glasses	
n. Chaicogen		
I. Ceramic gi	asses	
J. Wietanic gi	asses	10
2. Refractories	and Solid lubricants	13
a. Classificati	of refractories. Thermal expansion and contraction. Defractorings	
D. Properties	of reflactories. merinal expansion and contraction, Reflactoriness,	
Spairing re	sistance, merma conductivities	
d Pofractory	to metarials: Aluminaus type, silica type, basis type, insulating type	
u. Refractory	Thaterials. Aluminous type, since type, basic type, insulating type	
e. Special rei	ractories. Oxide refractories, other refractories, ideal refractories	
2 Eundament		E
5. Fulluamenta	as of morganic electrochemistry	5
a. Basic aspe	etts of electrochemical colls	
b Voltammo	tric tochniquos linear voltammetry, cyclic voltammetry; roversible	
j. voitainine	a and quasi reversible processes: applications of cyclic voltammetry	
with rofor	e, and quasi-reversible processes, applications of cyclic voltanimetry	
4 Characterisa	tion Techniques	25
a Diffraction	methods (XRD, Neutron and Electron)	55
h X-ray spec	trosconies (XRE, AFES, EXAES)	
c Thermal a	nalvsis	
	M	
	EM and Imaging)	
f FTIR		
σ X-ray Abco	arntion spectroscopy	
h Flectron s	nectroscony (XPS_LIPS_Auger)	
i Δtomic er	nission spectroscony	
	spectroscopy (DRS)	
j. UV-VISIDIE	speciroscopy (DKS)	

Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations
	/ self-study or a combination of some of these can also be used. ICT mode should be
	preferred. Sessions should be interactive in nature to enable peer group learning.
Textbooks/	1. A.R. West, <i>Solid State Chemistry and Its Applications</i> , 1 st Ed., John Wiley & Sons,
References /	Singapore, 1984 (reprint 2007).
Readings	2. L.V. Azaroff, Introduction to Solids, 1 st Ed. (33 rd Reprint), Tata McGraw Hill,
	2009.
	3. D. K. Chakraborty, Solid State Chemistry, 2 nd Ed.; New Age International
	Publisher, 2010.
	4. H. V. Keer, Principles of the Solid State, 1st Ed. (Reprint 2008); New Age
	International (P) Ltd., (Wiley Eastern Ltd.), 1993.
	5. W. D. Callister, <i>Materials Science and Engineering:An Introduction,</i> 7 th Ed.; John
	Wiley, 2007.
	6. B. D. Fahlman, <i>Materials Chemistry</i> , 2 nd Ed.; Springer, 2011.
	7. H. R. Allcock, Introduction to materials chemistry, 1st Ed.; John Wiley & Sons,
	2011.
	8. R. H. Doremus, <i>Glass Science</i> , 2 nd Ed.; Wiley, 1973.
	9. P. N. Ross, Handbook of Fuel Cells, 7 th Ed.; Wiley, 2003.
	10. D. T. Sawyer, A. Sobkowak, J. L. Roberts Jr., <i>Electrochemistry for chemists</i> , 2 nd
	Ed.; John Wiley, Inc., 1995.
	11. P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller & F. A. Armstrong, <i>Shriver</i>
	& Atkins' Inorganic Chemistry, 5 th Ed.; Oxford University Press, 2010.
	12. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical
	Chemistry, 9 th Ed.; Cengage learning, 2014.
	13. A. Skoog, F. J. Holler, S. R. Crouch, <i>Principles of Instrumental Analysis</i> , 6 th Ed.;
	Cengage learning, 2007.
	14. G. Aruldas, Molecular Structure and Spectroscopy, 2 ^{ed} Ed.; PHI Learning Pvt. Ltd.,
	2015.

Programme: M.Sc. Part-II (Chen	nistry)			
Course Code: CHIG-511				
Title of the course: Bioinorganic Chemistry				
Number of Credits: 04	Total Hours: 60	Effective from AY: 2023-24		

Prerequisites	Students have studied chemistry/biochemistry courses at M.Sc. Part-I.
for the	
course:	
	1. To understand the role of inorganic elementsespecially metal ions in biology.
Course	2. To introduce metallobiolecules, metalloproteins & metalloenymes.
Objective:	3. To understand the role of small molecule model compounds.
	4. To introduce the concept of Biomimetic chemistry.
	1. Students will be in a position to clarify the significance of essential elements in
Course	biology.
Course	2. Students will be able to explain the role played by metal ions in vital processes
Outcome:	like i) oxygen storage and transport and ii) electron transfer.
	3. Students will be able to explain basic concepts in Biomimetic chemistry.

	4. The students will be able use different techniques in Bioinorganic C	hemistry.
Content		Hours
1. Essential	elements in biology	12
Periodicit	y of elements, distribution of elements in biosphere, bio-availability,	
bio-stabili	ty, building blocks of the biosphere; carbohydrates, nucleic acids and	
proteins,	biological importance of water, and brief review of the chemistry of	
biopolym	ers. Metallobiomolecules: classification, metalloproteins (enzymes),	
metal ac	tivated proteins (enzymes), metal functions in metalloproteins,	
Principles	of coordination chemistry related to bioinorganic research, physical	
methods	in bioinorganic chemistry.	
2. Alkali and	alkaline earth metals in biology	12
Introducti	on, biological importance of the alkali and the alkaline earth cations,	
Cation tr	ansport through membranes (ion pumps). Photosynthesis, Hill	
reaction,	Chlorin macrocycle and chlorophyll, Absorption of light by chlorophyll,	
role of m	etals in photosynthesis, in vitro photosynthesis.	
3. Non-redo	x metalloenzymes	12
Zinc meta	alloenzymes like carboxypeptidase, carbonic anhydrase and alcohol	
dehydrog	enase, Bio-functions of zinc enzymes, active site structure and model	
complexe	S.	
4. Biochemis	stry of a few transition metals	12
Role of Fe	e, Mo, Cu and Ni. Oxygen carriers and oxygen transport proteins, iron	
porphyrin	s (Haemoglobin and myoglobin). Haemocyanins and Haemerythrins,	
Synthetic	models for oxygen binding haemproteins. Cytochrome C, catalase,	
peroxidase, and superoxide dismutase, blue copper proteins, vitamin B_{12}		
coenzymes, nitrogen fixation and iron-sulfur proteins, biological nitrogen		
fixation, nitrogenase and dinitrogen complexes, iron-sulfur proteins, synthetic		
analogues for Fe-S proteins, core extrusion reactions. Metal transport and		
storage: A brief review of iron transport. transferrin, ferritin, hemosiderin,		
siderophores, iron biomineralization		
5. Biomimeti	c Inorganic Chemistry	12
Fundamer	ntals of biomimetic chemistry, metal – oxygen intermediates, techniques	
used to pr	obe the active sites of oxygen carriers, redox chemistry of free molecular	
dioxygen,	spectroscopy of Fe-O-Fe moiety, geometry and electronic structure of	
coordinate	ed dioxygen, other ligands for biological oxygen carriers, reactions of	
metal-oxy	gen compounds, oxygenases, Cytochrome P-450, synthetic procedures	
of simple	ligands, isolation of S-containing amino acidor extraction of chlorophyll	
from gree	en leaves, recrystallization of carboxylic acids. Non-Heme and heme	
ligands.		
Pedagogy	Mainly lectures / tutorials / assignments /group discussion /	self-study
	/presentations or a combination of some of these could also be us	ed to some
	extent.	
Textbooks /	1. S. J. Lippard & J. M. Berg, Principles of Bioinorganic chemistre	ry, Panima
Reference /	Publishing Corporation	
Readings	2. B. I. Britini, H. B. Gray, S. J. Lippard & J. S. Valentine, Bioiorganic	chemistry,
	University Science books, Mill Valey, CA, 1994.	
	3. D. E. Fenton, Biocoordination Chemistry, Oxford Chemistry Printers	,25 Oxford
	University Press, 1995	

4	. E. E. Conn, P.K. Stumpf, G. Bruening & R. H. Doi, Outlines of Bioinorganic
	Chemistry, 5 th Ed.; Wiley Eastern, 1983.
5	. F.A. Cotton, G. Wilkinson, P.L. Gaus, <i>Basic Inorganic Chemistry</i> , 3 rd Ed. (Chapter
	31); WileyIndia, 2007.
e	5. M. Weller, T. Overton, J. Rourke & F. Armstrong Inorganic Chemistry, Int. Ed.
	(Chapter 25); Oxford University Press, 2018.
7	7. P Atkins, T Overton, J Rourke, M Weller & F Armstrong, Shriver & Atkins'
	Inorganic Chemistry, 5 th Ed. (Chapter 27); Oxford University Press, 2010.
8	B. J. E. Huheey, E. A. Keiter, R. L. Keiter, Inorganic Chemistry: Principles of
	Structure and Reactivity, 5 th Ed. (Chapter 19); Addison Wesley Publishing.
9	. R. W. Hay, Bioinorganic chemistry, Ellis Horwood Chichester, 1984.
10	M.N. Hughes, The Inorganic Chemistry of Biological processes, 2 nd Ed.; Wiley
	(Interscience), 1984.
11	. R. R. Crichton, Biological Inorganic Chemistry, Elsevier, 2012.
12	R. Breslow, Biomimetic Chemistry: Biology as an Inspiration, The Journal of
	Biological Chemistry, vol. 284, no. 3, pp. 1337–1342, 2009.
13	. C. Housecroft, A. G. Sharpe, <i>Inorganic Chemistry</i> , 4 th Ed; Pearson Publishing, 2012.

Programme: M.Sc. Part-II (Chemistry)

Course Code: CHIG-512

Title of the course: Chemistry of p-block elements & their compounds

Number of Credits: **04** Total Hours: **60** Effective from AY: **2023-24**

Prerequisites	Students should have studied chemistry/biochemistry courses at M.S	Sc. Part-I.
for the		
course:		
Course	1. To study the different trends in physical and chemical proper elements.	ties of p-block
	 To understand the variations in physical and chemical properties o p-block elements. 	f compounds of
Objective:	To study the preparation and structure of some important compo elements.	unds of p-block
	4. To study the applications of some of their compounds.	
	 Students will be able to explain the trends in physical properties periods in the periodic table. 	s in groups and
	2. Students will be able to explain the chemistry of p-block element	s as this course
Course Outcome:	will give sufficient information about p-block elements and their particular.	r compounds in
	3. Students will be able to prepare some important compounds of p-	block elements.
	 Students will apply the knowledge of chemical properties of comp day to day problems. 	pounds to solve
Content		Hours
1. General trer	nds of different properties in groups and periods in periodic table	4
2. Chemistry of Group 13 Elements and their Compounds		13

a. Introduct sulphur, compour	tion, physical properties, chemical reactions with oxygen, nitrogen, halogens, HCl, NaOH, NH ₃ , mono-di-tri-chlorides, alums, organo- nds of B and Al, difference between boron and other Gr. 13 elements,	
diagonal b. Preparat carboran	relationship. on, bonding and structure of diborane, higher boranes, borane anions, es and metallocarboranes.	
c. Borazine d. Borates:	Synthesis, properties, structure, bonding and some of its derivatives. Classification, structure and examples.	
3. Chemistry	of Group 14 Elements and their Compounds	13
a. Introduct	ion, physical properties, allotropy, compounds of Gr.14: different	
types of	oxides, di, tetra & catenated halides, hydrides, sulphides, cyanides.	
b. Coordina	tion compounds, organosilicon compounds, silicones, cluster	
compour	ids of Ge, Sn and Pb.	
c. Silicates:	classification with examples and applications, zeolite.	
d. Carbon d	ating, graphene, metallocarbohedrenes, freons.	
e. Intercala	tion compounds of graphite with oxygen and fluorine, heavier Group 1	
elements	, different halides including FeCl₃.	
f. Carbides	classification, preparation, properties and uses.	
4. Chemistry	of Group 15 Elements and their Compounds	9
a. Introduct	ion, allotropes, physical properties, Preparation, properties and	
structure	of: Hydrides, halides, oxides, oxyacids, oxohalides.	
b. Preparat	on, properties and structure of Phosphorous: sulphides, oxosulphides,	
organopl	nosphorous compounds.	
c. Classifica	tion, preparation, properties and structures of phosphazenes.	
5. Chemistry	of Group 16 Elements and their Compounds	9
a. Introduct	ion, allotropes, physical properties, Preparation, properties and	
structure	of: Hydrides, halides, oxohalides, oxides, oxyacids, classification of	
oxides.		
b. Compour (SN) _x , S ₂ N	nd of sulphur and nitrogen: Preparation, properties and structure of I_2 and S_4N_4 .	
c. Polyatom	nic sulphur cations, anionic polysulphides, compounds with sulphur as	
a ligand.		
6. Chemistry	of Group 17 Elements and their Compounds	8
a. Introduct	ion, physical properties; preparation, properties and structure of:	
oxides, o	oxyacids, halides, oxohalides, hydrogenoxide fluorides and related	
compour	nds.	
b. Preparat	on, properties and structure of: interhalogen compounds, polyhalide	
anions, p	olyhalonium cations, halogen cations.	
7. Chemistry	of Group 18 Elements and their Compounds	4
a. Introduct	ion, physical properties; preparation, properties, structure and	
bonding of xenon compounds (fluorides and oxides): organoxenon compounds.		
compound containing Xe-Xe bond.		
b. Preparation, properties and structure of compounds of other noble gases.		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /	presentations /
	self-study or a combination of some of these can also be used. ICT n	node should be
	preferred. Sessions should be interactive in nature to enable peer grou	ıp learning.
-	· · · · · ·	_

Textbooks/	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, <i>Shriver & Atkins</i>
References	Inorganic Chemistry, 5" Ed.; Oxford Publications, 2009.
/ Readings	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, <i>Inorganic Chemistry: Principles of Structure & Reactivity</i> , 4 th Ed.; Pearson, 2011.
	3. N. N. Greenwood, A. Earnshaw, <i>Chemistry of the Elements</i> , 2 nd Ed. (reprinted); Elsevier, 2014.
	4. J. D. Lee, <i>Concise Inorganic Chemistry</i> , 5 th Ed. (reprint); Blackwell Science Wiley, 2015.
	5. F. A. Cotton, G. Wilkinson, P. L. Gauss, <i>Basic Inorganic Chemistry</i> , 3 rd Ed.; Wiley, 2008.
	6. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed.; Wiley, 1984.
	7. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3rd Ed.; Pearson, 2004.

Programme: M.Sc. Part-II (Chemistry)

Course Code: CHIG-513

Title of the course: Environmental Chemistry

Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry/ biochemistry courses at M.	Sc.Part-I.	
course:			
	1. To introduce to fundamentals of environmental chemistry.		
Course	2. To provide important knowledge of environmental chemistry in d	ay-to-day life.	
Objective:	3. To give the basic knowledge of environmental pollution.		
,	 To make aware of the harmful effects of environmental pollutants and control measures. 		
	1. Students will be in a position to know the basic environmental chemical processes		
Course Outcome:	 Students will be able to explain the origin and harmful effects of to chemicals in the environment. 	oxic	
	3. Students will be aware of the analysis of some pollutants.		
	4. Students will be in a position to give examples of case studies.		
Content		Hours	
1. Structure an	d properties of atmosphere:	4	
Introduction, Temperature profile of the atmosphere, Lapse rate, Temperature			
inversion.			
2. Biogeochemical cycles		8	
Introductio	Introduction, Biogeochemical cycles of Oxygen, Carbon, Sulphur, Nitrogen,		
Phosphorus, and Hydrogen.			
3. Soil Pollution		6	
Introduction, Air and water in the soil, Inorganic and Organic components in the			
soil, Reactions in the soil, Waste pollutants in the soil and soil contamination,			
Excess usage of agrochemicals, Adsorption and decomposition of organic			
matter in the soil.			

4. Air polluti	on	12
Types of	emissions, Air pollution dispersion models, Types of emission sources,	
Estimatio	on of Dispersion parameters, Types of Plumes, global warming	
Particula	te matter: Introduction, Particle size range, Health Hazards, Analysis of	
particula	te matter, Control devices, Inorganic Particulates, Radioactive	
particula	tes, Organic particulates and other contaminants.	
5. Water poll	ution and Conditioning	8
a. Introduc	tion.	
b. Hard wat	er and water softening by chemical methods.	
c. Carbonat	e hardness removal by lime, Magnesium hardness removal by lime,	
and non-	carbonated hardness removal by soda ash.	
d. Calcium	carbonate solubility.	
e. Re-carbo	nation and acid process.	
f. Barium-l	me cold process.	
g. Ion excha	ange process.	
6. Plastic poll	ution	10
a. Micropla	stics	
b. Global or	currence, distribution, and the fate of plastic in the environment.	
c. Weather	ing and degradation of plastics.	
d. Micropla	stics, types of microplastics, nanoplastics.	
e. Analysis	and identification of microplastics.	
f. Impact o	n the terrestrial and marine environment (estuarine, open ocean, coral	
reefs).		
g. Inputs of	microplastics into the oceans.	
h. Transfer	of microplastics into the food chain: bioaccumulation and	
Biomagn	ification.	
Micropla	stic ingestion, toxicity, and impact on human health.	
7. Selected in	dustrial effluent treatment.	8
a. Industria	l effluent treatment,	
b. Effects o	f Industrial effluents on surface water and land,	
c. Manufac	ture process and treatment of fertilizers and pesticides.	
d. Electrop	ating process and treatment of the waste.	
e. Waste f	rom the cement industry. Waste from the sugarcane and paper	
industry	······································	
8. Waste Ma	nagement and Case studies	4
a. Waste	Management (sources and types of solid wastes, disposal techniques,	
collec	tion methods, waste management approach).	
b. Case s	tudy (Bhopal gas tragedy, use of DDT).	
Pedaaoav	Mainly lectures and tutorials. Seminars/tern	n papers
, cangegy	/assignments/presentations/self-study or a combination of some of th	ese can also be
	used. ICT mode should be preferred. Sessions should be interactiv	e in nature to
	enable peer group learning.	
Textbooks/	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, S.	hriver & Atkins
References	Inorganic Chemistry, 5 th Ed.: Oxford Publications, 2009	
/ Readinas	2. J. E. Huheev, E. A. Keiter, R. L. Keiter, O. K. Medhi, Inorganic Chem	istrv: Princinles
,	of Structure & Reactivity 4 th Ed · Pearson 2011	

	3.	N. N. Greenwood, A. Earnshaw, <i>Chemistry of the Elements</i> , 2 nd Ed. (reprinted); Elsevier, 2014.
	4.	J. D. Lee, Concise Inorganic Chemistry, 5th Ed. (reprint); Blackwell Science Wiley,
		2015.
	5.	F. A. Cotton, G. Wilkinson, P. L. Gauss, <i>Basic Inorganic Chemistry</i> , 3 rd Ed.; Wiley, 2008.
	6.	F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3 rd Ed.; Wiley, 1984.
	7.	G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson, 2004.
	8.	R. C. Hale, M. E. Seeley, M. J. La Guardia, L. Mai, E. Y. Zeng, A global perspective
		on microplastics, 2020, Journal of Geophysical Research: Oceans, Wiley, 125 (1), e2018JC014719.
	9.	S. Sharma, S. Chatterjee, <i>Microplastic pollution, a threat to marine ecosystem and human health: a short review.</i> 2017, Environmental Science and Pollution
		Research, Springer, 24, 21530–21547.
	10.	L. Andrady, <i>Microplastics in the marine environment</i> , 2011, Marine pollution bulletin 62(8) 1596-1605
	11	B C Thompson C Mooro E S Vom Sool S H Swon Diastics the environment
	11.	R. C. Hompson, C. J. Woore, F. S. vom Saal, S. H. Swan, Plusics, the environment
		and numan nealth: current consensus and future trends. 2009, Philosophical
		transactions of the royal society B: biological sciences, Royal Society, 364 (1526), 2153-2166.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHIG-514 Title of the Course: Inorganic Chemistry: Industrial Perspective Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Students should have studied M.Sc. Part-I chemistry courses.	
for the course:		
Course	1. To discuss the economic importance of inorganic materials.	
Objectives:	2. To teach the concepts in chemistry useful for inorganic industri	es.
	3. To learn syntheses involved in industrial production.	
	4. To recognize applications of industrial inorganic materials	in several other
	sectors.	
Course	1. Students will be able to discuss the economic importance of inc	organic materials.
Outcomes:	2. Students will be able to understand concepts in chemistry use	eful for inorganic
	industries.	
	3. Students will be able to describe syntheses involved in industria	al production.
	4. Students will be able to explain applications of industrial inorg	anic materials in
	several other sectors.	
Content		Hours

1. Economic ir	nportance of Inorganic materials in industry	15
a. Chemical ir	ndustries & their economic importance	
b. Commodity	/ fine and speciality chemicals	
c Water: not	able water, fresh water from sea water $\&$ / or brackish water	
d Hudrogon	water electrolycic netrochomical processes and coal accification	
u. Hyurogen.	water electrolysis, petrochemical processes and coal gasification	
e. Peroxide a	and inorganic peroxo compounds: nydrogen peroxide, sodium	
peroxide,	sodium perborate, sodium carbonate perhydrate, alkali	
peroxodisu	lfate	
f. Nitrogen /	phosphorous / sulphur /halogens and their compounds: ammonia,	
hydrazine,	hydroxylamine, phosphoric acid & its salts, organophosphorus	
compound	s sulphuric acid, other important sulphur compounds, compounds of	
fluorine	chloroalkali electrolysis bydrochloric acid chlorine-oxygen	
compound	compounds of broming and compounds of ioding	
Compound	s, compounds of bromme and compounds of loume	
2. Minerals in	fertilizer industry	10
a. Nitrogen-co	ontaining fertilizers: ammonium sulphate, ammonium nitrate and	
urea	.	
h Phosphoro	us-containing fertilizers: superphosphates, triple superphosphates	
ammonium	a phosphatos and nitrophosphatos	
	containing fortilizars, notassium chlorida, notassium sulphata and	
C. POLASSIUIII-	containing fertilizers, potassium chionue, potassium suphate and	
potassium	nitrate	
		4.5
3. Metals / sil	icon and their compounds in industry	15
a. Alkali meta	a. Alkali metals: lithium, sodium and potassium	
D. Alkaline-earth metals: beryllium, magnesium, calcium, strontium and barium		
c. Others metals: aluminium, chromium, manganese and iron		
d. Silicon: silicon & its inorganic compounds andorgano-silicon compounds		
4. Inorganic so	4. Inorganic solids and their applications 20	
a. Silicates: gl	a Silicates: glass alkali silicates zeolites	
b. Inorganic f	ibers: asbestos, textile glass, optical, carbon, metal and ceramic	
reinforcing	fibers	
c. Ceramics: c	lay, electro, magneto and nonoxide ceramics	
d Constructio	an materials: lime cement gynsum coarse ceramic and expanded	
a construction materials. Inne, cement, gypsun, coarse ceranne and expanded		
e. Enamels: enamel frit and its raw material as metal oxides / carbonates / nitrates		
/ fluorides		
f. Metal carbides: titanium, zirconium, hafnium, vanadium, niobium tantalum,		
chromium, molybdenum, tungsten, thorium and uranium carbides		
g. Inorganic carbon: diamond, natural graphite, synthetic carbon & synthetic		
graphite, pyrolytic carbon & pyrolytic graphite and activated carbon		
h. Fillers: natural and synthetic fillers		
i. Inorganic pigments: white, coloured, black and speciality pigments		
Pedagogy	Mainly lectures / tutorials / assignments / self-study/ industrial visits,	/ field trips in and
	around Goa or combination of some of these could also be used to s	ome extent.

Textbooks / Reference	1. K.H. Büchel, HH. Moretto& P. Woditsch, <i>Industrial Inorganic Chemistry</i> , 2 nd completely revised Ed., Wiley VHC, 2000.
books	2. G. Buxbaum& G. Pfaff, Industrial Inorganic Pigments, 3rd Ed., Wiley VHC, 2005.
	 N.N. Greenwood & A. Earnshaw, Chemistry of the Elements, 3rd Ed., Pergamon Press, Exeter, 1998.
	4. F.A. Cotton, G. Wilkinson & P. L. Gaus, <i>Basic Inorganic Chemistry</i> , 3 rd Ed., John Wiley, 2007.
	5. F.A. Cotton & G. Wilkinson, <i>Advanced Inorganic Chemistry</i> , 6 th Ed., Wiley Eastern, 2007.
	6. J.E. Huheey, E.A. Keiter, R.L. Keiter, <i>Inorganic Chemistry: Principles of structure and reactivity</i> , 4 th Ed., Pearson, 1993.
	7. J.D. Lee, Concise Inorganic Chemistry, 5 th Ed., Wiley, 2008.
	8. M. Weller, T. Overton, J. Rourke & F. Armstrong, <i>Inorganic Chemistry</i> , International Ed., Oxford University Press, 2018.
	9. P. Atkins, J. De Paula & J. Keeler, <i>Atkins' Physical Chemistry</i> , International Ed., Oxford University Press, 2018.
	10. A.R. West, Solid State Chemistry and Its Applications, 2 nd Ed., John Wiley &
	Sons,2014.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHCR-511 Title of the course: Research Methodology and instrumental techniques-I Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at MSc-I level.	
for the course:	· ·	
Course	1. To introduce various aspects of research methodology.	
Objective:	2. To provide understanding ethics & scientific conduct.	
	3. To introduce academic writing.	
	4. To introduce databases used in chemistry.	
	5. To provide understanding and importance of lab safety.	
	6. To understand the usefulness of various instrument	tal techniques in
	characterization of chemical compounds.	
Course	1. Students will be able to apply research methodology con	cepts.
Outcome:	2. Students will be able to apply computer technology to so	olve their research
	problems in chemistry.	
	3. Students will know in advance the safety precautions t	o be taken in the
	chemical lab.	
	4. Students will gain fundamental knowledge on characteriz	zation techniques.
Content		Hours
1. Introduction t	o Research Methodology	5
a. Research- me	eaning, objectives, motivation, types and methodology.	
b. Process- formulating the research problem; literature survey; developing the		
hypothesis and the research design; sample design and collection of the data;		

generalizations and interpretation, and preparation of the report of presentation of the results & conclusions.	pr	
2. Scientific conduct and ethics	5	
a. Ethics: definition, nature of moral judgements and reactions, Ethics wit	h	
respect to science and research.		
b.Intellectual honesty and research integrity.		
c. Scientific misconducts: Falsification, Fabrication, and Plagiarism (FFP).		
d. Redundant publications: duplicate and overlapping publications.		
e. Selective reporting and misrepresentation of data.		
3. Academic writing	5	
a. Publication ethics: definition, introduction and importance		
b. Conflicts of interest		
c. Publication misconduct: definition, concept, problems that lead to unethic	al	
behaviour and vice versa		
d. Violation of publication ethics, authorship and contributorship		
e. Identification of publication misconduct, complaints and appeals		
f. Predatory publishers and journals		
4. Data bases and research metrics	3	
a. Databases: 1. Indexing databases 2. Citation databases: Web of Science	2,	
Scopus, UGC-Care List etc.		
b. Research Metrics: 1. Impact Factor of journal as per Journal Citation Repor	t,	
SNIP, SJR, IPP, Cite Score 2. Metrics: h-index, g index, i10 index etc		
5. Safety aspects in Chemistry	5	
a. Good laboratory practices.		
b. Handling of various chemicals, solvents & glassware.		
c. Fires and fighting with fires.		
d. Hazardous substances, classification and handling		
e. Safety Data Sheet		
6. Softwares in Chemistry	7	
a. Data plotting		
b. Structure Drawing		
c. Reference management software		
7. Instrumental methods of analysis:	30	
Demonstration and/ or data analysis in following techniques:		
a. Elemental analysis: CHNS analysis and AES		
b. Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)		
c. Nuclear magnetic resonance (¹ H, ¹³ C)		
d. Chromatographic techniques: HPLC, GC,		
e. Hyphenated Techniques: LC-MS & GC-MS,		
t. Diffraction methods: XRD		
g. Inermal analysis: DSC		
h. Microscopy: SEM, TEM		
i. Methods for determination of magnetic & dielectric properties.		
J. Cyclic voltammetry		
Peaagogy Mainly lectures/recorded video lectures/ tutorials, discussions	, seminars, internal	
exams/ assignments, / demonstration/ self-study or a combination	on of some of these.	

	ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.
Textbooks/ References / Readings	 ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. 1. C. R. Kothari, <i>Research Methodology: Methods & Techniques</i>, New Age International Pvt. Ltd., 2004. 2. Bird, <i>Philosophy of Science</i>, Routledge, 2006. 3. M. Coghill & L. R. Garson, <i>The ACS Style Guide: Effective Communication of Scientific Information</i>, American Chemical Society Washington, DC & OXFORD University Press New York, 2006. 4. Y. K. Singh, <i>Fundamentals of Research Methodology & Statistics</i>, New Age International Pvt. Ltd., 2006. 5. National Research Council, <i>Prudent practices in the laboratory: handling and management of chemical hazards</i>, The National Academies Press, USA, 2011. 6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, <i>Vogel's Text book of Practical Organic Chemistry</i>, 5th Ed.; Longmann, 1989 7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, <i>Structural Methods in Inorganic Chemistry</i>, Blackwell Scientific Publishers. 1986. 8. R. S. Drago, <i>Physical Methods in Chemistry</i>, 2nd Ed. W. B. Saunders Co. Ltd. 2016 9. R. M. Silverstein, F. X. Webster; <i>Spectrometric identification of Organic Compounds</i>; 6th Ed, Wiley, 2011. 10. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, <i>Vogel's Textbook of Quantitative Chemistry</i>, 6th Ed.; Pearson Education Asia, 2002. 11. H. V. Keer, <i>Principles of the Solid State</i>, 1st Ed. New Age International (P) Ltd., 2005. 12. G. D. Christian, <i>Analytical Chemistry</i>, 6th Ed.; Wiley, 2004. 13. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, <i>Fundamentals of Analytical Chemistry</i>, 9th Ed.; Cengage learning. 14. A. Skoog, F. J. Holler, S. R. Crouch, <i>Principles of Instrumental Analysis</i>, 7th Ed.; Cengage learning. 15. P. G. Lampman, G. Kriz and J. Vyvyan, <i>Introduction to Organic Spectroscopy</i>, 5th Ed.; Cengage learning, 2015. 16. N. Elgrishi, K. J. Rountree, B. D. McCart
	 2018, 95, 197–206. 17. V. Rajaraman, <i>Computer Programming in Fortran 90 And 95</i>, PHI Learning Pvt. Ltd., 2013. 18. A. Szabo, N. S. Ostlund, <i>Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory</i>, Dover Publications, Inc. Mineola, 1989.
1	

Programme: M.Sc. Part-II (Chemistry) Course Code: CHCR-512 Title of the course: Research Methodology and instrumental techniques-II Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at MSc-I.
for the course:	

-		
Course	1. To introduce various aspects of research methodology.	
Objective:	2. To provide understanding ethics & scientific conduct.	
	3. To introduce academic writing.	
	To introduce databases used in chemistry.	
	5. To provide understanding and importance of lab safety.	
	6. To understand the usefulness of various instrumenta	al techniques in
	characterization of chemical compounds.	
Course	1. Students will be familiar with research methodology concepts	S.
Outcome:	2. Students will be able to apply computer technology to so	lve their research
	problems in chemistry.	
	3. Students will know in advance the safety precautions to be tak	en in the chemical
	lab.	
	4. Students will gain fundamental knowledge on characterizatio	n techniques.
Content		Hours
1. Research Met	hodology, Scientific conduct, ethics & academic writing	15
a. Research- n	neaning, objectives, motivation, types and methodology.	
b. Process- for	mulating the research problem; literature survey; developing the	
hypothesis	and the research design; sample design and collection of the	
data; exec	ution of the project; analysis of data; testing of hypothesis;	
generalizat	ions and interpretation, and preparation of the report or	
presentatio	on of the results & conclusions.	
c. Ethics: defir	nition, nature of moral judgements and reactions, Ethics with	
respect to s	science and research.	
d. Intellectual	honesty and research integrity.	
e. Scientific m	isconducts: Falsification, Fabrication, and Plagiarism (FFP).	
f. Redundant	publications: duplicate and overlapping publications.	
g. Selective rep	porting and misrepresentation of data.	
h. Publication	ethics: definition, introduction and importance	
i. Conflicts of	interest	
j. Publication	misconduct: definition, concept, problems that lead to unethical	
behaviour a	and vice versa	
k. Violation of	publication ethics, authorship and contributorship	
I. Identificatio	on of publication misconduct, complaints and appeals	
m. Predatory p	oublishers and journals	
2. Softwares in c	hemistry, Data bases and Research metrics	10
a. Data plotti	ng using GNU plot; Structure Drawing using ChemSktech;	
Reference i	management software such as Mendeley and Zotero.	
b. Databases:	ndexing databases, Citation databases: Web of Science, Scopus,	
UGC-Care L	ist, Scimago etc.	
c. Research M	etrics: Impact Factor of journal as per Journal Citation Report,	
SNIP, SJR, II	PP, Cite Score; Metrics: h-index, g-index, i10-index etc	
d. Molecular D	ocking software	
3. Safety practice	es in Chemical research	5
a. Introduction	n to lab safety.	
b. Handling	of various chemicals, solvents & glassware.	
c. Fires and fig	shting with fires.	
d. Hazardo	us substances, classification and handling	

e. Safety D	Data Sheet	
4. Instrumen	tal methods	30
a. UV-Visi	ble spectroscopy in elucidation of mechanisms of C-H activation	
reaction	ns, epoxidation etc by transition metal catalyst.	
b. Unders	tanding water oxidation reaction using Cyclic voltammetry (CV) &	
Linear S	weep voltammetry (LSV)	
C. Determ	and (CCD)	
d Flectro	shemical Impedance Spectroscopy (FIS)	
e. Resona	nce Raman and isotope labelling studies.	
f. Infrared	(IR) spectroscopy applications	
g. ¹ H, ¹³ C-	NMR spectroscopy and applications	
h. Selecte	d chromatographic techniques such as HPLC, GC.	
i. Hyphen	ated Techniques/applications: LC-MS, GC-MS, LC-NMR-MS, GC-IR,	
ICP-MS		
j. Diffract	ion methods: High temperature XRD	
k. Therma	l analysis: TG/DTA/DSC	
I. Microso	copy: Fe-SEM, HR-TEM	
m. Method	is for determination Ms, Mr, Hc, Tc, ϵ ' and Tano.	
n. Potenti	ometry Mainly lastures/recorded video lastures/ tutorials_discussions_/	ominara internal
Pedagogy	example assignments / demonstration / self-study or a combination	of some of these
	ICT mode should be preferred. Sessions should be interactive in nati	ure to enable neer
	group learning.	
Textbooks/	1. C. R. Kothari, Research Methodology: Methods & Techn	iques, New Age
References	International Pvt. Ltd., 2004.	
/ Readings	2. Bird, Philosophy of Science, Routledge, 2006.	
	3. M. Coghill & L. R. Garson, The ACS Style Guide: Effective Communi	ication of Scientific
	Information, American Chemical Society Washington, DC & C	XFORD University
	Press New York, 2006.	
	4. Y. K. Singh, Fundamentals of Research Methodology & Sta	itistics, New Age
	International Pvt. Ltd., 2006.	ary handling and
	5. National Research Council, Proderic produces in the laboration	$r_{\rm C} = 110 \text{ manufing and}$
	6 B S Eurniss A I Hannaford P W G Smith & A B Tatchell V	nael's Text hook of
	Practical Organic Chemistry, 5 th Ed.: Longmann, 1989	Jgers Text book of
	7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, <i>Structural Me</i>	thods in Inorganic
	Chemistry, Blackwell Scientific Publishers. 1986.	5
	8. R. S. Drago, Physical Methods in Chemistry, 2 nd Ed. W. B. Saunde	rs Co. Ltd. 2016
	9. R. M. Silverstein, F. X. Webster; Spectrometric identification of Or	ganic Compounds;
	6 th Ed, Wiley, 2011.	
	10.J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vo	gel's Textbook of
	Quantitative Chemical Analysis, 6 th Ed.; Pearson Education Asia,	2002.
	11. H. V. Keer, Principles of the Solid State, 1 st Ed. New Age Internation	onal (P) Ltd., 2005.
	12. G. D. CHIISUAH, ANUIYUCUI CHEMISUY, 5 ^{°°} EU.; WIIEY, 2004.	otals of Analytical
	Chemistry 9 th Ed · Cengage learning	ana of Analytical

14. Skoog, F. J. Holler, S. R. Crouch, <i>Principles of Instrumental Analysis</i> , 7 th Ed.; Cengage learning.
15. Pavia, G. Lampman, G. Kriz and J. Vyvyan, <i>Introduction to Organic Spectroscopy</i> , 5 th Ed.; Cengage Learning, 2015.
16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, <i>A Practical Beginner's Guide to Cyclic Voltammetry</i> , J. Chem. Educ. ACS, 2018, 95, 197–206.
17. V. Rajaraman, <i>Computer Programming in Fortran 90 And 95</i> , PHI Learning Pvt. Ltd., 2013.
 Attila Szabo, Neil S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publications, Inc. Mineola, 1989. A. Leach, Molecular Modelling, Principles and applications, Longman, 1998.
20.W. Nam et al, <i>Dioxygen activation by Metalloenzymes & models</i> , Accounts of Chemical Research, 2007, Volume 40 & references cited therein.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHCD-511 Title of the course: Discipline Specific Dissertation Number of Credits: 16Total Hours: 480

Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at MSc-I level.		
for the cours	e:		
<i>Course</i> To develop the skills of preparing and conducting independent research			
Objective:			
Course	Students will be able to understand and apply the tools and techniques of chemistr		
Outcome:	in conducting independent research.		
Content	Hours		
As per OA-35	5 480		
Pedagogy	Dissertation carried out individually by each student throughout the academic year.		
Textbooks/	As required for the development of review and methodology.		
References			
/ Readings			

M.Sc. Analytical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

SEM III (Analytical Chemistry)				
Sr. No.	Subject code	Paper title	Credits	
1.	CHAR-511	Practical Course in Analytical Chemistry-III	4	
2.	CHAR-512	Practical Course in Analytical Chemistry-IV	4	
3.	CHCR-511	Research methodology and instrumental techniques-I	4	
4.	CHCR-512	Research methodology and instrumental techniques-II	4	
5.	CHAG-511	Fundamentals of Crystallography	4	
6.	CHAG-512	Advanced NMR and combined Spectroscopy		
7.	CHAG-513	Bioanalytical Techniques	4	
8.	CHAG-514	Calibration and Validation in Analytical Chemistry	4	
SEM IV (Analytical Chemistry)				
1.	CHAR-513	Advanced Mass Spectrometry	4	

2.	CHAR-514	Selected Topics in Analytical Chemistry	4
3.	CHCD-511	Discipline Specific Dissertation	16

Programme: M. Sc. Part-II (Analytical Chemistry)

Course Code: CHAR-511

Title of the Course: Practical Course in Analytical Chemistry - III

Number of Credits: **04** Total Hours: **120**

Effective from AY: 2023-24

Prerequisites	Should have studied Analytical chemistry practical cou Part-I	rse at M.Sc.
Course Objectives	1. To study various experimental techniques for analysis	
	2. To learn data analysis, handling and interpretation of s	pectra.
Course Outcomes:	1. Students will be able to use different techniques for qu	alitative and
	quantitative estimation.	
	2. Students will be able to interpret spectra and use statist	ical methods
	to	
	analyse data.	
Content		Hours
This course consists	of 10 units of experiments in various areas of Analytical	120
chemistry. Minimui	m 20 experiments which include at least 02 experiments	
from each unit shal	l be conducted.	
Unit 1: Analysis of	Pharmaceutical Tablets/Samples (Titrimetry)	12
i. Estimation of	of Paracetamol by titrimetry.	
ii. Estimation of	of streptomycin in tablet sample by Maltol method.	
iii. Estimation o	of iron using Zimmermann-Reinhardt reagent by titrating	
against KMr	104.	
Unit 2: Ion exchang	e Chromatography and Solvent Extraction Method	12
1. Determinati	on of capacity of a cation exchange resin.	
11. Concentration	on and determination of copper (II) lons from a brine	
Solution Usi	ng a chelating ion exchange resin and AES/AAS	
111. Separation of	of organic mixture (acidic + basic + neutral) by extraction.	
Unit 3: Planar and	Column Chromatography	12
i. Thin layer	chromatography analysis of commercially available	
analgesic/ar	ntipyretic/antihistamine etc and to identify the active	
ingredients.		
ii. Purification	and determination of amount of paracetamol from	
commercial	tablet by column chromatography.	
iii. Separation o	of a mixture of benzoin and benzil on silica gel column.	
Unit 4: Spectropho	tometric Method	12
i. Determinati	on of pk value of methyl red indicator.	
ii. Determinati	on of stoichiometry and stability constant of ferric	
salicylic acid	complex by Job's method and mole ratio method.	

	1
iii. Determination of the Fe ion as Fe-oxine complex.	
Unit 5: HPLC Analysis	12
i Analysis of a mixture (benzene and toluene or nitrobenzene and	12
toluone) by normal/reverse nhase-HPLC	
ii HPLC analysis of an analgesic (e.g. Jhunrofen)/or any other drug with	
method development and validation	
iii Quantitative analysis of Paracetamol tablet by HPLC	
iv Determination of plate height/number of theoretical plates by HPLC	
using Acetonhenone as a reference material	
y Study of HPIC method development by using linear/stenwise gradient	
elution for binary system	
vi Determination of caffeine content in Tea or Coffee	
Unit 6: Electrochemical Method	12
i. pH-metric determination of the acid-base dissociation constant and	
isoelectric point of amino acid.	
ii. Determination of moisture content in tablet powder by Karl Fischer	
titration.	
iii. Analysis of mixture of carbonate/bicarbonate present in water	
sample using pH metry or Potentiometry.	
Unit 7: Gas Chromatographic Analysis	12
i. GC analysis of a given sample mixture (e.g. perfumes, cosmetics).	
ii. GC analysis of non-volatile analyte by derivatization.	
iii. Quantitative analysis of a mixture of chloroform and carbon	
tetrachloride.	
$1v$. Gas chromatographic analysis for a mixture of gases like O_2 , N_2 and	
CO_2 .	
v. Determination of alcoholic content in Beer or wine	
Unit 8: Analysis of Ores/Minerals/Industrial Material	12
i. Analysis of Iron Ore or Bauxite (from Goa).	
ii. Analysis of cement or plaster of Paris.	
iii. Analysis of limestone or dolomite.	
Unit 9: Other Instrumental Techniques	12
1. Electrophoretic techniques for the separation of nucleic acids or	
proteins	
11. Study the dissolution rate of commercial tablets.	
111. Determination of optical rotation of chiral compounds using	
polarimeter (e.g. Amino acids, drugs, natural products, lactic acid,	
tartaric acid etc)	
IV. Determination of sulphate ion content by turbidimetry.	
v. Determination of turbidity in water sample.	
V_1 . IG/DIA analysis of sample or mixture (e.g. MgCO ₃ -MgO).	

vii. Determinat qNMR.	ion of molar composition of Toluene-Anisole mixture by
Unit 10: Demonstra	ation/Interpretation Exercises 12
i. Demonstrat	ion/Interpretation of LC-MS spectra.
ii. Demonstrat	ion/Interpretation of NMR spectra of Ethyl
cinnamate/	Vanilin.
iii. Assessment	of TG-DTA plot.
iv. Statistical E	valuation of Data including Linear Regression Analysis.
v. Analysis of I	materials using Microscopic Techniques.
vi. Demonstrat	ion of XRD and interpretation of diffraction pattern.
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a
	combination of some of these. Sessions shall be interactive in nature
	to enable peer group learning.
Textbooks/	1. J. H. Kennedy, Analytical Chemistry Principles, 2 nd Ed., Saunders
References /	College Publishing, 1990.
Readings	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and
	Sons, 1994
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B.
	Sivasankar, Vogel's Textbook of Quantitative Chemical
	Analysis, 6 th Ed., Pearson Education Asia 2009.
	4. A. J. Elias, Collection of interesting chemistry experiments,
	University press, 2002.
	5. R.A. Day & A.L. Underwood, <i>Quantitative Analysis</i> , 6 th Ed.,
	Prentice Hall, 2001.
	6. J. KENKEI, Analytical Chemistry for Technicians, 3 rd Ed., Lewis
	publishers, 2002.

Programme: M. Sc. Part-II (Analytical Chemistry) Course Code: CHAR-512 Title of the Course: Practical Course in Analytical Chemic

Title of the Course: **Practical Course in Analytical Chemistry - IV** Number of Credits: **04** Total Contact Hours: **120** Effective from AY: **2023-24**

Number of Credits	:: 04 Total Contact Hours: 120 Effective from	n AY: 2023-24	
Prerequisites	Should have studied Analytical chemistry practical cou	rse at M.Sc. Part-	
for the course:	1.		
Course	1. To understand of various experimental techniques for	or analysis.	
Objectives:	<i>Objectives:</i> 2. To learn data analysis, handling and interpretation of spectra.		
Course	1. Students will be able to use different techniques for qualitative and		
Outcomes:	quantitative estimation.		
	2. Students will be able to interpret spectra and use st	atistical methods	
	to analyse data.		
Content		Hours	

	1
This course consists of 10 units of experiments in various areas of	
Analytical chemistry. Minimum 20 experiments which include at least 02	120
experiments from each unit shall be conducted.	
Unit 1: Analysis of Pharmaceutical Tablets/Samples	
1. Estimation of Ibuprofen by titrimetry.	
11. Estimation of iron from given pharmaceutical drug sample using	12
thioglycolic acid.	
111. Estimation of sulphadiazine / sulphonamide	
Unit 2: Ion exchange Chromatography and Solvent Extraction Method	
1. Determination of capacity of anion exchange resin	
11. Separation and estimation of zinc and nickel ions using an anion	12
exchange resin	
111. Separation of organic mixture (acidic + basic + neutral) by	
extraction	
Unit 3: Planar and Column Chromatography	
1. Separation of alpha annuo acius by paper chromatography and to	
ii. This layer chromatography analysis of commercially available	
11. This layer chroniatography analysis of continentially available	12
ingredients	
iii Soparation of a mixture of honzaldebyde and honzaic acid on	
silica gel column	
Linit 4: Spectrophotometry Method	
To octimate Cd/Hg by AES/AAS method	
i. To record the LIV absorption spectrum of acetope in n-beyane	
and identify the various transitions	12
iii Determination of phosphorous content from fruit juice	12
Unit 5: HPLC Analysis	
i. Analysis of a mixture of hydrocarbons by reverse phase-HPLC	
ii. Quantitative analysis of Aspirin tablet by HPLC.	
iii. To determine the number of theoretical plates/plate height by	
HPLC of aromatic ketone or alcohols.	12
iv. Study of HPLC method development by using linear/stepwise	
gradient elution for binary system.	
v. Determination of caffeine content in Soft drinks or Chocolates.	
Unit 6: Electrochemical Method	
i. Determination of moisture content in tablet powder by Karl	
Fischer titration.	
ii. pH metric determination of dissociation constant of dibasic, oxalic	12
acid	12
iii. Potentiometric determination of dissociation constant for Cu-	
ammonia complex.	

Unit 7: Gas Cl	promatographic Analysis	
i. GC ar fragra	nalysis of a given sample mixture (e.g. Flavours and nces)	
ii. Quant	itative analysis of a mixture of chlorinated solvents.	12
Deem	ter equation	
iv. Deterr	nination of alcoholic content in Rum or Local drinks.	
Unit 8: Analys	sis of Ores/Minerals/Industrial Material	
i. Analys	is of steel	
ii. Analys	is of solder	12
iii. Analys	is of an aluminium alloy	
iv. Analys	is of talcum powder	
Unit 9: Other	Instrumental Techniques	
i. Electro	ophoretic techniques for the separation of DNA	
ii. Deterr	nination of optical rotation of chiral compounds using	
polarii	neter e.g. Amino acids, drugs, natural products etc	
iii. Deterr	nination of chloride ion content by turbidimetry	12
ıv. Deterr	nination of turbidity in water sample.	
v. Study	the dissolution rate of pharmaceutical tablets.	
vı. Deterr	nination of molar composition of Toluene- methyl	
benzo	ate mixture by qNMR.	
Unit 10: Dem	onstration/Interpretation Exercises	
i. Demo	nstration/Interpretation of GC-MS spectra.	
ii. Demo	nstration/Interpretation of NMR spectra	
iii. Assess	ment of TG-DTA plot.	12
iv. Statist	ical Evaluation of Data including Linear Regression Analysis.	
v. Analys	is of materials using Microscopic Techniques.	
vi. Demo	nstration of XRD and interpretation of diffraction pattern.	
Pedagogy:	Prelab exercises / assignments / presentations / lab	hand-out or a
	combination of some of these. Sessions shall be interact	tive in nature to
	enable peer group learning.	
Texthooks/	1. J. H. Kennedy, Analytical Chemistry Principles, 2 ^{no} Ed. 2 Publishing 1990	Saunders College
References /	2 G D Christian Analytical chemistry 5 th Ed Wiley 19	94
Readinas	3. L. Mendham, R.C. Denney, J.D. Barnes, M. Thoma	s. B. Sivasankar.
neuungo	Voael's Textbook of Ougntitative Chemical Analysis	6 th Ed., Pearson
	Education Asia 2009.	
	4. A. J. Elias, Collection of interesting chemistry experir	<i>nents</i> , University
	press, 2002.	,
	5. R. A. Day & A.L. Underwood, <i>Quantitative Analysis</i> ,	6 th Ed., Prentice
	11dii, 2001. 6 I Kenkel Analytical Chemistry for Technicians	3 rd Ed Lowis
	publishers, 2002.	5 LU., LEWIS

Programme: M.Sc. Part-II (Analytical Chemistry) Course Code: CHAR-513

Title of the course: Advanced Mass Spectrometry

Number of Credits: 04

Total Hours: 60

Effective from AY: 2023-24

Prerequ	iisites	Students should have studied analytical chemistry course at M.Sc. P	Part I.
for	the		
course:			
		1. To study various ionisation sources and mass analyser.	
Course		2. To introduce tandem mass spectrometry techniques.	
Objecti	ve:	3. To learn interpretational aspects of spectral data obtained fr	om hyphenated
		techniques.	
		1. Students will be able to explain principle behind different ionizat	ions sources.
		2. Students will be able to select mass analysers and ionization sou	rces for analysis
Course		of particular type of analyte.	
Outcon	ne:	3. Students will be able to deduce structures of simple to mod	erately complex
		molecules/biomolecules by combining the spectral data	obtained from
		hyphenated techniques.	
Conten	t		Hours
1. Ioniz	ation r	nethods:	15
a.	Mass	spectrometry: introduction, principle, general instrumentation,	
	genera	al interpretation procedure for mass spectra;	
b.	Gas P	hase ionization: electron ionization (EI), chemical ionization (CI),	
	Field i	onization and field desorption (FI, FD)	
с.	Particl	e Bombardment: Fast atom bombardment (FAB), Secondary ion	
	mass spectrometry (SIMS).		
d.	Atmos	pheric pressure Ionization: electrospray ionization (ESI),	
	atmos	pheric pressure ionization (APCI).	
e.	Laser l	Desorption: MALDI.	
f.	Inorga	nic ionization sources: thermal ionization, Spark source, Glow	
	discha	rge, Inductively coupled plasma (ICP).	
g.	Proble	m solving using mass spectrometry.	
2. Mas	s analy:	zers:	15
a.	Charao	cteristics of analysers: nominal mass, mass accuracy, resolving	
	power	, resolutions, isotopic composition, numericals to calculate nominal	
6	and ac	curate mass.	
D.	iviagn	elic, electromagnetic and double tocusing	
C. ام	Single	Quadrupole and triple quadrupole	
a.		n night analyzer	
e.		Liouron resonance analyzer	
.		Instrumentation	

Note: instrumentation, working principles, characteristic features, advantages, practical consideration shall be discussed. 3. Hyphenated Techniques: 15 a. Coupled techniques, Importance of hyphenation of two analytical techniques, Interface and their characteristic features. 15 b. Introduction, principle and instrumentation of following techniques: GC-MS, IC-MS, ICP-MS, CE-MS, TG-MS. 16 c. Tandem mass (MS-MS): Introduction, concepts of tandem mass spectrometry, Ion activation methods. 17 d. Analysis of chemical data of natural product, drugs, etc. Dereplication using hyphenated technique. 15 4. Tandem Mass spectrometry applications: 15 a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. 15 b. Tandem Ms and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. 16 c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations, 2 nd Ed, Wiley, 2007. c. Analysis of biomolecules: Proteins, Practicalities and Biological Applications, 2 nd Ed, Wiley, 2010. t. H. Jürgen	g. Detect	ors: electron multiplier, photon multiplier, Faraday cup	
3. Hyphenated Techniques; a. Coupled techniques; Importance of hyphenation of two analytical techniques, Interface and their characteristic features. 15 a. Coupled techniques; Importance of hyphenation of two analytical techniques, Interface and their characteristic features. 15 b. Introduction, principle and instrumentation of following techniques: GC-MS, IC-MS, ICE-MS, TG-MS. 16 c. Tandem mass (MS-MS): Introduction, concepts of tandem mass spectrometry, Ion activation methods. 17 d. Analysis of chromatogram: Total ion chromatogram (TIC), Extracted Ion Chromatogram (XIC). 18 e. Analysis of chemical data of natural product, drugs, etc. Dereplication using hyphenated technique. 15 a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone. 15 b. Tandem Mass spectrometry applications: 15 c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination using fragmentation, solve problems based on MS/MS data. 15 Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Textbooks/ 1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2 nd Ed, Springer publisher, 2011. 2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, 1 nd Ed, Wile	Note: instrumentation, working principles, characteristic features, advantages, practical consideration shall be discussed		
 3. Hyphenated Techniques: a. Coupled techniques, Importance of hyphenation of two analytical techniques, Interface and their characteristic features. b. Introduction, principle and instrumentation of following techniques: GC-MS, LC-MS, ICP-MS, CE-MS, TG-MS. c. Tandem mass (MS-MS): Introduction, concepts of tandem mass spectrometry, Ion activation methods. d. Analysis of chromatogram: Total ion chromatogram (TIC), Extracted Ion Chromatogram (XIC). e. Analysis of chemical data of natural product, drugs, etc. Dereplication using hyphenated technique. 4. Tandem Mass spectrometry applications: a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone. b. Tandem MS and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination using fragmentation, solve problems based on MS/MS data. Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations, 2nd Ed. Springer publisher, 2011. f. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, 2nd Ed, Wiley, 2007. R. B. Cole, <i>Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Applications, Practicalities and Biological Applications, 2nd Ed, Wiley, 2007.</i> M. Kinter, N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, 1st Ed, Wiley-VCH, 2007. M. Kinter, N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, 1st Ed, Wiley, 2000. 			
 a. Coupled techniques, Importance of hyphenation of two analytical techniques, Interface and their characteristic features. b. Introduction, principle and instrumentation of following techniques: GC-MS, LC-MS, ICP-MS, CE-MS, TG-MS. c. Tandem mass (MS-MS): Introduction, concepts of tandem mass spectrometry, Ion activation methods. d. Analysis of chromatogram: Total ion chromatogram (TIC), Extracted Ion Chromatogram (XIC). e. Analysis of chemical data of natural product, drugs, etc. Dereplication using hyphenated technique. 4. Tandem Mass spectrometry applications: a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone. b. Tandem Ms and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination using fragmentation, solve problems based on MS/MS data. Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Textbooks/	3. Hyphenated	l Techniques:	15
Chromatogram (XIC). e. Analysis of chemical data of natural product, drugs, etc. Dereplication using hyphenated technique. 4. Tandem Mass spectrometry applications: 15 a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone. 15 b. Tandem MS and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. 15 c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination using fragmentation, solve problems based on MS/MS data. 15 <i>Pedagogy</i> Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Textbooks/ 1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2 nd Ed, Springer publisher, 2011. References / 2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, 2 nd Ed, Wiley, 2007. 3. R. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Applications, and Strategies for Data Interpretation, 4 th Ed, Wiley, 2007. 4. J. T. Watson, O. D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4 th Ed, Wiley, 2007. 5. K. Wanner, G. Höfner, Mass Spectrometry in Medicinal Chemistry Applications in Drug Discovery, 1 st Ed, Wiley, 2000.	a. Coupled technique b. Introduc MS, LC-I c. Tandem spectron d. Analysis		
hyphenated technique. 15 a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone. 15 b. Tandem MS and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. 15 c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination using fragmentation, solve problems based on MS/MS data. 15 Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Textbooks/ 1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2 nd Ed, Springer publisher, 2011. References / 2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, 2 nd Ed, Wiley, 2007. 3. R. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Applications, and Strategies for Data Interpretation, 4 th Ed, Wiley, 2007. 5. K. Wanner, G. Höfner, Mass Spectrometry in Medicinal Chemistry Applications in Drug Discovery, 1 st Ed, Wiley, 2007. 6. M. Kinter, N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, 1 st Ed, Wiley, 2000. 7. P. James, Proteome Research: Mass Spectrometry (Principles and Practice), 1 st Ed, Springer publisher, 2012.	e. Analysis	s of chemical data of natural product, drugs, etc. Dereplication using	
4. Tandem Mass spectrometry applications: 15 a. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone. 15 b. Tandem MS and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, amphetamine, Trocade. 16 c. Analysis of biomolecules: Proteins, Peptides, Oligonucleotides, structure and sequence determination using fragmentation, solve problems based on MS/MS data. 17 Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Textbooks/ 1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2 nd Ed, Springer publisher, 2011. References / 2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, 2 nd Ed, Wiley, 2007. 3. R. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentation, Applications, and Strategies for Data Interpretation, 4 th Ed, Wiley, 2007. 5. K. Wanner, G. Höfner, Mass Spectrometry in Medicinal Chemistry Applications in Drug Discovery, 1 st Ed, Wiley. 2007. 6. M. Kinter, N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, 1 st Ed, Wiley. 2000. 7. P. James, Proteome Research: Mass Spectrometry (Principles and Practice), 1 st Ed, Springer publisher, 2000. 8. J. K. Prasain, Tandem Mass Spectrometry-Applications and Principl	hyphena	ated technique.	
 Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Textbooks/ 1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2nd Ed, Springer publisher, 2011. 2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, 2nd Ed, Wiley, 2007. 3. R. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentations, Practicalities and Biological Applications, 2nd Ed, Wiley, 2010. 4. J. T. Watson, O. D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th Ed, Wiley, 2007. 5. K. Wanner, G. Höfner, Mass Spectrometry in Medicinal Chemistry Applications in Drug Discovery, 1st Ed, Wiley-VCH, 2007. 6. M. Kinter, N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, 1st Ed, Wiley, 2000. 7. P. James, Proteome Research: Mass Spectrometry (Principles and Practice), 1st Ed, Springer publisher, 2000. 8. J. K. Prasain, Tandem Mass Spectrometry-Applications and Principles, InTech publisher, 2012. 	4. Tandem Mas a. Pharma identific b. Tanden 2-merca c. Analysi and seq on MS/I	ss spectrometry applications: acokinetic studies: Fate of drug in living organisms, metabolite cation, biotransformation of ziprasidone. In MS and fragmentation pattern of following drugs: Paracetamol, aptonicotinic acid, Sulfasalazine, amphetamine, Trocade. Is of biomolecules: Proteins, Peptides, Oligonucleotides, structure quence determination using fragmentation, solve problems based MS data.	15
 Textbooks/ 1. H. Jürgen, Mass Spectrometry: A Textbook Gross, 2nd Ed, Springer publisher, 2011. References / Readings 2. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, 2nd Ed, Wiley, 2007. 3. R. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentations, Practicalities and Biological Applications, 2nd Ed, Wiley, 2010. 4. J. T. Watson, O. D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, 4th Ed, Wiley, 2007. 5. K. Wanner, G. Höfner, Mass Spectrometry in Medicinal Chemistry Applications in Drug Discovery, 1st Ed, Wiley-VCH, 2007. 6. M. Kinter, N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, 1st Ed, Wiley, 2000. 7. P. James, Proteome Research: Mass Spectrometry (Principles and Practice), 1st Ed, Springer publisher, 2000. 8. J. K. Prasain, Tandem Mass Spectrometry-Applications and Principles, InTech publisher, 2012. 	Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / self-study or a combination of some of these can also be used. ICT preferred. Sessions should be interactive in nature to enable peer g	s / presentations mode should be roup learning.
	Textbooks/ References / Readings	 H. Jürgen, Mass Spectrometry: A Textbook Gross, 2nd Ed, Springer E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles of 2nd Ed, Wiley, 2007. R. B. Cole, Electrospray and MALDI Mass Spectrometry: Instrumentations, Practicalities and Biological Applications, 2nd E J. T. Watson, O. D. Sparkman, Introduction to Mass Instrumentation, Applications, and Strategies for Data Interp Wiley, 2007. K. Wanner, G. Höfner, Mass Spectrometry in Medicinal Chemistr Drug Discovery, 1st Ed, Wiley-VCH, 2007. M. Kinter, N. E. Sherman, Protein Sequencing and Identification Mass Spectrometry, 1st Ed, Wiley, 2000. P. James, Proteome Research: Mass Spectrometry (Principles and Springer publisher, 2000. J. K. Prasain, Tandem Mass Spectrometry-Applications and P publisher, 2012. 	publisher, 2011. Ind Applications, Fundamentals, Ed, Wiley, 2010. Spectrometry: retation, 4 th Ed, Ty Applications in In Using Tandem I Practice), 1 st Ed, rinciples, InTech

Programme: M.Sc. Part-II (Analytical Chemistry) Course Code: CHAR-514 Title of the course: Selected topics in analytical chemistry

Number of Credits: 04	Total Hours: 60	Effective from AY: 2023-24
------------------------------	-----------------	----------------------------

Prerequisites	Students should have studied analytical chemistry course at M.Sc. P	Part I.	
for the course:			
Course Objective:	 To understand the basic importance of Quality in industrial products. To provide basic understanding of medical laboratory clinical chemistry. To understand Packaging and regulatory aspects for food, drugs and cosmetics industries. To understand the use of computers in chemistry 		
Course Outcome:	 Students will understand the basic importance of Quality in industrial products and apply the knowledge in Quality Control and Quality Assurance. Students will understand the medical laboratory clinical chemistry. Students will understand the Packaging and regulatory aspects and apply the knowledge in food, drugs and cosmetics industries. Students will understand the use of computers in chemistry. 		
Content		Hours	
 Introduction Basic corquality accontrol ir control ir Law relation and polyr 	to Quality Control and Quality Assurance: neepts; quality assurance; aspect of specification and tolerance; cceptance; sampling reality; cost aspect of quality decisions; quality a raw materials; production; finished product; ted to quality control; case studies of quality control in various s like agrochemicals, petrochemicals, pharmaceuticals, dyes, plastics mers.	8	
 a. Introduct Pharmaco in packing b. The Drug preventio 1954; Fro standard foods, dri c. The Gove duties, po the Acts; 	ion; types of packing material and regulations acts in Food and eutical industries; testing of material for packing; legal consideration g; regulatory aspects of food, drugs and cosmetics; g and Cosmetic Act, 1940; the Drug and Cosmetic Rules 1945; on of food adulteration; the Preventation of Food Adulteration Act, uit Product Order; Meat Product Order; I.S.I., Agmark and other for foods and Cosmetic particularly with reference the testing of ug and cosmetic and the raw material concerned; ernment authorities concerned with the testing-their qualification, owers and procedure to be followed; Record to be maintain under C.G.M.P. and C.G.L.P.S. requirements of QC; Department of 'WHO'		
certificati 3. Computers in The student packages lik solve Chemi	on. Chemistry: s shall learn how to operate a PC and run standard programs and e MS-WORD, EXCEL, ORIGIN, SIGMA PLOT, and CHEM SKETCH; to stry numerical (numerical taken preferably from Physical Chemistry	10	
Analytical C other relate chemical eq	hemistry, Chemical Kinetics, Electrochemistry, Spectroscopy and d topics; writing the structures of inorganic and organic molecules, uations, and other applications.		

4. Clinical Chem	nistry:	18	
a. Composit	ion body fluid; detection of abnormal levels of certain constituents		
leading t	o diagnosis of diseases; sample collection and preservation of		
physiolog	ical fluids.		
b. Analysis c	of physiological fluids - blood, urine and serum; estimation of blood		
glucose,	cholesterol, urea, haemoglobin; urine-urea, uric acid, albumin,		
globulins,	barbiturates, acid and alkaline phosphates.		
c. Human-n	utrition:		
d. Estimatio	n of enzymes, carbohydrates, essential amino acids, proteins and		
lipids.			
•			
6. Food Analysi	s. Processing and Preservation:	12	
a. Analysis c	of food such as milk, milk products, tea, coffee and beverages (soft		
drinks al	coholic drinks) Flour starch honey jams and edible oils. Analysis of		
nreservat	ives colouring matter micronutrients		
h Food pr	ocessing and food preservation: Refining milling capping		
b. rood pr	ation fronzing Drying pactourisation starilization irradiation		
Dodggogy	Mainhulactures and tutorials. Seminars / term papers /assignments	Inrocontations	
Peddyogy	initiality fectures and tutorials. Seminars / term papers / assignments	/ presentations	
	/ self-study or a combination of some of these can also be used. IC	l mode should	
	be preferred. Sessions should be interactive in nature to enac	ble peer group	
	learning.	Let the sth	
Textbooks/	1. F. W. Fifield and D. Kealy, <i>Principles and Practice of Analytice</i>	al Chemistry; 5"	
References /	Ed. Backwell Science Ltd. London, 2020.		
Readings	2. G. D. Christian, <i>Analytical chemistry</i> , 5 th Ed., Wiley, 1994.		
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vogel's		
	Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson	Education Asia	
	2009.		
	4. H. Kaur, Instrumental Methods of Chemical Analysis; Pra	gati Prakashan,	
	2012		
	5. Indian Pharmacopeia; Volume I and II, 2018		
	6. W. Funk, V. Dammann, G. Donnevert, Quality Assuranc	e in Analytical	
	Chemistry; VCH Weinheim, 1995		
	7. E. Prichard, Quality in the Analytical Chemistry Laboratory;	John Wiley and	
	Sons, NY, 1997		
	8. R. C. Gribbin, Principals of package Development, 2 nd Ed. Spr	ringer, 2012	
	9. Modern Packaging Encyclopedia, Volume 30, McGraw-Hill P	ublisher, 1957	
	10. Modern Packaging Encyclopaedia and planning quide	, McGraw-Hill	
	Publications, 1972		
	11. M. L. Mehra, The Handbook of Drug Laws, Univ. Book Agence	y, 1997.	
	12. Government of India Publications of Food Drug Cosmetic	Acts and Rules	
	https://cdsco.gov.in/opencms/opencms/en/Acts-Rules/		
	13. D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundament	als of Analytical	
	Chemistry: 9 th Ed. Brooks Cole Publisher 2013		
	14. K. V. Raman, Computers in chemistry Tata Mc Graw-Hill 19	93.	
	15 S K Pundir A hansal Computers for Chemists Pragati praka	shan 2018	
	16 C S James Analytical Chemistry of Ecode Plackio	Academic and	
	Drofessional Dublisher UK 1005		
	FIDIESSIDIAI PUDIISITEL, DK, 1995.		

17. R. L. Nath, <i>Practical Biochemistry in Clinical Medicine</i> , 2nd Ed. Academic Publishers, 1990,
18. V. Malik, Drug and Cosmetics Act, 25 th Ed. Eastern book company, 2016,
19. A. H. Beckett, J.B. Stenlake, <i>Practical Pharmaceutical Chemistry</i> (Part-1), 4 th Ed. CBS publisher, 2006,
 S. R. Mikkelsen, E. Corton, <i>Bioanalytical Chemistry</i>, 2nd Ed. John Wiley and Sons, 2016,
 M. B. Jacob, Chemical Analysis of Food and Food Products, 3rd Ed. CBS publisher, 2013.
22. Encyclopaedia of Analytical Chemistry, Volume 3, Academic Press, 1995.
23. D. White, N. Lawson, P. Masters, D. McLaughlin, <i>Clinical Chemistry</i> , CRC press, 2016
24. W. J. Marshall, M. Lapsley, A. Day, K. Shipman, <i>Clinical Chemistry</i> , Elsevier, 2020

Programme: M.Sc. Part-II (Chemistry) Course Code: CHAG- 511 Title of the course: Fundamentals of Crystallography Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24

Prerequisites for	Students should have studied M.Sc. Part-I.		
the course:			
	1. To introduce basic concepts of crystallography.		
Course	2. To impart knowledge of single crystal and powder X-ray diffraction		
Objective:	methods.		
	3. To analyse Materials and understand Structure.		
	1. Student will acquire fundamental concepts of crystallography		
Course	2. Students will gain insights into single crystal and powder X-ra	y	
Outcomo:	diffraction methods.		
Outcome.	3. Students will be able to use X-ray diffraction methods for mat	erials	
	characterization.		
Content Hours			
1. Basics of Crystallography 10		10	
a. The Crystalline state, symmetry elements.			
b. Lattices, unit cell, crystallographic directions, planes, point groups and			
symmetry classes.			
c. The Laue classes, the seven crystal systems, Bravais lattices, space groups			
and International Tables.			
d. Description of crystal structures, unit cell projections and atomic			
coordinates, unit cell content.			
e. Ionic crystals, molecules and molecular crystals, protein crystals, physical			
properties of crystals.			
2. Diffraction of	2. Diffraction of X-rays by Crystals: 10		
a. Interaction of X-rays with matter.			
b. Scattering of X-rays by an electron, atom, atomic scattering factor.			

tomporature factor, coattoring by malacula or unit call	
Emperature factor, scattering by molecule of unit cell.	
c. Diffraction by crystals, structure factor, Bragg's law, the reflection and the	
limiting spheres, symmetry in reciprocal space, systematic absences,	
diffraction intensities.	
d. Experimental methods in X-ray crystallography: X-ray sources,	
monochromatization, collimation, and focusing of X-rays.	
2. Single Crustel V rev Diffrection	10
5. Single Crystal X-ray Diffraction:	10
a. Crystals and their properties: crystallization, growing and choosing	
crystals, microscopic observation	
b. Data collection techniques for single crystals, diffractometer geometry,	
measurement of the integrated intensities, data collection with area	
detectors	
c Data reduction: Lorentz correction polarization correction absorption	
c. Data reduction. Eoreniz correction, polarization correction, absorption	
corrections, radiation damage corrections, relative scaling.	
d. Solution and refinement of crystal structures: Wilson plot, the heavy atom	
method, Direct methods, phase determination procedures, figures of	
merit,	
e. Completing and refining the structure: difference Fourier method. least-	
squares method, absolute configuration	
f Introduction to cructallographic softwares (e.g. ADEV 4. Olov2 etc) and	
IUCr validation of the data (CIF)	
4. Powder X-ray Diffraction:	10
a. Origin of powder diffraction pattern, position, shape, and intensity of	
powder diffraction peaks.	
b. Powder diffractometry: beam conditioning, goniometer design,	
nonamhient nowder diffractometry	
a Collecting quality neurona diffraction data; sample proparation, data	
c. confecting quality powder diffraction data. sample preparation, data	
acquisition, quality of data, data processing.	
d. Determination of unit cell: indexing methods.	
e. Introduction to the Rietveld method.	
d. Introduction to powder diffraction softwares for indexing, unit cell	
refinement (e.g. Winplotr, UnitCell).	
5 Applications of Crystallography:	10
a. Chemistry and Materials sciences understanding exectal structures of	
a. Chemistry and Waterials Science, understanding crystal structures of	
compounds, alloys, metals, polymers, phase transitions etc.	
b. Geology, mineralogy, gemology.	
c. Pharmaceuticals: polymorphs, excipient analysis, active pharmaceutical	
ingredients.	
d. Forensics and environmental analysis.	
e. Nano materials characterization	
f Biomolecules: determination of structures of protoins, puckaic acids and	
ather biological recorder to structures of proteins, nucleic acids and	
other biological macromolecules.	
g. Other diffraction techniques: neutron diffraction, thin film, microstructure	
properties, pair distribution function analysis, etc.	

6. Analysis of I	Materials and Structural Understanding:	10
a. Characteri		
b. Introducti		
crystal stru	ucture database, protein data bank etc.	
c. Inspection	of crystals/powders with light microscope.	
d. Visualizati	on of crystal structures using softwares (e.g. Diamond,	
VESTA).		
e. Beyond id	eal crystals: crystal twins, modulated structures, quasicrystals.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /	/ presentations
	/ self-study or a combination of some of these can also be used. IC	T mode should
	be preferred. Sessions should be interactive in nature to enab	le peer group
	learning.	
Textbooks/	1. M. Milanesio, G. Zanotti, G. Gilli, M. Catti, H. Monaco, G. Ferrar	is, G. Artioli, P.
References /	Gilli, D. Viterbo, C. Giacovazzo - Fundamentals of Crystallog	raphy, 3 rd Ed.,
Readings	Oxford University Press, 2015.	
	2. C. Hammond - The Basics of Crystallography and Diffraction	(International
	Union of Crystallography Texts on Crystallography) 4 th Ed., Ox	ford University
	Press, 2015.	
	3. R. West, Solid State Chemistry and Its Applications, 2 nd Ed.; Wile	ey, 2022.
	4. F. Hoffmann, Introduction to Crystallography, 1st Ed. Springer, 2	2020.
	5. D. Sherwood, Crystals, X-rays and Proteins: Comprehe	ensive Protein
	Crystallography, 1st Ed. Oxford University Press, 2015.	
	6. A. Hofmann, S. Clokie, Wilson and Walkers Principles and	Techniques of
	Biochemistry and Molecular Biology, 8th Ed.; Cambridge University	ity Press, 2018.
	7. V. Pecharsky and P. Zavalij, Fundamentals of Powder Diffraction	and Structural
	Characterization of Materials, 2 nd Ed.; Springer, 2009.	
	8. R. Young, The Rietveld Method, 1st Ed., Oxford University Press,	1995
	9. W. David, K. Shankland, L. McCusker, C. Bärlocher, Structure	Determination
	<i>from Powder Diffraction Data</i> , 1 st Ed., Oxford University Press, 2	2006.
	10. B. He, <i>Two-dimensional X-ray Diffraction</i> , 1 st Ed., Wiley, 2009.	
	11. W. Massa, Crystal Structure Determination, 2 nd Ed., Springer, 20)10.
	12. R. Dinnebier, S. Billinge, <i>Powder Diffraction: Theory and Practice</i>	e, 1 st Ed., Royal
	Society of Chemistry, 2008.	

Programme: M.Sc. Part-II (Chemistry)	
Course Code: CHAG-512	
Title of the course: Advanced NMR and combine	ed Spectroscopy
Number of Credits: 04Total Hours: 60	Effective from AY: 2023-24

Prerequisites for	Students should have studied Chemistry courses in MSc Part-I.
the course:	
	1. To understand advance 2D NMR techniques.
Course Objective:	2. To develop skills of interpreting spectral data pertaining to two or more 2D
Course Objective.	NMR techniques.
	3. To train students to interpret NMR for quantitative analysis.

	4. To understand NMR hyphenated techniques.	
	1. Students will be able to understand various 2D NMR techniques and analys	
	the 2D NMR spectra of small molecules.	
	2. Students will be skilled to interpret combined spectral data pertaining to	
Course Outcome:	or more 2D NMR techniques for structural analysis.	
	3. Students will be skilled to interpret qNMR data for quantitative	analysis.
	4. Students will be able to understand and apply hyphenated NM	R techniques
	for analysing mixtures.	
Content		Hours
1. Selected concept	s in IR and MS	
a. IR: Spectral	data interpretation for common functional groups like keto,	
aldehyde, ad	cid, ester, amides, nitro, etc., Correlation of common functional	
groups with	IR spectral differences.	5
b. MS: Factors	governing Mass fragmentation processes, β -cleavage, cleavage α	
to heteroate	oms, cleavage α to carbonyl groups, retro Diels-Alder reaction,	
McLafferty r	earrangement.	
2. Selected concept	s in NMR	
a. Chemical Sh	ifts spectral data for proton and carbon nuclei like aliphatic,	
aromatic, ac	yl, methoxy, etc., Correlation of common proton and carbon nuclei	
with NMR si	gnal differences.	
b. Nuclear Ove	- rhauser Effect	
c. Decoupling	in ¹³ C NMR Spectroscopy (DEPT-45, DEPT-90, DEPT-135), Proton	10
coupled CMI	R.	
d. ¹⁵ N-NMR, ¹⁹	F-NMR, ²⁹ Si-NMR, & ³¹ P-NMR spectroscopy: Chemical shift range	
for ¹⁵ N, ¹⁹ F,	²⁹ Si & ³¹ P in NMR spectra, coupling with neighbouring nuclei and	
splitting patt	ern.	
3. 2D-NMR		
a. Introduction	to 2D-NMR, General Principles, Classification of 2D-NMR	
experiments		
b. Homonuclea	r Correlation Spectroscopy	
Proton-Proton I	nteractions - COSY, DQF-COSY, TOCSY, NOESY, REOSY.	
Carbon-Carbon	Interactions - INADEQUATE.	
c. Heteronucle	ar Correlation Spectroscopy HETCOR	10
Heteronuclear S	ingle Bond Correlation - HSQC, HMQC and me-HSQC	
Heteronuclear N	Aultiple Bond Correlation - HMBC	
d. Analysing ar	nd interpreting spectral data from above 2D spectra for small	
molecules.		
e. Assigning NM	/IR signals based on PMR, CMR, ¹ H- ¹ H & ¹ H- ¹³ C Correlation Spectra.	
4. Structural anal	ysis of simple compounds using some combined spectral	
techniques:		20
PMR, CMR, CO	SY, HSQC, me-HSQC, HMBC, TOCSY, NOESY, INADEQUATE, along	20
with IR, UV and	MS data wherever necessary.	
5. Quantitative NM	R analysis	
a. Analysis of m	nixture of compounds using qNMR technique, Relative proportions	
(mole %) of	the 2 or 3 components from NMR integrals.	10
b. Calibration s	tandards, Selection criteria for suitable Reference material.	
c. Molar conce	ntration Determination, Purity or Yield Determination.	

6. Hyphenated	NMR techniques			
a. Develop	ment of LC-NMR, Technical Considerations regarding LC-NMR: Solvent			
Compat	ibility, Solvent Suppression, NMR Flow Cell, LC-NMR Sensitivity. Modes			
of Operation	of Operation: On-Flow Mode, Stop-Flow Mode. Applications of LC-NMR. 5			
b. Introdu	ction to other hyphenated NMR techniques, Technical Considerations			
regardir	ng LC-MS-NMR: Modes of Operation, Online coupling in series or in			
parallel,	Challenges in Hyphenated NMR techniques.			
Pedagogy	Mainly lectures and tutorials, Seminars / assignments / presentations / self-study			
	or a combination of some of these can also be used. ICT mode should be preferred.			
	Sessions shall be interactive in nature to enable peer group learning. (Note: More			
	emphasis shall be given for structural elucidation using combined spectroscopic			
	data)			
Textbooks/Re	1. W. Kemp; Organic Spectroscopy; 3 rd Ed, Palgrave, 1991.			
ferences	2. R. M. Silverstein, F. X. Webster; Spectrometric identification of Organic			
/Reading	Compounds; 6 th Ed, Wiley, 2011.			
materials	3. R. M. Silverstein, F. X. Webster, D. J. Kiemle, D. L. Bryce, S. D. Samant, V. S.			
	Nadkarni; Spectrometric identification of Organic Compounds; An Indian			
	Adaptation, 8 th Ed, Wiley, 2022.			
	4. P. S. Kalsi; Spectroscopy of Organic Compounds; 6 th Ed, New Age			
	International, 2009.			
	5. E. Pretsch, P. Buhlmann, C. Affolter; Structural Determination of Organic			
	Compounds, 2 nd Ed, Springer, 2005.			
	 L. D. Field, S. Sternhell, J. R. Kalman; Organic Structures from Spectra, 4th Ed, Wiley, 2007. 			
	7. L. D. Field, H. L. Li, A. M. Magill; Organic Structures from 2DNMR Spectra,			
	Wiley, 2015.			
	8. W. Kemp; NMR in Chemistry: A Multinuclear Introduction, Macmillan, 1986.			
	9. D. H Williams, I. Fleming; <i>Spectroscopic methods in organic chemistry</i> , 6 th Ed,			
	1 ata WCgraw Hill Education, 2011.			
	LO. J. Π. SIMPSON, Organic Structure Determination using 2-D NIVIR Spectroscopy,			
	Elsevier, 2008.			
	11. H. Filebolli, Busic One- und Two-Dimensional Wivik Spectroscopy, Wiley,			
	12 K S Parikh H H Gadane: <i>Ougntitative NMP Spectroscopy in</i>			
	Pharmaceuticals Lambert Academic Publishing 2012			
	13 II Holzgrabe I Wawer B Diehl NMR Spectroscopy in Pharmaceutical			
	Analysis, Elsevier, 2008.			
	14. M. V. Silva Elipe; LC-NMR and Other Hyphenated NMR Techniques: overview			
	and applications, Wiley, 2012.			

Programme: **M. Sc. Part-II (Chemistry)** Course Code: **CHAG-513** Title of the course: **Bioanalytical Techniques** Number of Credits: **04**Total Hours: **60**

Effective from AY: 2023-24

1	To introduce various biognalutical techniques used in biochemical	
1	To introduce various biognalutical techniques used in biochemical	
1 Dbjective: 2	 To infroduce various bioanalytical techniques used in biochemical diagnosis. To depict the various concepts used in Biomolecular Immunochemical Techniques, Radioisotope tracer Techniques Tomography, and Magnetic Resonance Technology and their si clinical analysis. 	l analysis and techniques, s, Computed ignificance in
1 Dutcome: 2. 3.	 Students will be able to identify, formulate, analyze and solve pro analysis of biological compounds. Students will be able to differentiate between various methods procedures which will enable them to understand/analyze the present in living organisms/ chemical reactions. Students will understand the applications of various diagnostic tec in clinical analysis. 	oblems in the , assays, and e substances hniques used
		Hours
olecular techr	niques	12
Arroduction, sof extraction; Conventional equencing m chain terminat Polymerase C components of product, Reve RT-PCR, Real-t Protein DNA Ir Microarrays: D	kit-based extraction; detection of DNA: Conventional methods kit-based extraction; detection of DNA, Extraction of RNA: methods of extraction; kit-based RNA extraction, DNA ethods: Sequencing by chemical degradation method; Dideoxy tion method Chain Reaction Thermocycler (PCR thermocycler): Principle; of PCR, thermal cycler, optimization of PCR, Analysis of PCR erse Transcriptase PCR(RT-PCR): Steps of RT-PCR; application of time PCR(q-PCR): Application of PCR nteraction Assays: Specific and non-specific interactions DNA-based microarrays and protein microarrays	
nochemical T	Techniques	12
ntroduction: I or antibody p Antibody prep production; C Antibody reco or developm nodification	Development of immune system, Harnessing the immune system roduction; antibody structure and function paration: Polyclonal antibody production; monoclonal antibody Cell banking; Growing hybridomas for antibody production; gnizing small molecules; Anti-Idiotypic antibodies; Phage display tent of antibody fragments; Antibody Purification; Antibody	
mmunoassay Gandwich ELIS Enhanced ELI Gandwiched ELI Mmunomicro	formats: Enzyme immunosorbent Assays; Double antibody SA (DAS ELISA); Triple antibody Sandwich ELISA (TAS ELISA); ISA system; Competitive EIISA; Modification of traditional LISA scopy: Immunoflurosecence Microscopy; Immunosorbent	
	Ditcome: 2 Ditcome: 2 Diecular techn ntroduction, 9 of extraction; Conventional equencing m chain terminar Polymerase (components (components (components (components) Protein DNA In Microarrays: E mochemical 1 ntroduction; (Antibody preporduction; (Antibody reco or developm nodification mmunoassay Sandwich ELI Sinhanced EL andwiched El mmunomicro	 2. Students will be able to differentiate between various methods procedures which will enable them to understand/analyze the present in living organisms/ chemical reactions. 3. Students will understand the applications of various diagnostic tect in clinical analysis. 3. Students will understand the applications of various diagnostic tect in clinical analysis. 5. Students will understand the applications of various diagnostic tect in clinical analysis. 5. Students will be able to differentiate RNA extraction of RNA: Conventional methods of extraction; kit-based extraction; detection of DNA, Extraction of RNA: Conventional methods of extraction; kit-based RNA extraction, DNA equencing methods: Sequencing by chemical degradation method; Dideoxy thain termination method Yoolymerase Chain Reaction Thermocycler (PCR thermocycler): Principle; components of PCR, thermal cycler, optimization of PCR, Analysis of PCR porduct, Reverse Transcriptase PCR(RT-PCR): Steps of RT-PCR; application of RT-PCR, Real-time PCR(q-PCR): Application of PCR Protein DNA Interaction Assays: Specific and non-specific interactions Microarrays: DNA-based microarrays and protein microarrays mochemical Techniques mothemical color production; Antibody production; Antibody production; Cell banking; Growing hybridomas for antibody production; Antibod

e.	Lateral Flow devices; Epitope mapping; Immunoblotting; Fluorescence- Activated Cell Sorting (FACS); Cell and Tissues staining Techniques; Immunoaffinity Chromatography; Antibody-Based biosensors; Luminex Technology; Therapeutics Antibodies		
3. Rac	lioisotope tracer Techniques	6	
	Introduction, Autoradiography: Principle of Autoradiography, Selection of emulsion and film. Choice of isotopes; Background; Time of exposure. Practical techniques for use of autoradiography		
4. X-R	ay Imaging	8	
a.	Introduction to X-ray imaging, Background: History and basic physics		
b.	Instrumentation, Components; Beam Generation; Reduction of Scattered Radiation; Image Detection,		
c.	Clinical Applications: Diagnostic Devices; Projection Radiography;		
	Mammography; Fluoroscopy; Angiography		
5. Cor	nputed Tomography	10	
a.	Introduction to Computed Tomography		
b.	Instrumentation: X-ray Tube and Generator; MDCT Detector Design and Slice Collimation		
C.	Data Rates and Data Transmission; Dual Source CT; Measurement Techniques; MDCT Sequential (Axial) Scanning; 109 MDCT Spiral (Helical) Scanning, Pitch; Collimated and Effective Slice Width		
d.	Multi slice Linear Interpolation and z-Filtering; Three-Dimensional Back projection and Adaptive Multiple Plane Reconstruction (AMPR); Double z- Sampling, ECG-Triggered; and ECG-Gated Cardiovascular CT		
e.	Principles of ECG-Triggering and ECG-Gating; ECG-Gated Single-Segment and Multisegmented Reconstruction		
f.	Principles of prositron emission tomography (PET)		
g.	Clinical Applications of Computed Tomography		
6. Ma	gnetic Resonance Technology	12	
a.	Introduction, Magnetic Nuclei Spin in a Magnetic Field: A Pulsed rf Field Resonates with Magnetized Nuclei, the MR Signal, Spin Interactions Have Characteristic Relaxation Times		
b.	Image Creation: Slice Selection; The Signal Comes Back—The Spin Echo; Gradient Echo, Image Reconstruction: Sequence Parameters, Image Resolution, Noise in the Image—SNR, Image Weighting and Pulse Sequence Parameters TE and TR: T2-Weighted Imaging; T*2 -Weighted Imaging; Proton-		
	Density-Weighted Imaging; T1-Weighted Imaging		
c.	Clinical applications: A Menagerie of Pulse Sequences: EPI; FSE; Inversion- Recovery; DWI; MRA; Perfusion, Enhanced Diagnostic Capabilities of MRI—		
	Contrast Agents, Molecular MRI, Functional MRI		
Pedag	Pedagogy Mainly lectures and tutorials. Seminars/term papers /assignments/ presentations /o		
1	a combination of some of these can also be used. ICT mode should	be preferred.	
	Sessions should be interactive in nature to enable peer group learning.		

Textbooks/	1. R. Salzer, <i>Biomedical Imaging: Principles and Applications,</i> 1 st Ed. Wiley; 2012.
References	2. K. Wilson, J. Walker, Principles and Techniques of Practical Biochemistry; 8th
/ Readings	Ed. Cambridge University Press; 2010.
	 S. Ghosal, A. S. Avasthi, Fundamentals of Bioanalytical Techniques and Instrumentation. 2nd Ed. PHI learning Pyt. Ltd. Delhi. 2010.
	 D. J. Holme, H. Peck.; Analytical Biochemistry; 3rd Ed. Prentice Hall, Pearson Education Limited; 1998.
	 B. M. Dale, M. A. Brown, R. C. Semelka, MRI: Basic principles and applications, 5th Ed. Wiley, 2015.

22

Programme: M. Sc. Part-II (Chemistry) Course Code: CHAG-514 Title of the Course: Calibration and Validation in Analytical Chemistry Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Students should have studied M.Sc. Part-I.	
for the		
course:		
Course	1. To understand the terminologies used in measurement science	
Objectives:	2. To classify the nature of errors involved in measurements	
	3. To study the concept of calibration and matrix effect in Analysis	
	4.To comprehend the role method validation and developme	nt in Analytical
	laboratories of pharmaceutical, clinical, environmental and forensic	studies.
	5. To gain the knowledge on application of statistical tools in Analys	sis
Course	1. Students will be able to differentiate between technique, method	od, protocol and
Outcomes:	procedure.	
	2. Students should be able to identify and correct any measurement	t errors.
	3. Students will be able to analyse the reliability of results for a ch	osen method of
	analysis	
	4. Student will be able to evaluate the suitability of method for inte	nded purpose
	5. Student will learn to draw conclusions based on statical method.	
Content		Hours
1. Introduction		10
a. The vo	cabulary of analytical chemistry: Analysis, determination and	
measure	ement; techniques, methods, procedures, and protocols	
b. Classifyi	ng analytical techniques: Qualitative, quantitative and structural	
determi	nation, separation and hyphenated techniques, basic principle of	
analysis	and limitations	
c. Selecting	g an analytical method: Identification of analytical problem,	
understa	anding the selection criteria viz. accuracy, precision, sensitivity.	

availability of equipment, and cost; developing analytical procedure
d. Errors in analytical measurements: Classification, methods of minimization of errors, significance of gaussian curve, probability distribution of errors.

selectivity, robustness, ruggedness, scale of operation, analysis time,

2. Calibration and Statistical treatment of data

a.	Calibration	in analytical chemistry: Significance and need for calibration,	
	compensat	ting for interferences (method blank), chemical standard,	
	reference i	material, calibration of glassware and its tolerance limit (standard	
	deviation)		
b.	, Matrix eff	ect: Effect of matrix on signal measurement, importance of	
	correlatior	coefficient, concept of curve fitting, linear regression of good	
	data. linea	rity and sensitivity of instrumental measurement	
с.	Calibration	methods: External standard, standard additions and Internal	
	standard i	method, case scenario to understand the suitability of each	
	method fo	r a given analysis	
d.	Statistical	evaluation of analytical results: Confidence limits and interval.	
0.1	testing for	significance, detection of bias and presence of outliers, control	
	charts		
e.	Calibration	of important analytical instruments: UV-visible	
	spectropho	ptometer. FTIR spectrophotometer, conductivity meter, GC, HPLC,	
3. Va	lidation	······································	18
a.	Quality in A	Analytical Laboratories: Good laboratory practices, quality control,	-
-	quality ass	urance. accreditation system.	
b.	Validation	and gualification: Overview of installation, operation, and	
	performan	ce qualification (IQ, OQ, PQ) of analytical equipment.	
C.	' Method va	lidation in pharmaceutical industry: Regulatory requirements for	
	analytical	method validation International conference on harmonization	
	(ICH) guide	line Q2R1, method validation parameters and timeframe as per	
	ICH guidelines, linearity and range criteria and their role in instrumental		
	method va	lidation, detailed discussion on accuracy and precision role in the	
	method va	alidation, Role of quantification limit and specificity -Limit of	
	Detection	(LOD) and Limit of Quantification (LOQ) for a given method.	
4. Ca	se study of	method development and modifications	10
a.	Environme	nt sample monitoring: Estimation of nitrite, lead in wastewater,	
	Measurem	ent of calcium by flame emission spectroscopy	
b.	Food and	medicine: Generic drugs, health supplements, nutritional labels	
	and daily n	utritional requirement	
с.	Clinical st	udies: Determination of glucose in human blood and urine,	
	preservatio	on of biological fluid for analysis of different analytes.	
b.	Forensic a	nalysis: Determination of blood alcohol content, Analysis of	
	narcotic dr	ugs, adulterations.	
Peda	gogy:	Mainly lectures and tutorials, Seminars / assignments / presenta	tions / self-study
or a combination of some of these can also be used. ICT mo		uld be preferred.	
		Sessions shall be interactive in nature to enable peer group learn	ng.
Textbooks /		1. M. E. Swartz, I. S. Krull, Analytical method development &	validation, CRC
References/		Press book, 1997.	
Readings		2. G. H. Jeffery, J. Bassett, J. Mendham, R C. Denney, Voge	l's Text Book of
		<i>Quantitative Chemical Analysis</i> , 5 th Ed. Wiley, 1989.	
		3. A. H. Wachter, R. A. Nash, Pharmaceutical Process Validation	n, Marcel Dekker
		Inc, 2003.	

4. L. Huber, Validation and Qualification in Analytical Laboratories, Informa	
5. M. Valcarcel, <i>Principles of analytical chemistry: A text book</i> , Springer	
 D. Harvey, Modern Analytical Chemistry, MC Graw Hill, 2000. 	
7. D. A. Skoog, D. M. West, F. J. Holler, <i>Fundamentals of Analytical Chemistry</i> , 9 th Ed. Sounders College publishing, 2014.	
8. B. W. Wenclawiak, M. Koch, E. Hadjicostas, <i>Quality Assurance in Analytical</i>	
 G. D. Christian, Analytical Chemistry, 6th Ed.; Wiley, 2004. 	
10. J. H. Kennedy, <i>Analytical Chemistry: Principles</i> , 2 ⁿ Ed.; Saunders College Publishing, 1990.	
 B. Magnusson, U. Ornemark, The Fitness for Purpose of Analytical Methods – A Laboratory Guide to Method Validation and Related Topics, 2nd Ed; Eurachem, 2014 	
12. Willard, Instrumental Methods of Analysis, 7 th Ed., CBS Publishers, 1986	

Programme: M.Sc. Part-II (Chemistry)

Course Code: CHCR-511

Title of the course: Research Methodology and instrumental techniques-I Effective from AY: 2023-24

Number of Credits: **04**Total Hours: **60**

Prerequisites	Students should have studied chemistry courses at MSc-I level.		
for the course:			
Course	1. To introduce various aspects of research methodology.		
Objective:	2. To provide understanding ethics & scientific conduct.		
	3. To introduce academic writing.		
	4. To introduce databases used in chemistry.		
	5. To provide understanding and importance of lab safety.		
	6. To understand the usefulness of various instrumenta	al techniques in	
	characterization of chemical compounds.		
Course	Course 1. Students will be able to apply research methodology concepts.		
Outcome:	2. Students will be able to apply computer technology to so	lve their research	
	problems in chemistry.		
	3. Students will know in advance the safety precautions to be tal	ken in the chemical	
	lab.		
	4. Students will gain fundamental knowledge on characterization	n techniques.	
Content		Hours	
1. Introduction to Research Methodology		5	
a. Research- mea	aning, objectives, motivation, types and methodology.		
b. Process- form	b. Process- formulating the research problem; literature survey; developing the		
hypothesis and the research design; sample design and collection of the data;			
execution of the project; analysis of data; testing of hypothesis; generalizations			
and interpretation, and preparation of the report or presentation of the results			
& conclusions	& conclusions.		
2. Scientific cond	2. Scientific conduct and ethics 5		

а	a. Ethics: definition, nature of moral judgements and reactions, Ethics with		
respect to science and research.			
b	. Intellectua	al honesty and research integrity.	
c	. Scientific r	nisconducts: Falsification, Fabrication, and Plagiarism (FFP).	
c	I. Redundan	t publications: duplicate and overlapping publications.	
e	e. Selective r	eporting and misrepresentation of data.	
3	8. Academic	writing	5
	a. Publicatio	on ethics: definition, introduction and importance	
	b. Conflicts	of interest	
	c. Publicatio	on misconduct: definition, concept, problems that lead to unethical	
	behaviou	r and vice versa	
	d. Violation	of publication ethics, authorship and contributorship	
	e. Identifica	tion of publication misconduct, complaints and appeals	
	f. Predatory	y publishers and journals	
4	. Data base	s and research metrics	3
a	. Databases	: 1. Indexing databases 2. Citation databases: Web of Science,	
	Scopus, UG	GC-Care List etc.	
b	. Research N	Metrics: 1. Impact Factor of journal as per Journal Citation Report,	
	SNIP, SJR, I	PP, Cite Score 2. Metrics: h-index, g index, i10 index etc	
5	5. Safety asp	ects in Chemistry	5
a	. Good labo	ratory practices.	
b). Handling o	of various chemicals, solvents & glassware.	
c	. Fires and f	ighting with fires.	
d	l. Hazardous	s substances, classification and handling	
e	e. Safety Dat	a Sheet	
6	5. Softwares	in Chemistry	7
a	. Data plotti	ng	
b	. Structure D	Drawing	
c	. Reference	management software	
7	'. Instrumen	tal methods of analysis:	30
	Demonstratio	on and/ or data analysis in following techniques:	
	a. Elemental	analysis: CHNS analysis and AES	
	b.Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)		
	c. Nuclear magnetic resonance (¹ H, ¹³ C)		
	d. Chromatographic techniques: HPLC, GC,		
	e. Hyphenated Techniques: LC-MS & GC-MS,		
	f. Diffraction methods: XRD		
	g. Thermal analysis: DSC		
	h. Microscopy: SEM, TEM		
	i. Methods for determination of magnetic & dielectric properties.		
	j. Cyclic voltammetry		
P	Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discussions.	seminars, internal
	2 37	exams/ assignments, / demonstration/ self-study or a combination	of some of these.
	ICT mode should be preferred. Sessions should be interactive in nature to enable pee		
		group learning.	·
-			
Textbooks/	1.	C. R. Kothari, Research Methodology: Methods & Techniques, New Age	
------------	-----	--	
References		International Pvt. Ltd., 2004.	
/ Readings	2.	Bird, Philosophy of Science, Routledge, 2006.	
	3.	M. Coghill & L. R. Garson, The ACS Style Guide: Effective Communication of	
		Scientific Information, American Chemical Society Washington, DC & OXFORD	
		University Press New York, 2006.	
	4.	Y. K. Singh, Fundamentals of Research Methodology & Statistics, New Age	
		International Pvt. Ltd., 2006.	
	5.	National Research Council, Prudent practices in the laboratory: handling and	
		management of chemical hazards, The National Academies Press, USA, 2011.	
	6.	B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, Vogel's Text book of	
		Practical Organic Chemistry, 5 th Ed.; Longmann, 1989	
	7.	E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural Methods in Inorganic	
		Chemistry, Blackwell Scientific Publishers. 1986.	
	8.	R. S. Drago, <i>Physical Methods in Chemistry</i> , 2 nd Ed. W. B. Saunders Co. Ltd. 2016	
	9.	R. M. Silverstein, F. X. Webster; Spectrometric identification of Organic	
		<i>Compounds</i> ; 6 th Ed, Wiley, 2011.	
	10.	J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's Textbook of	
		Quantitative Chemical Analysis, 6 th Ed.; Pearson Education Asia, 2002.	
	11.	H. V. Keer, <i>Principles of the Solid State</i> , 1 st Ed. New Age International (P) Ltd., 2005.	
	12.	G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.	
	13.	A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytical	
	1.4	Chemistry, 9 th Ed.; Cengage learning.	
	14.	A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 7 ^{err} Ed.;	
	15	Cellgage learning.	
	15.	F. G. Lampman, G. Kilz and J. Vyvyan, <i>Introduction to Organic Spectroscopy</i> , 5 Ed : Congage Learning, 2015	
	16	N Elgrichi K I Rountree R D McCarthy E S Rountree T T Eisenhart and I I	
	10.	Dempson A Practical Beginner's Guide to Cyclic Voltammetry I Chem Educ ACS	
		2018 95 197–206	
	17	V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI Learning Pyt	
		Ltd., 2013.	
	18.	A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced	
		<i>Electronic Structure Theory</i> , Dover Publications, Inc. Mineola, 1989.	

Programme: M.Sc. Part-II (Chemistry)Course Code: CHCR-512Title of the course: Research Methodology and instrumental techniques-IINumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites for	Students should have studied chemistry courses at MSc-I.
the course:	
Course	1. To introduce various aspects of research methodology.
Objective:	2. To provide understanding ethics & scientific conduct.
	3. To introduce academic writing.

	4. To introduce databases used in chemistry.				
	5. To provide understanding and importance of lab safety.				
	6. To understand the usefulness of various instrumenta	l techniques in			
	characterization of chemical compounds.	-			
Course	1. Students will be familiar with research methodology concep	ts.			
Outcome:	2. Students will be able to apply computer technology to sol	ve their research			
	problems in chemistry.				
	3. Students will know in advance the safety precautions to	be taken in the			
	chemical lab.				
	4. Students will gain fundamental knowledge on characterizati	on techniques.			
Content		Hours			
1. Research Meth	odology, Scientific conduct, ethics & academic writing	15			
a. Research- me	eaning, objectives, motivation, types and methodology.				
b. Process- form	nulating the research problem: literature survey: developing the				
hypothesis a	nd the research design: sample design and collection of the data:				
execution of	of the project: analysis of data: testing of hypothesis:				
generalizatio	ns and interpretation, and preparation of the report or				
nresentation	of the results & conclusions				
c Ethics: defin	ition nature of moral judgements and reactions. Ethics with				
respect to sci	ience and research				
d Intellectual h	onesty and research integrity				
e Scientific mis	conducts: Falsification Fabrication and Plagiarism (FEP)				
f Redundant n	ublications: duplicate and overlapping publications				
a Selective rep	ableations. auplicate and overlapping publications.				
b Bublication o	thics: definition introduction and importance				
i. Conflicts of it	tinos. demition, incloduction and importance				
i. Cultilicts of il	neresi				
j. Publication n	d vice verse				
Denaviour an	ion of nublication othics, authorship and contributorship				
a. Violation of p	oration or publication ethics, authorship and contributorship				
b. Identification	lichers and inverses				
K.Predatory put	bilsners and journals	10			
2. Softwares in cr	iemistry, Data bases and Research metrics	10			
a. Data plotting	using GNU plot; Structure Drawing using ChemSktech; Reference				
management	device detendence Citetian detendence Web of Science Coord				
D. Databases: In	dexing databases, Citation databases: web of Science, Scopus,				
UGC-Care Lis	t, Scimago etc.				
c. Research Met	rics: Impact Factor of Journal as per Journal Citation Report, SNIP,				
SJR, IPP, Cite	Score; Metrics: n-Index, g-Index, IIU-Index etc				
d. Molecular Do	cking software	_			
3. Safety practice	s in Chemical research	5			
a. Introduction	to lab satety.				
b. Handling of v	various chemicals, solvents & glassware.				
c. Fires and figh	iting with fires.				
d. Hazardous su	ubstances, classification and handling				
e. Safety Data S	Sheet				
4. Instrumental n	nethods	30			

a. UV-Visible reactions, b. Understan Linear Swo c. Determini	e spectroscopy in elucidation of mechanisms of C-H activation s, epoxidation etc by transition metal catalyst. anding water oxidation reaction using Cyclic voltammetry (CV) & weep voltammetry (LSV) ning capacity of supercapacitors using Galvanostatic Charge-	
 c. Determini Discharge d. Electroche e. Resonance f. Infrared (I g. ¹H, ¹³C- NN h. Selected c i. Hyphenate MS j. Diffractior k. Thermal a 	ning capacity of supercapacitors using Galvanostatic Charge- e (GCD) nemical Impedance Spectroscopy (EIS) ce Raman and isotope labelling studies. (IR) spectroscopy applications IMR spectroscopy and applications chromatographic techniques such as HPLC, GC. ted Techniques/applications: LC-MS, GC-MS, LC-NMR-MS, GC-IR, ICP- on methods: High temperature XRD analysis: TG/DTA/DSC	
m.Methods f	for determination Ms, Mr, Hc, Tc, ε^{I} and Tan δ .	
n. Potentiom	metry	
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discussions, s exams/ assignments, / demonstration/ self-study or a combination ICT mode should be preferred. Sessions should be interactive in natu group learning.	eminars, internal of some of these. Jre to enable peer
Textbooks/ References / Readings	 C. R. Kothari, Research Methodology: Methods & Techn. International Pvt. Ltd., 2004. Bird, Philosophy of Science, Routledge, 2006. M. Coghill & L. R. Garson, The ACS Style Guide: Effective C Scientific Information, American Chemical Society Washington University Press New York, 2006. Y. K. Singh, Fundamentals of Research Methodology & Stat International Pvt. Ltd., 2006. National Research Council, Prudent practices in the laborator management of chemical hazards, The National Academies Press B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, Vo Practical Organic Chemistry, 5th Ed.; Longmann, 1989 E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural Met Chemistry, Blackwell Scientific Publishers. 1986. R. S. Drago, Physical Methods in Chemistry, 2nd Ed. W. B. Saunde 9. R. M. Silverstein, F. X. Webster; Spectrometric identifica Compounds; 6th Ed, Wiley, 2011. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vog Quantitative Chemical Analysis, 6th Ed.; Pearson Education Asia, 11. H. V. Keer, Principles of the Solid State, 1st Ed. New Age Internation 12. G. D. Christian, Analytical Chemistry, 6th Ed.; Wiley, 2004. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamen Chemistry, 9th Ed.; Cengage learning. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysi learning. 	iques, New Age formunication of n, DC & OXFORD ntistics, New Age ory: handling and ss, USA, 2011. ngel's Text book of thods in Inorganic ers Co. Ltd. 2016 ntion of Organic gel's Textbook of 2002. onal (P) Ltd., 2005. tals of Analytical s, 7 th Ed.; Cengage

15. Pavia, G. Lampman, G. Kriz and J. Vyvyan, <i>Introduction to Organic Spectroscopy</i> , 5 th Ed.; Cengage Learning, 2015.
16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, <i>A Practical Beginner's Guide to Cyclic Voltammetry</i> , J. Chem. Educ. ACS, 2018. 95. 197–206.
17. V. Rajaraman, <i>Computer Programming in Fortran 90 And 95</i> , PHI Learning Pvt. Ltd., 2013.
18. Attila Szabo, Neil S. Ostlund, <i>Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory</i> , Dover Publications, Inc. Mineola, 1989.
 19. A. Leach, Molecular Modelling, Principles and applications, Longman, 1998. 20. W. Nam et al, Dioxygen activation by Metalloenzymes & models, Accounts of Chemical Research, 2007, Volume 40 & references cited therein.

Programme: **M.Sc. Part-II (Chemistry)** Course Code: **CHCD-511** Title of the course: **Discipline Specific Dissertation** Number of Credits: **16**Total Hours: **480**

Effective from AY: 2023-24

Prerequisites j	for	r Students should have studied chemistry courses at MSc-I level.	
the course:			
Course Objective.		To develop the skills of preparing and conducting independent research.	
Course Outcome:		Students will be able to understand and apply the tools and techniques of	
		chemistry in conducting independent research.	
Content			Hours
As per OA-35			480
Pedagogy	Dis	ssertation carried out individually by each student throughout the	academic year.
Textbooks/	As	required for the development of review and methodology.	
References /			
Readings			

M.Sc. Physical Chemistry Part-II syllabus for AY 2023-24 (SEM III and SEM IV)

SEM III (Physical Chemistry)				
Sr. No.	Subject code	Paper title	Credits	
1.	CHPR-511	Practical Course in Physical Chemistry-III	4	
2.	CHPR-512	Practical Course in Physical Chemistry-IV	4	
3.	CHCR-511	Research methodology and instrumental	4	
		techniques-l		
4.	CHCR-512	Research methodology and instrumental	4	
		techniques-II		
5.	CHPG-511	Solid State Chemistry: Concepts and Applications	4	
6.	CHPG-512	Nanoscience: Concepts and Applications	4	
7.	CHPG-513	Physical aspects of Polymer Chemistry	4	
8.	CHPG-514	Colloids and Surface Chemistry	4	
SEM IV (Physical Chemistry)				

1.	CHPR-513	Heterogeneous Catalysis: Fundan Applications	nentals and	4
2.	CHPR-514	Applied Electrochemistry		4
3.	CHCD-511	Discipline Specific Dissertation		16

Programme: M. Sc. Part-II (Physical Chemistry)		
Course Code: CHPR-511		
Title of the Course: Practical Course in Physical Chemistry - III		
Number of Credits: 04	Total Hours: 120	Effective from AY: 2023-24

Prerequisites	Should have studied Physical chemistry practical course at M.Sc. Part-I.		
for the course:			
Course	1. To introduce concepts of Kinetics and Thermodynamics		
Objectives:	2. To introduce concepts of Surface science and Catalysis		
	3. To introduce various concepts of Electrochemistry		
	4. Introduction to the use of computers and computational tools in cher	mistry	
Course	1. Student should be able to apply the concepts of physical chem	istry in M.Sc.	
Outcomes:	Dissertations.		
	2. Students shall be equipped with practical skills needed for	research and	
	development.	1	
Contents		Hours	
Note: A minim	um of 7 experiments from each Unit I-III are to be completed.	40	
Unit - I. Instrur	nental		
a. To determine method.	e the redox potential of Fe ²⁺ /Fe ³⁺ system using rotating disk voltammetry		
b. To determin	e the instability constant of the reaction		
[Ag(NH ₃) ₂]	> Ag + 2NH ₃ potentiometrically.		
c. To determine	e the transport number of ions using moving boundary method.		
d. To verify Nernst equation and determine the standard oxidation potential of copper and zinc electrodes.			
e. To study effe	ect of ionic strength on activity coefficient of Ag ⁺ ions.		
f. To investigate the reaction kinetics between Potassium Persulphate and Potassium			
g. To determine the equivalent conductance of a strong electrolyte (KCl) at several concentrations and verify Onsager's equation			
h. To estimate the concentration of Sulphuric acid, Acetic acid and Copper sulphate in a given solution conductometrically			
i. To determine the concentration of Fe ²⁺ ions by titrating with potassium dichromate			
i. To study the	i To study the kinetics of hydrolysis of tertiary butyl chloride by conductometry		
k. To determine	k. To determine the half wave notential of $Cu^{2+}/Cd^{2+}/Zn^{2+}$ by using nolar ography		
I. To study the effect of sol-gel and hydrothermal method of synthesis on crystallite size			
and surface area of a semiconductor catalyst			
m. To investigate the effect of catalyst loading on photocatalytic degradation of azo dve			
using semiconductor catalyst.			

n. To study the stress-strain response of polymeric materials and compare their strength	
o. To determine the degradation rate of the polymers using thermogravimetric	
methods.	
p. To determine the curie temperature of conducting polymer samples.	
q. To determine the resistivity of polymeric material using four probe method.	
Unit - II. Non-Instrumental	40
a. To determine the critical micelle concentration of three types of surfactants using stalagmometer.	
b. To determine the partial molal volume of sodium chloride-water, ethanol-water and methanol-water system by apparent molal volume method.	
c. To study the effect of surfactants on surface tension of water using stalagmometer.	
d. To study the variation of viscosity with composition of mixtures and to verify the	
formation of compounds by Oswald's viscometer.	
e. To study the effect of pH on the kinetics of iodination of Aniline.	
f. To study the kinetics of reaction between H_2O_2 and KI (clock reaction).	
g. To study the kinetics of rapid reaction between Bromine and Iodine in aqueous	
media.	
h. To investigate the autocatalytic reaction between Potassium Permanganate and Oxalic acid.	
i. To study the electroless deposition of Ni on non-conductor substrate and to determine	
the rate of deposition.	
j. To study the variation in catalytic activity of three different metal oxides for H ₂ O ₂ decomposition reaction.	
k. To investigate the effect of pH on adsorptive separation of azodye from water	
using MCM-41.	
Unit - 3. Computational Chemistry	40
a. To generate a mark sheet and understand various features of spreadsheets.	
b. To generate a plot for a given function such as solutions of 1D box, harmonic	
oscillator H-like atom wave functions. Gaussians distributions etc.	
c To write a computer program to obtain equivalence point in pH metry and	
potentiometric experiments (derivative method).	
d. To write a computer program to find percent composition for various atoms of a given molecular formula.	
e. To write a computer program to obtain slope and intercept for linear data using least square fit method.	
f. To write a computer program to obtain center of mass of a given molecule and	
moment of inertia, hence obtain classification of the given molecule.	
g. To write a computer program to find out various parameters for data analysis viz.	
minimum, maximum, average, standard deviation, variance, covariance,	
correlation coefficient, frequency distribution etc.	
h. To write a computer program to obtain thermodynamic probability.	
i. To write a computer program to obtain degeneracy of a given energy level for a	
particle in a cube.	
j. Calculate the ground state energy of hydrogen atom using various basis sets using <i>ab</i> -	
initio program.	

k. Calculate an using <i>ab</i> -	nd interpret the IR, RAMAN and NMR spectra of simple organic molecules
Pedagogy:	Mainly pre-labs / practicals or a combination of some of these could also be used to some extent.
Textbooks / Reference Books	 A. Finlay and J.A. Kitchener, <i>Practical Physical Chemistry</i>, Longman Publisher, 1963. A. M. James, <i>Practical Physical Chemistry</i>, Longman Publisher, 1974. D.P. Shoemaker and C.W. Garland, <i>Experimental Physical Chemistry</i>, McGraw-Hil, 1981. J. B. Yadav, <i>Advance Practical Physical Chemistry</i>, Krishna Educational Publishers, 2014. S. Attila, and N. S. Ostlund. <i>Modern quantum chemistry: introduction to advanced electronic structure theory</i>. Courier Corporation, 2012. P.P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik, CH-20: <i>Photocatalytic and microbial degradation of Amaranth dye</i>, Advances in Biological Science Research-A Practical Approach 2019, 327-345, Academic Press. J.B. Foresman, E. Frisch, <i>Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian</i>, 2nd Ed. Gaussian, 1996

Programme: M. Sc. Part-II (Physical Chemistry)Course Code: CHPR-512Title of the Course: Practical Course in Physical Chemistry - IVNumber of Credits: 04Total Hours: 120Effective from AY: 2023-24

Prerequisites	Should have studied Physical chemistry practical course at M.Sc. Part-	·I.
for the course:		
Course	1. To introduce concepts of Kinetics and Thermodynamics	
Objectives:	2. To introduce concepts of Surface science and Catalysis	
	3. To introduce various concepts of Electrochemistry	
	4. Introduction to the use of computers and computational tools in ch	emistry
Course	1. Student should be able to apply the concepts of physical chem	nistry in M.Sc.
Outcomes:	Dissertations.	
	2. Students shall be equipped with practical skills needed for	research and
	development.	
Content		Hours

Unit - I. Instrumental	40	
a. To estimate the concentration of glucose calorimetrically.		
b. To determine the redox potential of Fe^{3+}/Fe^{2+} system using rotating disk		
voltammetry method.		
c. To determine the transport number of ions using moving boundary method.		
d. To verify Nernst equation and determine the standard reduction potential of Ag and		
Zn electrodes.		
e. To determine the equivalent conductance of a strong electrolyte (NaCl) at several		
concentrations and verify Onsager's equation.		
f. To estimate the concentration of Hydrochloric acid, Monochloro acetic acid and		
Copper sulphate in a given solution conductometrically.		
g. To determine the half wave potential of $Ni^{2+}/Cd^{2+}/Cu^{2+}$ by using polarography.		
h. To study the effect of precipitation and hydrothermal method of synthesis on acidic		
sites of a semiconductor catalyst using NH ₃ TPD method.		
i. To investigate the effect of solution pH on photocatalytic degradation of methylene		
blueusingsemiconductorphotocatalyst.		
j. To determine the curie temperature of polyaniline.		
Unit II. Non-Instrumental		
a. To determine the critical micelle concentration of Sodium dodecyl sulphate,		
Cetrimonium bromide using stalagmometer.	40	
b. To study the kinetics of the reaction between acetone and lodine using titrimetry.		
c. To study the effect of pH on the kinetics of iodination of aniline.		
d. To study the kinetics of Briggs Rauscher reaction (oscillatory reaction).		
e. To study the kinetics of rapid reaction between Bromine and Iodine in aqueous media		
f. To investigate the autocatalytic reaction between Potassium Permanganate and		
Citric acid.		
g. To study the electroless deposition of Cu on alpha-alumina and to determine the		
rate of deposition.		
h. To compare the catalytic activity of MnO ₂ , NiO with Degussa-P25 towards H_2O_2		
decomposition reaction.		
i. To investigate the effect of pH on adsorptive separation of Amaranth dye from water		
over NiO catalyst.		
j. To determine the radius of a glycerol molecule by viscosity measurements.		
Unit III. Computational Chemistry		
a. To write a computer program to find out various parameters for data analysis viz.		
minimum, maximum, average, standard deviation, variance, covariance,		
correlation coefficient, frequency distribution etc.		
b. To write a computer program to obtain slope and intercept for linear data using		
least square fit method	40	
c. To analyze the Gaussian output files and extracts molecular coordinates.		
d. To construct and optimize the molecular structure of H_2O , H_2O_2 and HOF using		
Gaussian/ NWCHEM and calculate bond distances and bond angles.		
e. To obtain the transition state of the reaction between CH_3Br and OH^2 ions using		
Gaussian/ NWCHEM.		
f. To study the effect of solvent on the transition state of the reaction between		
CH ₃ Br and OH ⁻ using Gaussian/ NWCHEM.		

g. To study the thermochemistry of the reaction between CH ₃ Cl and OH ⁻ using Gaussian/NWCHEM.		
h. To generate a plot for a given function such as solutions of 1D box, harmonic		
oscillator H	oscillator H-like atom wave functions Gaussians distributions etc	
i To write a	computer program to obtain degeneracy of a given energy level for a	
narticle in a	a rectangular hox	
i. Calculate the	ground state energy of hydrogen atom using various basis sets using	
Gaussian 16	program.	
Note: A minimu	im of 7 experiments from each Unit I-III are to be completed.	
Pedaaoav:	Mainly pre-labs / practicals or a combination of some of these could also be used to	
5-5-57	some extent.	
Textbooks /		
Reference	1. A. Finlay and J.A. Kitchener, Practical Physical Chemistry, Longman Publisher,	
Books	1963.	
2. A. M. James, Practical Physical Chemistry, Longman Publisher, 1974.		
	3. D.P. Shoemaker and C.W. Garland, <i>Experimental Physical Chemistry</i> , McGraw-Hil 1981.	
	 J. B. Yadav, Advance Practical Physical Chemistry, Krishna Educational Publishers, 2014. 	
	5. S. Attila, and N.S. Ostlund. <i>Modern quantum chemistry: introduction to advanced electronic structure theory</i> . Courier Corporation, 2012.	
	 P. P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik, CH-20: Photocatalytic an microbial degradation of Amaranth dye, Advances in Biological Scienc Research-A Practical Approach 2019, 327-345, Academic Press. 	
	7. J.B. Foresman, E. Frisch, Exploring Chemistry With Electronic Structure Methods: A Guide to Using Gaussian, 2nd ed. Gaussian, 1996.	

Programme: M. Sc. Part-II (Physical Chemistry) Course Code: CHPR-513 Title of the Course: Heterogeneous Catalysis: Fundamentals and Applications Number of Credits: 04 Total Hours: 60 Effective from AY: 2023-24

Prerequisites Students should have studied Chemistry courses at MSc Part-I. for the course Course 1. To introduce concepts of surface science and catalysis. 2. To provide fundamental knowledge of theories that govern heterogeneous Objectives: catalytic reactions. 3. To introduce newer methods of synthesizing nanocatalysts and its characterization. 4. To introduce latest developments about application of catalyst in environment and energy sector. Course 1. Students will be able to design a nanocatalysts for adsorption application. 2. Students will be able to interpret characterization data of nano catalysts. Outcomes: 3. Students will be able to design a catalyst for environmental and energy applications.

	Content	Hours
1.	Basic Concepts	20
a. b.	General Introduction: Catalysis and activation energy. Heterogeneous reactions with suitable illustrations. Catalytic activity, selectivity and stability. Steps in a heterogeneous catalytic reaction. Factors affecting rate of reaction such as temperature, flow rates, molar composition etc. Adsorption and Surface Area: Cause of adsorption. No of molecules striking the surface and sticking probability. Types of adsorption and potential energy profiles for adsorption of H ₂ . Adsorption isotherms for gases and solutes. Basic types of BET isotherms. Gibbs adsorption equation and changes in surface tension. Free energy, enthalpy and entropy of adsorption. Chemisorption of H ₂ , O ₂ and CO. Surface area and Porosity: Determination of surface area. Porosity and pore size distribution. Classification of catalysts based on electrical conduction. Adsorption on specific crystal planes; geometric factor in catalysis: Balandin's multiplet theory and Valence angle conservation. Cumulative & depletive adsorption, Electronic effect	
	in catalysis by metals. Role of diffusion in catalysis.	
2.	Kinetics and mechanisms of catalyzed reactions Kinetics of catalyzed reactions and rate expressions. Mechanism of catalyzed reactions obeying Langmuir-Hinshelwood, Eley- Rideal and Mars van Krevelen models with suitable examples.	5
3.	Preparation of Catalysts Various methods for preparation of bulk catalysts: Precipitation method, Impregnation method catalyst impregnation with or without interaction between support and catalyst. Synthesis of microporous solids. Synthesis of mesoporous solids.	5
4.	Thermal and Spectroscopic Methods in Heterogeneous Catalysis Characterization of the catalysts by temperature programmed desorption using probes such as ammonia and pyridine molecules. Characterization of surface area using BET method. Characterization of adsorbed molecules/intermediates by IR spectroscopy and XPS. Introduction to EXAFS and Mössbauer spectroscopy in characterizing catalysts.	10
5.	Zeolite based Catalysis and industrial applications Structure building in zeolites such ZSM-5. Nature of active sites and their characterization. Role of Zeolite acidity and Shape Selectivity in catalytic reactions. Zeolite based catalysis in MTG process.	5
6.	Semiconductor catalysis and its application in energy and environmental sector Introduction to semi-conductor surface and catalysis with application in photocatalytic water splitting and CO ₂ reduction to value added chemicals. Case studies on photocatalytic degradation of dyes. Practical demonstration of photocatalytic treatment of laboratory waste water contaminated with dyes, adsorptive separation and kinetic analysis.	10

7. Electrocatalysis and applications 5	
Basic electr	o-catalytic concepts, comparison of electro-catalysts. Electrocatalytic
water spl	itting reaction. Role of catalytic materials in energy storage
applicatior	IS.
Pedagogy:	Mainly lectures, tutorials, assignments, demonstration, self-study or a combination
	of some of these could also be used to some extent.
Textbooks /	1. D. K. Chakrabarty and B. Viswanathan, Heterogeneous Catalysis, New Age
Reference	International Publishers, 2008.
Books	2. G. A. Somorjai, Introduction to Surface Chemistry and Catalysis, John Wiley,
	2002.
	3. M. Thomas and W. J. Thomas, <i>Principles and Practice of</i> Heterogeneous
	Catalysis, VCH Publishers, 1996.
	4. P.P. Morajkar, A. P. Naik, S. T. Bugde, B. R. Naik, CH-20: Photocatalytic and
	microbial degradation of Amaranth dye, Advances in Biological Science
	Research-A Practical Approach 2019, 327-345, Academic Press.
	5. B.H.R. Suryanto, Y. Wang, R. K. Hocking, Overall electrochemical splitting of
	water at the heterogeneous interface of nickel and iron oxide. Nature Commun.
	2019, 10, 5599.
	6. A. V. Salkar; S. V. Bhosale; P. P. Morajkar, CH-6: Nanostructured WO _{3-x} Based
	Advanced Supercapacitors for Sustainable Energy Applications, Advances in
	Metal Oxides and Their Composites for Emerging Applications; Elsevier, 2022,
	213–238. ELSEVIER.
	7. A.V. Salker, <i>Catalysis: Principles and Basic Concepts</i> , Scientific International,
	2019.

Programme: M.Sc. Part-II (Physical Chemistry) Course Code: CHPR-514 Title of the course: Applied Electrochemistry Number of Credits: 04 Total Hours: 60

Effective from AY: 2023-24

Prerequisites	Students should have studied Chemistry courses at M.Sc. Part-I.	
for the course:	se:	
Course Objective:	 1.Introduction to core concepts of electrochemical applications 2. To enable design and development of electrochemical system applications 3. Introduction of applications and working principles of electroched day-today life eg. batteries, solar cells, capacitors 	ems for specific emical devices in
Course Outcome:	 Students will be in a position to apply these concepts during t physical chemistry. Students will gain knowledge and apply the same in electrochemi and research work. 	he lab course in istry dissertation
Content Hours		Hours
1. Electroanaly	1. Electroanalytical Techniques10	

Principles and ap	oplications of the following techniques:	
a. Amperometry		
b. Cyclic voltamn	netry	
c. Voltammetry a	at rotating disk electrodes	
d. Electrochemic	al impedance spectroscopy	10
2. Corrosion	ad ala stua ah annian luin atian. Da unh ain dia sua na Malahaniana af	10
a. Corrosion ar	la electrochemical kinetics. Pourbaix diagrams Mechanism of	
h Mixed electro	ade and mixed notential. Overnotential and polarization	
c. Current dens	ity – notential curves and determination of corrosion current	
density	ity potential curves and determination of corrosion current	
d. Hydrogen an	d oxygen overpotentials and corrosion	
e. Types of elec	ctrolytic corrosion and forms of localized corrosion, practical	
cases of corros	ion. Corrosivity and passivity	
f. Corrosion pr	evention. Corrosion inhibitors. Corrosion Testing. Cathodic	
and anodic pro	tection	
g. Polarization	tests and impedance spectroscopic measurements.	
3. Electrochemical	Power Sources: Batteries, Fuel Cells and Supercapacitors	10
a. Electrical ch	aracteristics of batteries. Batteries with aqueous and non-	
aqueous electro	olytes. Types of batteries, Ohmic losses and thermal processes in	
batteries. Next	generation batteries: Lithium ion batteries, Sodium ion batteries	
b. Thermodyna	mic aspects of fuel cells. Working principles of fuel cells. Types	
of fuel cells: po	olymer electrolyte membrane fuel cells (PEMFCs), direct liquid	
fuel cells (DLFC	s), molten carbonate fuel cells (MCFCs), solid oxide fuel cells	
(SOFCs), alkalin	e fuel cells (AFCs)	
c. Properties c	of electrical double layer capacitors. Energy density. Power	
density. Elect	trochemical supercapacitors with carbon electrodes.	
evide (MeQ /C)	and electronically conducting polymor/carbon (ECD/C) types	
	and electronically conducting polymer/carbon (ECF/C) types	
4. Electrocatalvsis	and Electrochemical Sensors	15
a. Introductory	y aspects to fuel cell electrocatalysis. Electrochemical energy	
conversion.	, , , , , , , , , , , , , , , , , , , ,	
b. Electrocatal	ytic surfaces. Structure stability and mass transport on	
electrode surfa	ces, Basic electrocatalytic mechanisms and kinetics	
c. Electrochemi	stry of methanol electrooxidation	
d. Types of elec	ctrocatalysts, Electrochemistry of ORR and HER	
e. Introduction	to principles of chemical sensing; Signal transduction; Physico-	
chemical and bi	ological transducers; Sensor types and technologies, Chemically	
modified electro	odes for sensing	
i. Types of	electrochemical sensors (voltammetric, potentiometric,	
amperometric,	impedimetric), Methods for sensors fabrication: self-assembled	
monolayers, scr	een printing, photolithography, microcontact printing, MEMS	
K. Test-strips for	r giucose monitoring	15
3. Photoelectrocr	iemical cell decign photoconversion officiency	12
nhotoelectroch	emical cen design, photoconversion eniclency,	
photoelectroch		

b. Princip	eles and applications of dual-working-electrode photoelectrochemistry	
c. Princip	oles and working of first and second generation solar cells	
d. Fabric	ation and operational principles of third generation photovoltaics:	
perovskit	e solar cells, dye-sensitized solar cells, quantum dot solar cells	
e. Tander	m photovoltaic cells	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations /	
	self-study or a combination of some of these can also be used. ICT mode should be	
	preferred. Sessions should be interactive in nature to enable peer group learning.	
Textbooks/	1. J.O.M. Bockris and A.K.N. Reddy, <i>Modern Electrochemistry</i> , Vol. 1, 2 and 3, Kluwer	
References	Academic Publishers, New York, 2002	
/ Readings	gs 2. A. Vincent & B. Sacrosati, <i>Modern Batteries</i> , John Wiley, NewYork, 1997.	
	3. J.O.M.Bockris & S.Srinivasan, Fuel cells: Their Electrochemistry, McGraw-	
	HillBookCo., 1969.	
	4. E. Santos & W. Schmickler, Catalysis in Electrochemistry: From Fundamental to	
	Strategies for Fuel Cell Development, Wiley, 2011	
	5. J. Lipkowski& P. N. Ross, <i>Electrocatalysis</i> , Wiley-VCH, New York, 1998	
	6. A.J. Bard, M. Stratmann , S. Licht, Encyclopedia of Electrochemistry,	
	Semiconductor Electrodes and Photoelectrochemistry, Wiley-VCH, 2002.	
	7. S. Gimenez & J. Bisquert, Photoelectrochemical Solar Fuel Production: From Basic	
	Principles to Advanced Devices, Springer International Publishing, 2016	
	8. V. S. Bagotsky, A. M. Skundin& Y. M. Volfkovich, <i>Electrochemical Power Sources:</i>	
	Batteries, Fuel Cells, and Supercapacitors, John Wiley & Sons, Inc., New Jersey,	
	2015	
	9. N. Perez, Electrochemistry and Corrosion Science, Kluwer Academic Publishers,	
	Boston, 2004.	
	10. C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, J. Tang, Photoelectrochemical devices	
	for solar water splitting – materials and challenges, Chem. Soc. Rev., 2017, 46,	
	4645-4660.	
	11. M. Stanley, W. R. F. Savinell, T. Zawodzinski, Introduction: Batteries and Fuel Cells,	
	Chem. Rev., 2004, 104, 10, 4243	
	12. E. Bakker, Y. Qin, <i>Electrochemical Sensors</i> , Eric Bakker, Anal. Chem. 2006, 78,	
	3965-3984	

Programme: M.Sc. Part-II (Chemistry)Course Code: CHPG-511Title of the course: Solid State Chemistry: Concepts and ApplicationsNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites	Students should have studied the chemistry/physics courses at M.Sc. Part-I	
for the course:		
Course Objective:	1.To introduce concepts and provide fundamental knowledge of principles of materials chemistry, characterization methods and techniques2. To provide fundamental knowledge of molecular solids, description of crystal chemistry and classification of phase structure and significance of imperfections in solids.	

		3. To provide basic understanding of temperature dependence of c	crystal structure,
		materials	ic properties of
		1 To provide a comparative evaluation of data obtained from var	ious tochniquos
		4. To provide a comparative evaluation of data obtained from val	ructure of solid
		and their use in elucidating the chemical and morphological st	fucture of solid
		1 Students will be in a position to explain the concept of solid	
		1.Students will be in a position to explain the concept of solid	
		state synthesis, identify different crystal structure	
Cou	ırse	2. Students will be in a position to explain the design of th	ne instrumental
Out	tcome:	techniques, data acquisition, and analysis to elucidate structural	information of
		solid materials	
		3. Students will be able to apply the concepts learned to make the	best choice of a
		characterization technique(s) for elucidation of unknown solids und	er investigation.
Cor	itent		Hours
1. 1	Solid State: I	ntroduction	6
	a. General Pr	inciples and experimental procedure.	
	b. Various me	ethods in solid-state synthesis	
	c. Kinetics of	solid-state reactions, ion exchange, and intercalation reactions.	
2.	Crystal Chem	istry and X-Ray Diffraction:	15
	a. Crystal systems, Bravais lattices and Quasicrystals.		
	b. Ionic stru	ctures and covalent networks.	
	c. Some important structure types –rock salt, zinc blende, wurtzite, nickel		
	arsenide, rutile, and van der Waals heterostructures.		
	d. Factors that Influence Crystal Structures: valences and coordination		
	numbers.		
	e. Significance of radius ratio rule and non-bonding electron effects.		
	f. Powder X-ray diffraction experiment, instrumentation		
	g. Introduction to single-crystal X-ray diffraction. Applications of high-		
	temperature powder diffraction.		
	h. Identification of crystal phases and evaluation of lattice characteristics		
3. (Crystal Defec	ts and non-stoichiometry	6
	a. Types of c	lefects. Point defects and thermodynamics.	
	b. Colour Ce	ntres, vacancies, and interstitials in non-stoichiometric crystals.	
	c. Dislocatio	ons, mechanical properties, and reactivity of solids	
4.	Phase Diag	rams and Phase Transitions	6
	a. Basic Con	cepts and definitions.	
	b. Three-cor	nponent condensed systems. Martensitic transformations. Order-	
	disorder trai	nsitions.	
5.	Electronic P	Properties and Band Theory	6
	a. Electroni	ic structure and band theory of solids. Band structure of metals	
	and semicor	nductors.	
	b. Magneti	c properties of transition metal oxides and applications Electrical	
	conductivity	, free electron theory, fermi energy, insulators, semiconductor	
	and conduc	tors, band theory of semiconductor, Brilliouin zones, Hall effect,	
	the Seebec	k effect, Superconductivity, BCS theory, Meissner effect. high	
	temperatur	e superconductor.	

-			
6.	Electron	ic Microscopic Techniques	8
	a. Introdu	uction to Electron Microscopy: Generation of electron beam, elastic	
	and inela	stic scattering of electrons by atoms.	
	b. Scann	ing Electron Microscopy (SEM): Instrumentation, optics, resolution	
	and com	positional imagining, Preparation of specimen, crystallographic	
	informat	ion from SEM and Environmental Scanning Electron Microscopy (E-	
	SEM)		
	c. High	Resolution Transmission Electron Microscopy (HR-TEM):	
	Instrume	ntation, contrast mechanism, high voltage and Scanning	
	Transmis	sion Electron microscopy (STEM), preparation of specimen and data	
	interpret	ation.	
	d. Cryoge	enic Electron Microscopy (Cryo-TEM)	
7	V Day Ca	octroccony	0
/.	n-ray sp	tion scottoring of V Pays and factors that affect intensitios, powder v	0
	a. Intensi	rn	
	h VDE V	(ray absorption poor adda structure (VANES) and extended x ray	
	obsorntic	on fine structure (EXAES): Absorption coefficient absorption edges	
	resonance emission, extended absorption and photoelectron scattering		
	c X-ray photoelectron spectroscopy (XPS): Surface analysis sensitivity and		
	specificity photoelectron intensities hinding energies and spectra analysis		
	c Instrumentation and design characterization of transition metal oxides		
8 Thermal Analysis		5	
	a. Therm	nogravimetric analysis. Differential Thermal Analysis	
	b. Differ	ential scanning calorimetry	
	c. Application to the characterization of materials		
Ped	Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignments / presentation		presentations /
	self-study or a combination of some of these can also be used. ICT mode should		mode should be
preferred. Sessions should be interactive in nature to enable peer grou		up learning.	
Textbooks/ 1. A. R. West, Solid State Chemistry and Its Applications, John Wiley &		& Sons 2003.	
References 2. H. V. Keer, Principles of the Solid State, New Age International Pu		blishers, 1993.	
/ Re	adings	3. C. N. Banwell, E. M. McCash, Fundamentals of Molecular Spectros	<i>copy,</i> McGraw-
		Hill Education (India) Private Limited, 1994	
		4. P. van der Heide, X-ray Photoelectron Spectroscopy: An Introducti	on to Principles
		and Practices, John Wiley & Sons, Inc. 2012	

Programme: M.Sc. Part-II (Chemistry) Course Code: CHPG-512 Title of the course: Nanoscience: Concepts and Applications Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Students should have studied the M.Sc. I courses of chemistry/ physics/ biological
for the course:	sciences
Course	1. Introduction of various concepts for nanoscience.
Course	2. Introduction of various synthesis methods of nanomaterials.
Objective:	3. Introduction of various characterisation techniques and

	application study of nanomaterials		
	1. Students will learn different techniques of synthesis and characterisation of		
	nanomaterials.		
Course	2. Students should be in a position to understand and explain magnetic, electrical,		
Outcome:	optical and catalytic properties of materials at nanoscale.		
	3. Students should be in a position to apply the knowledge of	subject for their	
	dissertation and research work.	-	
Content	·	Hours	
1. Essential Con	cepts and definitions	15	
Nanoscale, qua	antum effects, thermal properties of nanomaterials, optical		
properties of r	nanomaterials, electrical properties of nanomaterials, Metallic		
nanowires and	quantum conductance, Surface to volume ratio of nanoparticles,		
surface effects a	and surface energy on		
Nanoparticle su	rface. Chemistry of solid surfaces.		
2. Methods of r	anomaterial synthesis	10	
Principles, meth	ods, formation mechanism and structures of nanomaterials for:		
Gas-phase pro	cesses, Liquid-phase processes, Solid-phase processes, Self-		
assembly proce	SSES		
3. Characterizat	ion techniques		
Beam Probe me	ethods (SEM, TEM), Scanning probe method (STM, AFM), optical	10	
method: princip	ple, sample preparation technique and applications. Case studies:		
core-shell nano	particles, metal nanoparticles, composite nanoparticles.		
4. Important na	nomaterials	15	
Silica: discussio	n of sol-gel and liquid crystal synthesis method, self-assembly of		
colloidal silica p	particles, photoluminescence property of opals, different surface		
functionalizatio	n methods and application study.		
Gold: Different	colloidal synthesis methods, self-assembly methods, surface		
Plasmon resona	nce (SPR) of colloidal gold nanoparticles surface functionalization		
strategies and a	pplication study.		
CdSe: Different	synthesis methods, synthesis of core-shell particles, Study of CdSe		
excitons and Cd	Se quantum dots, functionalization and application study.		
Iron oxide (Fe₃C	D ₄): Different synthesis methods, Superparamagnetism property of		
nanoparticles, H	lysteresis and magnetisation of Fe ₃ O ₄ nanomaterial, catalytic and		
Biomedical appl	ications.		
Carbon: synthe	sis methods for carbon nanotubes, Graphene and Buckminster		
fullerene, struct	tural study of these materials, electrical property study of these		
materials, surfa	ce functionalization statergies and application study.		
5. Applications	of nanomaterials	8	
Heterogeneous	catalysts for the synthesis of fine chemicals, Polymer vesicles for		
drug delivery,	Surface-modified metal nanoparticles for recognition of toxic		
organic molecu	les, Use of nano TiO ₂ and ZnO for water and air pollution control,		
Carbon Materia	ls for Energy Storage, Thermoelectric Nanomaterials		
6. Nanomateria	ls: risk, toxicity	5	
Toxicity of ino	rganic-based, carbon-based, composite-based nanomaterials,		
environmental,	health, and safety issues.		

Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations /
	self-study or a combination of some of these can also be used. ICT mode should be
	preferred. Sessions should be interactive in nature to enable peer group learning.
Textbooks/	i. L. Cademartiri and G.A.Ozin, Concepts of Nanochemistry, Wiley-VCH, 2009.
References	ii. C.N.R. Rao and A. Govindaraj, Nanotubes and nanowires, Royal society of
/ Readings	Chemistry, 2005.
	iii. G. Cao, Nanostructures and Nanomaterials, Imperial College Press, 2004.
	iv. J. M. Tour, Molecular Electronics, Imperial College Press, 2004
	v. H. S. Nalwa (Ed), <i>Encyclopedia of Nanoscience and Nanotechnology,</i> American Scientific Publishers,2004.
	vi. E. Roduner, Nanoscopic Materials Size-Dependent Phenomena, RSC, Publishing, Cambridge, 2006.
	vii.G.A. Ozin and A.C. Arsenault, <i>Nanochemistry: A Chemical Approach to Nanomaterials</i> , RSC Publishing, Cambridge, 2005.
	viii.C.P. Poole and F.J. Owens, Introduction to Nanotechnology, John Wiley and Sons, 2003.
	ix. B. Zhang, <i>Physical Fundamentals of Nanomaterials</i> , Chemical industry press, 2018.
	x. C. M. Hussain, Handbook of Nanomaterials in Analytical Chemistry, Elsevier, 2020.
	xi. A. Barhoum and A. S. H. Makhlouf, <i>Emerging Applications of Nanoparticles and</i> <i>Architecture Nanostructures: Current Prospects and Future Trends,</i> Elsevier, 2018.
	xii.R.G. Chaudhuri and S. Paria. <i>Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,</i> Chemical reviews ACS, 2012, 112, 2373-2433.
•	

Programme: M.Sc. Part-II (Chemistry) Course Code: CHPG-513 Title of the course: Physical aspects of Polymer Chemistry Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Students should have studied chemistry courses at M.Sc. I.		
for the course:			
Course	1. To introduce physical and chemical aspects of polymer chemist	ry.	
Course	2. To introduce kinetics of polymerization, different characteristics of polymers,		
Objective:	applications of biodegradable and thermoset polymers.		
	1. Students will be able to explain various fundamental cond	cepts of polymer	
Course	chemistry.		
Outcomo	2. Students should be in a position to apply the knowledge of poly	mer chemistry for	
Outcome:	their dissertation and research work.		
	3. Students should be in a position to apply these concepts during	the lab course.	
Content Hours		Hours	
1. Introduction to polymer chemistry 10		10	
a. Historical development in polymer chemistry, polymer industry in 21 st			
century.			

b. Classification of polymers, Polymer nomenciature. Polymer tacticity,	
geometry and stereoregularity.	
c. Thermoplastics and thermosets- Plastics, elastomers, fibres. Concepts of	
Functionality, terminal groups, homopolymers and copolymers etc.	
d. Addition and condensation polymers linear, branched, IPN and cross-linked	
polymers-graft and block co-polymers.	
2. Molecular weight and other classification of polymers	10
a Polymer molecular weight arithmetic mean – Number average weight	
average nolydisnersity and Polydisnersity index (PDI))	
b. Degree of polymorization and its impact on MM/ and machanical properties	
b. Degree of polymenzation and its impact of living and mechanical properties.	
c. Amorphous and crystalline polymers. Methods of analysis of crystallinity.	
d. Glass transition temperature and other thermal transitions. Importance of I_g	
 Plasticizers and their action. Secondary bonding forces in polymers. 	
3. Polymerization techniques	10
a. Methods of polymerization (homogeneous and heterogenous	
polymerization)	
b. Co-ordination polymerization. Zeigler–Natta and other catalytic	
polymerization techniques.	
c Atom transfer radical polymerization (ATRP) Reversible addition-	
fragmentation chain transfer polymerization (PAET)	
d Advantages and disadvantages of polymerization (NATY).	
a. Advantages and disadvantages of polymenzation techniques	0
4. Polymer molecular weight and its determination	δ
a. Molecular weight averages: Arithmetic mean; Number average molecular	
weight; Weight average molecular weight.	
b. Molecular weight determination: end group analysis; colligative property	
measurement; dilute solution viscosity; Mark-Houwink-Sakurada (MHS)	
equation.	
c. Gel permeation Chromatography	
5. Kinetics of polymerization	8
Introduction; Free radical chain polymerization; Equation for kinetic chain	
length: degree of polymerization: ceiling temperature. Anionic	
polymerization. Cationic polymerization. Polycondensation: Non catalyzed	
nolycondensation: catalyzed nolycondensation	
porycondensation, editryzed porycondensation	
6 Characterization of polymors by various techniques	1/
o. Characterization of polymers by various techniques	14
a. Instruments and testing methods for polymer characterization	
b. Characterization of chemical structure of polymers: by chemical reaction	
methods; IR spectroscopy; Raman spectroscopy; UV-Visible spectroscopy;	
NMR and ESR spectroscopy.	
c. Characterization of polymer morphology and Physical structure of Polymers:	
TEM; X-ray scattering; WAXS; SAXS; AFM.	
d. Characterization of Thermal Properties of Polymers: Differential thermal	
analysis (DTA), Physical transitions, melting thermograms, Melt	
crystallization; Differential Scanning coulometry (DSC): Thermogravimetric	
analysis (TCA)	

Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations /
	self-study or a combination of some of these can also be used. ICT mode should be
	preferred. Sessions should be interactive in nature to enable peer group learning.
Textbooks/	1. V. R. Gowarikar, N. V. Viswanathan, and J. Sreedhar, Polymer Science, Wiley
References	Eastern Ltd., 1986.
/ Readings	2. P. Bahadur and N. V. Sastry, <i>Principles of Polymer science</i> , Narosa Publishing House 2003
	3 L. R. Fried, Polymer Science and Technology, PHI Pyt 1td., 2000
	4 B Sinha Outlines of Polymer Technology: Manufacture of Polymers PHI Pvt Ltd
	2000.
	5. R. Sinha, Outlines of Polymer Technology: Processing Polymers, PHI Pvt Ltd., 2003.
	6. J. A. Brydson, <i>Plastic Materials</i> , Newnes-Butterworths, 1979, 3 rd edition.
	7. J. Urbanski, W. Czerwinski, K. Janicka, F. Majewska, and H. Zowall, Handbook of analysis of synthetic polymers and plastics. John Wiley, 1977.
	8. K. Y. Saunders, <i>Organic polymer chemistry</i> , Chapman and Hall, UK, 1976.
	9. R. W. Lenz, Organic chemistry of synthetic high polymers, 1967.
	10. R. P. Brown, Handbook of plastic test methods, George Godwin Ltd., 1981, 2 nd edition.
	11. M. P. Stevens, <i>Polymer Chemistry- An Introduction</i> , Oxford Univ. Press, 1990, 2 nd edition.
	12. W. Y. Mijs, New methods in polymer synthesis, Plenum Press Ltd., NY, 1992.
	13. P. C. Hiemenz, <i>Polymer chemistry- the basic concepts</i> , Marcell Dekker Inc., 1984.
	14. W. R. Moore, Introduction to polymer chemistry, Univ. of London Press, 1961.
	15. N. P. Cheremisinoff (Ed), Handbook of polymer science and technology, Marcel
	Dekker Inc., 1989.
	16. M. Chanda, Introduction to polymer science and chemistry, A problem-solving
	approach, CRC press, 2006.
	17. W. F. Su, <i>Principles of Polymer design and synthesis</i> , Volume 82, Springer, 2013.
	18. R. M. Silverstein, F. X. Webster, B. J. Kimley, D. L. Bryce, S. D. Samant, V. S.
	Nadkarni, Spectrometric Identification of Organic Compounds, An Indian
	Adaptation, 8 th Ed. Wiley, 2022.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHPG-514 Title of the course: Colloids and Surface Chemistry Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites for	Students should have studied chemistry courses at M.Sc. I.
the course:	
Course Objective:	1. To introduce some core concepts of colloidal chemistry including DLVO theory,
	electrokinetic phenomena and diversity in colloids.
	2. To introduce fundamental concepts and applications of colloids in day-today life.
Course	1. Students will be able to explain various fundamental and core concepts of colloid
Outcome:	chemistry.

	2. Students should be in a position to apply the knowledge of colloidal chemis		
	for their dissertation and research work		
3. Students should be in a position to apply these concepts du		ring the lab course	
	in physical chemistry.		
Col	ntent	Hours	
1.	Colloids and Liquid Surfaces	10	
	a. Colloids: General introduction, classification and structural characteristics		
	of colloidal system, preparation and purification		
	b. Microscopic picture of liquid surface		
	c. Surface tension and its measurement. Surfactant and reduction of surface		
	tension. Curved liquid surfaces.		
	d. Nucleation theory.		
	e. Surface modification: self-assembly monolayer formation. Physisorption of		
	polymers. Polymerization on surfaces.		
2.	Electrostatic Forces and Electrokinetic Phenomenon	12	
	a. Electrical double layer. Surface interactions between surfaces (dipole,		
	induced dipole, H-bonding)		
	b. Surface forces: Van der Waals forces between molecules. Surface		
	energy and Hamaker constant. Measurement of surface forces. The DLVO		
	theory		
	c. Charged surfaces such as mercury, silver iodide and oxides.		
	Measurement of surface charge densities		
	d. Electrocapillarity - theory and measurement		
	e. Electrokinetic phenomena: concept of zeta potential. Electroosmosis		
and streaming potential. Electrophoresis and sedimentation potential.			
	f. Contact angle and its measurements. Wetting and dewetting. Important		
	wetting geometries.		
2	Callaidal Stability	0	
3.	Colloidal Stability	0	
	a. Charged Conolds. Electrical charge distribution at interfaces		
	b. Factors affecting conoldal stability. Effect of electrolyte.		
	c. Flocculation and coagulation. Kinetics of coagulation		
	a. Steric stabilization of solid and liquid colloids	12	
4.	Preparation of colloids	12	
	a. Chemical methods for synthesis of colloids: Sol-gel method, polyol		
	synthesis, plasma enhanced chemical vapor deposition, hydrothermal		
	synthesis		
	b. Colloidal synthesis of semiconductor hanoparticles: Hot-injection		
syntnesis. Synthesis of colloidal core-shell heterostructures			
c. Surface directed colloidal patterning: Colloidal self-assembly approaches			
a. Reducing agents in colloidal nanoparticle synthesis		42	
5.	Surfactants, Micelles, Emulsions and Thin Liquid Films	13	
	a. Classification of surfactants. Solubilization and micelle formation		
	b. Spherical micelles: cmc and influence of temperature. Thermodynamics		
	of micellization. Structure of surfactant aggregates.		
1	c. Emulsions: Macro and microemulsions, properties, formation and factors	1	

affecting t Size of dro	he stability. Evolution and aging. Coalescence and demulsification. plets. Elasticity of surfactant films.	
d Thin films on surfaces of liquids: Introduction and phases Bubbles and		
foams On	tical and X-Ray methods to study monolayers	
	ir Blodgett Transfer	
e. Langinu	i blodgett fransier	
6. Applicatio	ons of Colloids in Science, Technology and Industry	5
a. Colloids	as drug delivery agents	
b. Colloida	al nanocrystals for optical applications and solar cells.	
c. Biomed	ical applications	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignmen	ts / presentations /
	self-study or a combination of some of these can also be used. If	CT mode should be
	preferred. Sessions should be interactive in nature to enable peer	group learning.
Textbooks/	1. H. J. Butt, K. Graf and M. Kappl, Physics and Chemistry of Inter	rfaces, Wiley-VCH,
References /	2003.	
Readings	ngs 2. A. W. Adamson and A.P.Gast, <i>Physical Chemistry of Surfaces</i> ; Wiley-VCH, 1997, 6 th edition	
	3. R. D. Vold and M. J. Vold. <i>Colloid and Interface Chemistry</i> . Addi	son-Wesley, 1983.
	4 K S Birdi Surface and Colloid Chemistry Principles and An	nlications: Taylor
	& Francis Group ,2010.	pricaciono, rayior
	5. D. Meyers, Surfaces, Interfaces and Colloids, Principles of	and Applications;
	John Wiley & Sons, Inc. 1999. 2 nd edition.	
	6. E. D. Shchukin, A. V. Pertsov, E. A. Amelina, A. S. Zelenev, St	tudies in Interface
	Science, Colloid and Surface Chemistry; Elsevier, 2001.	
	7. D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4 th I	Ed. Elsevier, 1992.
	8. F. Caruso, Colloids and Colloid Assemblies, Wiley-VCH, 2004.	
	9. V. Lesnyak, M. Yarema, S. Miao, Colloidal Semiconduc	tor Nanocrystals:
	Synthesis, Properties and Applications, Frontiers Media SA, 20	020.
	(Back to Index) (B	ack to Agenda)

Programme: M.Sc. Part-II (Chemistry) Course Code: CHCR-511 Title of the course: Research Methodology and instrumental techniques-I Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites for	Students should have studied chemistry courses at MSc-I level.		
the course:			
Course Objective:	1. To introduce various aspects of research methodology.		
	2. To provide understanding ethics & scientific conduct.		
	3. To introduce academic writing.		
	4. To introduce databases used in chemistry.		
	5. To provide understanding and importance of lab safety.		
	6. To understand the usefulness of various instrumental techniques in		
	characterization of chemical compounds.		
Course Outcome:	1. Students will be able to apply research methodology concepts.		
	2. Students will be able to apply computer technology to solve their research		
	problems in chemistry.		

3. Students will know in advance the safety precautions to be taken in the		
chemical lab.		n to choigu oc
4. Students will gain fundamental knowledge on characterizatio		Hours
Lonent	Desearch Mathedalagy	FOUIS
1. Introduction to	ning chiestives metivation types and methodology	5
a. Research- mea	liting, objectives, motivation, types and methodology.	
b. Process- Torring	the research design: sample design and collection of the data:	
nypotnesis and	a the research design, sample design and conection of the data,	
execution of th	te project; analysis of data; testing of hypothesis; generalizations	
	tion, and preparation of the report of presentation of the results	
2 Conclusions.	at and othics	Г.
2. Scientific condu	n nature of moral judgements and reactions. Ethics with respect	5
a. Ethics. definitio	resourch	
h Intellectual hon	research integrity	
D. Intellectual non	nductor Falcification, Fabrication, and Plagiarism (FED)	
d Dodundant pub	lications: duplicate and everlapping publications.	
a. Redundant pub	ting and microprocentation of data	
e. Selective report		
3. Academic writi	ng	5
a. Publication eth	ics: definition, introduction and importance	
D. Conflicts of Inte	conduct definition concert problems that load to unothical	
c. Publication mis		
d Violation of pul	VICE VEISd	
d. Violation of publication ethics, authorship and contributorship		
e. Identification of publication misconduct, complaints and appeals		
1. Freuatory publ		2
a Databases 1 In	deving databases 2 Citation databases: Web of Science Sconus	5
LIGC-Care List e	tr	
h Research Metric	rs: 1 Impact Factor of journal as per Journal Citation Report SNIP	
SIR IPP Cite Sc	ore 2 Metrics: h-index g index i10 index etc	
5 Safety aspects in Chemistry		5
a Good laborato	ry practices	
h Handling of var	ious chemicals, solvents & glassware	
c Fires and fighti	ng with fires	
d. Hazardous sub	stances, classification and handling	
e. Safety Data She	eet	
6. Softwares in Chemistry		7
a. Data plotting		
b. Structure Drawing		
c. Reference management software		
7. Instrumental methods of analysis:		30
Demonstration and/ or data analysis in following techniques:		
a. Elemental analysis: CHNS analysis and AES		
b. Infrared (IR), Raman, Ultraviolet-Visible (UV-Vis)		
c. Nuclear magnetic resonance (¹ H, ¹³ C)		
d. Chromatographic techniques: HPLC, GC,		

e. Hyphenate	d Techniques: LC-MS & GC-MS,		
f. Diffraction methods: XRD			
g. Thermal ar	g. Thermal analysis: DSC		
h. Microscopy	/: SEM, TEM		
i. Methods fo	or determination of magnetic & dielectric properties.		
j. Cyclic volta	mmetry		
Pedagogy	Mainly lectures/recorded video lectures/ tutorials, discussions, seminars, internal		
	exams/ assignments, / demonstration/ self-study or a combination of some of these.		
	ICT mode should be preferred. Sessions should be interactive in nature to enable peer		
	group learning.		
Textbooks/	1. C. R. Kothari, Research Methodology: Methods & Techniques, New Age		
References /	International Pvt. Ltd., 2004.		
Readings	2. Bird, Philosophy of Science, Routledge, 2006.		
	3. M. Coghill & L. R. Garson, The ACS Style Guide: Effective Communication of		
	Scientific Information, American Chemical Society Washington, DC & OXFORD		
	University Press New York, 2006.		
	4. Y. K. Singh, Fundamentals of Research Methodology & Statistics, New Age		
	International Pvt. Ltd., 2006.		
	5. National Research Council, Prudent practices in the laboratory: handling and		
	management of chemical hazards, The National Academies Press, USA, 2011.		
	6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, Vogel's Text book of		
	Practical Organic Chemistry, 5 th Ed.; Longmann, 1989		
	7. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, <i>Structural Methods in Inorganic</i>		
	Chemistry, Blackwell Scientific Publishers. 1986.		
	8. R. S. Drago, <i>Physical Methods in Chemistry</i> , 2 nd Ed. W. B. Saunders Co. Ltd. 2016		
	9. R. M. Silverstein, F. X. Webster; Spectrometric identification of Organic		
	Compounds; 6 th Ed, Wiley, 2011.		
	10.J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, Vogel's Textbook of		
	Quantitative Chemical Analysis, 6 th Ed.; Pearson Education Asia, 2002.		
	11. H. V. Keer, <i>Principles of the Solid State</i> , 1 st Ed. New Age International (P) Ltd., 2005.		
	12.G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.		
	13.A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of Analytica		
Chemistry, 9 th Ed.; Cengage learning.			
	14.A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 7th Ed		
	Cengage learning.		
	15. P. G. Lampman, G. Kriz and J. Vyvyan, Introduction to Organic Spectroscopy, 5 ^t		
	Ed.; Cengage Learning, 2015.		
	16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L.		
	Dempsey, A Practical Beginner's Guide to Cyclic Voltammetry, J. Chem. Educ. ACS,		
	2018, 95, 197–206.		
	17. V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI Learning Pvt. Ltd.,		
	2013.		
	18.A. Szabo, N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced		
	Electronic Structure Theory, Dover Publications, Inc. Mineola, 1989.		

Programme: M.Sc. Part-II (Chemistry)

Course Code: CHCR-512

Title of the course: Research Methodology and instrumental techniques-II

Number of Credits: **04** Total Hours: **60**

Effective from AY: 2023-24

Prerequisites for	Students should have studied chemistry courses at MSc-I.	
the course:		
Course Objective:	1. To introduce various aspects of research methodology.	
	2. To provide understanding ethics & scientific conduct.	
	3. To introduce academic writing.	
	4. To introduce databases used in chemistry.	
	5. To provide understanding and importance of lab safety.	
	6. To understand the usefulness of various instrumental	techniques in
	characterization of chemical compounds.	
Course Outcome:	1. Students will be familiar with research methodology concept	S.
	2. Students will be able to apply computer technology to solv	e their research
	problems in chemistry.	
	3. Students will know in advance the safety precautions to	be taken in the
	chemical lab.	
	4. Students will gain fundamental knowledge on characterization	n techniques.
Content		Hours
1. Research Metho	odology, Scientific conduct, ethics & academic writing	15
a. Research-me	aning, objectives, motivation, types and methodology.	
b. Process- form	nulating the research problem: literature survey: developing the	
hypothesis an	d the research design: sample design and collection of the data:	
execution of t	he project: analysis of data: testing of hypothesis: generalizations	
and interpreta	ation and preparation of the report or presentation of the results	
& conclusions	alon, and preparation of the report of presentation of the results	
c Ethics: definit	ion nature of moral judgements and reactions. Ethics with	
respect to scie	ance and research	
d Intellectual h	onesty and research integrity	
e Scientific mise	conducts: Falsification, Fabrication, and Plagiarism (FFP)	
f Redundant n	ublications: duplicate and overlapping publications	
g Selective rend	uting and misrepresentation of data	
b Publication et	bics: definition introduction and importance	
i Conflicts of in	terest	
i Publication m	visconduct: definition concent problems that lead to unethical	
j. Publication n	lyice verse	
k Violation of n	ublication othics, authorship and contributorship	
k. Violation of p	of publication misconduct, complaints and appeals	
n. Identification	vishors and journals	
2 Softwares in ch	misters and journals	10
2. Softwares in the	using CNU plots Structure Drawing using ChamSktach, Beforence	10
a. Data piotuligi	software such as Mendeley and Zotero	
h Databasos In	deving databases. Citation databases: Web of Science, Science	
	Scimago etc	
C Docoarch Mot	, Juimagu Elu. rice: Impact Eactor of journal as par Journal Citation Bonart, SNID	
	nus, impaul racior of journal as per Journal Citation Report, SNIP,	
SJK, IPP, Cite S	score; wietrics: n-index, g-index, i10-index etc	

d. Molecular Docking software					
3. Safety practices in Chemical research 5					
a. Introduction to lab safety.					
b. Handling of various chemicals, solvents & glassware.					
c. Fires and fighting with fires.					
d. Hazardous substances, classification and handling					
e. Safety Data Sheet					
4. Instrumental methods 30					
a. UV-Visible spectroscopy in elucidation of mechanisms of C-H activation					
reactions, epoxidation etc by transition metal catalyst.					
b. Understanding water oxidation reaction using Cyclic voltammetry (CV) &					
Linear Sweep voltammetry (LSV)					
c. Determining capacity of supercapacitors using Galvanostatic Charge-					
Discharge (GCD)					
d. Electrochemical Impedance Spectroscopy (EIS)					
e. Resonance Raman and isotope labelling studies.					
f. Infrared (IR) spectroscopy applications					
g. ¹ H, ¹³ C- NMR spectroscopy and applications					
h. Selected chromatographic techniques such as HPLC, GC.					
i. Hyphenated Techniques/applications: LC-MS, GC-MS, LC-NMR-MS, GC-IR, ICP-					
MS					
i. Diffraction methods: High temperature XRD					
k. Thermal analysis: TG/DTA/DSC					
I. Microscopy: Fe-SEM. HR-TEM					
m. Methods for determination Ms. Mr. Hc. Tc. ε^{I} and Tan δ .					
n. Potentiometry					
Pedagogy Mainly lectures/recorded video lectures/ tutorials, discussions, seminars, interr	al				
exams/ assignments. / demonstration/ self-study or a combination of some of these	se.				
ICT mode should be preferred. Sessions should be interactive in nature to enable pe	er				
group learning.	-				
Textbooks/ 1 C. B. Kothari, Research Methodology: Methods & Techniques, New A	ре				
References / International Pvt. Ltd., 2004	20				
Readings 2. Bird. Philosophy of Science, Routledge, 2006.					
3. M. Coghill & L. B. Garson. The ACS Style Guide: Effective Communication	of				
Scientific Information American Chemical Society Washington DC & OXFOR	<u>ر</u> ه				
University Press New York, 2006					
4 Y K Singh Fundamentals of Research Methodology & Statistics New A	ge				
International Pvt 1td 2006	50				
5. National Research Council. Prudent practices in the laboratory: handling a	nd				
management of chemical hazards. The National Academies Press USA 2011					
6. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. Tatchell, Vogel's Text hook	of				
Practical Organic Chemistry, 5 th Ed.: Longmann, 1989	-,				
7. F. A. V. Ebsworth D. W. H. Rankin & S. Craddock. Structural Methods in Inorgan	nic				
Chemistry Blackwell Scientific Publishers 1986					
8 R S Drago Physical Methods in Chemistry 2 nd Ed W R Saundars Co. 1td 201	~				
1 1 1 1 1 1 1 1 1 1	6				
9 R M Silverstein F X Wehster Spectrometric identification of Organ	6 vic				

10. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, <i>Vogel's Textbook of Quantitative Chemical Analysis</i> , 6 th Ed.; Pearson Education Asia, 2002.
11. H. V. Keer, <i>Principles of the Solid State</i> , 1 st Ed. New Age International (P) Ltd., 2005.
12. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
13. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, <i>Fundamentals of Analytical Chemistry</i> , 9 th Ed.; Cengage learning.
14. Skoog, F. J. Holler, S. R. Crouch, <i>Principles of Instrumental Analysis</i> , 7 th Ed.; Cengage learning.
15. Pavia, G. Lampman, G. Kriz and J. Vyvyan, <i>Introduction to Organic Spectroscopy</i> , 5 th Ed.; Cengage Learning, 2015.
16. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, <i>A Practical Beginner's Guide to Cyclic Voltammetry</i> , J. Chem. Educ. ACS, 2018, 95, 197–206.
17. V. Rajaraman, <i>Computer Programming in Fortran 90 And 95</i> , PHI Learning Pvt. Ltd., 2013.
18. Attila Szabo, Neil S. Ostlund, <i>Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory</i> , Dover Publications, Inc. Mineola, 1989.
19. A. Leach, Molecular Modelling, Principles and applications, Longman, 1998.
20. W. Nam et al, Dioxygen activation by Metalloenzymes & models, Accounts of
Chemical Research, 2007, Volume 40 & references cited therein.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHCD-511

Title of the course: Discipline Specific Dissertation

Number of Credits: 16Total Hours: 480

Effective from AY: **2023-24**

Prerequisites f	for	Students should have studied chemistry courses at MSc-I level.			
the course:					
Course Objectiv	ve:	To develop the skills of preparing and conducting independent research.			
Course Outcom	e:	Students will be able to understand and apply the tools and techniques of			
		chemistry in conducting independent research.			
Content			Hours		
As per OA-35			480		
Pedagogy Dissertation carried out individually by each student throughout the academ		academic year.			
<i>Textbooks</i> / As required for the development of review and methodology.					
References /					
Readings					

(Back to Index) (Back to Agenda)

Annexure II

M.Sc.Pharmaceutical Chemistry Part-II Syllabus for AY 2023-24 (SEM III and SEM IV) based on NEP-2020

SEM III			
Sr. No.	Paper code	Paper title	Credits
1.	CHHR-511	Practical Course in Pharmaceutical Chemistry-III	4
2.	CHHR-512	Practical Course in Pharmaceutical Chemistry-IV	4
3.	CHHR-515	Pilot Plant Scale-Up Techniques for Pharmaceuticals	4
4.	CHHR-516	Research Methodology in Pharmaceutical Chemistry and	4
		instrumental techniques	
5.	CHHG-511	Polymers in Pharmaceuticals and novel drug delivery	4
		systems	
6.	CHHG-512	Pharmacotherapeutics	4
7.	CHHG-513	API Process, Manufacture and Green Chemistry	4
8.	CHHG-514	Pharmaceutical and Spectral analysis	4
9.	CHHG-515	Bioorganic and Medicinal Chemistry	4
SEM IV			
1.	CHHR-513	Retrosynthetic Approach and Heterocyclic Drug Synthesis	4
2.	CHHR-514	Pharmacological and Toxicological Screening Techniques	4
3.	CHCD-511	Discipline Specific Dissertation	16

Programme: M. Sc. Part-II (Chemistry)

Course Code: CHHR-511

Title of the Course: Practical Course in Pharmaceutical Chemistry-III

Number of Credits: **04** Total Hours:**120**Effective from AY: **2023-24**

Prerequisites for	Should have studied the courses at M.Sc. Part-I.				
the					
course					
Course Objective:	1.To translate certain theoretical concepts learnt earlier into experimental knowledge.				
	 2.To provide hands-on experience of laboratory techniques requir syntheses, analysis and purification. 	ed for drug			
Course Outcome:	1. Students will be in a position to perform synthesis of drugs.				
	Students will be in a position to understand stoichiometric requirem syntheses.	ents in drug			
	3.Students will be able to analyse drug spectrophotometrically and chromatographically				
	4.Students will be able to carry out purification of drug by column se	paration.			
	5. Students will be able to apply this knowledge for their dissertation	work.			
Content		Hours			
1. Syntheses of drugs and drug like entities (Minimum 8 experiments of 6h each)					
a)Phenothiazine fr	om diphenylamine				
b)Propranolol	from α-Naphthol				
c)	Eosin from Fluorescein				
d) Gramine from Indole					
e) 3-Methyl-1-phenyl pyrazolone from phenyl hydrazine					

f) Schiff base of Antipyrine with p-bromobenzaldehyde					
g) Methyl Salicylate from Salicylic acid					
h) Sulphanilamide from p-acetamido benzene sulphanilamide					
i) Chlorbutanol from acetone					
j) 1,2,3,4-Tetrahydrocarbazole from cyclohexanone					
k) 1,5-Benzodiazepine from acetophenone					
alidixate from 2-amino-6-methylpyridine					
m) 2-Phenyl Benzothiazole from 2-Amino thiophenol					
n) 2-Methylbenzimidazole from o-phenylenediammine					
 o) Monastrol from thiourea, ethylacetoacetate and 3-hydroxybenzaldenyde b) Solution to the balance from the balance based of the balance of the balance based on the balance of the balance of					
p)Substituted chaicone from 4-chlorobenzaldenyde (Claisen Schmidt condensation)	12				
2. Selected experiments in organic synthesis (Minimum 3 experiments of 4n each)	12				
a) p-lodotoluene from p-toluidine.(Diazotisation)					
b) Cinnamic acid from benzaidenyde (Perkin reaction)					
c) Benzahilide from benzophenone (Beckmann Rearrangement)					
d) Vaniiin to Vaniiyi alconoi (using NaBH4)					
e) Methyl orange from sulphanilic acid (coupling diazotization process)					
f) Benzhydrol from Benzaldehyde (Grignard reaction)					
3 Titrimetric assay of the following hulk drug/tablets (Any 2)	6				
Paracetamol Isoniazid Dansone Metronidazole Calcium Gluconate	0				
	6				
4. Spectrophotometric assay of the following tablets. (Any 2)	h				
4. Spectrophotometric assay of the following tablets. (Any 2)	6				
4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid	σ				
4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2)	6				
4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid	8				
4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid	8				
4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment)	8				
4. Spectrophotometric assay of the following tablets. (Any 2)inol, Propranolol, p-Aminosalicylic acid5.DissolutionExperiments(Any2)Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid6. Quality Control Evaluation of Tablets (1 experiment)Hardness tests, friability testing and disintegration testing to be performed.	8				
4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed.	8				
4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques	8 4				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) i. Salicylic acid and Acetylsalicylic acid 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) i. Salicylic acid and Acetylsalicylic acid ii. p-Aminobenzoic acid and Benzocaine 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) i. Salicylic acid and Acetylsalicylic acid ii. p-Aminobenzoic acid and Benzocaine iii. Benzil and Dilantin 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) i. Salicylic acid and Acetylsalicylic acid ii. p-Aminobenzoic acid and Benzocaine iii. Benzil and Dilantin iv. Salicylaldehyde and 3-Acetyl coumarin 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) i. Salicylic acid and Acetylsalicylic acid ii. p-Aminobenzoic acid and Benzocaine iii. Benzil and Dilantin iv. Salicylaldehyde and 3-Acetyl coumarin c.HPLC analysis of the following drugs and combination of drugs: (Any 2) 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5. Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) i. Salicylic acid and Acetylsalicylic acid ii. p-Aminobenzoic acid and Benzocaine iii. Benzil and Dilantin iv. Salicylaldehyde and 3-Acetyl coumarin c.HPLC analysis of the following drugs and combination of drugs: (Any 2) i. Paracetamol 	8 4 20				
 4. Spectrophotometric assay of the following tablets. (Any 2) inol, Propranolol, p-Aminosalicylic acid 5.Dissolution Experiments (Any 2) Carbamazepine tablets, Diclofenac, Ibuprofen, Isoniazid 6. Quality Control Evaluation of Tablets (1 experiment) Hardness tests, friability testing and disintegration testing to be performed. 7. Chromatographic techniques a. Thin Layer Chromatography (Any 1) i. To identify the given drug amongst the Ibuprofen, Aspirin and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. ii. To identify the given sulpha drug amongst the sulphacetamide, sulphanilamide and trimethoprim with the help of thin layer chromatography and calculate its Rf value. b. Column Chromatography (Any 1) i. Salicylic acid and Acetylsalicylic acid ii. p-Aminobenzoic acid and Benzocaine iii. Benzil and Dilantin iv. Salicylaldehyde and 3-Acetyl coumarin c.HPLC analysis of the following drugs and combination of drugs: (Any 2) i. Paracetamol ii. Ibuprofen 	8 4 20				

8. Identification of following drugs by IR spectroscopy (Any 2) 4 Celecoxib, Antipyrine, Chloramphenicol, Sulphanilamide 12 9. Drug Design Experiments 12 Use of software packages in chemistry for the following: Towrite a computer program to obtain a slope and intercept forlinear data using least square fit. 12 a. Use of ChemDraw, ISISDraw for drawing structures, chemicalreactions, equations. b. Molecular docking softwares such as Hex software orautodocking. c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools: and Graphics Tools: Rasmol (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / References //Readings 1. K.A. Connors, Text book of Pharmaceutical analysis, and Ed., Wiley Interscience Publication 1990. //Readings 1. J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Express Marmacopoeia, British Pharmacopoeia. European Pharmacopoeia. United States Pharmacopo	iv. Sulpha v. Diclofe	nilamide nac sodium and Paracetamol in combined dosage form.	
8. Identification of following drugs by IR spectroscopy (Any 2) 4 Celecoxib, Antipyrine, Chloramphenicol, Sulphanilamide 12 9. Drug Design Experiments 12 Use of software packages in chemistry for the following: Towrite a computer program to obtain a slope and intercept forlinear data using least square fit. 12 a. Use of ChemDraw, ISISDraw for drawing structures, chemicalreactions, equations. 14 b. Molecular docking softwares such as Hex software orautodocking. 15 c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) 10 d. Viewing Tools and Graphics Tools: Rasmol (http://www.avatar.se/molscript/) 10 e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. 12 f. 2D based experiments. 12 Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. References Publication 1990, / Readings 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience publication 1990, / Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Educ		_	
Celecoxib, Antipyrine, Chloramphenicol, Sulphanilamide 12 9. Drug Design Experiments 12 Use of software packages in chemistry for the following: Towrite a computer 12 program to obtain a slope and intercept forlinear data using least square fit. 12 a. Use of ChemDraw, ISISDraw for drawing structures, chemicalreactions, equations. 12 b. Molecular docking softwares such as Hex software orautodocking. 12 c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) 10 d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.ks.uiuc.edu/Research/vmd/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. 5 Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1 K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990. //Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitotive Chemical Analysis,	8. Identification of	following drugs by IR spectroscopy (Any 2)	4
9. Drug Design Experiments 12 Use of software packages in chemistry for the following: Towrite a computer program to obtain a slope and intercept forlinear data using least square fit. 12 a. Use of ChemDraw, ISISDraw for drawing structures, chemicalreactions, equations. b. Molecular docking softwares such as Hex software orautodocking. 12 c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) G. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.sucatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. 9. Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks 1 K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, 7. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharma	Celecoxib, Antipyri	ne, Chloramphenicol, Sulphanilamide	
Use of software packages in chemistry for the following: Towrite a computer program to obtain a slope and intercept forlinear data using least square fit. a. Use of ChemDraw, ISISDraw for drawing structures, chemicalreactions, equations. b. Molecular docking softwares such as Hex software orautodocking. c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990. //Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical	9. Drug Design Exp	periments	12
program to obtain a slope and intercept forlinear data using least square fit. a. Use of ChemDraw, ISISDraw for drawing structures, chemicalreactions, equations. b. Molecular docking softwares such as Hex software orautodocking. c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.suuic.edu/Research/vmd/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Pedagogy A. C. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, 2. J. Bassett, J. Mendhan, R.C. Denny, Vagel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, European Pharmaceutical Indoordry Procedures, 1 st Ed., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup & Sons, 2005. 12. J. Mohan.	Use of software pa	ckages in chemistry for the following: Towrite a computer	
 a. Use of ChemDraw, ISISDraw for drawing structures, chemical reactions, equations. b. Molecular docking softwares such as Hex software orautodocking. c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.umass.edu/microbio/rasmol/) VMD (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks // 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1 st Ed., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar, Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5 th Ed., Pre-Hill, 2011. 8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5 th Ed. New Age Intermational, 2016. 11. Mohan. Organic Canehistry, Sarus	program to obtain	a slope and intercept forlinear data using least square fit.	
 b. Molecular docking softwares such as Hex software orautodocking. c. Energy minimization of molecules and finding intermolecularinterations of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.umass.edu/microbio/rasmol/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmacopoeia. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1 st Ed., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5 th Ed. New Age International, 2016. 11. Sublin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan. Oragnic Analytical Chemistry, Norsa Publishing House. 2014.	a. Use of Chem	Draw, ISISDraw for drawing structures, chemicalreactions, equations.	
 c. Energy minimization of molecules and finding intermolecularinteractions of small molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.suuass.edu/Microbio/rasmol/) VMD (http://www.suuc.edu/Research/vmd/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1sted., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, Suth Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Che	b. Molecular do	cking softwares such as Hex software orautodocking.	
 molecule with macromolecule such as Coxinhibitor, thymidilate synthase, glycogen synthase, E.Coli protein. (Any 2) d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.suuic.edu/Research/vmd/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / R. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India PVt. Ltd. 2010. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Peartier Hall 2011. N.K. Vishnoi,Advanced Practical Corganic Chemistry, 5th Ed. New Age International, 2016. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. S. Delvin, Green Chemistry, Sarup& Sons, 2005. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House.	c. Energy minim	nization of molecules and finding intermolecularinteractions of small	
 d. Viewing Tools and Graphics Tools: Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.ks.uiuc.edu/Research/vmd/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / I. K.A. Connors, <i>Text book of Pharmaceutical analysis</i>, 3rd Ed., Wiley Interscience Publication 1990, Z. J. Bassett, J. Mendhan, R.C. Denny, <i>Vogel's Text Book of Quantitative Chemical Analysis</i>, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. N.K. Vishnoi,Advanced Practical Organic Chemistry, Suth Asia Books, 2010. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. N. K. Sansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. J. U. Mohan. <i>Organic Anglytical Chemistry</i>, Narosa Publishing House. 2014. 	molecule with	n macromolecule such as Coxinhibitor, thymidilate synthase, glycogen	
d. Viewing 100is and Graphics 100is Rasmol (http://www.umass.edu/microbio/rasmol/) VMD (http://www.ks.uiuc.edu/Research/vmd/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, Z. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India PVt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, 5th Ed., New Age International, Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel'	synthase, E.C.	oli protein. (Any 2)	
Kasmol (http://www.unass.edu/microbiol/rasmol/) VMD (http://www.unass.edu/microbiol/rasmol/) Molscript (http://www.avatar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, /Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992.	a. viewing	I ools and Graphics I ools:	
Wild (Ittp://www.ks.dudc.edu/Research/Wild/) Molscript (http://www.avtar.se/molscript/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / References 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, /Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quanitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Pernice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory	Rasmol	(http://www.umass.edu/microbio/rasmoi/)	
 Morschipt (http://www.avatar.se/morschipt/) e. Determination of log P, MR, hydrogen bond donors and acceptors of selected drugs using softwares. f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / I. K.A. Connors, <i>Text book of Pharmaceutical analysis</i>, 3rd Ed., Wiley Interscience Publication 1990, Z. J. Bassett, J. Mendhan, R.C. Denny, <i>Vogel's Text Book of Quantitative Chemical Analysis</i>, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. N.R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. J. Mohan. <i>Organic Analytical Chemistry</i>, Narosa Publishing House, 2014. 	VIVID	(nttp://www.ks.uluc.edu/Research/vmd/)	
 Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / I. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, Z. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., D. C. Heath, 1992. I. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. I. S. Delvin, Green Chemistry, Sarup& Sons, 2005. J. Mohan. Organic Analytical Chemistry, Narosa Publishing House, 2014. 	o Dotormination o	.p.//www.avatal.se/moiscript/)	
f. 2D based experiments. Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, /Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India PVt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan. Organic Analytical Chemistry. Narosa Publishing House, 2014.	drugs using softw		
Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, Zeadings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan. Organic Analytical Chemistry. Narosa Publishing House, 2014.	f 2D hased experie	ments	
Pedagogy Students should be given suitable pre- and post-lab assignments and explanations revising the theoretical aspects of laboratory experiments prior to the conduct of each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, Zeadings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan. Organic Analytical Chemistry. Narosa Publishing House, 2014.		nend.	
 Textgogy Textbooks Textbooks I. K.A. Connors, <i>Text book of Pharmaceutical analysis</i>, 3rd Ed., Wiley Interscience Publication 1990, Z. J. Bassett, J. Mendhan, R.C. Denny, <i>Vogel's Text Book of Quantitative Chemical Analysis</i>, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Po. C. Heath, 1992. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry</i>, 5th Ed., D. C. Heath, 1992. R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International 2016. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. J. Mohan. <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 	Pedaaoav	Students should be given suitable pre- and post-lab assignments and e	explanations
 each experiment. Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscience Publication 1990, 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan. Organic Analytical Chemistry. Narosa Publishing House, 2014. 	l caagegy	revising the theoretical aspects of laboratory experiments prior to the	e conduct of
 Textbooks / I. K.A. Connors, <i>Text book of Pharmaceutical analysis</i>, 3rd Ed., Wiley Interscience Publication 1990, I. K.A. Connors, <i>Text book of Pharmaceutical analysis</i>, 3rd Ed., Wiley Interscience Publication 1990, J. Bassett, J. Mendhan, R.C. Denny, <i>Vogel's Text Book of Quantitative Chemical Analysis</i>, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Pc. Heath, 1992. I. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. J. Mohan. <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 		each experiment.	
 References Publication 1990, 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar, Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan. Organic Analytical Chemistry. Narosa Publishing House, 2014. 	Textbooks /	1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley	Interscience
 /Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan, Organic Analytical Chemistry. Narosa Publishing House, 2014. 	References	Publication 1990,	
 Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Education Publication, 2007. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. JEF Reynolds, Martindale, The Extra Pharmacopoeia, The Pharmaceutical Press, London, 1989. M. Jahangir, Pharmaceutical Laboratory Procedures, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. N.K. Vishnoi,Advanced Practical Organic Chemistry, South Asia Books, 2010. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. S. Delvin, Green Chemistry, Sarup& Sons, 2005. J. Mohan, Organic Analytical Chemistry. Narosa Publishing House, 2014. 	/Readings	2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text	Book of
 6th Ed., Pearson Education Publication, 2007. 3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 4. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. 9. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. 11. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. 12. J. Mohan. <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 	-	Quantitative Chemical Analysis, revised by G.H.	. Jeffery,
 Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. J. Mohan, <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 		6th Ed., Pearson Education Publication, 2007.	
 European Pharmacopoeia. 4. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. 9. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. 11. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. 12. J. Mohan. <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 		3. Indian Pharmacopoeia., United States Pharmacopoeia, British Phar	rmacopoeia.
 4. JEF Reynolds, Martindale, <i>The Extra Pharmacopoeia</i>, The Pharmaceutical Press, London, 1989. 5. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. 9. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. 11. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. 12. J. Mohan, <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 		European Pharmacopoeia.	
 Pharmaceutical Press, London, 1989. 5. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. 9. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. 11. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. 12. J. Mohan. <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 		4. JEF Reynolds, Martindale, The Extra Pharmacopo	<i>peia,</i> The
 M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i>, 1stEd., New Delhi Cengage Learning India Pvt. Ltd. 2010. A. Kar,<i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of</i> <i>Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. J. Mohan, <i>Organic Analytical Chemistry</i>, Narosa Publishing House, 2014. 		Pharmaceutical Press, London, 1989.	
 Cengage Learning India Pvt. Ltd. 2010. 6. A. Kar, <i>Advanced Practical Medicinal Chemistry</i>, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi, <i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. 9. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. 11. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. 12. J. Mohan, <i>Organic Analytical Chemistry</i>, Narosa Publishing House, 2014. 		5. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i> , 1 st Ed.,	New Delhi
 6. A. Kar, Advanced Practical Medicinal Chemistry, New Age International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014. 		Cengage Learning India Pvt. Ltd. 2010.	
 International Limited Publishers 2004. 7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of</i> <i>Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. 9. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. 11. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. 12. J. Mohan, <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 		6. A. Kar, Advanced Practical Medicinal Chemistry, I	New Age
 A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's Textbook of</i> <i>Practical Organic Chemistry</i>, 5th Ed., Prentice Hall 2011. N.K. Vishnoi,<i>Advanced Practical Organic Chemistry, South Asia Books</i>, 2010. L. F. Fieser, K. L. Williamson, <i>Organic Experiments</i>, 7th Ed., D. C. Heath, 1992. R. K. Bansal, <i>Laboratory Manual in Organic Chemistry</i>, 5th Ed. New Age International, 2016. S. Delvin, <i>Green Chemistry</i>, Sarup& Sons, 2005. J. Mohan, <i>Organic Analytical Chemistry</i>. Narosa Publishing House, 2014. 		International Limited Publishers 2004.	
 Practical Organic Chemistry, 5th Ed., Prentice Hall 2011. 8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010. 9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014. 		7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, <i>Vogel's</i>	Textbook of
 N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010. L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. S. Delvin, Green Chemistry, Sarup& Sons, 2005. J. Mohan, Organic Anglytical Chemistry, Narosa Publishing House, 2014. 		Practical Organic Chemistry, 5 th Ed., Prentice Hall 2011.	1 2212
 L. F. Fieser, K. L. Williamson, Organic Experiments, 7th Ed., D. C. Heath, 1992. 10.R. K. Bansal, Laboratory Manual in Organic Chemistry, 5th Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House, 2014. 		8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Bo	oks, 2010.
IU.R. К. Bansal, Laboratory Manual In Organic Chemistry, 5 ^{err} Ed. New Age International, 2016. 11. S. Delvin, Green Chemistry, Sarup& Sons, 2005. 12. J. Mohan, Organic Anglytical Chemistry, Narosa Publishing House, 2014.		9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 st Ed., D. C. He	eath, 1992.
11. S. Delvin, <i>Green Chemistry</i> , Sarup& Sons, 2005. 12. J. Mohan, <i>Organic Anglytical Chemistry</i> , Narosa Publishing House, 2014.		цик. к. Bansai, Laboratory Ivianual in Organic Chemistry, 5 ^{°°} EC	a. New Age
12. J. Mohan, Organic Anglytical Chemistry, Narosa Publishing House, 2014.		IIILEIIIdliuiidi, 2010.	
T IZ. J. WUMAN, UTUUNIC ANUVLICUI CHEINISLIV. NATUSA PUDIISIIINE TUUSE, 2014.		12. J. Mohan Organic Anglutical Chamistry Naraca Publishing House	2014
13 ED King Medicinal Chemistry Principles and		12. J. Monan, Orgunic Analytical Chemistry, Natusa Publishing House	, 2014.
Practice Royal Society of Chemistry: Cambridge 1994		Practice Royal Society of Chemistry: Cambridge 1994	.s unu

14.	K.V. 1993.	Raman,	Computers	in	Chemistry,	Tata	Mc.	Graw-Hill,
15.	S.K	Pundir,	A.Bansal,	,	Computers	for		Chemists,
	Pragat	iPrakashan,	2010.					
16.	Α.	Leach,	Molecular		Modelling,	Princ	iples	and
C	applicat	<i>ions</i> , Longm	nan, 1998.					

Programme: M. Sc. Part-II (Chemistry) Course Code: CHHR-512 Title of the Course: Practical Course in Pharmaceutical Chemistry-IV Total Contact Hours: 120 Effective from AY: 2023-24 Number of Credits: **04** Should have studied the courses at M.Sc. Part-I. Prerequisites for the course Course 1. To translate certain theoretical concepts learnt earlier into experimental Objective: knowledge. 2. To provide hands-on experience of laboratory techniques required for drug syntheses, analysis and purification. Course 1. Students will be in a position to perform synthesis of drugs. 2. Students will be in a position to understand stoichiometric requirements in drug Outcome: syntheses. 3. Students will be able to analyse drug spectrophotometrically and chromatographically 4. Students will be able to carry out purification of drug by column separation. 5. Students will be able to apply this knowledge for their dissertation work. Content Hours 1. Syntheses of drugs and drug like entities (Minimum 8 experiments of 6h each) 48 a. 2-Phenylbenzimidazole from o-phenylenediammine and benzoic acid b. 6-Bromo-2-chloro-3-formylguinoline from acetanilide c. Schiff base of Antipyrine with p-Chlorobenzaldehyde d. Sodium benzoate from Salicylic acid e. Sorbic acid from crotonaldehyde f. Barbiturate from diethyl-n-butylmalonate g. Tolbutamide from p-toluene sulphonamide h. 1,4-dihyropyridine from ethylacetoacetate i. 2-MethylBenzothiazole from 2-Amino thiophenol

- j. Substituted of 2'-hydroxychalcone (Claisen Schmidt condensation)
- k. Synthesis of azo-stilbene compounds
- 2. Selected experiments in organic synthesis (Minimum 3 experiments of 4h each)

 a)Benzhydrol from benzophenone (Reduction)
 b) p-lodobenzoic acid from p-aminobenzoic acid (Diazotization)
 c) 3-Acetylindole from Indole (Friedal Crafts reaction)
 d) Acetophenone oxime to Acetanilide (Beckmann Rearrangement)
 - e) Enzymatic reduction of ethylacetoacetate using Baker's yeast
 - f) Terephthalic acid from p-xylene (Oxidation process).

3.Titrimetric assay of the following bulk drug/tablets. (Any 2) Ferrous sulphate by Cerimetry, Chlorpheniramine Maleate ,Benzyl Penicillin, Phenobarbitone		
4. Spectrophotometric assay of the following tablets. (Any 2) Chloroquine phosphate (CHP) Zolmitriptan. Promethazine HCl, Indomethacin,	6	
5.Dissolution Experiments(Any 2)		
Saccharin, Celecoxib, Chlorpheniramine maleate, Chloramphenicol	8	
6. Quality Control Evaluation of Capsules(1 experiment)	4	
Hardness tests, friability testing and disintegration testing to be performed.		
7. Chromatographic techniques	20	
a) Thin Layer Chromatography (Any 1)		
 i) To identify the given drug amongst the paracetamol, acetanilide, and caffeinecitrate with the help of thin layer chromatography and calculate its Rf value. 		
ii. To identify the given sulpha drugs amongst the Dapsone, sulphaacetamide and trimethoprim with the help of thin layer chromatography and calculate its Rf		
b) Column Chromotography (Any 1)		
b) Column Chromatography (Any 1)		
i. Benzii and Benziiic acid		
II. Givene and Hippuric acid		
III. o-pnenyiene diamine and 2,3-dipnenyiquinoxaline		
IV. Salicylaidenyde and coumarin		
c) HPLC analysis of the following drugs: (Any 1)		
I. Methyl Dopa		
II. Sulphaacetamide		
III. Paclitaxel		
8. Identification of following drugs by IR spectroscopy (Any 2)	4	
Benzocame, Carreine, Phenytoin, Suphacetamide		
9. Drug Design Experiments	12	
Use of software packages in chemistry for the following: To write a computer		
program to obtain a slope and intercept for linear data using least square fit.		
a. Use of ChemDraw, ISISDraw for drawing structures, chemical reactions, equations.		
b. Molecular docking softwares such as Hex software or autodocking.		
c. Energy minimization of molecules and finding intermolecular interactions of		
small molecule with macromolecule such as Cox inhibitor, thymidilate synthase,		
glycogen synthase, E.Coli protein. (Any 2)		
d. Viewing Tools and Graphics Tools:		
Rasmol (http://www.umass.edu/microbio/rasmol/)		

Molscript (http://www.avatar.se/molscript/)
e. Determination of log P, MR, hydrogen bond donors and acceptors of selected
drugs using softwares.
f. 2D based experiments.
Pedagogy Students should be given suitable pre- and post-lab assignments and explanation
revising the theoretical aspects of laboratory experiments prior to the conduct of
each experiment.
Textbooks / 1. K.A. Connors, Text book of Pharmaceutical analysis, 3rd Ed., Wiley Interscienc
References Publication 1990.
/Readings 2. J. Bassett, J. Mendhan, R.C. Denny, Vogel's Text Book of
Quantitative Chemical Analysis, revised by G.H. Jeffery, 6th Ed., Pearson Educatio
Publication, 2007.
3. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia
European Pharmacopoeia.
4. J.E.F. Reynolds, Martindale, The Extra Pharmacopoeia, Th
Pharmaceutical Press, London, 1989.
5. M. Jahangir, <i>Pharmaceutical Laboratory Procedures</i> , 1 st Ed., New Delhi Cengag
Learning India Pvt. Ltd. 2010.
6.A. Kar,Advanced Practical Medicinal Chemistry, New Ag
International Limited Publishers 2004.
7. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, Vogel's Textbook of
Practical Organic Chemistry, 5 th Ed., Prentice Hall 2011.
8. N.K. Vishnoi, Advanced Practical Organic Chemistry, South Asia Books, 2010.
9. L. F. Fieser, K. L. Williamson, Organic Experiments, 7 th Ed., D. C. Heath, 1992.
10. R. K. Bansal, Laboratory Manual in Organic Chemistry, 5 th Ed. New Ag
International, 2016.
11. S. Delvin, Green Chemistry, Swarup & Sons, 2005.
12. J. Monan, Organic Analytical Chemistry, Narosa Publishing House, 2014.
13.F. D. King, Weakinal Chemistry: Principles and
Proclice, Royal Society of Chemistry: Cambridge, 1994.
14.K. V. Kaman, Computers in Chemistry, Tata McGraw-Hil
בענד. 15 S. K. Dundir, A. Bansal Computers for Chemist
DragatiDrakashan 2010
Flagatiflakasilati, 2010. 16 A Leach Molecular Modelling Principles an
annlications Longman 1998
(Back to Index) (Back to Agenda)

Programme: M.Sc. Part-II (Chemistry)Course Code: CHHR-513Title of the course: RetrosyntheticApproach and Heterocyclic Drug SynthesisNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

PrerequisitesStudents should have studied Pharmaceutical Chemistry courses at M.Sc. Part-I.for the course

	5. To apply the knowledge gained in organic synthesis for making n	ew molecules.			
Course	6. To understand various strategies involved in retrosynthesis of organic molecules				
Objective:	7.To understand the concepts of heterocyclic chemistry in drug designing				
8. To be able to propose routes for synthesis of heterocycles					
	5. Students will be in a position to understand how a carbon-carbo	n bond can			
	be constructed and/or cleaved				
	6.Students will be in a position to understand how retrosynthesis	s can be used in			
	finding out easily available chemical precursors for making mole	cules			
Course	7. Students will be in a position to apply retrosynthetic strategi	es and propose			
Outcome:	routes for synthesis of containing heterocycles				
	8. Students will be able to understand and apply the concepts of	the reactivitvof			
	heterocycles towards electrophilic, nucleophilic, reducing and ox	, idizing reagents.			
	9. Students will be able to apply this knowledge for their dissertation	on work.			
Content	, , , , , , , , , , , , , , , , , , ,	Hours			
1. Synthon app	roach and retrosynthetic applications	12			
a. Basic pri	nciples, terminologies and advantages of retrosynthesis; guidelines				
for disse	ection of molecules. Functional group interconvertion and addition				
(FGL and	FGA)				
h C-X disco	onnections: C-C disconnections – alcohols and carbonyl compounds:				
1 2- 1 3	- 1 4- 1 5- 1 6-difunctionalized compounds				
	s, for synthesis of three four five and six-membered ring <i>General</i>				
review n	rohlems to be discussed for above approaches)				
2 Disconnection	n strategies	12			
a Disconne	ection of heteroatom and heterocyclic compounds such as ethers	12			
amines heterocycles amino acids					
h Converg	annues, neterocycles, annuo aclus				
c Strategi	c. Strategic devices for carbon-beteroatom bonds, polycyclic compounds; the				
commor	atom approach				
d Consider	ring all possible disconnections				
e Alternat	ive EGI's before disconnections the cost of synthesis				
f Features	f Eastures which dominate strategy functional group addition and malegular				
with upr	with unrelated functional groups				
3 Protecting g		12			
a Role of r	protection in organic synthesis				
h Protectio	on for the hydroxyl group including 1.2-and 2-dioles as ethers				
	arbonates cyclic acetals & ketals				
c Protectio	on for the carbonyl group: as acetals and ketals				
d Protectio	on for the carbonyl group: as amides and hydrazides esters				
e Protectic	on for the amino group: as carbamates and amides				
4 Heterocyclic	Chemistry : Introduction, classification and nomenclature of mono-	12			
and bicyclic	and bicyclic beteroaromatic molecules. Organic Name reactions with their				
respective m	respective mechanism and application involved in synthesis of drugs containing				
five six membered and fused beterocyclics such as Debus-Radziszewski imidazole					
synthesis	synthesis Knorr Dyrazole Synthesis Dinner Dyrimidine Synthesis				
ComhesQuin	Synchesis, Millin Pyrazule Synchesis Philler Pyrinnulle Synchesis, CombesQuingling Synthesis BernthsenAcriding Synthesis Smiles rearrangement				
and Traube nurine synthesis					
5 Synthesis of	ranne synthesis. rannasantativa drugs with ratrosynthatic annroach				
J. Synchesis Of	representative drugs with retrosynthetic approach				

Retrosynt these he Alprazola Quinacrin and Thiog	hetic approach and synthesis of few representative drugs containing terocyclic nucleus such as Metronidazole, Miconazole, Celecoxib, m, Triamterene, Sulfamerazine, Trimethoprim, Hydroxychloroquine, 12 e, Prochlorpherazine, Chlorpromazine,Theophylline, Mercaptopurine guanine.
Pedaaoav	Mainly lectures and tutorials. Seminars / term naners /assignments / presentations /
reaugogy	solf study or a combination of come of these can also be used. ICT mode should be
	self-study of a combination of some of these can also be used. Ici mode should be
	preferred. Sessions should be interactive in nature to enable peer group learning.
Textbooks/	1. S. Warren, <i>Designing Organic Synthesis</i> , John Wiley & Sons, 2009.
References	2. G. S. Zweifel, M. H. Nantz, P. Somfai, Modern <i>Organic Synthesis: An Introduction</i> , 3 rd
/ Readings	Ed. W. H. Freeman and Company, New York, 2022.
	3. J. Clayden, N. Greeves & S. Warren, Organic Chemistry, Oxford, 2016.
	4. J. A. Joule, K. Mills & G. F. Smith, <i>Heterocyclic Chemistry</i> , 3 rd Ed., Wiley-Blackwell,
	1995.
	5. J. A. Joule & K. Mills, <i>Heterocyclic Chemistry</i> , 5 th Ed., Wiley-Blackwell, 2010.
	6. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Pitman Publishing, 2005.
	7. R. M. Acheson, <i>An Introduction to Chemistry of Heterocyclic Compounds</i> , 3 rd Ed., John Wiley and Sons, 1977.
	8. D. W. Young, <i>Heterocyclic Chemistry</i> , Longman Group Ltd., London, 1975.
	9. A. Weissberger & E. Taylor, <i>Chemistry of Heterocyclic Compounds</i> , Vol. 47, Wiley Publishers, 1987.
	10. A. R. Katritzky, <i>Advances in Heterocyclic Chemistry</i> , 1 st Ed., Academic Press Inc., Vol.47,1990.
	11. R. O. C. Norman and J. M. Coxon. <i>Principles of Organic Synthesis</i> , 3 rd Ed., CRC Press, 2009.
	12. Stephen R Wilson & Anthony W Czarnik, <i>Combinational Chemistry – Synthesis and applications</i> , Wiley – Blackwell, 1997.
	13.V.K Ahluwalia and R. Agarwal, <i>Organic Synthesis - Special Techniques,</i> Narosa Publishers, 2001.
	14. D. Shriram, P. Yogeshwari, Medicinal Chemistry, Pearson Education, 2007.
	15. D. Lednicer& L.A. Mitcher <i>Organic Chemistry of Drug Synthesis</i> Vol.
	I to III. John Wiley & Sons, 2005.
	16. Drug Preparation Database.http://www.drugfuture.com/synth/synth_query.asp
l	

Programme: M.Sc. Part-II (Chemistry) Course Code: CHHR-514 Title of the course: Pharmacological an

Title of the course: Pharmacological and Toxicological Screening TechniquesNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites	Students should have studied Pharmaceutical Chemistry courses at M.Sc. Part-I.
for the	
course:	
Course Objective:	1. To learn screening methods of biological assay.
	2. To learn terms involved in toxicology.
	3. To learn methods of analysis for toxicology

	1.Students will be able to apply the role of various s methods in bioassay.	creening				
	2 Students will be able to create various in vivo and in vitr	o assav				
Course	methods for various targets	o ussay				
Outcome:	3 Students will be able to evaluate various effects of toxins					
	4 Students will be able to analyse the safety aspects in pharmaceuticals					
	5. Students will be able to apply this knowledge for their dissertation work					
Content						
1 Jaboratory /	nimals Principles of Biological Standardisation Screening methods 20					
a Introdu	ction to pharmacological research. Animal ethics regulations for					
a. introduc	ing animal experimentation Common laboratory animals:					
Doscrip	tion bandling and applications of different species and strains of					
animals	Description, nandling and applications of different species and strains of					
Anaost	Animals. Transgenic animals. Production, maintenance and applications					
hreedin	g of laboratory animals. CPCSEA guidelines to conduct experiments					
on anim	g of laboratory animals. CrestA guidennes to conduct experiments					
h Statistic	all treatment of model problems in evaluation of drugs-					
b. Statistic	s of biological assay principles of biological assays					
method	s used in bioassay of vitamins bormones vaccines					
cardiac	drugs and other pharmacopeial preparations					
c Zebrafis	b model to screen pharmaceutical molecules					
Organis	ation of Screening for the nharmacological activity of					
new	substances Anti-inflammatory agents-carrageenan induced					
naw	oedema cotton nellet method Anticonvulsants:					
Convuls	ions induced by chemicals, induced by electroshock.					
combin	ed procedures Sympathomimetic agents: Mydriasis the					
uterus a	and ascending colon of the rat					
2. Introduction	to Toxicology: 12					
Definition	and types of toxicology, Basic principles of toxicology,					
Carcinogeni	city, mutagenicity, teratogenicity, acute, sub acute					
and chi	and chronic toxicity. Detailed toxicity(mild/moderate/severe					
toxicology wherever applicable) and treatment of drugs such as						
salicylates/ paracetamol, opium, quinine, ethyl alcohol, etc.						
Toxic chen	Toxic chemicals in the environment, impact of toxic chemicals on					
enzymes.	Biochemical effects of arsenic, lead mercury,					
cadmium, ca	arbon monoxide, pesticides and carcinogens					
3. Essentials of	f Analytical Toxicology 12					
Physicocher	nical, biochemical & genetic basis of toxicity;					
Principles	of toxicokinetics, mutagenesis and carcinogenesis –					
Behavioural	inhalation toxicity, hypersensitivity and immune					
response,	range finding tests – Acute, subacute and chronic					
toxicity s	udies. Classification of Toxins: Acute toxicity tests,					
Determinati	on of LD50 value, Subacute tests - Histopathological					
and bioc	nemical estimations on toxicity induced in animal					
models –	Modern methods of analysis for Toxins-Barbiturate					
poisoning, A	mphetamine poisoning.					

4. Safety asp	8			
Preclinica				
products: Safety analysis; problems specific to recombinant products secondary				
pharmaco	logy. Safety Pharmacology - ICH S7 and S7B guidelines. Safety			
pharmaco	logical studies for pharmaceuticals. Safety pharmacological studies for			
biological				
5. Applicatio	8			
Clinical Toxicology, Environmental Toxicology/ Ecotoxicology Forensic				
Toxicology/ Post-mortem, Toxicology Industrial/Occupational Toxicology. Food				
Toxicology				
Mechanis				
Toxicology	<i>y</i> .			
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /	presentations /		
	self-study or a combination of some of these can also be used. ICT r	mode should be		
	preferred. Sessions should be interactive in nature to enable peer grou	ıp learning.		
Textbooks/	15. S.K. Gupta, Uma Singh and T. Velpandian, Analytic	cal Toxicology		
References	for Poisoning Management and Toxicovigilance, Varosa Publishing	House, 2002.		
/ Readings	/Readings 16. E.G.C.Clarke, Isolation and Identification of Drugs, Body Fluids and Post-mor			
	Material. The Pharmaceutical Press, 1986.			
	17. A.K. De, Environment Chemistry, Wiley Eastern Ltd., New Delhi, 200	03.		
	18. R.K. Trivedi& P.K. Goel, Chemical and Biological Methods for V	Nater, Pollution		
	Studies, Environment Publications, Karad (India), 1984.			
	19. B. K. Sharma, Industrial Chemistry,1 st Ed., Narosa Publishing House	,1998.		
	20. W. Andrew, <i>Pharmaceutical Manufacturing Encyclopaedia Vol I</i> William Andrew Publishing, 2007.	and II, 3 rd Ed.,		
	21. R.A. Turner, P.Hebborn, Screening Methods in Pharmacology, Vol	<i>l1 &2</i> , Elsevier		
	Science & Technology Books, 1971.			
	22. H. G. Vogel & W. H. Vogel, Drug Discovery and Evaluation, Springer,	, 2006.		
	23. S.K. Kulkarni, Handbook of Experimental Pharmacology, VallabhP	rakashan, Delhi,		
	24 RS Satoskar& SD Bhandarkar <i>Pharmacology and Pharmacothera</i>	neutics Ponular		
	Prakashan Ltd, 2006.			
	25. Louis S. Goodman & Alfred Gillman, The Pharmacology Basis of	of Therapeutics,		
	McGraw-Hill Protessional Publishing, 2010.			
	26. H.P. Rang & M.A. Dale, <i>Pharmacology</i> , Elsevier – Health Sciences D	ivision, 2011.		
	27. CPCSEA guidelines (http://cpcsea.nic.in)			

Programme: M.Sc. Part-II (Chemistry) Course Code: CHHR-515 Title of the course: Pilot Plant Scale-Up Techniques for Pharmaceuticals Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites for	Students should have studied the courses in M.Sc. Part I.			
the course				
	1. To understand the various Pilot Plant scale-up techniques as	adopted for		
--	---	----------------	--	--
	industrial processes.			
C	2. To examine Pilot Plant formula to determine its ability to with star	id Batch-scale		
Course	and process modification			
Objective:	3. To learn unit processes involving various chemical reactions.			
	4. To learn industrial synthesis of selected list of drugs.	ha flowchart		
	on various manufacturing methods of drugs	ne nowchart		
	1 Students will be able to explain unit processes	for various		
	organic chemical reactions.	ioi various		
	2. Students will be able to apply industrial synthesis kn	owledge for		
Course	the synthesis of drug like molecules in laboratory.			
Outcome:	3.Students will be able to apply the knowledge of wa	ste effluent		
	treatment methods.			
	4.Students will be able to apply the knowledge of pilot plant scale-u	up techniques		
	in industry.			
Content		Hours		
1. Introduction to	o Pilot Plant:	10		
Definition, objec	tives and significance of Pilot Plant. Need to conduct Pilot Plant			
studies. Uses of	Pilot Plant Scale-Up. Several considerations in Pilot Plant scale up			
activities in R an	d D development Scale up process. The layout of the relationship			
between differer	it activities during technology transfers from the pilot plant to the			
production facilit	y. Future developments. The layout of the relationship between			
different activitie	different activities during technology transfers from the pilot plant to the production			
facility. Limitation	is of pliot plant.			
2. Unit processes	for various chemical reaction types for pilot plant:	10		
Concept of unit processes in systematization of chemical reactions, explanation of one				
example each for	example each for unit processes: Alkylation, amination, (by ammonolysis, reduction).			
carbonylation, carboxylation, condensation, dehydration, diazotization,				
disproportionation, esterification, halogenation, hydration,hydroformylation,				
hydrogenation, h	ydrolysis, hydroxylation, nitration, oxidation and reduction.			
3. Industrial Synthesis:				
Introduction to pharmaceutical manufacturing – raw materials, detailed 12				
manufacturing procedure, therapeutic function, commonname, chemical name,				
structural formulae of the following drugs:Acyclovir, alprazolam, propanolol,				
naproxen, ibupr	ofen, aspirin,levodopa and cimetidine, lidocaine, ethambutol			
hydrochloride, 5-	fluorouracil, amoxycillin sodium.	10		
	lerationsfor Pliot Plant scale up process: Reporting Responsibility:	10		
Materials Relevant processing equipment, process rate and evaluation. Proparation				
of Master M	of Master Manufacturing Procedure GMP Consideration-advantages and			
disadvantages T	and actioning Frocedure, Givin Consideration-advantages all a			
un consideration	s for solids.			
5. Pilot Plant Sca	le Up considerations for solids, oral liquids and semi-solids.	12		

Layout of pilot	plant, Stages of Production of Tablets, Material handling, Dry blending,
Granulation, D	rying, Reduction of particle size, Blending, Direct compression, Slugging
dry granulatic	on techniques). Process evaluation. Master Manufacturing Procedures,
Product, stabil	ity, and uniformity. Good Manufacturing practices. Flow chart on Pilot
plant process s	scale-up.Steps of liquid manufacturing process, Critical aspects of liquid
manufacturing	, solution, suspension, emulsions. Pilot plant scale up considerations for
semi-solids.Co	ntract manufacturing: Scope and limitations
6. SUPAC (S	cale Up and Post-approval changes guidelines) and Platform 6
Technology: T	he SUPAC Guidelines define, the components or composition changes,
The site chan	ges of manufacture, Changes in Batch Size (Scale-Up/Scale-Down),
Manufacturing	g Changes.
Introduction	to platform technology:Pharmaceutical Platform technologies,
Importance pla	atform technology, Types of platform technology.
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations
	/industry visits/ self-study or a combination of some of these can also be used. ICT
	mode should be preferred. Sessions should be interactive in nature to enable peer
	group learning.
Textbooks/	1. Levin M. Pharmaceutical Process Scale-Up. New York: Marcel Dekker, Inc2001.
References /	2. Groggins, Unit processes in Chemical Engineering, 1stEd., McGraw-
Readings	Hill, 1958.
	3. Drydens, Unit processes in chemical engineering, McGraw-Hill
	Higher Education, 2004.
	4. William Andrew, Pharmaceutical Manufacturing Encyclopedia
	<i>Vol.I& II.,</i> 3rd Ed William Andrew, 2007,
	5. W.W.M. Wenland, Thermal Analysis, 2 nd Ed., John Willey & Sons, New
	York, 1974,
	6. S.B. Chandalia, Hand Book of Process Development, Multitech
	Publishing Company, Mumbai, 1998.
	7. K. G. Gadamasetti, Process Chemistry in PharmaceuticalIndustries, 1stEd., Taylor
	& Francis Group, 1999.
	8. Shreve's, <i>Chemical Process Industries</i> , 5 th Ed., McGraw Hill Book
	Company, 2000.
	9. M.V. Krishnan, Safety Management in Industries, Jaico
	Publishers, Mumbai, 2002.
	10. R. K. Khar, S.P. Vyas, F. J. Ahmad, G.K. Jain, Industrial Pharmacy. 4th Ed., New
	Delhi: CBS Publishers & Distributors Pvt Ltd, 2013. pp. 947-1002.
	11. V.P. Shah, J.P. Skelly, W.H. Barr, H. Malinowski, G.L. Amidon. Scale-up of
	Controlled ReleaseProducts - Preliminary Considerations. Pharm Technol1992;
	16(5):35-40.
	12. N.V.N. Mounica, R.V. Sharmila, S. Anusha, L. Evangeline, M. V. Nagabhushanam,
	D. Nagarjunareddy. Scale up and Postapproval changes (SUPAC) Guidance for
	Industry: A Regulatory note. Int J Drug Regul. Aff., 2017; 5(1): 13-19.
	13. L. Lachman, H. A. Lieberman, J. L.Kanig: The Theory and Practice of Industrial
	Pharmacy: Section IV: Chapter 23:Pilot Plant Scale-Up Techniques:
	3 rd edition,Varghese Publishing house, 2009; 681-710.

14.	J. Swarbrick, J. C	.Boylan:	Enc	yclopedia of	Pharmaceu	itical Techn	ology: PilotPlant
	Design,	Volume		12	New	York	x, 2001;
	171-186.						
15.	Leon Lachman,	Herbert	Α.	Lieberman,	Joseph B.	Schwartz:	Pharmaceutical
	dosageforms:		Та	blets.	Volun	ne	3,2 nd edition.
	2001, 303-365.						
16.	J. P. Sitompul, H	.W. Lee, `	Y. C	. Kim &W. N	lathew, A.	Chang: Scal	ing-up Synthesis
	from Laboratory	Scale tol	Pilot	t Scale and to	o near Com	mercial Sca	lefor Paste-Glue
	Production, J. of	Eng. and	Тес	h. Sci. 2013;	45(1): 9-24		
17.	J. W. Zawistows	ki, A.I.A. a	nd.	I.D. Rago <i>, Pil</i>	ot Plant Sca	ale-Up Facili	ties:Establishing
	the Basis for a D	esign, J. c	of Pł	narm. eng.ju	ly/august. 1	.994, 24-32	

8

Programme: M. Sc. Part-II (Chemistry)Course Code: CHHG-511Title of the Course: Polymers in Pharmaceuticals and novel drug delivery systemsNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites	Students should have studied the courses in M.Sc. Part I.			
for the				
course				
Course	1. To learn classification synthesis and properties of polymers.			
Objective:	2. To learn the role of polymers in drug delivery systems.			
	3. To learn new innovations in drug delivery systems			
Course	1. Students will be able to identify the type of polymers that canbe	used for drug		
Outcome:	delivery systems.			
	2.Students will be able to get the knowledge of innovative drugdeliver	ry systems and		
	apply it for their lab project.			
Content:		Hours		
1. Brief history	of natural and synthetic polymers	8		
Classification &	Classification & nomenclature of polymers, functionality concept- linear, -branched			
and -cross linked polymers. Introduction to biodegradable polymers: General methods				
of synthesis, pro	of synthesis, properties, mechanism of biodegradation in the body. Analytical methods			
for monitoring	for monitoring biodegradation processes of environmentally degradable polymers.			
Characterization and evaluation of biodegradable polymers.				
2. Introduction to Novel drug delivery systems 10				
Foundations of	Foundations of drug delivery in a conceptual and mathematical context. Drug delivery			
carriers, routes of administration. Recent developments in responsive polymers,				
polymer therapeutics, and advanced systems designed for molecular recognition or				
engineered for intracellular delivery of novel therapeutics. Polymeric devices for drug				
delivery systems: Diffusion-controlled (monolithic devices), solvent-activated				
(swelling- or os	(swelling- or osmotically-controlled devices), chemically controlled (biodegradable),			
or externally-triggered systems (e.g., pH, temperature).				

Poly lactic-co-glycolic acid (PLGA), PGA(poly glycolic acid), Polyglutamic acid (PGA),				
Polylactic acid, PNIPAAm [Poly(N-isopropylacrylamide)], pHEMA[Poly 2-hydroxyethyl				
methacrylate], I				
4. Types of drug	g delivery systems	8		
Theory of cont	rolled release drug delivery systems. Microencapsulation – Methods			
of encapsulat	ion. Transdermal drug delivery systems – Theory, formulation,			
production ar	d evaluation. Targeted drug delivery systems - concept of drug			
targeting, imp	ortance in therapeutics.			
5.Advanced	biopolymeric systems for drug delivery	14		
Critical Points	n Biopolymeric-Controlled Release Matrix Systems, Biopolymeric Gels			
in Drug Deliv	very, In Situ Polymeric Gels for Topical Drug Delivery, Smart			
Polysaccharide	e Hydrogels in Drug Delivery and Release, Polysaccharide-Based			
Nanoparticles:	Nanocarriers for Sustained Delivery of Drugs, Polysaccharide-Based			
Nanocarriers f	or Oral Delivery of Insulin in DiabetesLiposomes and Dendrimers for			
Advanced Dru	ug Delivery, Marine Polysaccharides Systems for Drug Delivery			
applications.				
6 Recent Innov	ations in polymeric drug delivery systems and its applications	12		
Recent innovat	tions in conventional dosage form like tablets cansules sterile dosage	12		
forms nellets	Mucoadhesive system GRDDS pentide drug delivery supercritical			
fluid technique	PEGylation Nanonarticulate drug delivery Sustained In Vitro and In			
Vivo Deliver	y of Metformin from Plant Pollen-Derived Composite			
Microcansules	Polymeric Hydrogels for Controlled Drug Delivery to Treat			
ArthritisAdvan	cements in Rectal Drug Delivery Systems: Clinical Trials and Patents			
Perspective Fu	ture opportunities and challenges			
Terspective.ru	ture opportunities and endienges.			
Pedagogy	Lectures/ tutorials/ project work/ industry visits/viva/sem	ninars/ term		
	papers/assignments/ presentations/ self-study/Case Studies etc. or	a combination		
	of some of these. Sessionshall be interactive in nature to enable peer g	group learning.		
Textbooks/	1. V. R. Gowarikar, N.V. Vishwanathan, J. Sreedhar, Polymer Scient	<i>nce,</i> New Age		
References /	International, 2015.			
Readings	2. J. R. Fried, Polymer Science and Technology, PHI Pvt. Ltd.,2000.			
	3. R. Sinha, Outlines of Polymer Technology: Manufacture of Polymer	rs, PHI Pvt Ltd.,		
	2000.			
	4. K. Y. Saunders, Organic Polymer Chemistry, Chapman and Hall, Ul	K, 1976.		
	5. H. R. Kircheldorf, Handbook of Polymer Synthesis, PART Aand B,	Marcel Dekkar		
	Inc., 1992.			
	6. R. P. Brown, Handbook of Plastic Test Methods, 2 nd Ed.,George	Godwin Ltd.,		
	1981.			
	7. M. P. Stevens, Polymer Chemistry- An Introduction, 2 nd Ed., Oxfor	rd Univ. Press,		
	1990.			
	8. W. Y. Mijs, New Methods in Polymer Synthesis, PelnumPress Ltd.,	NY, 1992.		
	9. M. Arora, Polymer Chemistry, Anmol Publications 2001.			
	10. C. E. Carraher, Polymer Chemistry, New York M. Dekker 2005.			
	11. P.C. Hiemenz, Polymer Chemistry, CRC Press, 2007.			
	12. V. K. Selvaraj, Advanced Polymer Chemistry, New Delhi Campu	us books, CRC		
	Press, 2008.			
	13. A. Ravve, Principles of polymer Chemistry, Springer 2012.			

14. J. David , Polymers, Oxford University Press 2015.
15. U.S. Beans, A.K. Beckett & J.E. Caralem, Advances in Pharm
<i>Sci</i> ,Vol 1-4, Elsevier, 2009.
16. G.S. Banker, <i>Modern Pharmaceutics</i> , Dekker Incorporated,
Marcel, 2002.
17. L.Lliun& S. S. Davis, Polymer in Controlled Drugs
Delivery, Wright, Bristol, 1987.
18. J. R.Crompton, Analysis of Polymer- An Introduction,
Pergamon Press, Oxford, 1989.
19. M. P. Steven, <i>Polymer Chemistry An Introduction</i> , New
York, Oxford, Oxford University Press, 1990.
20. M. Charin, Biodegradable Polymers as Drug Delivery Systems,
Informa HealthCare, 1990.
21. A.H. Beckett &J. B. Stenlake, <i>Practical Pharmaceutical Chemistry Vol I</i>
<i>&II</i> , CBS Publishers, 2005.
22. P. J. Sinko, Martin's Physical Pharmacy and Pharmaceutical Sciences, 6 th
Ed., Lippincott William and Wilkins, 2006.
23. S.J. Carter, Cooper and Gunn's <i>Tutorial Pharmacy</i> , 6 th Ed., CBS
Publisher Ltd, 2008.
24. Indian Pharmacopoeia, British Pharmacopoeia.
25. J.R. Robinson & Vincent H.L. Lee, Controlled Drug Delivery,
987.
26. J.R. Juliano, <i>Drug Delivery Systems</i> , Oxford University Press,
Oxford, 1980.
27. M.I. Gutcho, <i>Microcapsules and Microencapsulation</i>
Techniques, Noyes Data Corporation, 1976.
28. A. Lendlein&A. Sisson, Handbook of Biodegradable Polymers: Isolation,
Synthesis, Characterization and Applications, 1 st Ed., Wiley Publishers, 2011.
29. V. V. Ranade & J. B. Cannon, <i>Drug Delivery Systems</i> , 3 rd Ed., CRC Press, 2011.
30. A.K. Nayak & Md. S. Hasnain, Advanced Biopolymeric Systems for Drug Delivery,
1 st Ed., Springers, 2020.
31. V.A. Guerrera, Innovative Polymers for controlled drug delivery, Pharmaceutics,
1 st Ed., Vol.14, Multidisciplinary Digital Publishing Institute, 2022.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHHG-512 Title of the course: Pharmacotherapeutics

Number of Credits: **04**Total Hours: **60**

Effective from AY: 2023-24

Prerequisites	Students should have studied the courses in M.Sc. Part I.
for the course	
Course Objective:	 To enable the students to understand the different approaches to treat and manage various disease conditions. To impart knowledge and skills in optimizing drug therapy of a patient by personalizing the treatment. To summarize the therapeutic approach for management of various diseases.

	4. To explain the rationale for drug therapy andplan through medicines.	evidence-based	
Course Outcome:	 Students will be able to discuss the clinical controversies in drug to Students will be able to identify the patient specific paramer initiating drug. Students will be able to prepare individualized therapeutic diagnosis, medicine therapy, and monitoring therapy. 	herapy. ters relevant in plans based on	
Content		Hours	
1. Diseases o	of central nervous system: Epilepsy, Parkinson's disease, Stroke,	10	
Headache, A management. Sleep disorder	Izheimer's disease, Neuralgias and Pain pathways and Pain Psychiatric disorders: Schizophrenia, Depression, Anxiety disorders, rs, drug induced psychiatric disorders.		
2. Infectious surgical prop Gastroenteriti HIV and op helmenthiasis schistosomias	diseases : General guidelines for the rational use of antibiotics and ohylaxis, urinary tract infections, respiratory tract infections, s, tuberculosis, malaria, bacterial endocarditis, septicemia. meningitis, portunistic infections, rheumatic fever, dengue fever, H1N1, , fungal infections. Neglected tropical diseases: leishmaniasis, is, chagas, sleeping sickness.	10	
3. Diseases of cardiac failure Chronic obstru	3. Diseases of cardiovascular and respiratory system : Hypertension, Congestive 10 cardiac failure, Acute coronary syndrome, Arrhythmias, Hyperlipidemias, Asthma, Chronic obstructive airways disease. Drug induced pulmonary diseases.		
4. Diseases of Inflammatory Constipation,	4. Diseases of gastrointestinal system : Peptic ulcer diseases, Reflux esophagitis, 10 Inflammatory bowel diseases, Jaundice & hepatitis, Cirrhosis, Diarrhea and Constipation. Drug-induced liver disease.		
5.Oncologicaldisorders: General principles of cancer chemotherapy, pharmacotherapy of breast cancer, lung cancer, head & neck cancer, hematological malignancies, management of nausea and vomiting, Palliative care.		8	
6. Other Diseases 12 Bone and joint disorders: Rheumatoid arthritis, osteoarthritis, gout, osteoporosis. Dermatological Diseases: Psoriasis, eczema and scabies, impetigo, drug induced skin disorders. Ophthalmology: Conjunctivitis, glaucoma. Diseases of renal system: Acute renal failure, chronic renal failure, renal dialysis, drug induced renal disease.Gynaecological disorders: Dysmenorrhea, hormone replacement therapy. Endocrine system: Diabetes Mellitus, thyroid diseases. Hematological diseases: Anaemia, deep vein thrombosis, drug induced hematological disorders.			
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / self-study or a combination of some of these can also be used. ICT r	presentations / node should be	
	preferred. Sessions should be interactive in nature to enable peer grou	ıp learning.	
Text Books/ References / Readings	 R.Walker.Clinical Pharmacy and Therapeutics,5thEd., Church publication, 2012. J. DiPiro, Pharmacotherapy: A Pathophysiologic Approach, 7thEd Publishers 2008. S.L.Robins,Pathologicbasis of disease., 9thEd.,W.B. Saunderspublicat 	nill Livingstone d., McGraw Hill ion 2014.	

4. E. T. Herfindal. <i>Clinical Pharmacy and Therapeutics</i> , 3 rd Ed.,Lippincott Williams and Wilkins Publication,1984.
5. L.Young and M.A. Koda-Kimble, <i>Applied Therapeutics: The clinical Use of Drugs</i> , 9 th Ed., Lippincott Williams and Wilkins, 2008.
6. C.B. Wells, S. Malone and J. P.Dipiro. <i>Pharmacotherapy Principles and practice</i> , 4 th Ed.,McGraw HillPublication. 2016.
7. C. M. Porth. <i>Principles of Pathophysiology</i> , 3 rd Ed., Lippincott Williams and Wilkins Publications, 2010.
8. Harrison's <i>Principles of Internal Medicine</i> . (Vol1 and 2), 20 th Ed.,McGraw Hill Publications, 2018.
9. R.Mannhold&H.Buschmann, Neglected Tropical Diseases Drug Discovery and Development, Vol 37, John Wiley and Sons, 2019.
10. P. Hotez, Neglected Tropical Diseases, Vol 1-5(book series), Springers, 2022.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHHG-513 Title of the course: API Process, Manufacture and Green Chemistry Number of Credits: 04Total Hours: 60 Effective from AY: 2023-24

Prerequisites	Should have studied courses at M.Sc. Part-I.			
for the				
course:				
	1. To learn about the selected drugs.			
	2. To learn about the role of process chemistry.			
	3. To understand the process research and development of Penic	cillinG CAS and		
Course	Rabeprazole CAS			
Objective:	4. To understand the drug optimization and drug discovery.			
	5. To understand various concepts involved in green synthesis.			
	6. To understand green technologies used in chemistry.			
	7. To learn application of green chemistry approaches to pharmaceu	itical industry.		
	1. Students will be able toacquire knowledge about the Top drugs.			
	2. Students will be to learn about the role of process chemistry and understand the			
	Process research and development of PenicillinG CAS and Rabeprazole CAS			
	3. Students will be able to understand the drug optimization and drug discovery.Course4. Students will be in a position to understand how chemistry can be done usi			
Course				
Outcome:	greener alternatives.			
	5. Students will be able to apply green technologies as a sustaina	ble solution for		
	making drug molecules.			
	6. Students will be able to understand and apply the concepts of gre	en chemistry to		
	develop scalable processes in industry.	1		
Content		Hours		
1.Process chemistry in pharmaceutical industry –				
Background of process chemistry – role of process chemistry. Strategy of process				
research & development in pharma industry. Case studies: A practical synthesis of				
Ifetroban sodiu	Ifetroban sodium. Synthesis of 5-lipoxygenase inhibitors Chemistry of Vitamin D: A			
challenging fie	challenging field for process researchDilevalol Hydrochloride: Development of a			

commercial processThe process research and development of DuPont Merck's cyclic urea diols, a new class of HIV protease inhibitors.Process research and development of PenicillinG CAS Reg. No.[61-33-6] (antibacterial); Fosinopril CAS Reg. No.[98048- 97-6](antihypertensive) ; Combinatorial chemistry: Introduction – Drug Optimization – Drug discovery – Solid Phase Technique – parallel synthesis – Mixed Combinatorial Synthesis.	12
P Biocatalysis, phase transfer catalysis, asymmetric synthesis and polymorphism:	
Biocatalysis and Engineering: An interdisciplinary approach to the manufacture of the Benzodiazepine drug candidate LY 300164. Application of phase transfer catalysis technology in pharmaceutical industry for drug synthesis. Asymmetric Synthesis and Enantioselectivity: Enantioselective synthesis of chiral 2- hydroxycarboxylic acids and esters – asymmetric catalysis – eg. asymmetric hydrogenation – L-Dopa process ;Sharpless asymmetric epoxidationseg. synthesis of Fluoxetine enantiomers. Chiral (Salen)Mn(III) Complexes in asymmetric epoxidations: Practical Synthesis of cis-Aminoindanol and its application to enantiopure drug synthesis. Practical Enantio- and Diastereo-selective Processes for Azetidinones.	12
isolation techniques and characterization of polymorphs of Venlafaxine hydrochloride[99300-78-4] Clopidogrelbisulphate [135046-48-9] and Lorazepam[846-49-1] (any two).	
 3.Chemical Process safety norms: Concept of Green Chemistry, its 12 principles and Green Chemistry Metrics. Introduction, industrial disasters of the world, definition of green chemistry, twelve green principles, Need for green chemistry in pharmaceuticals, green chemistry for better sustainability. Green Chemistry metrics for measuring greenness (E-factor, atom economy, mass intensity, process mass intensity, process mass efficiency, chemical yield). Waste prevention, management andhierarchy. Atom Economy: Calculation and predicting greenness of a reaction. Comparison of Diels Alder reaction and Wittig Reaction. Addition v/s Elimination v/s Substitution. Less hazardous chemical synthesis: Avoiding use of hazardous substances for any synthesis (Thiamine hydrochloride to be preferred over KCN for benzoin condensation). Role of chirality in the need for designing safer chemicals with illustration of Thalidomide. 	8
4. Safer solvents in chemistry. Knoevenagel condensation by grinding method. Advantages and disadvantages of solvent-free reaction. Water as green solvent in organic synthesis (Diels Alder Reaction). In water and on water mechanisms. Ionic liquids as designer solvents with one application. Supercritical solvents and their application in extractions. Deep Eutectic solvent (DES) with example and one application. Fluorous solvents and biphasic extraction.	8
5. Emerging greener technologies for energy efficiency and catalysis Organic synthesis at ambient temperature and pressure, photochemical reactions as green process (advantages). Microwave assisted organic synthesis: Principle and applications. Sonochemistry as a sustainable alternative for organic synthesis, giving examples. Electrifying organic synthesis in designing new target molecules.	10

	1				
Continuous f	low synthesis as a sustainable technology for pharmaceutical industry.				
Impact of	Impact of continuous flow chemistry in the synthesis of natural				
products ar	d active pharmaceutical ingredients. Recent examples of green				
chemistry ar	ticles of interest to the pharmaceutical industry: C-H activation, green				
fluorination,	continuous processing and process intensification.				
6. Green Syn	thesis of representative drugs 10				
Multicompo	nent synthesis: Ugi, Biginelli, Passerni, Mannich, Strecker. One-Pot				
Synthesis of	(S)-Baclofen.Synthesis of Ibuprofen, Boots (conventional) and green				
synthesis. Co	mparison and atom economy. Green synthesis of Paracetamol, Aspirin,				
Celecoxib,	Sildenafil citrate, Sertraline, Artemisinin, Paroxetine, Pregabalin,				
Imatinib, Sir	nvastatin, Quinapril HCl.				
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations /				
	industry visits/field trips/self-study or a combination of some of these can also be used.				
	ICT mode should be preferred. Sessions should be interactive in nature to enable peer				
	group learning.				
Text Books/	1. M. Lancaster, <i>Green Chemistry</i> , The Royal Society of Chemistry, Cambridge, UK, 2002.				
References	2. V. K. Ahluwalia, Green Chemistry: Environmentally Benign Reactions, Ane Books India, New				
/ Readings	Delhi, 2006.				
-	3. A. S. Matlack. Introduction to Green Chemistry. Marcel Dekker. Inc., New York. 2001.				
	4. P. T. Anastas and T. C. Williamson. Green Chemistry: Frontiers in benian chemical				
	synthesis and processes. Oxford University Press. Oxford. Eds. 1998.				
	5. B. Sanghi and M. M. Srivastava. Green Chemistry: Environment Friendly Alternatives.				
	Narosa Publishing House, Eds. New Delhi, 2007.				
	6. Samuel Delvin, <i>Green Chemistry</i> , IVY Publishing House, Delhi, 2006.				
	7. V. K. Ahluwalia and M. Kidwai, New Trends in Green Chemistry, 1 st Ed., Anamaya				
	Publishers, New Delhi, 2004.				
	8. P. G. Jessop and W. Leitner, <i>Chemical Synthesis using Supercritical fluids</i> , Wiley –				
	VCH, Verlag, (Eds., Weinheim, 1999.				
	9. K. Tanaka, Solvent Free Organic Synthesis, 2 nd Ed., Wiley – VCH GmbH and Co. KgaA,				
	Weinheim, 2003.				
	10. P. T. Anastas and J. C. Warner, Green Chemistry, Theory and Practice, Oxford				
	University Press, N. York, 1998.				
	11. C - Jun Li and T – Hang Chan, Organic Reactions in Aqueous Media, John Wiley and				
	Sons INC., N. York, 2001.				
	12. F. Z. Dorwald, Organic Synthesis on Solid Phase, Wiley – VCH Verlag, Weinheim,				
	2002.				
	13. P. Wasserscheid and T. Welton, <i>Ionic Liquids in Synthesis</i> , Wiley – VCH Verlag, Ed.,				
	Weinheim, 2003.				
	14. A. Loupy, <i>Microwaves in Organic Synthesis</i> , Wiley – VCH Verlag, Weinheim, 2002.				
	15. R. V. Eldik and F. G. Klarner, High Pressure Chemistry, , Wiley - VCH Verlag,				
	Weinheim, 2002.				
	16. R. Hilfiker, Polymorphism in Pharmaceutical industry, Wiley-VCH, 2006.				
	17. H. G.Brittain, <i>Polymorphism in Pharmaceutical solids</i> , 2 nd Ed., CRC Press, 1998.				
	18. C. Starks, C. Liotta, M. Halpern, "Phase-Transfer Catalysis: Fundamentals,				
	Applications and Industrial Perspectives," Chapter 16, Chapman & Hall, New				
	York,1994.				

19. A. Kumar&A. Anjali, Adoption of green methodology in industry for the synthesis of
sildenafil citrate and Celecoxib: case study. Volume 60, Part 2, 2022, Pages 1021-1025.
20. P. J. Harrington, <i>Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-Up</i> , Wiley Publishers, 2011.
21. J. M.DeSouza, R.Galaverna, A. A. N. De Souza, T. J. Brocksom, J. C. Pastre, R.M.A. De Souza &K. T. De Oliveira. <i>Impact of continuous flow chemistry in the synthesis of</i> <i>natural products and active pharmaceutical ingredients</i> , Anais da Academia Brasileira de Ciências,2018, 90(1 Suppl. 2): 1131-1174.
22. F. Fanelli, G.Parisi, L.Degennaro& R. Luisi, <i>Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis</i> , Beilstein J. Org. Chem. 2017, 13, 520–542.
23. E. Yu, H. P. R. Mangunuru, N.I S. Telang, C. J. Kong, J.Verghese, S. E. Gilliland, S. Ahmad, R. N. Dominey B. F.Gupton, Beilstein, <i>High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine</i> , J. Org. Chem. 2018, 14, 583–592.
24. R. Porta, M.Benaglia, & A. Puglisi. <i>Flow Chemistry: Recent Developments in the Synthesis of Pharmaceutical Products.</i> Org. Process Res. Dev. 2016, 20, 2–25.
25. K. G. Gadamasetti, <i>Process chemistry in the pharmaceutical industry</i> , 1 st Ed., Taylor and Francis, 1999.
26. K. G. Gadamasetti, <i>Process chemistry in the pharmaceutical industry: Challenges in an everchanging climate</i> , 2 nd Ed., Taylor and Francis, 2019.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHHG-514

Title of the course: Pharmaceutical and Spectral Analysis

Number of Credits: 04Total Hours: 60

Effective from A	Y: 2023-24
------------------	-------------------

Prerequisites	Students should have studied the courses in M.Sc. Part I.	
for the course		
	1. To study the advanced pharmaceutical analytical techniques.	
Course	2. To acquire the knowledge of theory and practical skills of instruments.	
Objective:	3. To understand and interpret the spectral data.	
	1. Students will be able understand various pharmaceutical analytica	al techniques.
Course	2. Students will be able to apply this knowledge to various pharmace	utical industries.
Outcome:	3. Students will be able to explain all characterization techniques for	pharmaceutical
outcome.	products.	
	4. Students will be able to analyse spectral data.	
Content		Hours
1. Introduction	n to pharmaceutical analysis and techniques: Scope and range of	
modern pharr	naceutical analysis. Listing of various pharmaceutical analytical	10
techniques, w	ith broad discussion on their instrumentation, working and	
pharmaceutica	l applications:HPLC, GC, HPTLC, DSC-DTA, XRD. Material and product	
specifications:	Definition of specifications, study of ICH Q6 guidelines and	
understanding	of specifications through study of pharmacopoeial monographs on	
drug substand	es and products. Reference standards used: Types (primary,	

secondary working and test standards) proparation containers labelling starage	
and use Decumentation of englished date CTDs, sortificate of englishing, storage	
and use. Documentation of analytical data-STPS, certificate of analysis, laboratory	
books: Typical documents used in a GLP laboratory including standard test	
protocols, COA and laboratory notebooks. Electronic records & signatures (21CFR	
Part-11 requirement)	
2. Calibration and Validation: Method validation: Definition and methodology,	10
discussion on each parameter with examples, special considerations in bioanalytical	
method validation. Calibration and qualification of equipment: Difference of	
definitions, calibration standards, calibration frequency, examples of calibration of	
pH meter, potentiometer, Flame photometer, FTIR, UV spectrophotometer and	
HPIC Definition of qualification process involving LIBS [user requirement	
specification DO IO OO CO and PO	
specification], DQ, IQ, OQ, CQ and PQ.	
2. Quality and rick management in analytical laboratory	0
5. Quality and risk management in analytical laboratory:	0
Definition of quality risk management in ICH Q9 guideline. Its importance and	
application to analytical laboratory with examples. Quality of analysis by design.	
Impurity profiling: Types of impurities in drug substances and products. Method	
development for impurity analysis, techniques, identification and quantization.	
Management of analytical laboratory: Organization of laboratories based on their	
types, staffing, skill development and training, budgeting and financing, purchase	
of costly equipment, qualities of laboratory manager and management styles.	
Laboratory inspections and audit: Internal inspection, external audit, concepts,	
preparing for inspections and audits.	
4. Spectral Analysis-I	
i) Illtra Violet (IIV)-visible spectroscopy and its pharmaceutical applications: a)	
Electronic excitations Beer Lamberts Law predicting LIV absorption using	
Weedward Fieser, Fieser Kuhn and Nelson rules. Colculation of amount for R	10
Woodward-Fieser, Fieser-Kunn and Neison rules; Calculation of Amax for p-	12
Carotene, Lycopene, Piperine, Curcumin, Factors affecting UV spectra Non-	
conjugative effect, solvent effect, S-Cis band. Types of UV spectroscopic analytical	
techniques with illustrative examples: Simultaneous equation method:	
Paracetamol and Diclofenac sodium, Norfloxacin and Tinidazole, Quercetin,	
curcumin, and piperine. Difference spectrophotometric method:Leflunomide,	
Pioglitazone and metformin. Derivative spectrophotometric method: Quantitative	
assay of Diazepam. Variants of derivative spectroscopy: Ratio derivative: Successive	
ratio derivative spectra method, absorption ratio method with application.	
ii) Infrared (IR)spectroscopy: Principle of Infra Red spectroscopy, Hooke's Law,	
types of vibrations, Correlation of structure with IR spectra: Influence of	
substituents, ring size, hydrogen bonding, vibrational coupling and field effect on	
frequency. Applications: Identification of functional groups in the following	
drugs:Acyclovir Chloroquine Mebendazole Ethambutol Metronidazole Dansone	
Cis-Platin Ibunrofen Chloramphenicol Lidocaine Aminobinpuric acid	
Theophylline Determination of stareochemistry-Ethembutol and Methyl Dona	
Spectral interpretation with examples. Drablem solving of UV and ID for structure	
spectral interpretation with examples. Problem solving of OV and IK for structure	
	1.4
Dispectral Analysis-II Nuclear Magnetic Recommend (NMP) enerthereasty Drivelate of matter NMP	14
spectroscopy: Principle of proton NMR	
speciroscopy, chemical sint-shielding and desineding effect, magnetic anisotropic	

effect, TMS	as reference standard, spin-spin splitting-coupling constant, NMR	
solvents and	d their residual peaks. Interpretation of NMR spectra of some	
compounds		
Isoniazid.	Mebendazole. Lidocaine. 2-methylbenzothiazole. benzoxazole.	
pvrimidine.2	-phenylbenzminidazole). ¹³ C-NMR. correlation of structure with	
spectra: Chei	nical environment, shielding and carbon-13 chemical shift, calculation,	
proton-coup	led Carbon Spectra, Protondecoupled Cspectra, Nuclear Overhauser	
Enhancemen	t (NOE). Distortion less Enhancement by Polarization Transfer (DEPT).	
Heteronuclea	ar coupling for carbon to deuterium, carbon to ¹⁹ F, carbon to	
³¹ P.Fluorine	chemical shift Anisotropy and exchange for Screening (FAXS). Three	
Fluorine Ator	ms for Biochemical Screening (3-FABS). NMR for Lead optimization and	
SAR studies.	Explanation of spectra of some compounds and drugs. (Fluconazole,	
Thiotepa, Ch	lorphenaramine, Dapsone, Nitrogen mustard)	
NMR problem	n solving for structure elucidation.	
6.Mass spec	trometry (MS): Molecular ion and metastable peak, fragmentation	6
patterns, niti	rogen and ring rules, McLafferty rearrangement, electron and chemical	
ionization m	odes, applications. Mass spectra of any 2 drugs.	
(Combined l	JV. IR. NMR. Mass Problems for structure elucidation)	
Pedaaoav	Mainly lectures and tutorials. Seminars / term papers /assignments /	presentations /
	self-study or a combination of some of these can also be used. ICT r	node should be
	preferred. Sessions should be interactive in nature to enable peer grou	ip learning.
Textbooks/	1. F. Rouessac& A.Rouessac. Chemical Analysis: Modern Instrumentation	on Methods and
References	Techniques. 2 nd Ed., Wiley Publishers. 2013.	
/ Readinas	2. M.Valcarcer. Principles of Analytical Chemistry.2000 th Ed., Springers.	2012.
,	3. M. E. Swartz& I. S. Krull. Analytical Method Development and Vo	alidation. 1 st ed
	1997.CRC Press.	
	4. J. P. Seiler, <i>Good Laboratory Practices</i> , Springer, 2001.	
	5. D. A. Skoog, F. J. Holler & T. A. Nineman, Principles of Instrumental	Analvsis. 7 th Ed
	2018.	- / /
	6. S. Ahuja & S.Scypinski, Handbook of Modern Pharmaceutical Al	nalysis, 2 nd Ed.,
	Elseviers Publishers, 2010.	
	7. R. F. Venn, <i>Principles and Practice of Bioanalysis</i> , CRC Press, 2008.	
	8. D. L Pavia, Gary M Lampman, George S Kriz, James A Vyvyan.	
	Spectroscopy, 3 rd Ed., Thomson learning, 2001.	
	9. W. Kemp, <i>Organic Spectroscopy</i> , 3 rd Ed., New York Palgrave, 2019.	
	10.D. H. Williams & I. Fleming, Spectroscopic Methods in Organic Cha	emistry, 5 th Ed.,
	McGraw Hill, 1995.	
	11. R. M. Silverstein, F. X. Webster & D. J. Kiemie, Spectrometric Identific	ation of Organic
	Compounds, 7 th Ed., Wiley and Sons, 2005.	
	12. J. R. Dyer, Applications of Absorption Spectroscopy of Organic Comp	oounds, Prentice
	Hall of India Pvt.Ltd., 1978.	
	13. D.M. Atole& H. H. Rajput, Ultraviolet spectroscopy and its	pharmaceutical
	applications-A brief review, Asian J Pharm Clin Res, Vol 11, Issue 2, 2	2018, 59-66.
	14. P. Agarwal, NMR Spectroscopy in Drug Discovery and Developmen	t, Materials and
	Methods, 2014, 4, 599.	
	15. M. Pellecchia, D. Sem & K. Wuthrich, NMR in drug discovery. Nat. Re	ev. Drug Discov.,
	2002;1:211-9.	

16. Y. Zhong , K. Huang, Q. Luo, S. Yao, X. Liu ,N. Yang, C. Lin ,& X. Luo,
The Application of a Desktop NMR Spectrometer in Drug Analysis,
Hindawi International Journal of Analytical Chemistry, Volume 2018,
Article ID 3104569.
17. H.W. Dibbem, UV and IR Spectra of some important drugs, Annals of
Pharmacotherapy, Vol.15 (2), Editio Cantor Aulendorf Publishers, 1978.
18.D. T. Rossi & M. Sinz, Mass Spectrometry in Drug Discovery, 1st Ed., Taylor and
Francis, 2001.
19.1. Sunshine & M.Caplis, CRC handbook of mass spectra of drugs, Boca Raton Fla: CRC
Press, 1981.

Programme: M.Sc. Part-II (Chemistry) Course Code: CHHG-515 Title of the course: Bioorganic and Medicinal Chemistry Number of Credits: 04Total Hours: 60

Effective from AY: 2023-24

Prerequisites for	Students should have studied the courses in M.Sc. Part I.	
the course		
Course Objective:	 To understand the concepts of bioorganic chemistry and medicina To study in brief about carbohydrates, nucleic acids and enzyme of To introduce the topic of biomimetics. To acquire knowledge on biosynthesis of natural products. To understand the concept of drugs as enzyme inhibitors. To synthesize selected drugs and understand its mechanism. 	al chemistry. chemistry.
Course Outcome:	 Students will be able to apply the knowledge of carbohydrates, protacids, enzymes, co-enzymes for designing enzyme inhibitors. Students will be able to put into practice the knowledge of biomim 3.Students will be able to biosynthesize natural products. Students will be able to synthesize drugs, present structure activity studies and also write its mechanism. 	teins, nucleic netics. relationship
Content		Hrs
1. Introduction to organic chemistry Molecular adaptat	Bioorganic chemistry : Basic concepts, definition, Proximity effects in and overlapping subject biochemistry and organic chemistry, ion, Molecular recognition.	4
2. Carbohydrates, properties of nucl mechanisms of DN primary, secondary configuration of G Haworth projection (Kiliani- Fischer me group interchange disacharrides (sucr	, Nucleic acids and Protein Chemistry. Chemical structure and eosides, nucleotides, nucleic acids. The biological and biochemical A replication and transcription. The structure of amino acids and the y and tertiary structure of peptides and proteins. Determination of ilucose (Fischer's proof). Cyclic structure of glucose. Mutarotation ons. Lobry de Bruyn-van Ekenstein rearrangement; stepping–up thod) and stepping–down (Ruff's &Wohl's methods) of aldoses; end- e of aldoses. Linkage between monosachharides, structure of pose maltose lactose)	6

3. Enzyme Chemistry: Introduction, Nomenclature, classification and extraction of enzymes, Introduction to catalysis and enzymes; Multifunctional catalysis, Intramolecular catalysis, mechanism of enzyme action, factors responsible for enzyme specificity, enzyme activity and kinetics (Michaelis Menten and Lineweaver–Burk plots), enzyme inhibitions (Reversible and irreversible), structure, mechanism of action and applications of α -Chymotrypsin, Ribonuclease, lysozyme and Carbopeptidase-A. Enzymes in synthetic organic chemistry. [Reactions to be covered-Additions, eliminations, substitutions, condensations, oxidations, reductions and rearrangement]	8
4. Biomimetics and Biosynthesis of Natural products-	10
 Biomimetics: Definition, biological mechanisms, natural mechanisms, biomimetic structures, biomimicry at the cell-material interface, tissue structure and biomimetic applications. Biomimetic chemistry for NADH model. Biosyntheses of natural products: Biosyntheses of Alkaloids: Types of Metabolites of plants (Primary and secondary), Types of metabolic pathways: Shikimic and Mevalonic. Biosyntheses of Morphine from tyrosine and Nicotine from Ornithine. Biosyntheses of Steroids: Testosterone and Cholesterol. Biosyntheses of 6-methylsalicylic acid, tetracyclins. Modular polyketide synthase, Erythromycin biosynthesis, engineering novel polyketide antibiotics. 	
5. Co-Enzyme Chemistry -Chemical structures of co-enzymes and cofactors, Oxidoreduction (NAD+, NADP+), Pyridoxal phosphate (PLP) in transamination, Thiamine pyrophosphate (TPP), Biotin (CO ₂ carrier), Haemoglobin (O ₂ - carrier), Flavin (FMN, FAD, FADH ₂), Oxene Reactions, Lipoic acid, Mechanisms of reactions catalyzed by co-factors. Oxidation by cytochrome-450. Hansester as NADH model (give an example)	10
6. Medicinal Chemistry and Pharmacology	12
Role of medicinal chemistry, properties of drug and receptor, Pharmacophore, toxicophore and metabiophore. Pharmacodynamics and Pharmacokinetics. Drug Design based on Target based and phenotype approach. Enzyme inhibitors as drugs. Antagonist behaviour of Caffeine, Role of Enoylacpreductase, cyclooxygenase inhibitors, Kinase, α-Glucosidase, Dihydrofolate reductase, ACE-2 in the biological processes. Designing the drug and Mechanism of action of Isoniazid, Ibuprofen, Erlotinib, acarbose, captopril. Concept of molecular docking in computer aided drug designing.Structure –activity relationships of drug molecules, binding role of –OH group,-NH ₂ group, double bond and aromatic ring to receptor. SAR of following drugs (Chloramphenicol, Procaine, Isoniazid, Chloroquine, Methyl Dopa).	
5. Synthesis of drugs with mechanism:	10
Anti inflammatory Drugs: Naproxen, Celecoxib. Anti-hypertensive Drugs: Captopril, Atenolol. Drugs acting on CNS: (a) CNS Stimulant : Dextro-amphetamine (b) Respiratory Stimulant : Doxapram (c) CNS anti-depressant : (i) Chlorpromazine (Antipsychotic) (ii) Diazepam (Anxiolytic) (iii) Phenobarbital (Antiepileptic) (d) Anaesthetic Drugs: (a) General : Ketamine (b) Local : (i) Lidocaine. Antibiotics: Amoxycillin. Antimycobactrial: Ethambutol. Antiviral: Acyclovir. Antimicrobial: Sulfamethoxazole. Antidiabetics: Tolbutamide (k). Antineopastic Drugs: (a) Antagonist: Fluorouracil (b) Alkylating agents: i) Chlorambucil (ii) Cis-Platin. Antimalarial: Hydroxychloroguine	

Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be
	preferred. Sessions should be interactive in nature to enable peer group learning.
Text Books/ References /	1. D. A. Williams & T. L. Lemke, <i>Foye's principles of medicinal chemistry</i> , 5th edition, Lippincott Williams and Wilkins, 2006.
Readinas	2 M Beale & M Block Wilson & Gisvold's Text book of Organic
neuungs	Medicinal & Pharmaceutical Chemistry, Lippincott Williams and Wilkins; 2004.
	3 D I Abraham & D P Rotella Burger's Medicinal Chemistry Drug
	Discovery and Development, 7th edition, John Wiley & Sons N.Y, 2010.
	4. D. Shriram, P. Yogeshwari, <i>Medicinal Chemistry</i> , Pearson Education, 2007.
	5. G. L. Patrick: <i>Introduction to Medicinal Chemistry</i> , Oxford University Press, UK. 6th edition. 2017.
	6. D. Lednicer& L. A. Mitscher. The Organic Chemistry of Drug
	Synthesis. (6 volume set) III. John Wiley & Sons. 2005.
	7. H. Singh & V. K. Kapoor. <i>Medicinal and Pharmaceutical Chemistry</i> .
	VallabhPrakashan, 2010.
	8. G. R Chatwal, Medicinal Chemistry (Organic Pharmaceutical
	Chemistry), Himalaya Publishing house, 2002.
	9. N. K. Tripathi & R. C. Verma, Bioorganic and Medicinal Chemistry, Theory and
	Practicals, Thakur Publications Pvt Limited, 2021.
	10.T. M. Kutchan, Alkaloid biosynthesis – the basis for metabolic engineering of
	medicinal plants. Plant Cell, 1995. 7, 1059-1070.
	11. Y. Bar-Cohen, Biomimetics: Nature-Based Innovation, CRC Press, 2012.
	12. I. L. Finar, Organic Chemistry: Stereochemistry and the Chemistry of Natural
	Products, Pearson Education India, 2002.
	13. K. Nakanishi, Natural Product Chemistry, Academic Press, 2013.
	14. D. R. Dalton, The Alkaloids. New York: M. Dekker, 1979.
	15. D. Barton & W. D.Olis, Comprehensive Organic Chemistry, Pergamon, 1979.
	16.D. Paul, <i>Medicinal Natural Products: A Biosynthetic Approach</i> , John Wiley and Sons, 2002.
	17.M. Paolo, Biosynthesis of Natural Products, Wiley Publishers, 2010.
	18. J. ApSimon, The Total Synthesis of Natural Products, John Wiley and Sons, 1992.
	19. J. M. Beale Jr. & J. Block, Wilson and Gisvold's Textbook of organic and medicinal
	<i>chemistry</i> , 12 ^{^{en}} Ed., Wolters Kluwer India Pvt. Ltd, 2010.

Programme: MSc Part-II (Pharmaceutical Chemistry)Course Code: CHHR-516Title of the course: Research Methodology in Pharmaceutical Chemistry and instrumentaltechniquesNumber of Credits: 04Total Hours: 60Effective from AY: 2023-24

Prerequisites Students should have studied chemistry courses at MSc-I.

Course	1.To introduce various aspects of research methodology.	
Objective:	2. To provide understanding ethics & scientific conduct	
	3. To introduce academic writing	
	4. To introduce databases used in chemistry	
	5. To provide understanding and importance of lab safety.	
	6.To understand the usefulness of various instrumenta	I techniques in
	characterization of chemical compounds.	
	7. To provide knowledge about tissue culture for pharmacol	ogical screening
	methods.	0 0
Course	1. Students will be able to apply the concepts of researc	ch methodology
Outcome:	during their research work.	0,
	2. Students will be able to apply computer technology	to solve their
	research problems in chemistry.	
	3. Students will know in advance the safety precautions to	be taken in the
	chemical lab.	
	4. Students will gain fundamental knowledge on	characterization
	techniques	
	5 Students will acquire adequate knowledge on animal tiss	ue culture.
Content		Hours
Unit 01. Intro	duction to Research Methodology	5
	ch- meaning objectives motivation types and	5
a. Resear	dology	
h Proces	s, formulating the research problem: literature survey:	
develo	ning the hypothesis and the research design: sample design	
and co	lection of the data: execution of the project: analysis of	
data: t	esting of hypothesis: generalizations and interpretation	
and pr	encrypting of hypothesis, generalizations and interpretation,	
	rions	
	tific conduct and othics	C
	inc conduct and ethics	5
d. EUN	ics with respect to science and research	
Euri b Inte	alloctual honocty and research integrity	
D. IIIU	enectual nonesty and research integrity	
	cinetian (FED)	
	gidiisiii (FFP)	
u. Red	aunuant publications. duplicate and	
	enappingpublications	
e. Sel	ective reporting and misrepresentation of data	-
	ernic writing	5
a. Publica	ition ethics: definition, introduction and importance	
	ts of interest	
c. Publica	ition misconduct: definition, concept, problems that lead to	
unethi	cal behaviour and vice versa	
d. Violatio	on of publication ethics, authorship and contributorship	
e. Identif	ication of publication misconduct, complaints and appeals	
t. Predat	ory publishers and journals	
Unit 04. Data	bases and research metrics	3

		ر
Databases: 1.	Indexing databases 2. Citation databases: Web of Science,	
Scopus, UGC-C	are List etc.	
Research Met	rics: 1. Impact Factor of journal as per Journal Citation	
Report, SNIP, S	sin, IPP, Cite Score 2. Metrics. II-index, g index, 110 index etc	F
Onit UB. Salet	y in Chemistry	5
a. Good a	aboratory practices.	
D. Handin	ad fighting with fires	
d Hazard	ous substances classification and handling	
e. Safety	Data Sheet	
Unit 06. Softw	vares in Chemistry	7
a. Data p	lotting	-
b. Structu	ire Drawing	
c. Molecu	lar docking softwares	
5. Instrumenta	al methods of analysis:	20
Demonstratio	n and/ or data analysis in following techniques.	
a. Elemer	ntal analysis: CHNS analysis and AES	
b. Infrare	d (IR), Raman, Ultraviolet-Visible (UV-Vis)	
c. Nuclea	r magnetic resonance (¹ H, ¹³ C)	
d. Chrom	atographic techniques: HPLC, GC,	
e. Hyphei	nated Techniques: LC-MS & GC-MS,	
f. Diffrac	tion methods: XRD	
g. Therma	al analysis: DSC	
6. Animal Tiss	ue Culture for pharmacological screening	10
a. Basic	concepts	
b. Labor	atory safety and Biohazards	
c. Role o	of media components	
d. Hand	ling and storage of cell lines	
e. Cell c	ulture technique	
f. Type	s of cell culture system	
Peaagogy	Mainly lectures/recorded video lectures/ tutorials, discus	sions, seminars,
	of some of those JCT mode should be preferred. Soc	
	interactive in nature to enable near group learning	sions should be
Textbooks/	1 C. P. Kothari, Research Methodology: Methods & Tech	niques New Age
References /	International Pvt 1td 2004	inques new Age
Readinas	2 Bird A Philosophy of Science London: Routledge 2006	
neuungs	3 Anne M. Coghill&Iorrin R. Garson, The ACS Style	Guide: Effective
	Communication of Scientific Information. OXFORD U	Jniversity press
	2006.	/
	4. Y K Singh Fundamentals of Research Methodology & Sta	itistics, New Age
	International Pvt. Ltd., 2006.	~
	5. Prudent practices in the laboratory: handling and r	management of
	chemical hazards, The National Academies Press, USA, 2	2011.
	6. B.S. Furniss, A.J. Hannaford, V. Rogers, P.W.G. Smith 8	& A. R. Tatchell.
	Vogel'sTextbook of Practical Organic Chemistry, 5 th Ec	l., ELBS London,
	2007.	

7. E.A. V. Ebsworth, D. W. H. Rankin & S. Craddock, Structural Methods in
Inorganic Chemistry, ELBS, 1987.
8. R.S. Drago. <i>Physical Methods in Chemistry</i> , W. B. Saunders Company,
2016.
 R. M. Silverstein, G. C. Bassler & T.C. Morrill, Spectrometric Identification of organic Compounds, 5thEd., John Wiley 1991
10.J. Mendham, R.C. Denny, J. D. Barnes & M. Thomas, Vogel's Textbook of
Quantitative Chemical Analysis6 th Ed.,Pearson Education Asia, Delhi, 2002.
11.H. V. Keer. <i>Principles of the Solid State</i> new Age International, 1994
12.G.D. Christian, <i>Analytical Chemistry</i> , 6 th Ed., Wiley, 2004.
13.D. A. Skoog, D. M. West, F. J. Holler & S. R. Crouch. Fundamentals of
Analytical Chemistry Cengage learning 9 th Ed., 2013.
14.D. A. Skoog, F. J. Holler & S. R. Crouch. Principles of Instrumental
Analysis, 7 th Ed., Cengage learning 2017
15.D. Pavia, G. Lampman, G. Kriz& J. Vyvyan, Introduction to Organic
Spectroscopy 5 th Ed, Cengage Learning, 2015.
16.V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI
Learning Pvt. Ltd., 2013.
17.A. Szabo & N. S. Ostlund, Modern Quantum Chemistry Introduction to
Advanced Electronic Structure Theory, Dover Publications, Inc. Mineola, New York 1989
18 F.D. King Medicinal Chemistry: Principles and Practice Royal Society of
Chemistry, 1994.
19.K.V. Raman, <i>Computers in Chemistry</i> , Tata Mc.Graw Hill, 1993.
20.S.K Pundir, A. Bansal, <i>Computers for Chemists</i> , PragatiPrakashan, 2010.
21.A. Leach, Molecular Modelling, Principles and applications, Longman
Publications, 1998.
22.R. R. Spier, J. B. Griffiths, Animal Cell Biotechnology, Academic Press,
London, 1990.
23.E. J. Gareth, Human Cell Culture Protocols, Humana Press.1996.
24.E. Julio, Celis, Cell Biology-A Laboratory Hand Book, Vol. I-IV, 2 nd Ed.,
Academic Press, New York. 1998.
25.M. Butler, Animal Cell Technology, 2 nd Ed., BIOS Scientific Publishers, U.K.
2004.
26.R. T. Freshney, <i>Culture of Animal Cells</i> , 5 th Ed., John Wiley and Sons, New
York. 2006.

Programme: M.Sc. Part-II (Pharmaceutical Chemistry) Course Code: CHCD-511 Title of the course: Discipline Specific Dissertation Number of Credits: 16Total Hours: 480 Effective from AY: 2023-24

Prerequisites for
the course:Students should have studied chemistry courses at MSc-I.Course Objective:To develop the skills of preparing and conducting independent research.

Course Outcon	ne: Students will be able to understand and apply	the tools and techniques of
	chemistry in conducting independent research.	
Content		Hours
As per OA-35		480
Pedagogy	Dissertation carried out individually by each student throughout the academic year.	
Textbooks/	As required for the development of review and method	Jology.
References /		
Readings		

Annexure III

Programme: Ph.D. Chemistry Paper-I Syllabus Title of the course: **Research Methodology** Number of Credits: **04**Total Hours: **60** Effective f

Effective from AY: 2022-23

PrerequisitesProvisional registration for PhD in ChemistryCourse Objective:1. To introduce research students to various aspects of research methodology.2. To provide understanding of various databases used in chemistry for literature survey 3. To provide fundamental roles of computers in chemical research 4. To provide understanding and importance of lab safety.5. To make students aware of the statistical methods used in chemical research.6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds.Course Outcome:1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
Course Objective:1. To introduce research students to various aspects of research methodology.2. To provide understanding of various databases used in chemistry for literature survey 3. To provide fundamental roles of computers in chemical research 4. To provide understanding and importance of lab safety. 5. To make students aware of the statistical methods used in chemical research. 6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds.Course Outcome:1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
 2. To provide understanding of various databases used in chemistry for literature survey 3. To provide fundamental roles of computers in chemical research 4. To provide understanding and importance of lab safety. 5. To make students aware of the statistical methods used in chemical research. 6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds. Course Outcome: 1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research 		
literature survey3. To provide fundamental roles of computers in chemical research4. To provide understanding and importance of lab safety.5. To make students aware of the statistical methods used in chemical research.6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds.Course Outcome:1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
3. To provide fundamental roles of computers in chemical research 4. To provide understanding and importance of lab safety. 5. To make students aware of the statistical methods used in chemical research. 6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds. Course Outcome: 1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
4. To provide understanding and importance of lab safety. 5. To make students aware of the statistical methods used in chemical research. 6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds. Course Outcome: 1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
5. To make students aware of the statistical methods used in chemical research. 6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds. Course Outcome: 1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
research. 6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds. Course Outcome: 1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
6. To understand the usefulness of various instrumental techniques in characterization of chemical compounds.Course Outcome:1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
characterization of chemical compounds.Course Outcome:1. Students will be able to apply the concepts of research methodology 2. Students will be able to apply computer technology to solve their research		
Course Outcome:1. Students will be able to apply the concepts of research methodology2. Students will be able to apply computer technology to solve their research		
2. Students will be able to apply computer technology to solve their research		
problems in chemistry.		
3. Students will take safety precautions in chemical lab.		
4. Students will apply statistical methods of data handling in their research.		
5. Students will be able to apply characterization techniques for sample		
analysis.		
Content Hours		
1. Introduction to Research Methodology 10		
a) Research-meaning, objectives, motivation, types and methodology.		
b) Process- formulating the research problem: literature survey:		
developing the hypothesis and the research design: sample design and		
collection of the data: execution of the project: analysis of data: testing		
of hypothesis: generalizations and interpretation, and preparation of		
the report or presentation of the results & conclusions		
c) Nature of scientific information- types of books, types of presentations		
c) Nature of scientific finormation- types of books, types of presentations		
published in journals, standard format for reporting original research,		
the internet		
2. Role of Computers in Research and chemistry 10		
a) Applications of computers in research		
Applications of computer in Chemistry - Need of computers in chemistry-		
introduction & history: Introduction to programming & programming		
languages: Solving a problem with computers- algorithm flowchart and		
program: Use of software for data bandling plotting graphs and drawing		
molecular structures, visualisation of 2-D data; Software for literature		
survey software for reference citing		
b) Optimication techniques and applications in melocular geometry		
optimisation rechniques and applications in molecular geometry		

3. Safety aspects in the	8			
a) Introduction to lab safety.				
b) Handling of va	b) Handling of various chemicals, solvents & glassware.			
c) Fires and fight	c) Fires and fighting with fires.			
d) Hazardous su	bstances, classification and handling			
e) Safety data sh	neet			
4. Introduction to Statistical methods 10				
a) Errors & their				
b) Application of) Application of statistical methods to data treatment & evaluation.			
c) Confidence lir	c) Confidence limits; hypothesis testing.			
d) F-tests, Chi sq	d) F-tests, Chi square test, correlation and linear regression.			
e) Use of softwa	e) Use of software for statistical analysis.			
5. Instrumental meth	nods of analysis	22		
Data analysis in following techniques:				
a) Elemental and	alysis: CHNS analysis and AES			
b) Infrared (IR), I	Raman, Ultraviolet-Visible (UV-Vis)			
c) Nuclear magn	etic resonance (¹ H. ¹³ C)			
d) IC-MS. GC-MS				
e) X-ray diffracti	on			
f) Thermal analysis: TG/DTA				
g) Microscopy: S	SEM TEM			
b) Methods for determination of magnetic & dielectric properties				
i) Cyclic yoltami	metry			
i) AFM	i cu y			
k) BFT				
Pedaaoay	Mainly lectures/recorded video lectures/ tutorials disc	russions seminars		
/ cuugogy	internal exams/ assignments / self-study or a combination	n of some of these		
	ICT mode should be preferred. Sessions should be inter	active in nature to		
	enable neer group learning			
Texthooks/	1 C B Kothari Research Methodology: Methods & Tec	hniques New Age		
References /	International Pvt 1td 2004	iniques, item rige		
Readinas	2 M Coghill & L B Garson The ACS Style Guide: Effecti	ive Communication		
Reddings	of Scientific Information American Chemical Society	Washington DC &		
	OXEORD University Press New York 2006			
	2 V K Singh Fundamentals of Desearch Mathedalactic	2. Statistics Now		
	Age International Dut 1td 2006	x Julislics, New		
	Age international Fvi. Llu., 2000.	horatory handling		
	4. National Research Council, Provent procees in the la	A and a mine Drace		
		Academies Press,		
	USA, 2011.			
	5. B. S. Furniss, A. J. Hannaford, P. W. G. Smith & A. R. T	atchell, <i>Vogel's</i>		
	Text book of Practical Organic Chemistry, 5 ^m Ed.; Lon	gman, 1989		
	6. E. A. V. Ebsworth, D. W. H. Rankin & S. Craddock, <i>Str</i>	uctural Methods in		
	Inorganic Chemistry, Blackwell Scientific Publishers, 1	.986		
	7. R. S. Drago, <i>Physical Methods in Chemistry</i> , 2 nd Ed. W	. B. Saunders Co.		
	Ltd. 2016			

 R. M. Silverstein, F. X. Webster; Spectrometric Identification of Organic Compounds; 6th Ed, Wiley, 2011.
9. J. Mendham, R. C. Denny, J. D. Barnes & M. Thomas, <i>Vogel's Textbook of Quantitative Chemical Analysis</i> , 6 th Ed.; Pearson Education Asia, 2002.
 H. V. Keer, Principles of the Solid State, 1st Ed. (Reprint 2005); New Age International (P) Ltd., 1993.
11. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
12. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, Fundamentals of
Analytical Chemistry, 9 th Ed.; Cengage learning.
 A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 7th Ed.; Cengage learning.
14. Pavia, G. Lampman, G. Kriz and J. Vyvyan, Introduction to Organic
Spectroscopy, 5 th Ed.; Cengage Learning, 2015.
15. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T.
Eisenhart, and J. L. Dempsey, A Practical Beginner's Guide to Cyclic
<i>Voltammetry</i> , J. Chem. Educ. 2018, 95, 197–206.
 V. Rajaraman, Computer Programming in Fortran 90 And 95, PHI Learning Pvt. Ltd., 2013.
17. A. Szabo, N. S. Ostlund, <i>Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory</i> , Dover Publications, Inc. Mineola, 1989.