GOA UNIVERSITY Taleigao Plateau, Goa 403 206

UPDATED ADDITIONAL AGENDA

For the 6th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Monday 15th May 2023 & Monday, 22nd May 2023

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administrative Block Goa University

		15 & 22.05.2025
	a) Scheme of B. E. (Electronics and Computer Science) a Semester III and IV of B. E (Electronics and Computer Annexure I Refer page No. 2161.	
	 Electronics and Computer Engineering b) Modified scheme of B. E. (Electronics and Computer E subjects of Semester V and VI of B. E. (Electronics ar enclosed as <u>Annexure II</u> Refer page No. 2199. 	
	c) Curtailed syllabus of the subject Electronic and Devices of B. E. (Electronics and Computer Engineering) enclo page No. 2261.	
	d) Modified Scheme for semester IV of B. E. (Electronics enclosed as a part is to be implemented in the current total credits of 160.	
	i. The declaration by the Chairman that the minutes were the meeting itself.	readout by the Chairman at
	Date: 27.04.2023	Sd/-
	Place: PCCE, Verna	(Dr. Jayalaxmi Devate)
		Signature of the Chairperson
	Part G. The Remarks of the Dean of the Faculty	Signature of the enalperson
	i. The minutes are in order.	
	ii. The minutes may be placed before the Academic Cou	ncil with remarks if any.
	iii. May be recommended for approval of Academic Cour	
	iv. Special remarks if any.	
		Sd/-
	Date: 27.04.2023	Prof. Vinayak N. Shet
	Place: PCCE, Verna	Signature of the Dean
		<u>(Back to Index)</u>
D 3.40	Minutes of the combined Meeting of the Board of Studi	es in Computer Science and
	Board of Studies in Data Science held on 12.04.2023.	
	Part A.	
	 Recommendations regarding courses of study in the su the undergraduate level: 	
	a. Major, Minor, Multidisciplinary Courses (MC) and	
	(SEC) for the 4 year UG Honors with Computer Scier	nce as single Major as per the
	proposed programme structure under NEP	
	 b. Major, Minor, Multidisciplinary Courses (MC) and (SEC) for the 4 year UG Honors with Computer Ap per the proposed programme structure under NEP. 	pplications as single Major as
	 Recommendations regarding courses of study in the su the postgraduate level: 	ubject or group of subjects at
	a. MSc-Integrated Data Science updated Syllabus for	4 th and 5 th year with 1 credit
		•

equal to 12 hours redone and submitted based on recommendation of Academic Council.

- b. MCA updated programme structure merging theory and practical for elective papers as suggested in the previous BOS and the SY Syllabus
- c. Two year Masters in Data Science as per NEP guidelines has been approved by BOS. The Eligibility Criteria, programme structure and FY Syllabus placed for approval
- d. Two year Masters in Artificial Intelligence as per NEP guidelines has been approved by BOS. The Eligibility Criteria, programme structure and FY Syllabus placed for approval.

Part B

- i. Scheme of Examinations at undergraduate level: NIL
- ii. Panel of examiners for different examinations at the undergraduate level: NONE
- iii. Scheme of Examinations at postgraduate level: NIL
- iv. Panel of examiners for different examinations at post-graduate level: NONE

Part C.

1. Recommendations regarding preparation and publication of selection of reading material in the subject or group of subjects and the names of the persons recommended for appointment to make the selection: NIL

Part D

- i. Recommendations regarding general academic requirements in the Departments of University or affiliated colleges: NIL
- ii. Recommendations of the Academic Audit Committee and status thereof: NONE

Part E

- i. Recommendations of the text books for the course of study at undergraduate level: Placed References for each course
- ii. Recommendations of the text books for the course of study at post graduate level: Placed References for each course

Part F. Important points for consideration/approval of Academic Council

- i. The important points/recommendations of BoS that require consideration / approval of Academic Council (points to be highlighted) as mentioned below -
- a. Major, Minor, Multidisciplinary Courses(MC) and Skill Enhancement Courses(SEC) for the 4 year UG Honors with Computer Science as single Major as per the proposed programme structure under NEP placed as <u>Annexure I</u> Refer page No.2264. *Major 4 credits Theory revised to make it 3 credits for Theory and 1 credit for Practical.*
- b. Major, Minor, Multidisciplinary Courses(MC) and Skill Enhancement Courses(SEC) for the 4 year UG Honors with Computer Applications as single Major as per the proposed programme structure under NEP placed as <u>Annexure II</u> Refer page No.2325. *Major 3 credits Theory and 1 credit Tutorial revised to make it 3 credits for Theory and 1 credit for Practical.*

	15 & 22.05.20	23
	 c. MSc-Integrated Data Science for batches admitted during academic year 2020-22 2021-22 and 2022-23, updated Structure with 1 credit equal to 12 hours based recommendation of Academic Council placed as <u>Annexure III</u> (Refer page No. 2363) d. MCA updated programme structure merging theory and practical for elective pape and the SY Syllabus of all core and elective courses placed as <u>Annexure IV</u> Refer page No.2450. e. New two year PG Masters in Data Science degree programme as per NEP guideline has been approved by BOS. The Eligibility Criteria, programme structure and Syllabus placed as <u>Annexure V</u> Refer page No. 2519 for approval from Academ Council. f. New two year PG Masters in Artificial Intelligence degree programme as per N guidelines has been approved by BOS. The Eligibility Criteria, programme as per N guidelines has been approved by BOS. The Eligibility Criteria, programme structure and FY Syllabus placed as <u>Annexure VI</u> Refer page No. 2553 for approval from Academic Council. ii. The declaration by the Chairperson that the revised BOS minutes were shared over email with all members. 	on 2) ers fer nes FY nic EP ure Dm
	Date: Goa University Signature of the Chairperso	n
	 Part G. The Remarks of the Dean of the Faculty i) The minutes are in order ii) The minutes may be placed before the Academic Council with remarks if any. iii) May be recommended for approval of Academic Council. iv) Special remarks if any. 	
	Place:12.04.2023 Sd/-	
	Date: Goa University Signature of the Dea	an
	(Back to Inde	ex)
D 3.41	Minutes of the Board of Studies in Agriculture meeting held on 07.04.2023 Part A.	
	i. Recommendations regarding courses of study in the subject or group of subjects the undergraduate level: Nil	
	ii. Recommendations regarding courses of study in the subject or group of subjects the postgraduate level: Nil	at
	Part B	
	i. Scheme of Examinations at undergraduate level: Nil	
	ii. Panel of examiners for different examinations at the undergraduate level: Nil	
	iii. Scheme of Examinations at postgraduate level: Niliv. Panel of examiners for different examinations at post-graduate level: Nil	
	Part C.	

D 3.40 Minutes of the combined Meeting of the Board of Studies in Computer Science and Board of Studies in Data Science held on 12.04.2023.

Annexure I

Sem	Major -Core								Total	
ester	(3T + 1 P)	Minor (4 T)	MC (3 T)	AEC	SEC (1 T + 2 P)	I	D	VAC	Credits	Exit
	Major- 1	Minor -1	MC-1		SEC-1					
	CSC-100	CSC 111 E-	CSC 131		CSC 141 PC					
	(Introduction	Commerce	Emerging		Troubleshooting					
	to	OR CSC	Trends in		OR CSC 142					
	Computational	112 (Computers		Multimedia and					
	Thinking and	Computer	OR		Web Design					
	Programming)	Software	CSC 132		OR CSC 143					
		Fundamentals	Computer		Data Analytics					
1)	Applications		using					
					Spreadsheets -I					
					OR CSC 144					
					Desktop					
					Publishing					
					OR CSC 145					
					Basic Computer					
					Applications					
	Major-2	Minor-2	MC-2		SEC-2					
	CSC-101	CSC 113	CSC -133		OR CSC 146					
	(Computer	Digital	Cyber		Basics of Python					
	Organisation)	Marketing	Security		Programming					
		OR	Essentials		OR					
		CSC 114			CSC 147					
		Social Media			Graphical User					
		Marketing			Interface Design					
					OR					
					CSC 148 Data					
П					Analytics using					
					Spreadsheets -II					
					OR					
					CSC 149 Data					
					and Business					
					Analytics					
					OR					
					CSC 150					
					Database					
					Management					
					and Analysis					

UG Degree (Honors) Computer Science effective from 2023-24 Programme Structure for Semester I and II

Major Courses

SR No	Semester	Code paper Name	Credits
1	I	CSC 100 Introduction to Computational Thinking and Programming	4(3T+1P)
2	II	CSC 101 Computer Organization	4(3T+1P)
3	- 111	CSC 200 Programming using C ++	4(3T+1P)
4		CSC 201 Mathematical Foundations for Computer Science	4(3T+1P)
5	IV	CSC 202 Data Structures and Algorithms	4(3T+1P)
6		CSC 203 Object Oriented Technologies	4(3T+1P)
7		CSC 204 Operating System	4T
8		CSC 205 Operating System Lab	2Р
9	v	CSC 300 Database Management System	4T
10		CSC 301 Computer Networks	4(3T+1P)
11		CSC 302 Software Engineering	4(3T+1P)
12		CSC 303 DBMS Lab	2Р
13	VI	CSC 304 Cloud Computing	4(3T+1P)
14		CSC 305 Foundations of Data Science	4(3T+1P)

			15 & 22.05.	2023
15		CSC 306 Software Quality Assurance	4(3T+1P)	
16		CSC 307 Project	4	
17	VII	CSC 400 Design and Analysis of Algorithms	4(3T+1P)	
18		CSC 401 Artificial Intelligence	4(3T+1P)	
19		CSC 402 Formal Language and Automata Theory	4(3T+1P)	
20		CSC 403 Network Security	4(3T+1P)	
21	VIII	CSC 404 Machine Learning	4(3T+1P)	
22		CSC 405 Internet of Things	4(3T+1P)	
23		CSC 406 Introduction to Parallel Computing	4(3T+1P)	
24		CSC 407 Seminar	4(1T+3 Field Work)	

Std. Com.X AC-6

Minor Courses can be opted by students from any discipline

SR No	Semester	Code paper Name	Credits
1	I	CSC 111 E-Commerce CSC 112 Computer Software Fundamentals	4(T) 4(T)
2	II	CSC 113 Digital Marketing CSC 114 Social Media Marketing	4(T) 4 (T)
3	111	CSC 211 Problem Solving and Programming Concepts CSC 212 Office Administration CSC 213 Cyber Security	4 (3T + 1P) 4 (3T + 1P) 4 (3T + 1P)

			Std. Com.X AC-6 15 & 22.05.2023
4	IV (VET)	CSC 221 Introduction to Python Programming CSC 222 Visual Computing CSC 223 Multimedia Technologies	4 (3T + 1P) 4 (3T + 1P) 4 (3T + 1P)
5	V(VET)	CSC 321 Python for Data Science	4 (3T + 1P)
6		CSC 322 Image Processing	4 (3T + 1P)
7		CSC 323 Statistical Package	4 (3T + 1P)
8	VI (VET)	CSC 324 R Programming for Data Science	4 (3T + 1P)
9		CSC 325 Computer Graphics	4 (3T + 1P)
10		CSC 326 Business Intelligence	4 (3T + 1P)
11	VII	CSC 411 Ethical Hacking	4 (3T + 1P)
12	VIII	CSC 412 Operations Research	4 (3T + 1P)

Multidisciplinary Courses(MC) can be opted by students from any discipline

SR No	Semester	Code paper Name	Credits
1	I	CSC 131 Emerging Trends in Computers	3 (T)
2		CSC 132 Computer Applications	3 (T)
3	II	CSC 134 Multimedia Essentials (to be dropped as it needs 1 credit Practical, which is now not allowed for MC courses during FY.	3 (2T+1P)
4		CSC 135 Cyber Security Essentials	3 (T)
5	111	CSC 231 Web Designing	3 (2T +1P)
6		CSC 232 Application Software for Social Science	3 (2T +1P)

		<u>Std. Com.X</u> 15 & 22.05.	
7	CSC 233 Application Software for Science	3 (2T +1P)	
8	CSC 234 Application Software for Literature	3 (2T +1P)	
9	CSC 235 Latex	3 (2T +1P)	
10	CSC 236 3D Graphics Design	3 (2T +1P)	

Skill Enhancement Courses (SEC) can be taken by students from any discipline					
SR No	Semester	Code paper Name	Credits		
1	1	CSC 141 PC Troubleshooting	3 (1T+2P)		
		CSC 142 Multimedia and Web Design	3 (1T+2P)		
2		CSC 143 Data Analytics using Spreadsheets -I	3 (1T+2P)		
4		CSC 144 Desktop Publishing	3 (1T+2P)		
5]	CSC 145 Basic Computer Applications	3 (1T+2P)		
7	11	CSC 146 Basics of Python Programming	3 (1T+2P)		
		CSC 147 Graphical User Interface Design	3 (1T+2P)		
8		CSC 148 Data Analytics using Spreadsheets -II	3 (1T+2P)		
9		CSC 149 Data and Business Analytics	3 (1T+2P)		
10		CSC 150 Database Management and Analysis	3 (1T+2P)		
11		CSC 241 Mobile App Development	3 (1T+2P)		
12		CSC 242 Digital Marketing	3 (1T+2P)		
13	1	CSC 243 Embedded Systems	3 (1T+2P)		
14	1	CSC 244 Game Development	3 (1T+2P)		
	Į	1	1		

Skill Enhancement Courses (SEC) can be taken by students from any discipline

		<u>Std. Com.X</u> 15 & 22.05	
15	CSC 245 3D Modelling and Animation	3 (1T+2P)	
16	CSC 246 Data Management Essentials	3 (1T+2P)	
17	CSC 247 Inventory Management Software	3 (1T+2P)	
I	 (Back to Indov		l an da l

Name of the Programme: UG Degree (Honors) with Computer ScienceCourse Code: CSC-100Title of the Course: Introduction to Computational Thinking and ProgrammingNumber of Credits: 04 (3T + 1P)Number of contact hours: 45L + 30PEffective from AY: 2023-24

Pre-requisites for the Course:	Knowledge of basic mathematical concepts	
Course Objectives:	 The students will be able to: 1. Develop Problem solving skills 2. Foster Logical and Analytical thinking. 3. Enhance Computational skills. 4. Develop good Programming Skills 	
Theory: (45 hours)	 1. Introduction to Computational Thinking Computational Thinking: Objectives, definition, principles and applications. Logical Thinking and Algorithmic Thinking: Objectives and approach Ethics and Social implications: Bias and Fairness, sustainability 	5 hours
	 Introduction to Programming Problem Solving Life Cycle – Understanding the Problem Statement, Analyzing the problem, Planning Program design using Hierarchy charts, Expressing Program logic using flowcharts / Pseudocode. Structured Programming concept Modular Programming - Top-Down design, Bottom-up design, Stepwise Refinement 	4 hours

Std. Com.X AC-6 15 & 22.05.2023 6 hours 3. Understanding basic Program Designing Tools 1. Algorithms: Definition & its attributes, algorithm constructs, Statements: Input-Output, Decision-Making, &Looping, Examples 2. Flowchart: Definition & its attributes, symbols, Statements: Input-Output, Decision-Making & Looping, Module representation, Drawing conventions and standards, Examples. 3. Pseudo-code: Definition & its attributes, constructs, and Examples 10 ours 4. Basic Program Structures Data & its types (Integer, Floating-point, Character, String), Constants & Variables, scope, Instructions & its types, how computer stores data, Operators (Arithmetic, Assignment, Relational, Logical, etc), Expressions and Equations, Evaluation of expressions, Keywords. Local and Global Variables, Parameters, Return Values, naming conventions & standards, Understanding literals, syntax and semantics, functions and modules. The Decision Logic Structure, Multiple If/Then/Else Instructions, Using Straight-Through Logic, Using Positive & Negative Logic, Logic Conversion, Decision Tables, Case Logic Structure Arrays Concepts: One dimensional Arrays, Creating, iterating, accessing and modifying array elements. Concept of Strings, String as array of characters. The Loop Logic Structure, Incrementing, Accumulating, While/While End, Repeat/Until, Automatic-Counter Loop, Nested Loops, Indicators (flags). 5. Understanding functions 8 hours Functions: Definition and its need & constructs, designing simpler functions, function communication using arguments & return statements. scope of functions, function declaration and prototype, call by Value and Call by reference. Concept of Recursive functions: why, when and how. Designing recursive functions and recursive call. Base case and recursive case.

		. Com.X AC-6 & 22.05.2023
	6. Testing and evaluation Dealing with errors: Finding bugs, mitigating errors, deciding which errors to fix, Anticipating bugs, Verification and validation, Testing in parts, testing the whole, Debugging, Program state, Opportunities for improvement	7 hours
	7. Evaluating a solution Solution evaluation criteria, correctness, efficiency, feasibility, usability, trade-offs	5 hours
Practical: 30 hours	Using any suitable programming language (eg C, C++, etc.,), the concepts learnt in the units above are required to be implemented practically. The broad area of practical problems are mentioned / suggested below.	30 hours
	 8. Basic Program Structure At-least 10 basic programming problems related to be completed during the practical sessions. More programs may be given to the learners to complete and practice as part of their Practice Work. 	
	 9. Basic Sequential Instructions At-least 08 programming problems related to be completed during the practical sessions. More programs may be given to the learners to complete and practice as part of their Practice Work. 	
	 10. Programing using Conditional Constructs At-least 08 programming problems related to be completed using decision making constructs during the practical sessions. More programs may be given to the learners to complete and practice as part of their Practice Work. 	
	 11. Programming – Iterative constructs At-least 06 programming problems to be completed using iterative constructs during the practical sessions. More programs may be given to the learners to complete and practice as part of their Practice Work. 	
	 12. Understanding functions At-least 08 programming problems using functions to be completed during the practical sessions. More programs may be given to the learners to complete and practice as part of their Practice Work. 	

Pedagogy:	Lecture method need not be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. You may use Video/Animation to explain various concepts. Collaborative, Peer, Flipped Learning etc.	
Reference/Readings:	 Karl Beecher, Computational thinking: A beginner's Guide to problem solving and programming, BCS Learning and Development Limited Peter J. Denning and Matte Tedre, Computational Thinking, The MIT Press, Cambridge, Massachusetts, London, England G Venkatesh, Madhavan Mukund, Computational Thinking, Notion Press 	
Course Outcome:	 At the end of the course, students will be able to: 1. Use Problem Solving Skills. 2. Apply Logical and Analytical thinking. 3. Develop Computational Skills and Creativity. 4. Apply Computational thinking to solve real world problems. 	

Name of the Programme: -**UG Degree(Honors) with Computer Science** Course Code:**CSC-101** Title of the Course: **Computer Organization** Number of Credits: **4**

Effective from AY: 2023-24

Pre-requisites for the Course:	Nil
Course Objectives:	 Conceptualize the basics of Computer Organizational and Architectural issues and classify the computers based upon performance and machine instructions. Learn various data transfer techniques and the I/O interfaces Estimate and compare performances of various classes of memory Understand the basics of ALU implementation, hardwired and microprogrammed control unit, pipelining and parallel architectures
Theory:	 Introduction to Logic Gates and Boolean Algebra: 4 hours Logic Gates, Boolean Algebra, Combinational circuits, Karnaugh Map

	 Introduction to Computer Architecture: Introduction to Computer Architecture, Flynn's Classification of Computers, Performance Metrics (like Latency, throughput), Fundamental Blocks of Computer (like CPU, I/O subsystems, memory, control unit), computer function, interconnection 	Std. Com.X AC-6 15 & 22.05.2023 8 hours
	 structures, Bus interconnections Instruction Set Architecture (ISA): Introduction to Instruction Set, Types of ISA; RISC, CISC; Processor Organization, Registers organization, Instruction Execution Cycle, Instruction formats, Addressing Modes; Register Transfer Language (RTL), Assembly Language Programming, X86 -Architecture, ARM Architecture 	13 hours
	 Memory Hierarchy: Hierarchical memory organization, Types of Memory-internal and external, Cache memory, Memory interleaving, 	5 hours
	 Data representation: Data Type Representation, Number System, Signed number, fixed, floating point, character representation, Addition, Subtraction, Multiplication - Shift and Add, Booth's Algorithm, Division 	7 hours
	 Peripheral devices: Types of Peripheral Devices, I/O subsystem, programmed I/O, Interrupt-driven I/O, DMA, I/O channels and processors 	8 hours
Practical:	 Sample Assignments for the Practical Component - 1. Introduction to 8086 architecture and instruction set and Writing assembly language programs in 8086 using MASM or compatible assembler either in windows or Linux 2. Find the sum of 1 + 2 + 3 + n 3. Display the multiplication table of a number 4. Store and retrieve numbers from memory 5. Sort the numbers stored in the memory 6. Installing Linux / Windows Operating System, Partitioning and formatting disk, Installing 	30 hours

		Std. Com.X AC-6 15 & 22.05.2023
	 applications device drivers, working with files, mounting file systems, checking system space, creating, modifying and deleting user accounts 7. Study of Linux Commands 8. Shell Programming in Unix/Linux, arithmetic operations, loops, files Ex. Write a BASH shell script prime which will accept a number b and display first n prime numbers in standard output. 9. Shell scripting using general-purpose utilities. Ex. A) Write a menu driven shell script which will print the following menu and execute the given task to display result on standard output. Display calendar of current month Display today's date and time Display your name at given x, y position Display your terminal number Exit 10. Shell programming using filters (including grep, egrep, fgrep) 	
Pedagogy:	PowerPoint, Tutorials, Hybrid learning	
References/ Readings:	 Computer Architecture: A Quantitative Approach by John David A. Patterson, 5th Edition, Morgan Kaufmann William Stallings, "Computer Organization and Architect for Performance", 9th Edition, Prentice Hall of India. 	
Course Outcomes:	 At the end of the course, students will be able to: 1. Explain the theory and architecture of central process and memory organization 2. Analyze some of the design issues in terms of speed, t cost, performance, CPU architecture. 3. Describe the concepts of parallel processing, pipelinin interprocessor communication. 4. Represent different number systems, and perform van operations 	echnology, g and

Name of the Programme: Students from any Programme can opt for this Course Code: CSC-111 Title of the Course: E-Commerce Number of Credits: 4 (4 Theory) Effective from AY: 2023-24

Pre-requisites for the Course:	None	
Course Objectives:	 This Course aims - To develop an understanding of Web-based Commerce To equip students to assess-commerce requirements of a b To enable students to develop - business plans and e-commapplications 	
Content:	 Introduction to Electronic Commerce Meaning, Nature and scope of e-commerce, History of e- commerce, Business applications of e-commerce, E- CommerceModels:-(B2B,B2C,C2C,B2G),Advantages and Disadvantages of e-commerce, Applications of M- Commerce 	6 hours
	 E-Commerce Web-sites Websites as marketplace, Role of website in B2C e- commerce, Website design principles, Alternative methods of customer communication such as e-mail, Email etiquette and e-mail security 	6 hours
	3. Online Marketing Online marketing and advertising, Push and pull approaches, Web counters, Web advertisements, Content marketing, Need of Digital Marketing for an e- commerce Business, Search Engine Optimization(SEO),Search Engine Marketing(SEM),Social Media Marketing(SMM), Web Analytics	10 hours
	4. Applications of E-commerce Applications of e-commerce to Supply chain management Applications of e-commerce to Customer Relationship Management, Product and service digitization, Remote servicing	6 hours
	5. Business to Consumer E-CommerceApplications Cataloguing,Order planning and order generation,Cost estimation and pricing,Order receipt and accounting,Order selection and prioritization,Order scheduling,Order fulfilling,Order delivery,Order	6 hours

	<u>Std. Con</u> 15 & 22.	
	billing, Post sales service	
	6. BusinesstoBusinessE-Commerce Need and Models of B2B e-commerce,Using public and private computer networks for B2B trading; EDI and paperless trading, Characteristic features of EDI service arrangement,EDI architecture and standards,Reasons for slow acceptability of EDI,Value Added Networks	10 hours
	7. ElectronicPaymentSystem Types of payment systems, credit cards, debit cards, mobile all etc,Electronic Fund Transfer(EFT),Operational credit and legal risk of e-payment,Risk management options for e-payment systems	6 hours
	8. Security Issues in E-Commerce Risks of e-commerce,Types and sources of threats to e- commerce;Protecting electronic commerce assets and intellectual property,Firewalls,Client server network security,Security Protocols–SSL,SET,S-HTTP,Data and message security,Security tools, Digital identity and electronic signature, Encryption and concept of public and private key infrastructure;Risk management approach to ecommerce security	10 hours
Pedagogy:	PowerPoint presentations, Case studies	
References/ Readings:	 ReferenceBooks: Agarwala,KalesN.,AmityAll DeekshaAgarwala, Business on the Net: An Introduction to the Whats and How Commerce,Macmillan India Ltd, 2000 Diwan, Pragand Sunil Sharma, Electronic Commerce- A Marguide to E Business,Vanity Books International, Delhi. Fitzgerald, Business Data Communication Network, McGrav 1998. Kalakota,Ravi and Andrew.Whinston, Frontiers of Electroni Commerce, Addison Wesley, 1999. Dishek J. Mankad,Understanding Digital Marketing: Strateg online success, 2019 NPTELResources: https://nptel.ac.in/content/storage2/courses/106108103/pdf/PPT.pdf 	nager's wHill, c gies for

Course Outcomes:	On completion of the course students will be able to:-
	1. Describe the basics of e-commerce.
	2. Explain the design principles of e-commerce websites.
	3. Explain the different models of e-commerce.
	4. Describe the different electronic payment systems.
	5. Explain the security issues, security mechanism and threats to e-
	commerce applications.

(Back to Index) (Back to Agenda)

Name of the Programme: **Students from any discipline can opt for this** Course Code: **CSC 112** Title of the Course: **Computer Software Fundamentals** Number of Credits: **4 (4T)** Effective from AY: **2023-24**

.

Pre-requisites for the Course:	Nil	
Course Objectives:	This course will enable the student to gain an understanding of concepts and technologies which constitute Information Technology	
Content:	Unit I : Introduction of IT Information: Prerequisites of Information, Need for Information Technology and its advantages;Information Technology: Definition and components Basic Computer Organization Application of IT (Science and Engineering, Business & Commerce, Education, Governance, Medicine, Entertainment)	5 hours
	 Unit II : Data And Information Data and Information: Definition, Types of data, Qualities of Information Data Representation: Character formats- ASCII, Unicode (Definition, Adding regional languages, Phonetic keyboards Number system: Binary, decimal, Conversion Data Organization: Directory structure, File formats and Compression (Text, Audio, Image, Video) Data Backup: Techniques, Scheduler, Online backup, Advantages Device Interfaces and Data Storage: Data device Interface access methods (USB, IDE /SATA), Optical memory (Blue ray), Flash memory (USB Sticks, Memory Cards, SD, MMC, Micro SD), Magnetic Memory (External disks), New Devices (Solid state drives) 	15 hours

		<u>Com.X AC-6</u> & 22.05.2023
	 Unit III : Software: System and Applications Relationship between Hardware and Software Programming Languages: Low level, High level, Translators System Programs: Operating systems: Operating systems Definition and functions of operating system, Examples of operating System (Windows, Linux, Online OS, Virtual OS, Comparison), Multi boot systems (disk partitions and logical drives) Directory Structure: System directories, Users (administrator, limited rights user and guest), User directories (directory permission) Services, drives and hardware interfaces Application Programs : Definition , Examples Introduction to Mathematical Computation Packages Human computer interaction (HCI) 	15 hours
	 Unit IV : Basics of Computer Networking and data communication Networking basics, why networking of computers is needed, Types of networks-LAN, MAN, WAN, Network Components – H/W, Software, Communication channels, Network Devices, Network topologies. Communication Process, Data Transmission speed, Communication Types (modes) Internet – role and importance, IF Addressing – public Vs Private, Static Vs Dynamic; WWW & related protocols; 	hours
	 Unit V : Future IT trends Artificial Intelligence (AI) and Automation (Definition, Applications) IoT and Edge Computing Cloud Infrastructure Virtual reality & Augmented Reality Business Intelligence 	10 hours
Pedagogy:	Lecture method using ICT tools	
References/ Readings:	 A. Goel, Computer Fundamentals, Pearson Education, 2010 P. Aksoy, L. DeNardis, Introduction to Information Technolo Cengage Learning, 2006 P. K.Sinha, P. Sinha, Fundamentals of Computers, BPB Publi 2007 	gy,

Course Outcomes:	At the end of the course, learner will be able to: 1. Explain basic concepts and terminology of information technology.	
Outcomes.	 Explain basic concepts and terminology of miorination technology. Explain basics of personal computers and their operations. 	
	 Identify various I/O devices, storage and networking devices Familiarize with recent trend of IT 	

Name of the Programme:	Students from any Programme can opt for this
Course Code: CSC-113	
Title of the Course: Digital	Marketing
Number of Credits: 4 (4 Th	eory)
Effective from AY: 2023-24	4

Pre-requisites for the Course:	None		
Course Objectives:	 marketing & advertising To understand and familiarize the students with the concept Marketing techniques like Adwords, search advertising, disp advertising. 	To understand and familiarize the students with the concept of Digital Marketing techniques like Adwords, search advertising, display	
Content:	 Fundamentals of Digital Marketing Marketing in the digital world; Integrated marketing- The Phygital; Global trends inDigital Marketing; Digital channels- Paid, Owned and Earn; Fundamentals on the primary asset-yourwebsite; Careers in digital marketing; Skill development in Digital marketing 	5 hours	
	2. Ad Words Fundamentals Understanding Pay-per-click Advertisement; Significance and evolution of Ad Words in PPC Bing Ads V/s Google Ads- overview; AdWords Certification- Overview, Benefits and Preparation; Google Ad Networks; Different Ad Formats;Keywords - significance and planning; Using Keyword Planner and other tools; Keyword matches and their usage; Campaign Structure and Organization Quality, Rank and Relevance of Ads; Bidding and budget; Targeting Setting Extensions and their usage; Ad policies and approvals; Reports and Analysis Metrics; Conversion Tracking; Campaign Optimization	10 hours	
	 Search & Display Advertising with Adwords Search with Adwords Keywords - planning, matching and combination; Specifications of an Ad and how to put it to 	15 hours	

	<u>Std. Con</u> 15 & 22.	
	good use; Managing Invalid Clicks; Ad extensions and usage; Dynamicsearch ads; Landing page - your virtual front; Campaign Experiment; Opportunities Tab; AdWords APIs; Ad Words editor-Benefits and usage; Managing multiple accounts Display with Adwords Google Display Network and Partnerships; Double click Ad Exchange and AdSense Campaign Creation and Structuring for display; Keyword and targeting through display network; Campaign Metrics, Analysis and optimization	
	4. SEO Basics How search engines work; Different Search results and significance; Query types and significance; What is SEO and key factors determining the same; Components on SEO-onsite and off page; Keyword Planning; Using tools to get effective keywords; Long tail keywords-the hidden gems; Art and science of tags-URL, title, meta, H1, alt text, etc.; Write a good meta description; Page speed - its impact and improvement areas; All about links- broken, internal et al; Dealing with duplicate content; Robot. Txt and Sitemap; Structured data and schema.org	15 hours
	5. SEO Advance Concepts Link building basics; Avoiding harmful links; Finding and leveraging link building opportunities; Creating a link building plan; Major Google updates and their implication son SEO; Using Search Console for SEO; KPIs of SEO; Tools for SEO; Moz SEO Products; SEM rush Competitive Research and Business Intelligence Software; Competition Analysis for SEO; Overall planning for SEO; Understanding nuances of local and international SEO; Accelerated mobile pages and SEO; Artificial Intelligence,Voice search and SEO–what to look forward	15 hours
Pedagogy:	PowerPoint presentations, Case studies	

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

	15 & 22.05.2023
References/	Recommended Reference Books:
Readings:	1. Dave Chaffey & Fiona Ellis-Chadwick, DigitalMarketing: Strategy,
	Implementation and Practice, Pearson Education
	2. Ekaterina Walter, The Power of Visual Storytelling, McGraw-Hill
	Education
	 Ben Hunt, Convert!: Designing Websites For Traffic and Conversions, John Wiley & Sons
	 Lon Safko, The Social Media Bible: Tactics, Tools, & Strategies for Business Success, Brilliance Audio; Unabridged Edition
	5. Pam Didner, Global Content Marketing, McGraw-Hill Education
	6. Joe Pulizzi, Content Inc.: How Entrepreneurs Use Content to Build
	Massive Audiences and Create Radically Successful Businesses, McGraw- Hill Education
	7. Mike Monteiro, You're My Favorite Client, A Book A part
	8. Seth Godin, All Marketers Are Liars, Portfolio
	 JayBaer, Youtility: Why Smart Marketing Is About Help Not Hype, Portfolio
	10. Russell Glass & Sean Callahan, The Big Data-Driven Business, Wiley
	11. Damian Ryan and Calvin Jones, Understanding Digital Marketing:
	Marketing Strategies for Engaging the Digital Generation, Kogan Page
	12. Ryan Deiss and Russ Henneberry, Digital Marketing for Dummies, JohnWileyand Sons
	13. Corey Rabazinski, Google Adwords for Beginners: A Do-It-Yourself Guide
	to PPC Advertising, Create Space Independent Publishing Platform
Course Outcomes:	At the end of the course learner will be able to
	1. Apply the understanding of digital landscape and building a case to
	leverage online channels
	2. Strategize, implement and optimize online campaigns successfully
	3. Develop and design Online Advertising campaigns, AdWords Campaign
	management and Campaign Basics across search.
	4. Drive organic traffic through Search Engine Optimization
	5. Apply advance concept of Search Engine Optimization to capture the
	right intent
	(Pack to Index) (Pack to Acondo)

(Back to Index) (Back to Agenda)

Name of the Programme: Students from any Programme can opt for this Course Code: CSC-114 Title of the Course: Social Media Marketing Number of Credits: 4 (4 Theory) Effective from AY: 2023-24

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

Pre-requisites for the Course:	None	
Course Objectives:	 To understand the concept of Social Media Marketing platform. To understand video and mobile platform advertising. To understand and apply the concept of web and google analytics. To acquire understanding of LinkedIn, Twitter, Pinterest Marketing To Measure, Analyze and Optimize Social Media Marketing Campaigns To create an effective Digital Marketing Plan. 	
Content:	 Introduction to Social Media Marketing Evolution and importance of Social Media ;What social media can do for you?; Different social media platforms; Unwritten rules of Social Media ;Facebook for business; Using of Facebook groups, pages and events; Using of Facebook tabs and apps; Running Facebook ads; Ad Manager and Power Editor in Facebook; Targeting –the structured approach; Facebook page Insights 	15 hours
	2. YouTube Video and Mobile Advertising YouTube - why do you need to be there?; YouTube format, tools & targeting; Video Campaign Creation; Video Campaign track and optimization; Video Ad performance & best practices; YouTube Analytics. Importance of Mobile and Opportunities to Leverage; Key Objectives for Mobile Marketing; Ad Formats and Networks for Mobile; Mobile Site: Key Considerations; Mobile App :Key Considerations; Mobile specific bidding and targeting; Apps Marketing, Mobile Analytics, Reporting and Optimization	10 hours
	3. Media Marketing with Twitter, LinkedIn, Instagram & Snapchat Introduction to Twitter and its terminologies; Creating a good Twitter profile; Building followers on Twitter;Using Twitter Chats;Twitter as an influencer marketing tool; Twitter ads; Twitter Analytics; LinkedIn for Business; Profile, pages and Pulse in LinkedIn; LinkedIn Ad; LinkedIn Analytics; B2B marketing using LinkedIn; Introduction to Pinterest for Business; Pinterest strategies; Instagram for business; Instagram strategies;New kid on the block–Snapchat;Online Reputation Management ;Social media tool sand how to use them;Creating social media calendar and workflow	15 hours

	Std. Com.X	
	4. WebAnalytics10Introduction to web analytics; How web analytics works, Analytics Framework; Goals, Objectives and KPIs; Contextualizing of Data; Segmentation of Data; Making analytics actionable; Attribution Modeling; URL tracking and UTM builder; Clickstream, HeatMap and other forms of WebAnalytics; A/B testing	
	5. GoogleAnalytics (GA) work; Dimensions ,metrics and other common terminologies;Setting up Google analytics;Tracking,Reports and Dashboards ;Acquisition, Behaviour and Conversion;Visitors Analysis; Source and Medium analytics; Conversion tracking; Content Performance Analytics; Userflow;Leveraging real time analytics; Content Experiment; Linking Search Console and AdWords with Google Analytics; Intro to Google Data Studio	
Pedagogy:	PowerPoint presentations, Case studies	
References/ Readings:	 Recommended Reference Books: 1. Dave Chaffey & Fiona Ellis-Chadwick, Digital Marketing: Strategy, Implementation and Practice, PearsonEducation 2. Ekaterina Walter, Jessica Gioglio; The Power of Visual Storytelling : How to Use Visuals, Videos, and Social Media to Market Your Brand, McGraw Hill Education 3. BenHunt, Convert!: Designing Websites For Traffic and Conversions, John Wiley & Sons 4. Lon Safko, The Social Media Bible: Tactics, Tools, & Strategies for Business Success, Brilliance Audio; Unabridged Edition 5. PamDidner, Global Content Marketing, McGraw-Hill Education 6. Joe Pulizzi,ContentInc.: How Entrepreneurs Use Content to Build Massive Audiences and Create Radically Successful Businesses, McGraw-Hill Education 7. MikeMonteiro,You'reMyFavoriteClient,ABookApart 8. Seth Godin, All Marketers Are Liars, Portfolio 9. JayBaer, Youtility: Why Smart Marketing Is About Help Not Hype, Portfolio 10. Russell Glass & Sean Callahan, The Big Data- Driven Business,Wiley 11. Damian Ryanand Calvin Jones, Understanding Digital Marketing: Marketing Strategies for Engaging the Digital Generation, KoganPage 12. Ryan Deiss and Russ Henneberry, Digital Marketing for Dummies, John Wiley and Sons 	

	13. Corey Rabazinski, Google Adwords for Beginners: A Do-It-Yourself Guide to PPC Advertising, CreateSpace Independent Publishing Platform
Course	On completion of the course learner will be able to:
Outcomes:	1. Explain basics of Social Media Marketing.
	2. Able to use mobile and video media for online advertising, &
	AdWords campaign management.
	3. Able to use Twitter, LinkedIn, Instagram & similar media for
	promotion.
	4. Comfortably apply relevant tools and concepts to execute measure
	and monitor an annual online marketing plan and use analytics to
	drive action able improvements
	5. Use new digital marketing techniques into strategic marketing plan

Name of the Programme: **Students from any Programme can opt for this** Course Code:**CSC-131**

Title of the Course: **Emerging Trends in Computer**

Number of Credits: **3** Effective from AY: **2023-24**

Pre-requisites for the Course:	NIL	
Course Objectives:	This course will enable students to explore current breat technologies in the areas of Artificial Intelligence (AI), Big Business Intelligence, IOT, Blockchain that have emerged over few years. It will also prepare the students to use technolog respective professional preparations.	data and the past
Content:	Unit 1 : Artificial Intelligence AI Concept, Scope of AI, Components of AI, Types of AI, Machine Learning (ML) and Natural Language Processing (NLP), Applications of AI, the state of art AI today	8 hours
	Unit 2 : Business Intelligence (BI) and Big data BI- Definition, Importance, Benefits of Business Intelligence, How BI process works, Stages of Business Intelligence, Big data – Definition, Characteristics, Challenges with Big Data, Traditional Business Intelligence (BI) versus Big Data. Big Data Applications in Business	10 hours

1	150	<u>k 22.05.202</u>
	Unit 3 : Internet of Things (IoT) and Embedded Systems Definition, Characteristics of Embedded System, Real time systems, Real time tasks. Processor basics: General Processors in Computer Vs Embedded Processors, Microcontrollers, Microcontroller Properties, Components of Microcontrollers, Components of Embedded Systems, Introduction to embedded processor Definition, Characteristics of IoT, Trends in Adoption of IoT, IoT Devices, IoT Devices Vs Computers, Societal Benefits of IoT, Technical Building Blocks. IoT functional blocks, IoTenabling technologies, IoT levels and deployment templates, Applications in IoT	12 hours
	Unit 4 : Cloud Computing Importance of Cloud Computing, Characteristics, Pros and Cons of Cloud Computing, Migrating into the Cloud, Seven- step model of migration into a Cloud, Trends in Computing. Cloud Service Models: SaaS, PaaS, IaaS, Storage, Cloud Architecture: Cloud Computing Logical Architecture, Developing Holistic Cloud Computing Reference Model, Cloud System Architecture, Cloud Deployment Models	8 hours
	Unit 5: Blockchain and Cryptocurrency Introduction to Blockchain Technology and its Importance, Evolution of the Blockchain Technology, Elements of a Blockchain A basic crypto currency, Creation of coins, Payments and double spending, Bitcoin –Digital Signatures as Identities – eWallets – Personal Crypto security - Bitcoin Mining	7 hours
Pedagogy:	PowerPoint, YouTube Videos	
References/ Readings:	 Artificial Intelligence: A Modern Approach, Stuart Russel Norvig, Pearson 3 rd 2015 Big Data Analytics, RadhaShankarmani, M Vijayalakshmi, Edition, 2017, WileyBig Data and Hadoop, V.K Jain Khann Publishing, First 2018 Getting Started with the Internet of Things, Cuno Pfister Sixth 2018 Internet of Things: A Hands-On Approach by Arsheep Bal Cloud Computing by Anandamurugan, T.Priyaa et al Blockchain for Beginners: The Art of Decentralisation & 	Second a O"Reilly

	Cryptography, Tejaswini N and Yathish R
e-Resources and other Digital Material	 https://nptel.ac.in/courses/106/104/106104189/ https://www.coursera.org/specializations/big-data https://www.edx.org/course/big-data-fundamentals https://www.edx.org/course/artificial-intelligence-ai https://www.udemy.com/course/artificial-intelligence-az
Course Outcomes:	 At the end of the course, students will be able to: 1. Identify different emerging technologies 2. Select appropriate technology for a given task 3. Identify necessary inputs for applications of emerging technologies 4. Define emerging trends in Computer Science
	(Back to Index) (Back to Agence

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC-132** Title of the Course: **Computer Applications** Number of Credits: **3** Effective from AY: **2023-24**

Pre-requisites for the Course:	Nil	
Course Objectives:	To provide an understanding of essential Information Technology of To familiarize and learn use of various types of IT tools	oncepts
	Unit 1 : (Computer Basics) Introduction to computers – Definition, Characteristics, Classification of computers, Components of a Computer System –Hardware Components - Central Processing Unit, Input devices, Output devices, Computer Memory. Categories of Software - System Software and Application Software, Operating Systems - definition and functions. Data - Definition, Types, Data Representation, Types of Number system- Binary, Octal, Hexadecimal Conversion between number bases	8 hours

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

_		12 0	22.05.2023
	 Unit 2 : (Word Processor) Word processing concepts: Use of Templates, Working with a document: Editing text, Find and replace text. Formatting- Text, Paragraphs, Styles, Columns. Bullets and numbering, Tabs, Indent, Page Formatting. Design Themes, Page Background. Page setup Insert: Tables, Illustrations, Links, Comments, Header and Forsymbols. Tables: Inserting, filling and formatting a table, Changing width and height, Alignment of Text in cell, Delete / Insertion Row, Column and Merging & Splitting of Cells, Border Shading. Referencing- Captions, Footnotes and Endnotes Citations and Bibliography, Reference Tables and Ind Bookmarks and Cross-References. 	ooter, g cell on of and	10 hours
	Unit 3 : Spreadsheets Spreadsheet concepts: Managing worksheets; Formar Conditional formatting, Entering data, Editing, Handling oper in formula, Project involving multiple spreadsheets, Orgar Charts and graphs, Generally used Spreadsheet funct Mathematical, Statistical, Financial, Logical, Date and Lookup and reference, Database, and Text funct Summarizing data using filter. Pivot tables to analyze data. I What-If Scenario Manager, Goal Seek. Printing a worksheet-working with page breaks, adding hea or footers, choosing what to print.	tions: Time, tions, Using	10 hours
	Unit 4 : Presentation Software Creating a presentation, creating a Presentation Usir Template, Creating a Blank Presentation, Inserting & Editing on Slides, Inserting and Deleting Slides in a Presentation, Saw Presentation, Manipulating Slides, Inserting Table, Adding Cl Pictures, Inserting Other Objects, Resizing and Scaling an Ol Creating & using Master Slide, Presentation of Slides, Choos Set Up for Presentation, Running a Slide Show, Transition Slide Timings, Automating a Slide Show, Providing Aestheti Slides & Printing, Enhancing Text Presentation, Working Color and Line Style, Adding Movie and Sound, Adding Hea Footers and Notes, Printing Slides and Handouts.	Text ring a lipArt oject, ing a and cs to with	10 hours

	Unit 5 : User Generated Content Blogs and Wikis. Online Data Capture Tools: Types of data capture form templates (Personal, Work and Education). Question Formats for data capture (short answer, paragraph, multiple choice, check- box, drop-down, linear-scale, multiple choice grid). Data form design (Add new question, add section, add title/description/image/video). Data form distribution techniques (Send via email, publish on social media, send as link). Response management (Print responses, Export to spreadsheet, View analysis, Include analysis in word processing reports)	7 hours
Pedagogy:	PowerPoint, Tutorials	
References/ Readings:	 Introduction to Information Technology by ITL Education Sol Limited, second edition. "O" Level made simple "Introduction to ICT resources" by Sa Jain, Shashank Jain, Shashi Singh & M. Geetha Iyer, BPB pub Computer fundamentals fourth edition by Pradeep K. Sinha Priti Sinha BPB publications Information Technology The breaking wave by Dennis Curtir McGraw-hill edition 	atish lication. and
Course Outcomes:	 At the end of the course the learner will be able to: 1. Understand the essential of Information Technology Conception 2. Develop practical skills in data capture, analysis and present report formatting 3. Use a range of current, standard, Office Productivity software applications 4. Apply the basic concepts of a word processing package, electron spreadsheet and PowerPoint tool 	ation, re

(Back to Index) (Back to Agenda)

Name of the Programme	e: Students from any Programme can opt for this	
Course Code: CSC-134		
Title of the Course: Mult	imedia Essentials	
Number of Credits: 3(2T	+ 1P)	
Effective from AY: 2022-23		
Pre-requisites for the Course:	• Basic Knowledge of Computers and Internet.	

Course Objectives:	 To make the students aware of Color Models and Color harmony Raster and Vector Graphics formats & basic Graphic editing Font types, selection of fonts Audio formats, codecs, basic audio editing, filters Video formats, codecs, basic video editing, filters and transitions Data compression. 	
Content:	(Theory)	No of Lectures
	1. Multimedia - Introduction, Uses of Multimedia, Social & Ethical considerations, Digital Representation.	3L
	2. Color Theory- ColorBasics, ColorSystems, Color Wheel, Complementary Colors,After Images, Color Combinations, Color & Contrast, Proportion & Intensity, Shades, Tones & Tints.	4L
	3. Introduction to Computer Graphics: Difference between Raster and Vector Graphics, Raster graphics: resolution, image compression, file formats, manipulation; Vector graphics fundamentals, file formats, shapes, transforms and filters	5L
	4. Text and Layout: character set,fonts & faces, using TextinMultimedia, Font Editing & Tools.	4L
	5. Sound: Introduction, Digital Audio, MIDI Audio, Audio Codec & file formats, Making Digital Audio files.	5L
	6. Animation: Principles of Animation, Types of Animation, Keyframe, Sprite, file formats.	4L
	7. Video: How Video Works and is Displayed, Aspect Ratio, Frame size, Frame Rate, Video Codec & File formats, Processing & Delivery.	5L

	 (Practical) List of Practical : (at least 8 Practical from the following) 1. Image compositing: Remove background and combine images to create a work of art 2. Learn to create images for Print, WebandVideo 3. Design a Logo for a company 4. Design a Brochure for given Product and details. Learn about different file formats 5. Design a poster with given information and learn about image compression 6. Edit the sound file and Learn about Effects and Filters of sound. 7. Record your voice and learn about Audio Compression 8. Learn Audio mixing and streaming of audio content 9. Learn about Video editing. Prepare a video with rough cuts. 10. Prepare video content with title and special effects. 11. Record video content for vimeo/ youtube. Note : Practical can be done using GIMP, Inkscape, Scribus, Photoshop, Illustrator, Flash, Blender, Audacity, Lightworks.
Pedagogy:	Conventional Lecture method Case based learning Experiential Design Thinking Formative and summative assessments Live experimental projects

References/ Readings:	Single Author Book: 1. Vaughan Tay, Multimedia: Making it Work, 8th edition,
	TataMcGraw-Hill
	 Ranjan Parekh, Principles of Multimedia McGraw Hill Education; 2nd edition
	Edited Book :
	Ze-Nian Li & Mark S Drew; Fundamentals of Multimedia; Pearson Education International Edition
	Two or More Authors : 1. Nigel Chapman, Jenny Chapman; Digital Multimedia; Wiley India
	Edition, 2nd Edition 2. Adobe Creative Team, Adobe Photoshop Classroom in a Book, AdobePress
	 Adobe Creative Team, Adobe Illustrator Classroom In A Book, AdobePress
	4. Adobe Creative Team, Adobe Flash Professional CS6 Classroom in a Book, Adobe Press, 1st Edition
	E-books:
	 Jeffcoate Judith, Multimedia in Practice, Technology and Applications, PHI.
	2. Multimedia Technologies: Concepts, Methodologies, Tools, and Applications - Syed Mahbubur Rahman Minne sota State
	University, Mankato, US.
	 Article in Online Encyclopedia: 1. Britannica, The Editors of Encyclopaedia. "raster graphics". Encyclopedia Britannica, 7 Oct. 2022,
	https://www.britannica.com/technology/raster-graphics. Accessed 11 April 2023.
	2. Nassau, Kurt. "colour". Encyclopedia Britannica, 27 Mar. 2023,
	https://www.britannica.com/science/color. Accessed 11 April 2023.
	3. Color Theory: https://www.worqx.com/
	4. Animation: http://en.wikipedia.org/wiki/Animation_software
	Journal Article in Scholarly Journal :
	Jan L. Plass, Steffi Heidig, Elizabeth O. Hayward, Bruce D. Homer,
	Enjoon Um, "Emotional design in multimedia learning: Effects of
	shape and color on affect and learning", Learning and Instruction, Volume 29, 2014, Pages 128-140, ISSN 0959-4752,
	https://doi.org/10.1016/j.learninstruc.2013.02.006. Available:
	(https://www.sciencedirect.com/science/article/pii/S095947521300 0273)

Course Outcomes:	 Students will be able to: 1. Explore the fundamentals and underlying theories of Multimedia.
	 Use audio editing. Design and develop 2D/2D animations.
	 Design and develop 2D/3D animations Create films, visual effects for the creative media.
	 Innovate best practices for elements of design, virtual reality and gaming.

(Back to Index) (Back to Agenda)

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC-135** Title of the Course:**Cyber Security Essentials** Number of Credits: **03** Effective from AY: **2023-24**

Pre-requisites for the Course:	The student should have basic knowledge on how to use computers and internet technology.	
Course Objectives:	 To introduce principles of cyber security and have an understanding on the cyber-crimes taking place. To have an understanding of the existing legal framework and laws on cyber security. To enable students to adopt safe practices when using social media platforms and digital payment systems. 	
Content:	1. Introduction to Cyber security Defining Cyberspace and Overview of Computer and Web- technology, Architecture of cyberspace, Communication and web technology, Internet, World Wide Web, Advent of internet, Internet infrastructure for data transfer and governance,Internet society,Regulation of cyberspace, Concept of cyber security, Issues and challenges of cyber security.	5 hours

	15 & 22.05.202
2. Cyber crime and Cyber law Classification of cyber-crimes, Common cyber-crime cyber-crime targeting computers and mobiles, cyber-crime against women and children, financial frauds, se engineering attacks, malware and ransomware attacted zero day and zero click attacks, Cybercriminals mo operandi, reporting of cyber-crimes, Remedial mitigation measures, Legal perspective of cyber-crime Act 2000 and its amendments, Cyber-crime and offer Organisations dealing with Cyber-crime and Cyber sect in India, Case studies.	rime ocial acks, dus- and e, IT nces,
3. Social Media Overview and Security Introduction to Social networks. Types of Social media platforms, Social media monitoring, Hash Viralcontent, Social media marketing, Social media prive Challenges, Opportunities and pitfalls in online see network, Security issues related to social media, Flag and reporting of inappropriate content, Laws regar posting of inappropriate content, Best practices for the of Social media, Case studies.	ntag, /acy, ocial ging ding
4. E-Commerce and Digital Payments Definition of E- Commerce, Main components of Commerce, Elements of E-Commerce security, Commerce threats, E-Commerce security best pract Introduction to digital payments,Components of di payment and stakeholders, Modes of digital payme BankingCards, Unified Payment Interface (UPI),e-Wal Unstructured SupplementaryService Data (USSD), Aae enabled payments, Digital payments related com frauds and preventive measures.RBI guidelines on di payments and customer protection in unauthor banking transactions. Relevant provisions ofPaym Settlement Act,2007.	E- ices, gital ents- llets, dhar mon gital rised
5. Digital Devices Security, Tools and Technologies for Cy Security End Point device and Mobile phone security, Passy policy, Security patch management, Data bac Downloading and management of third-party softw Device security policy, Cyber Security best pract Significance of host firewall and Ant-virus, Management host firewall andAnti-virus, Wi-Fi security, Configuration basic security policy and permissions.	hours word kup, vare, ices, nt of

	15 & 22.05.202	
Pedagogy:	Lecture method, Case Studies, Hands-on Training, Group Discussions	
References/ Readings:	 Cyber Crime Impact in the New Millennium, by R. C Mishra, Author Press. Edition 2010. Cyber Security Understanding Cyber Crimes, Computer Forensics and LegalPerspectives by Sunit Belapure and Nina Godbole, Wiley India Pvt. Ltd. (First Edition, 2011) Security in the Digital Age: Social Media Security Threats and Vulnerabilities by Henry A. Oliver, Create Space Independent Publishing Platform. (Pearson, 13th November, 2001) Electronic Commerce by Elias M. Awad, Prentice Hall of India Pvt Ltd. Cyber Laws: Intellectual Property & E-Commerce Security by Kumar K, Dominant Publishers. Network Security Bible, Eric Cole, Ronald Krutz, James W. Conley, 2nd Edition, Wiley India Pvt. Ltd. Fundamentals of Network Security by E. Maiwald, McGraw Hill. 	
Course Outcomes:	 At the end of the course, learner will be able to: 1. Explain the concept of Cyber security and issues and challenges associated with it. 2. Explain the cyber crimes, their nature, legal remedies and as to how to report the crimes through available platforms and procedures. 3. Explain various privacy and security concerns on online social media and the reporting procedure of inappropriate content, underlying legal aspects and best practices for the use of Social media platforms. 4. Explain the basic concepts related to E-Commerce and digital payments, digital payment modes and related cyber security aspects, RBI guidelines and preventive measures against digital payment frauds. 	

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC-141** Title of the Course: **PC Troubleshooting** Number of Credits: **3 (1 Theory + 2 Practical)** Effective from AY: **2023-24**

Pre-requisites for the	Nil
Course:	

Course Objectives:	To make the students capable of understanding the functioning of hardware parts and develop skills in diagnosing the faults and troubleshooting the computer system.	
Content:	 Hardware Basics Basic terms, concepts, and functions of system modules (System board,firmware, storage devices, monitor, boot process, ports).CMOS and BIOS,Motherboard, SMPS 	3 hours
	2. Memory Module and Hard disk Different types of Memory Modules, Tips on installing memory chips.Disk structure: Cylinders, heads, platters, tracks and sectors, structure of a disk, hard disk controllers.Types of interface controller and drives.	4 hours
	3. Input/OutputDevices Keyboard and Mouse, Scanner and its types, CD- ROM Drives, Monitors: Display basics, Display adapter cards, VGA and super VGA, Printer: Types, Interfaces, Connection to Computers.	4 hours
	4. TroubleshootingandPreventive Maintenance Troubleshooting basics,Troubleshooting by visual Inspection,PreventativeMaintenance. POST: Functions, Test Sequence, Error messages, Troubleshooting Procedures andPreventative Maintenance. Power Supply and UPS.	4 hours
Pedagogy:	PowerPoint Presentations, Hands on	
References/ Readings:	 IBM PC & Clones: Hardware Troubleshooting and Maintenance byB.Govindarajalu, Tata McGraw Hill PC Upgrade & Repair Bible, Wiley India. Computer Installation and Servicing by D Balasubramanian 	
Course Outcomes:	 At the completion of this course, the student will be able to: 1. Explain Basics of Hardware Components. 2. AcquireknowledgeofFindingFaultsinComponents 3. Install, Configure and maintain various components in computer systems and peripherals. 4. DiagnosefaultsofDifferentComponents 5. Repair and maintain computer systems and its peripherals. 	

List of Experiments: (Perform at least 10 experiments from the list given below)

Sr.No.	Name of the Experiment
1	Disassemble the PC carefully. Assemble the same PC you have disassembled and boot the system.
2	Observe various connectors, ports back and front side of the computer and write their purpose. (e.g. Power, PS/2keyboard and mouse, Serial and parallel, USB, VGA, LAN, Audio & microphone, Firewire, HDMI, games, SATA etc.)
3	Identify the on-board features of the motherboard like network capabilities, and gaming capabilities. Install the given driver and test the computer for proper functioning. Remove the drivers for some devices like sound, display, network etc. and again install them and check the proper functioning of the computer. Upgrade the given PC by adding RAM and additional HardDisk.
4	Observe the power supply (SMPS) and measure their voltage levels of a given SMPS. Measure various voltage levels, such as motherboard, storage devices and fan etc. using a multimeter. Do a detailed study on all the components and devices on the given power supply. Observe different types of Switch Mode Power Supply – AT, ATX, NLX. Record the different types of power connectors on the motherboard.
5	Identify BIOS settings, demonstrate starting BIOS, identify how to disable unused devices to decrease security risks. Change booting of computer with different secondary storage CD,HDD,USBetc.
6	Perform low-level and high-level formatting of Hard Disk. Format the given Hard Disk using any one technique and create three partitions, two for operation systems and one for data.
7	Install OS of different types (Windows and Linux). Also, search for various data recovery software on pendrive/HDD.
8	Open different types of keyboards and mouse and observe the internal circuits. Observe and write steps to troubleshoot, maintain and clean the keyboard and mouse.
9	Observe different types of printers. Install driver and interface the printers with PC/Laptop on any operating system (connect the printer to one PC directly using USB/Serial/Parallel/Wi-Fi as per the availability; test the functioning of the printer.)

	15 @ 22.05.202
10	Learn the interfacing, installation and working of various devices such as scanner, projector, web cam etc. Connect all these devices with the given PC, install & test them.
11	Identify the problem in the given PC, using the given troubleshooting sequence, fix the issue, record the given problem, and produce proper documentation of your work.
12	 Recognize common symptoms associated with diagnosing and troubleshooting PCs and utilize Windows built-in diagnostic tools. Identify general troubleshooting techniques and strategies Utilize scandisk, control panel, boot-up menu, and startup disk as diagnostic tools. Access Microsoft Knowledge Base on the Internet to solve common problems. Identify the common problems associated with shutdown, configuration, and cabling. Identify problems associated with heating and cooling of the internal components. Identify problems with installing internal devices such as hard drive, tape drives, or CD-ROM drive. Recognize and interpret the meaning of common error codes and start up messages. Recognize windows-specific printing problems and corrections.
13	 Perform computer maintenance and preventative maintenance functions. Perform physical cleaning (internal and external) of a personal computer. Demonstrate how to adjust basic performance settings. Perform hard drive file system maintenance. Identify anti-virus software and applications
14	Utilize the Internet to download device drivers. Installation of drivers of various devices from the internet. Demonstrate to remove unwanted software applications.
	(Pack to Index) (Pack to Agende

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC-142** Title of the Course: **Multimedia and Web Design** Number of Credits: **3 (1 T + 2 P)** Effective from AY: **2023-24**

Pre-requisites for the Course:	NIL	
Course Objectives:	 To introduce the basic concepts of Multimedia and Web D To develop skills and competencies in image, video editing To acquire and develop skills to create web pages using H Bootstrap and JavaScript 	
Content:		No of hours
	Color Theory Color Basics, Color Systems, Color Wheel, Complementary Colors, After Images, Color Combinations, Color & Contrast, Itten's Contrasts, Proportion & Intensity, Contrast & dominance, Shades & Tints, Color Studies, Color Gamut, ICC profiles, Gamma Correction.	03 Hours
	Computer Graphics Difference between Raster and Vector Graphics , Raster graphics : resolution, image compression, file formats, manipulation, Geometrical transformations, Vector graphics – fundamentals, file formats, shapes, transforms and filters.	02 Hours
	Sound : Sound Design, Audio Codec & file formats, processing sound, compression	01 Hour
	Video : Aspect Ratio Frame Size, Frame Rate, Regions, Video Codec & Formats, Processing.	01 Hour
	Web Architecture, HTML : Introduction to internet and web design. Basic concepts of web architecture. Introduction to hypertext mark-up language (html), creating web pages, lists, hyperlinks, tables, web forms, inserting images.	03 Hours
	Cascading style sheet (CSS) : Concept of CSS, creating style sheet, Importing style sheets, CSS properties, CSS styling (background, text format, controlling fonts), CSS rules, Style Types, CSS Selectors, working with block elements and objects, working with lists and tables, CSS id and class, box model.	03 Hours

				<u>Com.X AC-</u> 22.05.202
		Basics of JavaScript : Document object model, data types and variables, function methods and events, controlling program flow, built-in objects and operators, validations.		02 Hours
Pedage	ogy:	PowerPoint presentations, Practical Assignments		
Refere Readin		 a) Nigel Chapman, Jenny Chapman; Digital Multimedia; Y Edition, 2nd Edition b) Roger Parker; One-Minute Designer; Hungry Minds In edition c) Ranjan Parekh, " Principles of Multimedia", McGraw H edition d) Tay Vaughan, "Multimedia Making It Work"; Mc Graw Edition. e) Laura Lemay, Rafe Colburn, Jennifer Kyrnin, "Master JavaScript Web Publishing", BPB Publications f) Alex Libby, Gaurav Gupta, Asoj Talesra, "Responsive V HTML5 and CSS3 Essentials", PACKT Publishing 	Hill Ed V Hill, I V Hill, I	.; 2nd ucation; 2 Eighth TML, CSS &
Course Outcomes:		 On successful completion of this course, the student will Create and edit images, audio and video Build websites using the elements of HTML. Build interactive and stylish websites using the client-programming techniques with CSS and JavaScript. Learn to validate client-side data. Define the structure and contents of the website usin features of CSS 	side	
Sugges	sted Practical	List: (60 Hours)		
<u>Multin</u>				
i.	(GIMP)	ositing : Remove background and combine images to create	e a wo	ork of art.
ii.		ate images for Print, Web and Video		
iii.				
iv.	Design a Brochure for given Product and details. Learn about different file formats(SCRIBUS)			
۷.		ter with given information and learn about image compres		CRIBUS)
vi.		nd file and Learn about Effects and Filters of sound.(AUDAC	JTY)	
vii.	-	voice and learn about Audio Compression(AUDACITY)		
	• ·			
viii.		mixing and streaming of audio content(AUDACITY) Video editing – Prepare video with rough cut.(WINDOWS N		

- x. Prepare video content with title and special effects. (WINDOWS MOVIE MAKER)
- xi. Record video content and learn about video compressions. (WINDOWS MOVIE MAKER)
- xii. Prepare Video content for vimeo / youtube. (WINDOWS MOVIE MAKER)

Note : Practical can be done using GIMP, Inkscape, Scribus, Blender, Audacity, Lightworks / Kdenlive

<u>Web Design</u>

HTML

- i. Create a basic HTML document structure with the appropriate doctype, <html>, <head>, and <body> elements.
- ii. Add a heading (<h1>) and a paragraph () to your HTML document.
- iii. Create a hyperlink (<a>) that navigates to another web page when clicked.
- iv. Insert an image () into your HTML document and provide an appropriate alt text.
- v. Construct an ordered list () with three list items ().
- vi. Design a table () with two columns and two rows, containing relevant data.
- vii. Design table using colspan, rowspan
- viii. Build a simple form (<form>) with text input fields (<input type="text">) for name and email.
- ix. Implement a checkbox (<input type="checkbox">) and a radio button (<input type="radio">), lists within a form.
- x. Create a navigation menu using semantic HTML tags such as <header>, <nav>, and .
- xi. Embed an audio or video file (<audio> or <video>) into your HTML document.

CSS

Write CSS to,

- i. Apply inline styles to a paragraph () to change its color and font size.
- ii. Link an external CSS file to your HTML document using the <link> tag.
- iii. Change the colour of text using CSS
- iv. Change the font family and font size of text using CSS
- v. Add a background color to an element using CSS
- vi. Add padding and margin to elements using CSS
- vii. Align text and elements using CSS properties
- viii. Change the border color, width, and style of an element using CSS
- ix. Style hyperlinks using CSS
- x. Apply styles to specific elements using class selectors in CSS
- xi. Create and style lists using CSS
- xii. Change the display and visibility of elements using CSS
- xiii. Control the size and position of elements using CSS properties
- xiv. Add shadows and gradients to elements using CSS
- xv. Apply styles to images using CSS
- xvi. Create and style basic CSS animations and transitions
- xvii. Override CSS styles using inline styles

viii. Include and use external CSS stylesheets in HTML documents

- xix. Use CSS pseudo-classes to style elements based on their state
- xx. Create and style basic CSS layouts using floats and clear properties
- xxi. Style form elements, such as input fields and buttons, using CSS

Bootstrap

- i. Include Bootstrap in an HTML document using CDN , local files
- ii. Create a responsive grid layout using Bootstrap's grid system
- iii. Create and style navigation menus using Bootstrap's navbar component
- iv. Create and style buttons using Bootstrap's button classes
- v. Incorporate and style Bootstrap's predefined CSS classes for typography
- vi. Create and style forms using Bootstrap's form components
- vii. Create and style responsive images using Bootstrap's responsive image classes
- viii. Incorporate and style Bootstrap's modal dialogs
- ix. Use Bootstrap's responsive utilities to control visibility and alignment

JavaScript

- i. Validate a user's input in a form using JavaScript
- ii. Write a JavaScript function that reverses a given string.
- iii. Implement a slideshow or image carousel using JavaScript.
- iv. Write a JavaScript program that finds the largest number in an array.
- v. Detect and handle browser events like clicks or keyboard input using JavaScript.
- vi. Write a JavaScript function that calculates the factorial of a given number.
- vii. use JavaScript to manipulate the CSS properties of an HTML element dynamically.

Note : Web design Practical can be done using VS code IDE

(Back to Index) (Back to Agenda)

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC-143** Title of the Course: **Data analytics using Spreadsheets I**

Number of Credits: **03 (1 T + 2 P)**

Effective from AY: 2023-24

Pre-requisites for the Course:	Nil	
Course Objectives:	Introduce the basic concepts of data analytics; develop students in using spreadsheets to format data, manipul appropriate basic function and formulas; visualize data; generate basic reports using Pivot tables.	ate data using
Content	Theory	No of hours

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	 Unit I: Introduction to Data Analytics and Spreadsheet Basics Introduction to Data Analytics using spreadsheet Definition of Data Analysis and Data Analytics Phases of Data Analysis Methods of Data Analysis in Spreadsheets Understanding Data: Data and types of data Quantitative data – discrete data, continuous data Qualitative data - categorical data, ordinal data. Understanding operators and functions essential for data analytics. Arithmetic operators and order of operations. Functions: Parts of a function, arguments to a function, function library and types of functions. 	5 hours
	Unit II: Data Collection and Manipulation. Data Collection using online data collection tools. Creating Spreadsheets online and collaboration. Introduction to data cleansing, data modification using data analysis functions. Sorting criteria and types of sorting, Filters and types of filters, Guidelines and examples for sorting and filtering data by colour: Overview of sorting and filtering data by colour and icon set, using colour effectively when analysing data, choosing the best colours.	5 hours
	Unit III: Data Visualization and Summarization Visualizing data: Principles of charting, types of basic charts, Some practicalities in preparing charts. Conditional Formatting and its types. Functions used for data summarization. Pivot tables and its applications.	5 hours
Content	Practical	
	 Unit I: Spreadsheet Basics: Formatting Cells with font formats, alignment, borders etc. Number formats, currency formats, formatting dates, custom and special formats. Format painter Selection techniques Advanced paste special techniques: paste value, 	20 hours

	15 & 22.05.202
 paste formulas, paste formats, paste validations, transpose tables Formulas and Functions: Complex Formulas with arithmetic operators Relative, mixed and absolute cell reference Basic Functions such as sum, average, max, min, count, counta. Customization, Formatting and Protection: Customizing the ribbon, Using and customizing autocorrect Changing Excel default options Page Layout and printing options: Setting up print area, customizing headers and footer, print titles. File level protection, workbook, worksheet protection Working with named ranges, Commonly used shortcut keys 	
 Essential Data Analysis Functions and Methods: Text Functions: Upper, Lower, Proper, Left, Mid, Right, Trim, Len, Exact, Concatenate, Find, Search, Substitute Date and time Functions: today, now, day, month, year, date, date if, dateadd, EOMonth, weekday, days, networkdays Logical functions: TRUE, FALSE, IF, AND, OR Nested if, IF function together with AND, OR function Data cleaning and preparation using text functions and text to column. 	

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	 Unit II Data collection using online data collection tools such as Google Forms: Creating data forms to collect data for different types of scenarios such as surveys, event registration, feedback etc. Creating forms with conditional data input workflows based on user choice. Online storage of spreadsheets: Creating online spreadsheets such as google sheets and online collaboration of the same. Working with multiple worksheets & spreadsheets: Scenarios which require creating a workbook with multiple sheets and cross referencing. Scenarios which require creating multiple workbooks with multiple sheets and cross referencing. Methods used in data analytics: Freezing Rows and Columns Sorting Data Filtering Data Summarizing Data as Table 	20 hours
	 Unit III Data Analytics Methods: Visualizing data with charts. Adding Conditional Formatting. Essential advanced Data Analysis Functions: sumif, sumifs, countif, countifs, averageif, averageifs, nested if, iferror statement, and, or, not Introduction to simple pivot tables. Solving real life problems/scenarios in spreadsheets. 	20 hours
Pedagogy:	 Blended learning: Concept learning through Lab assionline video resources followed by application of control to real life scenario provided. Practical skill development through Lab assignments 	oncept learnt

	15 Q 22:05:202
References/ Readings:	M. Alexander, D. Kusleika, Excel 2019 Bible. Indiana: Wiley, 2019. D. Whigham, Business Data Analysis using Excel. New York: Oxford University Press, 2007 https://edu.gcfglobal.org/en/topics/excel/#
Course Outcomes:	 At the end of the course, learner will be able to: 1. Format a given spreadsheet with various formatting features and use appropriate functions given relevant description of desired output. 2. Sort, filter, summarize data given in a spreadsheet as per given instructions 3. Visualize data using appropriate charts and conditional formatting. 4. Solve basic queries on a given data set by preparing basic pivot tables for a given data set.

Name of the Programme: Students from any Programme can opt for this Course Code: CSC-144 Title of the Course: Desktop Publishing Number of Credits: 3 (1 T + 2 P)

Effective from AY:	2023-24	
		_

Pre-requisites for the Course:	Nil	
Course Objectives:	To introduce the basic concepts of Desktop Publishing and Page Layout. To develop skills and competencies in image editing. To acquire and develop skills for Digital Content Creation for various platforms.	
Content:		No of hours
	 Introduction Definition of Desktop Publishing and Digital Publishing Introduction to open source and proprietary software used in DTP Print Media v/s Digital Media Benefits of Desktop and Digital Publishing Examples of Desktop Publishing and Digital Publishing Digital Publishing Platforms Branding and Identity 	03 hours

		l. Com.X AC-6 & 22.05.2023
	 2. Typography and Color Definition of Typography; Common Types of Fonts; Choosing a Font; Kerning, Leading and Tracking Color Basics; Hue, Saturation and Value; Color Wheel 	04 hours
	 3. Layout and Design Basics of page layout; page layout in pictures measurement units like inch, pica and points; features of good typography; Serif and sans serif fonts. Basic design principles: Proximity, White Space, Alignment, Contrast and Repetition Fundamentals of Design: Line, Shape, Forms, Texture and Balance 	04 hours
	 4. Images Graphics: Raster v/s Vector Lossy v/s Lossless Compression Common Image Formats Image Manipulation Techniques Image Usage Rights 	04 hours
Pedagogy:	Practical assignments using open source software/platfor Gimp, Canva	ms such as
References/ Readings:	 Nigel Chapman, Jenny Chapman; Desktop Multime India Edition, 2nd Edition https://edu.gcfglobal.org/en/beginning-graphic-design https://www.copypress.com/kb/content-marketing/evyou-need-to-know-about-digital-publishing/ https://www.stateofdigitalpublishing.com/digital-publishing/what-is-digital-publishing/ https://www.nxtbookmedia.com/blog/everything-youknow-about-digital-publishing/ https://www.gimp.org/tutorials/ https://www.canva.com/ 	n/ verything-

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

	15 & 22.05.20.
Course Outcomes:	 At the completion of this course, the learner will be able to: 1. Explain the basic concepts of Desktop Publishing and its relevance in e-content development. 2. Apply typographic and color schemes used for the layout and designing e-content. 3. Apply the editing features for given images. 4. Develop e-content for a given product for various platforms
. Suggested Practical L	ist:
(at least 10-12 Practica	als from the following)
1. Image Editing and G	raphic Manipulation
a. Basic Transformation	on Tools
	contrast and brightness changes)
e 1	using different file formats
	ects and filters on images
	edia Post for any platform.
	edia Story for any platform.
	Social Media content such as Instagram Reels.
	dia ads for any platform. r any social media platform.
7. To design a Logo for	
0 0	vith the given information.
_	th the given information.
10. To design a Banne	-
-	rtisement for a given brand.
-	phics content on a given topic.
	etter covering the given events for your department.
14. To design a Magaz	ine Cover for your college.
15. To design a Brochu	ire for a given product.

(Back to Index) (Back to Agenda)

Name of the Programme: **Students from any Programme can opt for this** Course Code:**CSC-145**

Title of the Course: **Basic Computer Applications** Number of Credits: **3(1L+2P)**

Effective from AY: 2023-24

Pre-requisites for the Course:	Nil
Course Objectives:	To Provide An Understanding Of Essentials Of Information Technology, Internet Applications and Emerging Technologies. Includes practical skills in data capture, presentation, report formatting, efficient search techniques and online collaboration tools.

		-	om.X AC-6 2.05.2023
Content:	Description		No.of hours
	Unit I: Information Technology BasicsInformation : Prerequisites of Information, Need for Information : Prerequisites of Information, Need for InformationTechnologyTechnologyandadvantages;InformationTechnology:Definitionandcomponentata:Definition,Types,DataRepresentation,NumbersystemationSchemes(ASCIIandUNICODE);PartsofaComputer:Memory, Input/ Output Devices, Auxiliary Memory; SoftDefinition, relationship between Hardware and SoftCategoriesofSoftware,OS-definitionfunctionsRoleofInformationTechnologyin:Business,Mobiledting,HealthServices,PublicSector,Media,DefenseSetEducation and Publication.	its ents;D ndCodi CPU, tware– ftware, n &	10 hours
	Unit II: Internet Applications and Emerging Technologies Internet – role and importance, Web Browser, IP Addre Public Vs Private, Static Vs Dynamic; WWW & related pro Internet Applications. Cloud Computing: Meaning, Features, & Service n Advantages and disadvantages, Mobile Computing: Me Business Applications of Mobile computing, Virtual rea Augmented Reality: Meaning and applications, IoT –Inte Things: Meaning& Applications.	nodels, eaning, ality &	5 hours
	Practicals		
Lab1	Basic Computer Skills Surfing the Internet, Use of Email and Search Engines Securing your device Installation and Configuration of any free Antivirus Packa AVG/Avast etc., Online Sharing and Collaboration Create documents, spreadsheets and presentations Share and collaborate in real time, Safely store and on your work, Control who can see your documents Data capture using Google Forms Create data forms to capture data for Event Registration Feedback, Customer feedback/satisfaction on a prod service and Order Request OS Basic Installation of Operating System, Demonstrate features MS Windows based OS or any of the Linux flavor , Identif of Directories , Setting up computer, Add a printer, Check drivers, Installation of software, Users and administrative for installation	online, rganize , Event uct or of any fication device	10 hours

			om.X AC-6 2.05.2023
Lab2	Report Formatting using Word Processing (MS Word or any similar Open Source software) Draft an official letter for job interview invitation appointment/ invitation to a business trade show event, us merge to input the recipients list linking with database. Given a project report in PDF format transfer to word pro- software and format to include title page, specified Para and Page Formating (page size, orientation, line spacing type and font size, Indent, bullets, paragraph formatting) of Acknowledgement page, Table of contents page, List of page, List of Tables page, bibliography, references, of headers for each chapter, page numbering in roman for pages and normal from first chapter. The document sho checked for spelling errors and corrected appropriately. C Upload a document in a collaboration software like Google Share and collaborate in real time, Safely store and or your work, Control who can see your documents.	se mail ocessor agraph g, font details, figures distinct initial ould be reate / e docs.	30 hours
Lab3	Presentation Software (MS- Powerpoint or any similar Open Source software) Preparing presentation in areas such as Customer satisfa feedback, product analysis, job satisfaction using the obtained through data capture tool, including appropriat animation, sound recording, slide timings, customer fee video. Export the presentation as video or save as slide Prepare handouts for audience.	e data e slide edback	20 hours
Pedagogy:	MS-Word, MS-Powerpoint or any similar open source software may be used		
References/ Readings:	 Pradeep K. Sinha and PritiSinha(2022), Computer Fundamentals, BPB Publications ITL Education Solutions Limited(2005), Introduction to Information Technology, Pearson Education M.C.ArvindBabu,Dr. S. Anandamurugan, T.Priyaa(2016), Cloud Computing (First Edition),Laxmi Publications Pvt Ltd ArshdeepBahga, Vijay Madisetti (2014)Internet of Things: A Hands-On Approach, Vijay Madisetti Publications https://www.howstuffworks.com https://www.panola.edu/media/825/download?attachment/itsw1401.pd f 		

		15 & ELIGOILOES	
Course	At the end of the course, learner will be able to:		
Outcomes:	1. Explain the basic Knowledge and Understanding	of Information	
	Technology, Internet Applications and Emerging Technologies.		
	2. Develop practical skills in Application software.		
	3. Acquire future technologies through foundational skills learnt.		
	4. Pursue advanced knowledge and professional development in IT.		

(Back to Index) (Back to Agenda)

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC 146** Title of the course: **Basics of Python Programming** Number of Credits:**3 (1T+2P)** Effective from AY:**2023-24**

Pre-requisites for the Course	Basic working knowledge of Computers and Internet	
Course Objectives:	 To introduce programming concepts using Python. To introduce object oriented programming concepts. 	
Content:	 (Theory) Python Interpreter, Python Shell, strings, relational operators, logical operators, precedence of operators, bitwise operators, variables and assignment statements, script mode, functions, modules, command line arguments, control structures- if conditional statements, iteration for and while statements, break, continue and pass statements. Data types- Boolean, numbers, coercing integers to floats and vice versa, numerical operations, lists, creating a list, slicing a list, adding and removing items from a list, searching for values in a list, tuples, immutability property, converting tuples into a list, sets, set operations, dictionaries, strings, Unicode, formatting strings, docString, modules, packages, scope, recursion Object Oriented Concepts- Classes, Objects, Abstract Data types, polymorphism, encapsulation, modifier, accessor methods, static method, adding methods dynamically, composition, inheritance, built-in functions for classes. Files, Exceptions Applications of Python - use of Python libraries such as Matplotlib, Pandas, using databases with python, collecting information from Twitter etc. (at least three applications to be covered). 	No.of hours 4L 4L 2L 1L

	15 & 22.05.2023	
(Practicals) (15x2=30hrs)		
List of Practicals : (at least 8 practicals from the following) 1) a) Write a function that returns the sum of digits of a nuit as an argument.	umber, passed to	
b)Write a function that returns True or False depending given number of a palindrome.	on whether the	
c)Take the radius of circle as input from the user, pass function that computes the area and the circumference displays the values.		
 d) Write a function that finds the sum of the n terms of the 1 - x2 / 2! + x4 / 4! - x6 / 6! + xn/ n! 	following series:	
2) Perform following actions on a list :a) Print the even-valued elements		
b) Print the odd-valued elementsc) Calculate and print the sum and average of the elementd) Print the maximum and minimum element of array.	its of array	
e) Remove the duplicates from the arrayf) Print the array in reverse order		
3) a)Define a function which can generate and print a list are square of numbers between 1 and 20 (both included). T needs to print all values except the first 5 elements in the list	Then the function	
b) Write a program which takes 2 digits, X,Y as input an dimensional array. The element value in the i-th row and j-array should be i*j.	-	
4) a)Write a program that accepts sequence of lines as inp lines after making all characters in the sentence capitalized.b) Write a program that accepts a sentence and calculat		
letters and digits. c) Given an array of integers, find two numbers such that		
specific target number.5) a)Write a function that takes a list of values as inpurreturns another list without any duplicates.	t parameter and	
b) Write a program that takes a sentence as input fro computes the frequency of each letter. Use a variable of c maintain the count.		
 6) a)Write a recursive function that multiplies two positive and return the result. Multiplication is to be achieved as a+a b) Write a recursive function that inserts the element position in the given list and returns the modified list. 	a+a (b times).	
 7) a)Given a list of strings, return the count of the number the string length is 2 or more and the first and last charac are the same 	-	
b) Given a list of strings, return a list with the strings in sort	ted order, except	

group all the strings that begin with 'x' first. e.g. ['mix', 'xyz', 'apple', 'xanadu', 'aardvark'] yields ['xanadu', 'xyz', 'aardvark', 'apple', mix']
 8) Define a class Student that keeps track of academic record of students in a school. The class should contain the following data members: rollnum - roll number of the student name - name of the student marksList - List of marks in 5 subjects stream - A: Arts, C: Commerce, S: Science percentage - percentage computed using marks grade - grade in each subject computed using marks division - division computed on the basis of overall percentage The class should support the following methods: ainit for initializing the data members b. setMarks to take marks for five subjects as an input from the user c. getStream for accessing the stream of the student. d. Percentage for computing the overall percentage of for the student. e. gradeGen that generates grades for each student in each course on the basis of marks.
Marks Grade >=90 A <90 and >=80 B <80 and >=65 C <65 and >=40 D <40 E
f. division for computing division on the basis of the following criteria based on overall percentage of marks scored: Percentage Division >=60 I <60 and >=50 II <50 and >=35 III gstr that displays student information.
 9) Define a base class Vehicle , having attributes registration number, make, model and color. Also, define classes PassengerVehicle and CommercialVehicle that derive the class Vehicle. The PassengerVehicle class should have additional attribute for maximum passenger capacity. The CommercialVehicle class should have an additional attribute for maximum load capacity. Defineinit method for all these classes. Also, get and set methods to retrieve and set the value of the data attributes. 10) Define classes Car, Autorickshaw and Bus which derive from the PassengerVehicle class mentioned in the previous question. The Car and Bus should have attributes for storing information about the number of doors, not shared by Autorickshaw. The Bus should have Boolean attribute

		Std. Com.X AC-6 15 & 22.05.2023
	 doubleDecker not shared by Car and Autorickshaw. Define for all these classes. Also define get and set methods to de the value of the day attributes. 11) Develop a program to sort the employee data on the bar employees using i) selection sort ii) bubble sort. iii) insertion list L containing objects of class Employee having employ salary. 12) Write a function that takes two file names, file1 and fi function should read the contents of the file file1 line by write them to another file file2 after adding a newline at line. 13) Write a function that reads a file file1 and displays the r and the number of vowels in the file. 14) Write a function that reads the contents of the file Peo the number of alphabets, blank spaces, lowercase letters letters, the number of words starting with a vowel and occurrences of word — beautiful in the file. 15) Write a function that takes two files of equal size as a user. The first file contains weights of items and the second weight for each item. 	etermine and set asis of pay of the n sort. Consider a Num, name and le2 as input. The r line and should the end of each number of words m.txt and counts s and uppercase the number of n input from the ond file contains ain price per unit
Pedagogy:	Powerpoint presentationsGroup Discussions	
References/ Readings:	Text book : 1) Taneja Sheetal, Kumar Naveen, —Python Programm approach , Pearson Reference book: 1) Guttag John V., —Introduction to Computation and Pro Python , MIT Press, 2nd Edition.	-
Course Outcomes:	 At the end of the course, learner will be able to: 1) Use the basic programming syntax with Python program Python Interpreter and Command Line Arguments. 2) Describe the data types, various Control Structures, Pacand File Handling concepts available in Python. 3) Explain and use Object Oriented Programming (OOPs) features. 4) Develop simple Python Applications using various Python 	kages, Recursion Concept and its

Name of the Programme: **Students from any Programme can opt for this** Course Code:**CSC-147** Title of the Course: **Graphical User Interface Design** Number of Credits: **03 (1 T + 2 P)** Effective from AY: **2023-24**

Pre-requisites for the Course:	None	
Course Objectives:	 This course is aims to: teach basic concepts of interface design. train to create interface prototypes to test usability. explain user personas and experiences. teach to create user engaging interfaces 	
Content:		Total Contact hours: 15 Hours
	I.Introduction to UI/UX UI and UX An overview of the user interface's history User experience (UX) Similarities and Differences between UX and UI The job of the user experience designer The UI designer's job description	01 hour
	II.User Persona for UX Design User Flow in UX Design User flow in UX Tools to make a user experience flow UX Design Prototypes Creating a user experience prototype Test designs prototypes Wireframes in UX Design Benefits and use of wireframes	02 hours
	III.Basic visual design principles in UI Design Creating attractive and functional interfaces Definition of Design thinking Design Thinking Phases The Science of Creativity in the Brain Advantages of intuition Importance of Intuitive Design Advantages and disadvantages of intuitive design Characteristics and Benefits of Using User-Friendly Software	03 hours

		Std. Com.X AC-6 15 & 22.05.2023
	IV. Common tools for UI Designs Using Balsamiq Wireframes Creating Wireframes with Axure Use Axure RP to Create Wireframes Tips to achieve a good user interface and Experience	03 hours
	V. Understanding what Typography is Understanding typefaces, fonts, and font selection Obey the laws of typography A glossary of typographic terms	02 hours
	VI. Way to test contrast in UI design Design alignment Significance of alignment in design Visual Hierarchy's Building Blocks Creating an Effective Visual Hierarchy UI and its relation with readability Advice on Improving Readability and Legibility	02 hours
	VII. Font pairing Basics of Font Pairing Adding Meta information in UI/UX design SEO and UI Design Responsive Website Design SEO and UX Design	02 hours
Pedagogy:	 Lectures to be conducted using computer and project Hands on practice of all concepts covered in theory set of all concepts covered in the covered in the concepts covered in the concepts covered in the covere	
References/ Readings:	 Textbooks: 1) Modular Design Frameworks : A Projects-based Guide for UI/UX Designers, Cabrera & James 2) UX for Developers: How to Integrate User-Centered Design Principles Into Your Day-to-Day Development Work, Westley Knight 3) UX for Lean Startups: Faster, Smarter User Experience Research and Design, Laura Klein 4) Smashing UX Design: Foundations for Designing Online User Experiences, Jesmond Allen & James Chudley 5) UX Fundamentals for Non-UX Professionals: User Experience Principles for Managers, Writers, Edward Stull 	

		15 G 22.05
Course Outcomes:	At the end of the Course, learner will be able to : - Explain the principles and concepts of Interface design	I
	 Create intuitive interfaces 	
	- Explain UX	
	- Create better interfaces for effective UX	

Practical Work

Sr. No	Торіс	Total Hours :60
1	 Exercises to Identify interface connectivity and establish interface connectivity between two different program modules. Choose any of the programming languages (like HTML, JavaScript, Bootstrap etc.), do create two separate programming files and establish the interface connectivity between both. 	08 hours
2	 Exercises that will facilitate Understanding frontend and backend interface and implementation of both interfacing. Front –end and back-end interfacing languages used for interface design. HTML: HTML stands for Hypertext Markup Language. It is used to design the front-end portion of web pages using a markup language. 	16 hours
3	 Exercises to create wireframes designs:- Modelling wireframes designs Implementing wireframes 	14 hours
4	 Exercises using font, color matching and typography:- Use of colors and contrasts Font suitability Matching content to target users 	10 hours
5	 Exercises using responsive design on :- Web pages Desktop software screens Smartphones/ Tabs and other handheld devices 	12 hours

(Back to Index) (Back to Agenda)

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC-148** Title of the Course: **Data analytics using Spreadsheets II** Number of Credits: **03 (1 T + 2 P)** Effective from AY: **2023-24**

Pre-requisites for the Course:	Basic knowledge of Spreadsheets.	
Course Objectives:	Develop ability to use spreadsheets for conditional data summarization, financial calculations, advanced data visualization. Work with pivot tables and charts to obtain insights, use lookup functions for data manipulation, perform what-if analysis. Create a dashboard in Excel. Obtain basic descriptive statistics using analysis tools.	
Content:	Content: Theory No	
	 Unit I : Financial Data Analysis and Advanced data Visualization: Data Analysis financial functions Financial arithmetic basics and Investment Appraisal functions- modeling financial data in Spreadsheets. Data Analytics advanced visualization methods Data Visualization with charts such as tree map, waterfall, sunburst, box and whisker, power maps. 	5
	 Unit II: Steps in data analytics: Preparation of data: Data collection, data cleansing and data validation Elementary data modeling – linear functions in business, expressions and functions involving logical tests, vertical lookup functions, combining conditional statements with lookup functions. 	5
	 Unit III: Statistical analysis of data using Spreadsheets: Collating and categorizing data, data description- central tendency and dispersion, descriptive statistics using Analysis Tool Pak. 	5
	Practical	

		Std. Com.X AC-6
		15 & 22.05.2023
	 Unit I:Data Analysis advanced functions and methods Financial Functions: FV, PV, NPV, IRR, PMT (Ioan amortization schedule) Scenarios for visualizing data using charts such as tree map, waterfall, sunburst, box and whisker, combo charts, power maps and 3D Maps Advanced Sorting option and Advanced Filters 	20
	 Unit II Data Validation: Number, Date and Time Validation, Text and List Validation, Custom validation based on formula for a cell, Dynamic dropdown list creation using data validation-dependency list. What-if Analysis: Goal Seek, scenario analysis, data tables using PMT function, Solver tool Lookup Functions: Vlookup and Hlookup functions, Index and Match, Reverse Lookup using choose function. 	20
	 Unit III Pivot Tables and Pivot Charts: Creating advanced pivot tables with advanced value field settings, filtering pivot tables, modifying pivot table data, grouping based, Pivot Charts and Slicers. Filter data with slicers, manage primary and secondary axis Creating Interactive Dashboard: Planning a Dashboard, Adding Tables and charts to dashboard, adding dynamic content to dashboard. Descriptive statistics using Analysis ToolPak. Introduction to Excel macros and VBA Basics. 	20
Pedagogy:	 Blended learning: Concept learning through Lab assignme video resources followed by application of concept lear scenario provided. Practical skill development through Lab assignments. 	
References/ Readings:	M. Alexander, D. Kusleika, Excel 2019 Bible. Indiana: Wiley, 2 D. Whigham, Business Data Analysis using Excel. New University Press, 2007 How to use excel by Kevin Stratvert https://www.youtube.com/playlist?list=PLIKpQrBME6xLYou OivQVLY	York: Oxford

	15 & 22.05.202
Course Outcomes:	 At the end of the course, learner will be able to: 1. Use conditional arithmetic functions to summarize data and use financial functions, given a spreadsheet with data and relevant description of desired output. 2. Perform what-if analysis and data validation on given data for a given scenario. 3. Summarize and analyze data using Pivot Tables and Pivot Charts. 4. Present and visualize data using Dashboard for given data and
	 Present and visualize data using Dashboard for given data and given scenarios. Obtain descriptive statistics for given data using Analysis ToolPak.

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC 149** Title of the Course: **Data and Business Analytics** Number of Credits: **3(1L+2P)** Effective from AY: **2022-23**

Pre-requisites for the Course:	Nil	
Course Objectives:	To understand data processing, data analysis, business analytics concepts, computer networking basics, e-commerce technologyand business applications; To develop practical skills in data analytics and business analytics.	
Content:	Description	No of hours
	Unit I:Data processing, Data Analysis and Business Analytics Data Processing – Steps involved in data processing, advantages of computers in data processing Data analysis and forecasting - importance of data analysis in business, Data forecasting, its need, benefits of data forecasting, Data Integration: concept and how it works Introduction to Business analytics – meaning and basic concepts,Visualization/ Data Issues: Organization/sources of data, Importance of data quality, Dealing with missing or incomplete data, Data Classification	4

	15 & 22.05.20
Electronic Data I commerce:Business Commerce,Business Commerce.Consum Business ElectronicPayments Safe practices, Onlineshopping–Int ofdata authenticati	
Networking basics networks-LAN, M	mputer Networking 6 Need for computer networks, Types of N, WAN, Network Components–H/W, ation channels, Network Devices, Network

		<u>. Com.X AC-</u> & 22.05.202	
Lab1	 Spreadsheet (MS-Excel or any similar open source software) Working with worksheets -Entering data, Formatting, Editing, and Printing a worksheet, Formulas and Functions in Excel, operators in formula Generally used Spreadsheet functions - Mathematical, Statistical, Financial, Logical, Date and Time, Database and Text functions Introduction to some more useful functions such as the IF, nested IF, VLOOKUP and HLOOKUP Data Sorting and Filtering Result representation of data using spreadsheet What-if analysis, Logical tests(nested if functions), Goal seek, Representing results graphically Filtering, advanced filters, sorting and conditional formatting data Data validation techniques, Hyperlinks Pivot table, Scenarios Summing through the sheets Getting external data files into Excel Macros - creation, editing and deletion of macros Assignments to be given on the following topics: to prepare and analyse Loan and Lease statement; Ratio Analysis; Payroll statements; Capital Budgeting; Depreciation Accounting; Graphical representation of data; Frequency distribution and its statistical parameters; Correlation and Regression 	36	
Lab2	 Data Analytics Assignments to analyse data available from IndiaStat.com such as Analysis of demographic data, environment data, public expenditure Analyse data from annual reports of Companies and banks 	8	
Lab3	E-commerce Website review Write a review of an E-Commerce Site visited include: Site description, Site Design, ease in navigation , process for purchasing items, security, privacy, customer service, best features of site, Target Audience, Revenue model, Marketing Strategies	8	

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

Lab4 Pedagogy:	Computer Networking Basic Networking Setup of PC, Network commands like ipconfig, ping, traceroute, nslookup etc, Setup of Home Router / Wifi Hotspot, Understanding of Firewall and Basic Firewall Setup, File and Printer Sharing, connecting to share, Finding out public address, connection speeds etc. MS-Excel or any similar open source software may be used Field visits may be conducted to banks, corporate offices employing software for business applications.	8 g relevant
References/ Readings:	 ITL Education Solutions Limited(2005), Introduction to Inf Technology, Pearson Education Ravi Kalakota& Andrew B. Whinston(2009), Frontiers of B Commerce (Ninth Impression), Pearson Education. David Whiteley(2000),E-Commerce: Strategy, Technolog Applications McGraw-Hill Education, ISBN-10 : 0077095529 Thomas H. Davenport, Jeanne G. Harris(2010), Competing on A The New Science of Winning, Harvard Business Review Press. LaValle et al.(2005), Analytics: The New Path to Value, Publishers. Davenport and Harris(2007), The Dark Side of Customer A Harvard Business Review Press. Bartlett, R.(2013), A Practitioner's Guide to Business Analytics. Hill, New York. Bruice Schneier, Applied Cryptography-Protocols, Algorithms ar code in C (Second Edition), Wiley India Pvt Ltd, ISBN 978-81-265-13 9. https://www.analyticsvidhya.com/blog/2021/11/a-comprehensi on-microsoft-excel-for-data-analysis/ 10. https://www.tutorialspoint.com/excel data analysis/excel data an utorial.pdf 	Electronic gies And Analytics- Taxmann Analytics, McGraw- nd Source 368-0 ve-guide-
Course Outcomes:	 At the end of the course, learner will be able to: 1. Explain the concepts of data processing, data analysis, business computer networking, e-commerce technology and its applicabusiness. 2. Develop skills of data analysis and business analytics using Application software. 3. Apply the Spreadsheet tools to solve business problems. 4. Review an E-commerce Website 	ations in

(Back to Index) (Back to Agenda)

Name of the Programme: **Students from any Programme can opt for this** Course Code: **CSC 150** Title of the Course: **Database Management and Analysis** Number of Credits: **3 (1L+2P)** Effective from AY: **2023-24**

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

Pre-requisites for the Course:	Nil	
Course Objectives:	To familiarize the student with various applications of Information and Communication technologies in business and to familiarize with the mechanism for conducting business transactions through electronic means.	
Content:	 Unit I: Database Management System Database Designs for Accounting and Business Applications: Reality- Expressing the Application; Creating Initial design in Entity Relationship(ER) Model; Transforming ER Model to Relational data model concepts; Implementing RDM design using an appropriate DBMS. SQL and Retrieval of Information: Basic Queries in SQL; Embedded Queries in SQL; Insert, Delete and Update statements in SQL DBMS Software: Environment; Tables; Forms; Queries; Reports; Modules; Applying DBMS in the areas of Accounting, Inventory, HRM and its accounting, Managing the data records of Employees, Suppliers and Customers. 	10 hours
	 Unit II: Enterprise Resource Planning Introduction: Traditional information model, Introduction to an enterprise, What is ERP?, Reasons for growth of ERP market, Advantages and Disadvantages of ERP , Introduction to business modules: finance, manufacturing, Human resource, materials management, sales and distribution, Limitations of ERP, ERP and eCommerce Practicals 	5 hours

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
Lab1	Database Management System Creating Database and Tables, Changing Table Contents, Adding and Editing Records, Changing Table Properties, Creating Relationships between Tables, Importing and Exporting Data with other Programs. Creating Queries: Using the Query Window, Using Criteria and Saving Queries, Criteria Expressions and Operators, Changing a Query and Totaling, Creating a Query to the above-made Databases Creating Forms: Putting List Box on the Form, Selecting and Redesigning Labels and Data, Moving Label and Data, Adding Data and using Data Validation Creating Reports: Creating a single Column Report, Creating a Grouped Data Report, Adding Graphs to Reports. Use of Macros for search and navigation filters.	50 hours
Lab2	ERP Mini Project Case study – Studying ERP implementation in any business firm Report preparation and submission – report shall include ERP introduction, life cycle as followed by the Business firm under study – pre-evaluation screening, package evaluation, project planning phase, gap analysis, reengineering, configuration, implementation team training, testing, going live, end user training, post implementation.	10 hours
Pedagogy:	MS-Access or any similar open source software Field visits may be conducted to understand and der Software.	nonstrate ERP
References/ Readings:	 Database systems – Bipin Desai MS-Access manual S Sadagopan, "ERP a Management Prospective" Tata McGraw Hill Publishing Company Limited, New Delhi 1999 Alexis Leon, "ERP Demystified", Tata McGraw Hill Publishing Company Limited, New Delhi 2000 	
Course Outcomes:	 At the end of the course, learner will be able to: 1. Describe database designing in DBMS software, Query understand its applications. 2. Creation and management of Database tables, q reports and also macros in DBMS. 3. Explain the application of Enterprise Resource Planning 4. Explain Implementation of ERP as a case study in any b (Back to Index) (Back to Index) 	ueries, forms, in Business usiness firm.

Std. Com.X AC-6	
15 & 22.05.2023	

Annexure II

Compute	Applications	Programme
---------	---------------------	-----------

Semest er	Major - Core (3T + 1P) Major- 1 CSA-100 (Problem	Minor (4 T) Minor -1 CSA -111 (Computer	MC (3 T) MC-1 CSA -131 (E- Commerce)	AE C	SEC (1 T + 2 P) SEC-1 CSA - 141 (Office	1	D	VA C	Total Credi ts	Exi t
I	Solving and Programmi ng)	System Fundament als)	OR CSA- 132 (Mathemati cal Foundation s - I)		Automation and PC Troubleshoot ing) OR CSA-142 (Python Programming)					
11	Major- 2 CSA-101 (Data Modelling)	Minor-2 CSA-112 (Open Source Software)	MC-2 CSA -133 (Green Computing) OR CSA- 134 (Mathemati cal Foundation s - II)		SEC-2 CSA - 143 (Data Analytics using Spreadsheets) OR CSA-144 (2D Annimation)					
		Compute	er Applications	s Mai	or Courses					
			••							
Semeste No.	r Course Code	Name of C	First Yea Course	ır	Credit					
I	CSA-100			ning	3T + 1P					
	II CSA-101		Data Modelling			3T + 1P				
			Second Ye	ear						
III CSA-200		-	Programming using C++			3T + 1P				
III CSA-201 IV CSA-202			Database Management Systems Web App Development			3T + 1P 3P + 1 Tutorial				
IV CSA-202			Methodologies 3T + 1P							
IV			Coriented Concepts 3T + 1P							

			15 & 22.05.202
IV	CSA-205	Web Technology	2T
		Third Year	
V	CSA-300	UI- UX Design	3T + 1P
V	CSA-301	Full Stack Development	3P + 1Tutorial
V	CSA-302	Internet Technologies	3T + 1P
V	CSA-303	Introduction to Functional Programming	2P
VI	CSA-304	Lambda Calculus	4T
VI	CSA-305	Mobile App Development	3P + 1 Tutorial
VI	CSA-306	Data Science	3T + 1P
VI	CSA-307	Project	4
		Fourth Year	
VII	CSA-400	Cyber Security	3T + 1P
VII	CSA-401	DevOps	3P + 1 Tutorial
VII	CSA-402	Software Design Patterns	3T + 1P
VII	CSA-403	NLP Applications	3T + 1P
VIII	CSA-404	Educational Technology	3T + 1P
VIII	CSA-405	Information Systems Audit	3T + 1 Tutorial
VIII	CSA-406	ют	3T + 1P
VIII	CSA-407	Seminar	4T
		Computer Applications Minor Courses	
		First Year	
Semester	Course	Name of Course	Credits
No.	Code CSA-110	Computer Sustem Fundementals	47
I		Computer System Fundamentals	4T
11	CSA-111	Open Source Software	4T
		Second Year	
		Reasoning Techniques	3T + 1 Tutorial
	CSA-210		
 	CSA-210 CSA-211	Techpreunership Development	3T + 1 Tutorial

Std. Com.X AC-6

15 & 22.05.2023 IV CSA-213 Data Analysis 3T + 1P Third Year V CSA-310 JavaScript 3T + 1P V CSA-311 Dashboard Development 3T + 1P VI CSA-313 Social Media Marketing & Analytics 3T + 1P VI CSA-314 E-Commerce Applications 3T + 1P VI CSA-315 Modern Frameworks 3T + 1P Fourth Year VII CSA-410 **Project Management** 3T + 1P VII CSA-411 **Cloud Computing** 3T + 1P VII CSA-412 Research Methodology 3T + 1P VIII CSA-413 Interactive Media 3T + 1P VIII CSA-414 Game Design 3T + 1P VIII CSA-415 Statistical Tools 3T + 1P VIII CSA-416 Blockchain Technology 3T + 1P

	Computer Applications Multidisciplinary Courses(MC)				
Semester No.	Course Code	Name of Course	Credits		
	CSA-131	E-Commerce	ЗТ		
I	CSA-132	Mathematical Foundations - I	3T		
	CSA-133	Mathematical Foundations - II	3T		
	CSA-134	Green Computing	3Т		
	CSA-231	Cyber Law and Ethics	ЗТ		
	CSA-232	Digital Ecosystem	3T		
	CSA-233	Website Design	2T+1P		
	CSA-234	ERP	2T+1P		
	CSA-235	Latex	2T+1P		
	CSA-236	Multimedia Essentials	2T+1P		

Computer Applications Skill Enhancement Courses(SEC)				
Semester No.	Course Code	Name of Course	Credits	
I	CSA-141	Office Automation and PC Troubleshooting	1T + 2P	
I	CSA-142	Python Programming	1T + 2P	
II	CSA-143	Data Analytics using spreadsheets	1T + 2P	
II	CSA-144	2D Animation	1T + 2P	
111	CCA 244		-	
	CSA-241	Multimedia Applications	1T + 2P	
	CSA-242	Search Engine Optimization	1T + 2P	
111	CSA-243	3D Animation	1T + 2P	

Name of the Programme: UG Honors with Computer Applications Course Code: CSA-100 Title of the Course: Problem Solving and Programming Number of Credits: 4 (3 Theory + 1 Practical)

Effective from AY: 2023-24

Pre-requisites	None			
for the Course:				
Course	5. To understand the concepts and techniques of problems solv	ving.		
Objectives:	6. To analyse, understand and build logic to solve basic problem	ns.		
	7. To design Algorithms and flowcharts for better understanding	ig and		
	documentation for accurate implementation of the problem			
	8. To code and implement a well-structured, robust programming logic			
	using a suitable programming language.			
Units	Content	No of		
		hours		
		75 (45 T +		
		30 P)		
Ι.	Introduction to Problem Solving	04		
	4. Problem Solving Life Cycle – Understanding the Problem			
	Statement, Analyzing the problem, Planning Program			
	design using Hierarchy charts, Expressing Program logic			
	using flowcharts / Pseudocode.			
	5. Structured Programming concept			
	δ. Modular Programming - Top-Down design, Bottom-up			
	design, Stepwise Refinement			
II	Understanding basic problem Solving Tools	06		
	4. Algorithms: Definition & its attributes, algorithm			

15 & 22.05.2023 constructs, Statements: Input-Output, Decision-Making, &Looping, Examples Б. Flowchart: Definition & its attributes, symbols, Statements: Input-Output, Decision-Making & Looping, Module representation, Drawing conventions and standards, Examples. Б. Pseudo-code: Definition & its attributes, constructs, and Examples III **Basic Program Structures** 06 Data & its types (Integer, Floating-point, Character, String), Constants & Variables, scope, Instructions & its types, how computer stores data, Operators (Arithmetic, Assignment, Relational, Logical, etc), Expressions and Equations, Evaluation of expressions, Keywords. Local and Global Variables, Parameters, Return Values, naming conventions & standards, Understanding literals, syntax and semantics, functions and modules. IV **Basic Sequential Instructions** 06 Sequential statements using operators, constants, variables, operands, expressions and equations. Activity: Design algorithms of at-least 3 basic problems to apply the concept learned in the unit. Represent it using flowchart and pseudo-code. ν **Problem Solving with Decisions** 06 The Decision Logic Structure, Multiple If/Then/Else Instructions, Using Straight-Through Logic, Using Positive & Negative Logic, Logic Conversion, Decision Tables, Case Logic Structure Activity: Design algorithms of at-least 3 basic problems to apply the concept learned in the unit. Represent it using flowchart. VI **Problem Solving with Loops** 06 The Loop Logic Structure, Incrementing, Accumulating, While/While End, Repeat/Until, Automatic-Counter Loop, Nested Loops, Indicators (flags). **Activity:** Design algorithms of at-least 3 basic problems to apply the concept learned in the unit. Represent it using flowchart. VII **Understanding functions** 06 Functions: Definition and its need & constructs, designing simpler functions, function communication using arguments & return statements. scope of functions, function declaration and prototype, call by Value and Call by reference. Concept of Recursive functions: why, when and how. Designing recursive functions and recursive call. Base case and recursive case.

Std. Com.X AC-6

		d. Com.X AC-6
	Activity: Design algorithms of at-least 3 basic problems to apply the concept learned in the unit. Represent it using flowchart.	
VIII	 Problem Solving with Arrays Arrays Concepts: One dimensional Arrays, Creating, iterating, accessing and modifying array elements. Concept of Strings, String as array of characters. Activity: Design algorithms of at-least 3 basic problems to apply the concept learned in the unit. Represent it using flowchart. 	03
IX	Debugging & Documentation Definition, Types, Need and how to do it.	02
Practical Work	Using any suitable programming language (eg C, C++, etc.), the concepts learnt in the units from I to IX are required to implemented practically. The broad area of practical problems are mentioned / suggested below.	Practical Hours (30)
Week 1 & 2 [These practicals should be done using pen & paper and using buddy learning strategy]	 For each of the following tasks, write a set of numbered, step-by-step instructions (a solution) so complete that another person could perform the task without asking questions. Define the knowledge base of this person by listing what you expect the person to know in order to follow your directions. For example, for task "a" (below), make a cup of cocoa, the knowledge base might include such things as knowledge of milk or water, a refrigerator, pan, spoon, cocoa, cup, range top or microwave, and so forth. a. Make a cup of cocoa. b. Sharpen a pencil. c. Walk from the classroom to the student lounge, your dorm, or the cafeteria. d. Start a car (include directions regarding what to do if the car doesn't start). e. Get a glass of water from your kitchen. f. Start your computer. Z. Test your solution in problem 1 by giving your instructions to another person to see whether he or she can accomplish the task without your help. If they can't, modify your solution so that the person can accomplish the task. Check the solution again by giving the instructions to another person. 	04 Hours
Week 3 & 4	 Basic Program Structures At-least 10 basic programming problems related to Unit III to be completed during the practical sessions. More programs may be given to the learners to complete and practice as part of their Practice Work. 	04 Hours

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

		15 & 22.05.20	023
Week 5 & 6	4. Basic Sequential Instructions	04 Hour	s
	At-least 08 programming problems related to Unit IV	to	
	be completed during the practical sessions.		
	More programs may be given to the learners to comp	olete	
	and practice as part of their Practice Work.		
Week 7 & 8	5. Problem Solving with Decisions	04 Hour	s
	At-least 08 programming problems related to Unit V t	to be	
	completed during the practical sessions.		
	More programs may be given to the learners to comp	olete	
	and practice as part of their Practice Work.		
Week 9 & 10	6. Problem Solving with Loops	04 Hour	s
	At-least 06 programming problems related to Unit VI	to	
	be completed during the practical sessions.		
	More programs may be given to the learners to comp	olete	
	and practice as part of their Practice Work.		
Week 11 & 12	7. Understanding functions	04 Hour	s
	At-least 08 programming problems related to Unit VII	l to	
	be completed during the practical sessions.		
	More programs may be given to the learners to comp	olete	
	and practice as part of their Practice Work.		
Week 13 & 14	8. Problem Solving with Arrays	04 Hour	S
	At-least 06 programming problems related to Unit VII	ll to	
	be completed during the practical sessions.		
	More programs may be given to the learners to comp	olete	
	and practice as part of their Practice Work.		
Week 15	9. Debugging & Documentation	02 Hour	S
	Debug & Document at-least 06 problems which you h	lave	
	programmed from week 07 onwards.		
	More programs may be given to the learners to comp	olete	
	and practice as part of their Practice Work.		
Pedagogy:	Suggested strategies for use to accelerate the attainme	ent of the variou	JS
	course outcomes.		
	1. Lecture method need not be only a traditional lecture in		
	alternative effective teaching methods could be adopte	ed to attain the	
	outcomes. You may use		
	a. Video/Animation to explain various concepts.		
	b. Collaborative, Peer, Flipped Learning etc.	nc in the class	
	 Ask at least three HOT (Higher-Order Thinking) questio which promotes critical thinking. 	ins in the class,	
	 Adopt Problem Based Learning (PBL), which fosters stu 	Idents' Analytica	1
	skills, develop design thinking skills such as the ability t	•	
	generalize, and analyse information rather than simply	-	ις,
	4. Introduce Topics in manifold representations.		
	5. Show the different ways to solve the same problem an	id encourage the	•
	students to come up with their own creative ways to so	-	
	6. Discuss how every concept can be applied to the real w		h
	- 2.30033 not every concept can be applied to the real w		•

	that's possible, it helps improve the students' understanding
	7. To promote self-learning give atleast one assignment (equivalent to 50%
	assignment weightage) where they can complete atleast one MOOCs
	(certificate or equivalent) course out of lecture hour. Test their
	understanding through quizzes or presentations.
References/	1. Maureen Sprankle and Jim Hubbard, Problem Solving and Programming
Readings:	Concepts, Pearson Education India 9th edition (2013)
	2. S.Kuppuswamy, S.Malliga, C.S.Kanimozhi Selvi, K.Kousalya. Problem
	Solving and Programming. 2019, Tata McGraw Hill.
	3. A Structured Programming Approach Using C, Behrouz A. Forouzan,
	Richard F. Gilberg ISBN:9788131500941, Cengage Learning India
	4. Introduction to algorithms – Cormen, Leiserson, Rivest, Stein
	Ritchie,ISBN:9788120305960, PHI Learning
	5. How to Solve it by Computer, R.G. Dromey, ISBN: 9788131705629,
	Pearson Education
	Article in Online Encyclopedia
	3. https://code.world/ [Accessed: April 15, 2023].
	4. https://raptor.martincarlisle.com/ [Accessed: April 15, 2023].
Course	On completion of the course, students will be able to –
Outcomes:	1. Understand the ways and stages of Problem Solving.
	2. Understand basic computing concepts, algorithm design, flowchart
	design, programming constructs and debugging.
	3. Apply the problem solving & programming concepts in designing solution
	to simpler problems.
	4. Code and implement a well-structured programming logic using a
	suitable programming language.
	(Rack to Index) (Rack to Agonda)

Name of the Programme:UG Honors with Computer ApplicationsCourse Code:CSA-101Title of the Course:Data ModellingNumber of Credits:4 (3 Theory & 1 Practical)Effective from AY:2023-24

Pre-requisites	None	
for the Course:		
Course	1. To understand the basic concept of data and its types	
Objectives:	2. To understand different data levels and data model.	
	3. To understand Relational Data Model at conceptual & logica	l Level
	4. To understand basic data storage.	
Units	Content	No of
		hours
		45L + 30P
I	Data Model Introduction	05
	• Definition, Importance, Levels (Conceptual, Logical and	
	Physical), Data Types (Textual & Non-Textual)	
	Career Path of a Data Modeler	

 Std. Com.X AC-6

 15 & 22.05.2023

	Data Modeling Development Life Cycle	
	Data Model Standards: Naming conventions, information	
	security, compliance	
	Data Model Levels	10
	Conceptual Data Model - Definition, Characteristics, Need	
	of conceptual model, Steps to design a conceptual data	
	model, Representation, Application	
	Logical Data Model - Definition, Characteristics, Need of	
	logical model, Steps to design a logical data model,	
	Representation, Application	
	 Physical Data Model - Definition, Characteristics, Need of 	
	physical model, Steps to design a physical data model,	
	Representation, Application	
	Comparison of Data Model Levels	
	Aspects & Types of Data Model:	05
	 Single /Multi-valued, Homogeneous / Heterogeneous, 	05
	Dimensions	
	 Types: Network, Hierarchical, Object Oriented, Relational, 	
	Dimensional. Comparison of Data Models	45
IV	Relational Data Model	15
	Conceptual Data Models for Database Design	
	Entity Types, Entity Sets, Attributes	
	Strong & Weak Entity Types	
	Relationship Types, Relationship Sets, Roles, and Structural	
	Constraints	
	• ER Diagrams, Naming Conventions, and Design Issues	
	Cardinality and Multiplicity - Maximum & Minimum	
	 Mapping Conceptual model into relational schema 	
	• Concepts of keys, Entity integrity, Unique Requirement and	
	Fundamental integrity rules: entity & referential integrity	
V	Data Storage	5
	Meta-data	
	 Proprietary & Open Source formats 	
	• Basic storage format: Sequential files, Tabular Data, JSON,	
	XML, XSV (X - Comma, Tab, etc.)	
VI	Introduction to	5
	• Big Data	
	Data Warehousing	
	Data Mining	
Practical Work	Content	Practical
		Hours (30)
Week 1	 Identify any 5 entities from your surroundings. Identify 	02 Hours
AACCK T	attributes for each of the entities. Examine if each of these	52 HUUIS
	entities are related to each other? If yes why and if no why	

15 & 22.05.2023 Week 2 & 3 • Study and critically examine at-least 2 case studies on each 04 Hours of the data models levels mentioned in Unit II. • A few case studies may be given to the learners to practice at Home. Week 4 & 5 04 Hours • Critically study at least 1 case study under Network, Hierarchical, Object Oriented, and Dimensional data model type at conceptual level. Week 6 to 9 08 Hours • Design and Model Data of at-least 04 real life business problems using Relational Data Model at Conceptual Level using ERD. Also, carry out the tasks step by step while designing ERD. • Some real life business problems are Library, Attendance of School, Grocery Store, etc. Week 10 & 11 04 Hours • Design physical data model of any 02 real life business problems using suitable tool, for which you have designed the logical model in week 6 to week 9. Week 12 to 15 08 Hours • Using any open source database management designer tool (eg. DB DESIGNER, SqIDBM, DbWrench, and similar tools), design and create databases of real life business problems for which you have designed the physical data model in week 10 and week 11. • Use concepts of primary key & foreign keys Suggested strategies to use to accelerate the attainment of the various Pedagogy: course outcomes. 1. Lecture method need not be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. You may use a. Video/Animation to explain various concepts. b. Collaborative, Peer, Flipped Learning etc. 2. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking. 3. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it. 4. Introduce Topics in manifold representations. 5. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them. 6. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding 7. To promote self-learning give atleast one assignment (equivalent to 50% assignment weightage) where they can complete atleast one MOOCs (certificate or equivalent) course out of lecture hour. Test their understanding through quizzes or presentations. **References**/ 1. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database **Readings:** Systems, Pearson Education, 7th Edition

Std. Com.X AC-6

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

	 Graeme C. Simsion and Graham C. Witt, Data Modeling Essentials, Morgan Kaufmann Publishers, Third Edition, 2005 Abraham Silberschatz, Henry Korth, S. Sudarshan, Data Base System Concepts, McGraw Hill, 6th Edition 	
Course	On completion of the course, students will be able to –	
Outcomes:	1. Understand the basics of data, data levels and data models.	
	2. Design Relational Data Model.	
	3. Understand different data storage formats.	
	4. Create a simple Relational Database for data storage.	

(Back to Index) (Back to Agenda)

Name of the Programme: Any Discipline

Effective from AY: 2023-24

Pre-requisites	None	
for the		
Course:		
Course	1. To understand the basic concepts of Operating System and Computer	
Objectives:	Architecture	
	2. To understand the concepts of organization and functioning of Com System.	puter
	3. To design Algorithms and flowcharts for better understanding and	
	documentation for accurate implementation of the problem.	
	4. To learn and use efficient programming constructs.	
	Content	No of hours (60)
Unit	Торіс	
I	Fundamentals of Computer	10
	Evolution of Computer – Operating Systems – Definition,	
	Introduction to Major Functions/Services, OS Structure,	
	Relationship between Kernel, OS, Hardware, Block Diagram of	
	computer, Generations of Computer, Von Neumann Architecture.	
	Computer Components and Functions – Instruction Cycle with	
	and without interrupts, Multiple interrupts, Bus Interconnections.	
	Number System – Conversion (Binary, Decimal, Octal, Hexa-	
	Decimal)	
II	Central Processing Unit	05
	Computer Arithmetic ALU, Integer representation, Integer	
	Representation, Addition, subtraction.	
	Instruction sets, characteristics & Functions, Addressing modes and formats.	
	CPU structure and function. Processor Generation-8086,Pentium I- IV,i1-i7	

Course Code:CSA-110Title of the Course:Computer System FundamentalsNumber of Credits:4

Std. Com.X AC-6

	15 & 22.0	05.2023
III	15 & 22.0Processes & Process ManagementProcesses & Process ManagementProcess- Definition, Process Control Block, Process States, Operations on Process.Threads and Microkernels – Definition, Multithreading, Model Process Scheduling - Introduction to the Concept, Scheduling Criteria Scheduling Algorithms.Concurrency/ Process Coordination – Synchronization Principles, Mutual Exclusion, The Critical-Section Problem, Peterson's SolutionDeadlock – Principles, Deadlock Handling Methods, Prevention,	15.2023
	Avoidance, Detection, Recovery from Deadlock	
IV	Memory ManagementMemory Management Concepts – Swapping, Contiguous MemoryAllocation, Paging, Page Table, Segmentation.Virtual Memory – Introduction, Demand Paging, PageReplacementFrames Allocation, ThrashingCache Memory, Internal Memory (Semiconductor, Main Memory,RAM), External Memory (Magnetic Disk, RAID, Optical memory)	10
V	Input/ Output and File SystemFile System Concepts, File Organization and Access Methods,Directory Structure, File SharingI/O Management - I/O devices, I/O Hardware, Organization of I/O,I/O Buffering, Disk Scheduling- Algorithms, I/O Modules, I/Otechniques (programmed, interrupt driven and DMA), OperatingSystem Support.	14
VI	Control Unit Structure of the Control Unit, Functioning of the Control Unit, Micro programmed control	6
Pedagogy:	 Suggested strategies to use to accelerate the attainment of the var course outcomes. 1. Lecture method need not be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain outcomes. You may use a. Video/Animation to explain various concepts. b. Collaborative, Peer, Flipped Learning etc. 2. Ask at least three HOT (Higher-order Thinking) questions in the clas promotes critical thinking. 3. Adopt Problem Based Learning (PBL), which fosters students' Analy skills, develop design thinking skills such as the ability to design, evageneralize, and analyse information rather than simply recall it. 4. Introduce Topics in manifold representations. 5. Show the different ways to solve the same problem and encourage students to come up with their own creative ways to solve them. 6. Discuss how every concept can be applied to the real world - and w 	the s, which tical lluate, the

	that's possible, it helps improve the students' understanding
	7. To promote self-learning give atleast one assignment (equivalent to 50%
	assignment weightage) where they can complete atleast one MOOCs
	(certificate or equivalent) course out of lecture hour. Test their
	understanding through quizzes or presentations.
References/	1. PradipSinha and PritiSinha, "Computer Fundamentals", 6 th Edition, BPB
Readings:	Publications, 2016
	2. Abraham Silberschatz and Peter Baer Galvin, "Operating System Concepts",
	7 th Edition, Pearson Education, 2007.
	3. William Stallings, "Operating Systems", 6 th Edition, Pearson Education, 2010
	4. Computer Organization and Architecture (7th Edition): William Stalling,
	Prentice-Hall.
	5. Computer System Architecture: Morris Mano, Prentice-Hall.
	E-Books:
	6. Operating Systems Guide: by Tim Bower
	7. Operating Systems Course Notes: by Dr. John T. Bell
	8. Schaum's Outline of Operating Systems (Schaum's Outline Series) [Kindle
	Edition] by J. Archer Harris.
	9. Computer Organization: TMH, Ace series.
	10. Computer Organization and Architecture by William Stallings, 8 th Edition,
	Prentice-Hall.
Course	On completion of the course, students will
Outcomes:	1. Understand the basic structure and functioning of the Computer
	2. Get the understanding of various functions and characteristics of operating
	systems.
	3. Understand basic concepts of Computer Organisation& Architecture.
	4. Understand basic understanding of resource allocation, functioning of the
	I/O modules, primary and secondary memory, and Control Unit.

Programme: Any Discipline Course Code: CSA-111 Title of the Course: Open Source Software Number of Credits: 04 Effective from AY: 2023-24 Prerequisite for the None Course : **Course Objectives :** 1. Explain the benefits of Open Source software 2. Understand the social impact of Open Source software 3. Understanding tools and techniques for creating and managing open source communities of practice 4. Understanding Open Source software ecosystem No of Hours Uni Title Content (60) t Introduction Introduction to Open Open Source, Free Software, Free Software vs. Open • source Source software, Public Domain Software, FOSS does

		Г	Std. Com.X AC-6
			15 & 22.05.2023
I	Software	not mean no cost. History: BSD, The Free Software Foundation and the GNU Project. Methodologies	20
		 Open Source History, Initiatives, Principle and methodologies. Philosophy: Software Freedom, Open 	
		Source Development Model Licenses and Patents:	
		What Is A License, Important FOSS Licenses (Apache,	
		BSD, GPL, LGPL), copyrights and copy lefts, Patents	
		Economics of FOSS: Zero Marginal Cost, Income-	
		generation opportunities, Problems with traditional	
		commercial software, Internationalization	
		Social Impact	
		Open source vs. closed source, Open source	
		government, Open source ethics. Social and Financial	
		impacts of open source technology, Shared software,	
		Shared source, Open Source in Government.	
		Case Studies	
		 Example Projects: Apache web server, GNU/Linux, Android, Mozilla (Firefox), Wikipedia, Drupal, 	
		wordpress, GCC, GDB, github, Open Office. Study:	
	Contribution	Understanding the developmental models, licensings,	
П	to Open	mode of funding, commercial/non-commercial use.	20
	Source	Open Source Hardware, Open Source Design, Open	
	Projects	source Teaching. Open source media.	
	,	Collaboration, Community and Communication	
		Contributing to Open Source Projects	
		 Introduction to github, interacting with the 	
		community on github, Communication and etiquette,	
		testing open source code, reporting issues,	
		contributing code.	
		Introduction to wikipedia, contributing to Wikipedia	
		Or contributing to any prominent open source project	
		of student's choice.	
		Starting and Maintaining own Open Source Project	
		Understanding Open Source Ecosystem	
		Open Source Operating Systems: GNU/Linux, Android,	
		Free BSD, Open Solaris. Open Source Hardware,	
III	Open Source	Virtualization Technologies, Containerization	20
	Ecosystem	Technologies: Docker, Development tools, IDEs,	20
		debuggers, Programming languages, LAMP, Open	
Pada	aoan.	Source database technologies Suggested strategies to use to accelerate the attainme	ant of the
reud	gogy:	various course outcomes.	
		1. Lecture method need not be only a traditional lectur	re method but
		alternativeeffective teaching methods could be adopte	
		outcomes. You may use	
		a. Video/Animation to explain various concepts.	

	15 & 22.05.2025
	b. Collaborative, Peer, Flipped Learning etc.
	1. Ask at least three HOT (Higher-order Thinking) questions in the class,
	whichpromotes critical thinking.
	2. Adopt ProblemBased Learning (PBL), which fosters students' Analytical
	skills, develop design thinking skills such as the ability to design,
	evaluate, generalize, and analyse information rather than simply recall
	it.
	3. Introduce Topics in manifold representations.
	4. Show the different ways to solve the same problem and encourage the
	students to come up with their own creative ways to solve them.
	5. Discuss how every concept can be applied to the real world - and when
	that's possible, it helps improve the students' understanding
	6. To promote self-learning give atleast one assignment (equivalent to
	50% assignment weightage) where they can complete atleast one
	MOOCs (certificate or equivalent) course out of lecture hour. Test their
	understanding through quizzes or presentations.
References/	Text book:
Readings:	1. Unix Concepts and Applications by Sumitabha Das, Tata McGraw Hill
	Education, 2006
	2. The official Ubuntu Book, 8th Edition
	Article in Online Encyclopedia [All accessed on: April 15, 2023]
	3. The Linux Documentation Project: http://www.tldp.org/
	4. Docker Project Home: http://www.docker.com
	5. Linux kernel Home: http://kernel.org
	6. Open Source Initiative: https://opensource.org/
	7. Linux Documentation Project: http://www.tldp.org/
	8. Wikipedia: https://en.wikipedia.org/
	9. https://en.wikipedia.org/wiki/Wikipedia:Contributing_to_Wikipedia
	10. Github: https://help.github.com/
	11. The Linux Foundation: http://www.linuxfoundation.org/
Course Outcomes:	At the end of the course, the student will be able to -
	1. Understand the significance of Open Source software practices and
	guidelines
	2. Understand knowledge of Open Source ecosystem, its use, impact and
	importance.
	3. Use Open Source methodologies, case studies in real life
	applications.
	4. Collaborate and contribute to Open Source Projects
	s referred from University of Mumbai Institute of Open and Distance
Learning	

Course Code: CSC-131 Title of the Course: E-Commerce Number of Credits: 3 (3 Theory) Effective from AY: 2023-24

Pre-requisite for the Course:	None	
Course Objectives:	 To give fundamental understanding of e-commerce To instill idea of convergence of business relationship through technologies. To understand the application of e-commerce in B2B and B2C modal. To identify, define and differentiate the various modes and risks of electronic commerce. 	
Units	Content	No of hours 45
1	Introduction to Electronic Commerce Meaning, Nature and scope of e-commerce,History of e-commerce, Business applications of e-commerce, E-Commerce Models:- (B2B,B2C,C2C,B2G), Advantages and Disadvantages of e-commerce, Applications of M-Commerce	5 hours
2	E-Commerce Web-sites Websites as marketplace, Role of website in B2C e-commerce, Website design principles, Alternative methods of customer communication such as e-mail, Email etiquette and e-mail security	5 hours
3	Online Marketing Online marketing and advertising, Push and pull approaches, Web counters, Web advertisements, Content marketing, Need of Digital Marketing for an e-commerce Business, Search Engine Optimization(SEO), Search Engine Marketing(SEM), Social Media Marketing(SMM), Web Analytics	10 hours
4	Applications of E-commerce Applications of e-commerce to Supply chain management Applications of e-commerce to Customer Relationship Management, Product and service digitization, Remote servicing	5 hours
5	Business to Consumer E-Commerce Cataloguing,Order planning and order generation,Cost estimation and pricing,Order receipt and accounting,Order selection and prioritization,Order scheduling,Order fulfilling,Order delivery,Order billing,Post sales service	4 hours

		<u>m.X AC-6</u> 2.05.2023
6	Business to Business E-Commerce Need and Models of B2B e-commerce,Using public and private computer networks for B2B trading; EDI and paperless trading, Characteristic features of EDI service arrangement, EDI architecture and standards	7 hours
7	Electronic Payment System Types of payment systems, credit cards, debit cards, mobile, etc, Electronic Fund Transfer(EFT), Operational credit and legal risk of e- payment, Risk management options for e-payment systems	5 hours
8	Security Issues in E-Commerce Risks of e-commerce, Types and sources of threats; Security tools, Risk management approaches	4 hours
Pedagogy: Suggested strategies for use to accelerate the attainment of the various course outcomes. 1. Lecture method need not be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. You may use a. Video/Animation to explain various concepts. b. Collaborative, Peer, Flipped Learning etc. 1. Ask at least three HOT (Higher-Order Thinking) questions in the class, which promotes critical thinking. 2. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it. 3. Introduce Topics in manifold representations. 4. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them. 5. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding 6. To promote self-learning give atleast one assignment (equivalent to 50% assignment weightage) where they can complete atleast one MOOCs (certificate or equivalent) course out of lecture hour. Test their understanding through quizzes or presentations.		alternative s. You may 5, which cal skills, generalize, he en that's

	. 15 & 22.05.2023
References/ Readings:	 Reference Books: P. T. Joseph, E-Commerce: An Indian Perspective Paperback, PHI Learning, 5th Edition, 2015 V. Rajaraman, Essentials of E-Commerce Technology, PHI Learning, 2015 Revised Edition Kalakota, Ravi and Andrew.Whinston, Frontiers of Electronic Commerce, Pearson Education, 2015 Revised Edition Kamlesh N. Agarwala, Amit Lal and Deeksha Agarwala, Business on the Net: An Introduction to the Whats and Hows of E Commerce, Macmillan India Ltd, 2000 Diwan, Pragand Sunil Sharma, Electronic Commerce- A Manager's Guide to E Business, Vanity Books International, Delhi. Fitzgerald, Business Data Communication Network, McGrawHill, 1998. Dishek J. Mankad, Understanding Digital Marketing: Strategies for online success, 2019 NPTELResources: https://nptel.ac.in/content/storage2/courses/106108103/pdf/PPTs/mod13.pdf
Course Outcomes:	 On completion of the course students will be able to 1. Understand the foundation of e-commerce and e-commerce websites. 2. Explain the basics of online marketing and e-commerce applications. 3. Compare B2B and B2C e-commerce models. 4. Explain electronic payment system, the security issues, and security mechanism in e-commerce applications.

(Back to Index) (Back to Agenda)

Name of the Programme: Any Discipline

Course Code: CSA-132	Title of the Course: Mathematical Foundation - I
Numbe rof Credits: 3 (3T)	

Effective	from	AY:2023-24
LIICCUVC		A1.2025 24

Pre-requisites fortheCourse:	None	
Course	1. To learn higher secondary level mathematical concepts.	
Objectives:	 To understand basic mathematical concepts and build logi problems. 	ic to solve
Units	Content	No of hours 45
Ι.	 Complex Numbers A Introduction Operations on Complex numbers: Addition, subtraction, multiplication, division, conjugate, modulus, reciprocal Representation: graphical, polar, vector De Moiveor's Theorem Nth roots of complex number: Basic properties, Square roots, Cube roots of unity 	7
II	Matrices and Determinants	9
	 A Definition, Types of matrices: Row, column, square, 	

		Std. Com.X AC-6
		15 & 22.05.2023
	 diagonal, scalar, unit, null, upper and lower Properties of matrix Algebra of matrices: negative, transpose, equality, 	
	 Algebra of matrices. negative, transpose, equality, addition and subtraction, scalar multiplication, Matrix multiplication, Adjoint, Inverse 	
	 Solving non homogeneous equations by Matrix inverse method 	
	 Determinants Determinants: Definition and order, Types 	
	 fundamental concepts: minor, co-factors, expansion value, properties, 	
	Cramer's rule	
111	Sequence and Series	5
	Arithmetic Progression	
	Geometric Progression	
	Harmonic Progression	
IV	Coordinate Geometry	8
	Cartesian System: Coordinate of a point, Distance	
	between points, Section formula, Area of triangle	
	• Straight Lines: Slope of a line, Parallel and Perpendicular	
	lines, Angle between two intersecting lines, Equation of a	
	straight lines (Through origin, Point slope form, two point	
	form)	
	• Circle: Standard form of a circle, circle with given radius and center	
V	Trigonometry	5
-	 Introduction, Relation between degree and radian, Unit Circle definition 	
	Trigonometric function: Periodicity of trigonometric	
	function	
	Trigonometric identities	
VI	Limits & Continuity	7
	• Introduction, Ordered pairs, Cartesian product, Relation, Function	
	• Real function and types, Domain and Range of function,	
	Composition of function	
	Iimit of a function, Algebra of limits	
	Continuity of a function	
VII	Vectors	4
	Vectors in plane Cartesian coordinates, Vectors in space	
	Dot products Grass products	
Dedagoogy	Cross products Suggested strategies to use to accelerate the attainment	of the various
Pedagogy:	course outcomes.	
	1. Lecture method need not be only a traditional lecture m	ethod but
	alternative effective teaching methods could be adopted to	
	alternative effective teaching methods could be adopted to	o attain the

	outcomes. You may use
	c. Video/Animation to explain various concepts.
	d. Collaborative, Peer, Flipped Learning etc.
	1. Ask at least three HOT (Higher-order Thinking) questions in the class,
	which promotes critical thinking.
	2. Adopt Problem Based Learning (PBL), which fosters students' Analytical
	skills, develop design thinking skills such as the ability to design, evaluate,
	generalize, and analyse information rather than simply recall it.
	3. Introduce Topics in manifold representations.
	4. Show the different ways to solve the same problem and encourage the
	students to come up with their own creative ways to solve them.
	5. Discuss how every concept can be applied to the real world - and when
	that's possible, it helps improve the students' understanding
	6. To promote self-learning give atleast one assignment (equivalent to 50%
	assignment weightage) where they can complete atleast one MOOCs
	(certificate or equivalent) course out of lecture hour. Test their
	understanding through quizzes or presentations.
References/	1. Elementary Engineering Mathematics - BS Grewal
Readings:	2. Calculus – Thomas Finney,14e
	3. Mathematical Techniques – Maria Ester Rebelo Abranches
	4. Mathematics for computer- Neeta Mazumdar
	5. Parmanand Gupta, Comprehensive Algebra (for BA, BSc-I), Laxmi
	Publication,2008
Course	On completion of the course, students will be able to
Outcomes:	1. Identify and understand different operations on the complex
	numbers.
	2. Understand concept of matrices and determinants and use Cramer's rule.
	3. Understand the concept of straight lines and its properties.
	4. Understand the limit &continuity of thefunction
	5. Understand dot and cross product of vectors.
	(Back to Index) (Back to Agenda)

(Back to Index) (Back to Agenda)

Name of the Programme: Any Discipline

Course Code: CSA-133

Number of Credits: 3 (3T)

Title of the Course: Mathematical Foundation - II

Effective from AY: 2023-24

Effect	Effective from AY: 2023-24			
Prere	quisite for the	None		
Cours	e :			
Cours	e Objectives :	To introduce basic fundamentals of applied mathem	atics and	
		understand its applications to solve real world probl	ems	
Unit	Title	Content	No of	
			Hours (45)	
		Introduction to Logic		
		Logical Connectives		
I	Mathematical	Well-formed formulas (WFF)	5	
	Logic	Tautology and Contradiction statements		
		Converse and Contra positive statements		

		Equivalence Formulas	
II	Mathematical	Principle of Induction	2
	Induction		
		Boolean Algebra	
		Introduction	
		Representation of Logic Variables: 0 and1; Low	
III	Boolean	and High; Off and On; No and Yes; Closed and	12
	Algebra and Circuits	Open Switch	
	Circuits	Truth table	
		Unary Operations: Logical Identity, Logical	
		Negation	
		Binary Operations: Conjunction, Disjunction,	
		Implication, Equality, Exclusive Disjunction,	
		Logical NAND, Logical NOR	
		 Applications: Logical Equivalences Boolean functions 	
		 Associative Law Distributive Law 	
		 De-Morgan's theorem Logic gates 	
		 AND, OR, NOT, NAND, NOR, XOR, XNOR 	
		 Logic Gate Diagram and Truth Table Circuit 	
		Diagrams	
		Introduction to Sets	
		Set Operations	
		Union	
		Intersection	
IV	Set Theory	Complement	5
		 Differences 	
		 Algebraic Properties of Sets and De Morgan's 	
		Laws	
		Venn diagrams	
		Cartesian Product	
		 Introduction to Relations 	
		Properties of Relations	5
v	Relations	Reflexive	
		Symmetric	
		Asymmetric	
		Anti-symmetric	
		Transitive	
		Equivalence Relation	
		 Introduction to functions 	

			Std. Com.X A	
	1		15 & 22.05.20)23
		Types of Functions		
		Identity function		
VI	Functions	Composite function	5	
		Injection (One-to-One)		
		Surjection (Onto)		
		 Bijection (One-to-One and Onto) 		
		Invertible		
		 Composition of functions (fog, gof) 		
		Principle of counting		
		Factorial Notation		
VII	Permutations	Permutations		
	and	Permutations with and without repetition	9	
	Combinations	Circular Permutations		
		Combinations		
		The Pigeonhole Principle		
		The Inclusion-Exclusion Principle		
VIII	Binomial	Binomial Theorem	2	
	Theorem			

Pedagogy:	Suggested strategies to use to accelerate the attainment of the various course outcomes.
	 Lecture method need not be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. You may use
	a. Video/Animation to explain various concepts.
	b. Collaborative, Peer, Flipped Learning etc.
	2. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking.
	3. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it.
	4. Introduce Topics in manifold representations.
	5. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
	6. Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding
	 7. To promote self-learning give atleast one assignment (equivalent to 50% assignment weightage) where they can complete atleast one MOOCs
	(certificate or equivalent) course out of lecture hour. Test their understanding through quizzes or presentations.
References:	1. Parmanand Gupta, Comprehensive Discrete Mathematics (for BA/BSc III, BCA, MCA), Laxmi Publications
	2. Trembly J.P and Manohar R, Discrete Mathematical Structures with
	3. Applications to Computer Science, McGraw Hill Education
	4. Kenneth H. Rosen, Discrete Mathematics and its Applications(5e), McGraw Hill Education

	 Swapan Kumar Sarkar, A Textbook of Discrete Mathematics, S.Chand Publication (9e)
	 B. Kolman, R.C. Busby, and S.C. Ross, Discrete Mathematical Structures, PHI
	7. Mathematical Foundation of Computer Science, Bhavanari
	Satyanarayana, T,V. Pradeep Kumar, Shaik Mohiddin Shaw, 2019
Course	1. Understand the various connectives used in logic reasoning.
Outcome:	2. Apply the principle of mathematical induction, Boolean operation laws,
	and basic concepts of sets, relations and functions.
	3. Apply permutations and combinations in solving problems.

Name of the Programme: Any Discipline					
Cours	Course Code: CSA-134Title of the Course: Green ComputingNumber of Credits: 3 (3 Theory)				
Effect	tive from AY: 20	23-24			
Prere	quisite for the	None			
Cours	se:				
Cours	e Objectives :	1. To understand Green IT concepts and meeting stand	lards set for		
		Green Computing			
		2. To comprehend Green IT from the perspective of ha			
		software, storage, and networking at the enterprise			
		3. To understand Green Initiatives and future of Green			
Unit	Title	Content	No of Hours		
			(45)		
I	Trends and	Overview and Issues	05		
	Reasons to	 Current Initiatives and Standards 			
	Go Green	 Consumption Issues - Minimizing Power Usage, 			
		Cooling			
П	Introduction	Green IT	08		
	to Green IT	Holistic Approach to Greening IT			
		Awareness to Implementation			
		Green IT Trends			
		Green Engineering			
		Greening by IT			
		Using RFID for Environmental			
		Sustainability			
		Smart Grids			
		Smart Buildings and Homes			
		Green Supply Chain and Logistics			
		Enterprise-Wide Environmental Sustainability			
Ш	Green	Green Hardware	08		
	Hardware	Introduction			
	and Software	Life Cycle of a Device or Hardware			
		Reuse, Recycle, and Dispose			
		Green Software			

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

		Introduction	
		 Energy-Saving Software Techniques 	
		Changing the way we work	
		Going Paperless	
IV	Green Data	Green Data Centres	08
	Centres and	Data Centre IT Infrastructure	
	Storage	Data Centre Facility Infrastructure: Implications for	
		Energy Efficiency	
		IT Infrastructure Management	
		Green Data Centre Metrics	
		Green Data Storage	
		Introduction	
		Storage Media Power Characteristics	
		Energy Management Techniques for Hard Disks	
		System-Level Energy Management	
		Green Networks and Communications	
		Introduction	
		Objectives of Green Network Protocols	
		Green Network Protocols and Standards	
V	Enterprise	Introduction	6
	Green IT	Approaching green IT strategies	
	Strategy	 Business Drivers of Green IT Strategy 	
		Business Dimensions for Green IT Transformation	
		Organizational Considerations in a Green IT	
		Strategy	
		 Steps in Developing a Green IT Strategy 	
		Metrics and Measurements in Green Strategies	
		Organizational and Enterprise Greening	
		• Greening the Enterprise: IT Usage and Hardware	

			Std. Com.X AC-
VI	Managing	Managing Groop IT	15 & 22.05.202 10
VI	Managing and	Managing Green IT Introduction	10
	Regulating		
	Green IT	Strategizing Green Initiatives	
	Greenti	 Implementation of Green IT Information Assurance 	
		Communication and Social Media	
		Regulating Green IT	
		Introduction The Depulstory Equipment and IT Magufastures	
		The Regulatory Environment and IT Manufacturers	
		Non-regulatory Government Initiatives	
		Industry Associations and Standards Bodies	
		Green Building Standards	
		Green Data Centres	
		Social Movements and Greenpeace	
		The Future of Green IT	
		Green Computing and the Future	
		 Megatrends for Green Computing 	
		Tele-presence Instead of Travel	
		Tele-commuting Instead of Commuting	
		Deep Green Approach	
Peda	gogy:	Suggested strategies to use to accelerate the attain	ment of the
	0-01-	various course outcomes.	
		1. Lecture method need not be only a traditional lectu	re method, but
		alternative effective teaching methods could be add	
		the outcomes. You may use	
		a) Video/Animation to explain various concepts.	
		b) Collaborative, Peer, Flipped Learning etc.	
		1. Ask at least three HOT (Higher-order Thinking) ques	tions in the
		class, which promotes critical thinking.	
		2. Adopt Problem Based Learning (PBL), which fosters	students'
		Analytical skills, develop design thinking skills such a	
		design, evaluate, generalize, and analyse informatio	
		simply recall it.	
		3. Introduce Topics in manifold representations.	
		4. Show the different ways to solve the same problem	and encourage
		the students to come up with their own creative wa	ys to solve
		them.	
		5. Discuss how every concept can be applied to the rea	al world - and
		when that's possible, it helps improve the students'	understanding
		6. To promote self-learning give atleast one assignment	-
		50% assignment weightage) where they can comple	te atleast one
		MOOCs (certificate or equivalent) course out of lect	
		their understanding through quizzes or presentation	15.
Refer	ences:	1. Toby Velte, Anthony Velte, Green IT: Reduce Your In	
		System's Environmental Impact While Adding to the	Bottom Line,

	McGraw Hill Education, 2008
	2. San Murugesan, G. R. Gangadharan, Harnessing Green IT: Principles
	and Practices, Wiley, 2013
	3. Bud E. Smith, Green Computing-Tools and Techniques for saving
	energy, money and resources, Auerbach Publications
	4. Mark G. O'Neill, Green IT for Sustainable Business Practice, BCS,
	The Chartered Institute for IT
	5. Jason Harris, Green Computing and Green IT Best Practices, Emereo
	Pty Ltd
Course Outcome:	At the end of the course, the students will be able to
	1. Understand Green Computing & Green IT fundamentals.
	2. Acquire knowledge on Green Hardware and Software, Green Data
	Centres and Green IT Strategies
	3. Understand the concept of green compliance
	4. Express the understanding of green initiatives.

Programme: Any discipline Course Code: CSA-141 Title of the Course: Office Automation and PC troubleshooting Number of Credits: 1T + 2P Effective from AY: 2023-24

Nur	mber of Credits: 1T + 2	P Effective from AY: 2023-24	
	requisite for the	None	
Course : Course Objectives :		 Understand the basics of office automatications. Develop proficiency in using word processpreadsheet, and presentation software Identify common hardware and software 	essing, e. re issues in a PC.
		 Diagnose and troubleshoot common PC Develop skills in maintaining and optimi performance of a PC. 	
#	Title	Content	No of Hours
		THEORY	15
1.	Introduction to Office Automation	 Understanding office automation software and its applications Types of office automation software Microsoft Office Suite Google Workspace 	1
2.	Word Processing	Introduction to Microsoft Word Creating and formatting documents Working with templates Mail merge and labels Collaboration tools	3
3.	Spreadsheets	Introduction to Microsoft Excel Creating and formatting spreadsheets Working with formulas and functions	3

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

	Presentation Software	Charts and graphs Collaboration tools Introduction to Microsoft PowerPoint Creating and formatting presentations Working with images, videos, and animations Collaboration tools Introduction to Email	2
		Introduction to Microsoft PowerPoint Creating and formatting presentations Working with images, videos, and animations Collaboration tools	2
5. E	mail Management	Introduction to Email	
		Setting up and configuring email accounts Composing and sending emails Managing Email Accounts	1
	nternet and Web prowsers	Introduction to the Internet Web Browsers Searching the Internet Configuring web browser settings	1
7. P	°C Troubleshooting	Hardware Troubleshooting: Basic hardware components of a PC, Common hardware issues and their solutions, Maintenance and optimization of hardware Software Troubleshooting: Common software issues and their solutions, Malware and virus removal, System recovery and backups Network Troubleshooting	4
		PRACTICAL	60
	 Creation of tak Mail Merge Practical on Spread Formatting of a Presenting dat Working with f Practical on Present Usage of text, Adding slide tr Creating graph Practical on Intern Practical on Email Practical on PC tro 	Processing umbered list, headers and footers, page nur oles dsheet cells, rows and columns a with charts formulae ntation software images and animation for presentation ansition, custom animation, set up show. as in presentation. et browsing, downloading files, knowing sec account creation, sending emails, attachme	cure browsing. nts.
	fragmentation and installation of Operati	ng system and configurationof different type	es of software.

	- Installation of different hardware devices, configuring Printers	
	 Identifying issues with hardware devices and troubleshooting. 	I
	 Network setup of two or more PCs. 	I
	 System protection, antivirus and firewall 	I

Pedagogy:	Suggested strategies to use to accelerate the attainment of the various
	course outcomes.
	1. Lecture method need not be only a traditional lecture method, but
	alternative effective teaching methods could be adopted to attain
	the outcomes.
	You may use
	c. Video/Animation to explain various concepts.
	d. Collaborative, Peer, Flipped Learning etc.
	1. Ask at least three HOT (Higher-order Thinking) questions in the class,
	which promotes creative thinking.
	2. Adopt Problem Based Learning (PBL), which fosters students'
	Analytical skills, develop design thinking skills such as the ability to
	design, evaluate, generalize, and analyse information rather than
	simply recall it.
	3. Introduce Topics in manifold representations.
	4. Show the different ways to solve the same problem and encourage
	the students to come up with their own creative ways to solve them.
	5. Discuss how every concept can be applied to the real world - and
	when that's possible, it helps improve the students' understanding
	6. To promote self-learning give at least one assignment (equivalent to
	50% assignment weightage) where they can complete atleast one
	MOOCs (certificate or equivalent) course out of lecture hour. Test
	their understanding through quizzes or presentations.
	7. Activity/ Practical Based Learning (Suggested Activities in Class)
	a. Real world problem solving using group discussion. E.g.,
	designing poster for road safety etc.,
	b. Demonstration of solution to a problem through design.
	10. Demonstration of simple project and motivating the students to
	develop similar type of projects.
References/Readings:	1. Discovering Computers 2022: Digital Technology, Data, and
	Devices by Misty E. Vermaat
	2. A+ Guide to IT Technical Support (MindTap Course List) by Jean
	Andrews
	3. Shelly, G. B., &Vermaat, M. E. (2017). Microsoft Office 365 &
	Office 2016: Introductory. Cengage Learning.
	4. Russel, C., & Hoque, M. R. (2018). Google Workspace for
	Dummies. John Wiley & Sons.
	5. Meyers, M. (2017). CompTIA A+ Certification All-in-One Exam
	Guide, Ninth Edition (Exams 220-901 & 220-902). McGraw Hill
	Professional.
Course Outcomes:	Professional. On completion of the course, students will be able to

	mail
2.	merge.
3.	Understand the use and various functions of spreadsheets
4.	To apply the knowledge of tools to create effective
	presentations.
5.	Understand PC assembling and troubleshooting

Programme: Any Discipline

Course Code: CSA-142

Title of the Course: Python Programming

Number of Credits: 1T +2P	Effective from AY: 2023-24
Prerequisite for the	None
Course :	
Course Objectives :	1. To understand simple Python programs.
	2. To develop Python programs with conditionals and loops.
	3. To define Python functions.
	4. To use Python data structures lists, tuples, dictionaries.
	5. To deal with input/ output files in Python.
	6. To understand application areas of Python.

#	Title	Content	No of Hours (75)
		THEORY	15
1	Introduction to Python	 Data values and types: int, float, Boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; modules and functions, function definition and use, flow of execution, parameters and arguments. 	4
	Program Flow Control	 Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. 	4
	List, Tuple and Dictionary	 Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension. 	3
IV	Files, Modules,	Files and exception: text files, reading and writing files, format operator; command line	3

			Std. Com.X AC-6
			15 & 22.05.2023
	Packages	arguments, errors and exceptions, handling	
		exceptions, modules, packages.	
V	Application Areas	Google Translate, Sentiment Analysis: Analyse	2 1
		Facebook data, Image processing, Page rank.	
		PRACTICAL	
			60
	1. Installation	n & IDE	
	2. Program to	o understand variables & different data types	
	3. Program to	perform basic Input and Output operations	
	-	o demonstrate operations (Arithmetic, assignment,	
	comparison)		
	5. Math, Strir	ngs, and Variables	
	6. Program to	o demonstrate Conditional Statements	
	7. Program to	o demonstrate setting precedence	
	-	perform casting data types.	
	-	o demonstrate Control Structures	
		Structures- Program to demonstrate while loop and	t
		оор	
		o demonstrate Break and Continue statements	
	•	o create custom Functions	
	-	o demonstrate local and global variables	
	•	o demonstrate arguments and return values	
	-	perform list manipulation	
	-	o demonstrate Sets and its methods	
		ple and perform sequence unpacking	
	-	o demonstrate key value pairs in dictionaries	
	-	o demonstrate recursive function	
	-	perform File Input and Output	
	21. Program to	o demonstrate exception handling	

Pedagogy:	Suggested strategies to use to accelerate the attainment of the various course
	outcomes:
	 Lecture method need not be only a traditional lecture method, but alternative effective teaching methods could be adopted to attain the outcomes. You may
	use
	2. Video/Animation to explain various concepts.
	3. Collaborative, Peer, Flipped Learning etc.
	4. Ask at least three HOT (Higher-order Thinking) questions in the class, which promotes critical thinking.
	5. Adopt Problem Based Learning (PBL), which fosters students' Analytical skills, develop design thinking skills such as the ability to design, evaluate, generalize, and analyse information rather than simply recall it.
	6. Introduce Topics in manifold representations.
	7. Show the different ways to solve the same problem and encourage the students to come up with their own creative ways to solve them.
	 Discuss how every concept can be applied to the real world - and when that's possible, it helps improve the students' understanding

	15 & 22.05.2025	
	9. To promote self-learning give atleast one assignment (equivalent to 50%	
	assignment weightage) where they can complete atleast one MOOCs (certificate	
	or equivalent) course out of lecture hour. Test their understanding through	
	quizzes or presentations.	
	10. One internal practical exam will be conducted as a part of internal evaluation.	
	11. Practical shall be performed in the laboratory as indicated in the syllabus.	
	12. A softcopy of e-journal shall be maintained clearly mentioning the name of the	
	experiment and other required information.	
References:	1. John V Guttag, Introduction to Computation and Programming	
	Using Python", Revised and expanded Edition, MIT Press , 2013	
	2. Robert Sedgewick, Kevin Wayne, Robert Dondero, Introduction to	
	Programming in Python: An Inter-disciplinary Approach, Pearson India	
	Education Services Pvt. Ltd., 2016, 1st Edition	
	3. Timothy A. Budd, Exploring Python, Mc-Graw Hill Education (India) Private	
	Ltd., 2015.	
	4. Kenneth A. Lambert, Fundamentals of Python: First Programs, CENGAGE	
	Learning, 2012, New Edition	
	5. Allen B. Downey, Think Python: How to Think Like a Computer Scientist,	
	Updated for Python 3, Shroff/O'Reilly Publishers, 2016	
	(http://greenteapress.com/wp/thinkpython/)	
	6. Guido van Rossum and Fred L. Drake Jr, An Introduction to Python –	
	Revised and updated for Python 3.2, Network Theory Ltd., 2011.	
Course	At the end of the course, the students will be able to -	
Outcomes:	1. Describe the datatypes, various Control Structures used in Python.	
	2. Decompose a Python program into functions and recursive functions.	
	3. Represent compound data using Python lists, tuples, and dictionaries.	
	4. Understanding use of files and packages in Python Programs.	
	(Back to Index) (Back to Agenda)	

Name of the Programme: Any Discipline

Course Code: CSA-143

Title of the Course: Data Analytics using spreadsheets

Number of Cre	dits: 1T + 2P	Effective from AY: 2023-24				
Pre-requisites	Pre-requisites None					
fortheCourse:						
Course	To be familia	ar and understand spreadsheet softwa	re.			
Objectives:	spreadsheet.To learn data tables.					
		 To be familiar with power query in spreadsheets and learning joins. 				
	 To understan 	 To understand data analysis tools and the functions used. 				
Sr. No.	Title Content No. of					
THEORY 15 hours						
1	Introduction to	Introduction to spreadsheets,	1			

			Std. Com.X AC-6
			15 & 22.05.2023
	spreadsheets	understanding spreadsheet	
		environment, cell addressing, cell	
		references, absolute and relative cell	
		references, named ranges,	
		formatting using paste special, Data	
		filters and sorting, worksheet and	
		workbook protection	
11	Formulas and	Sum, Average, Min, Max, count, IF,	2
	Functions	nested IF, using IF with AND OR	
		formulas, COUNTIF, SUMIF,	
		AVERAGEIF formulas, TEXT functions	
111	Advanced Functions	Vlookup function, match function,	2
		index function, date and time	
		functions, maths functions, financial	
		functions	
IV	Data Analysis	Conditional formatting, What if	2
	,	analysis using data table, Goal seek,	
		scenario manager, Linear regression	
V	Charts and	Data storytelling tips, Introduction	2
	Visualization	to charts, types of charts, uses and	
		benefits,	
		Understanding Pivot tables, Pivot	
		table tips and tricks	
VI	DAX and Power Query	Power query tips, Introduction to	3
		power pivot, Apply DAX in power	
		pivot for analysis, introduction to	
		types of joins in power query, full	
		outer join and inner join in power	
		query, left outer join and right outer	
		join in power query, Left anti join	
		and right anti join in power query	
VII	Dashboard reporting	Understanding how to create	2
•••	in spreadsheets	dashboard in spreadsheets, Sales	-
		Analytical Dashboard using Data	
		Analysis Expressions (DAX) &	
		Visualization, creating a simplified	
		GANTT chart with AND function	
VIII	Data Analysis tools	ANOVA, Correlation, Covariance,	1
* * * * *		regression, sampling, t-test, z-test	-
		and histograms	
	PRAC	•	60 hours
1		n to spreadsheet using simple tabular	4
±		ng paste special, absolute and relative	
	_	ting sum, average, min, max, count	
	and percentage.		
2		ED IF, SUMFIF, AVERAGEIF, COUNTIF	4
3	Practical on advanced f		8
<u>э</u>			0

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
4	Departiculars and different formatting what if each signation	
4	Practical on conditional formatting, what if analysis using	4
5	Goal seek, scenario manager and linear regression Practical on different types of charts and pivot table with	8
5	suitable examples	0
6		12
0	Practical on Power query, DAX and different types of joins with suitable data.	12
7	Creating dashboard and gantt chart in spreadsheet using	8
/	suitable examples	0
8	Excel data analysis Toolpak add-in covering ANOVA,	12
0	Correlation, Covariance, Descriptive Statistical analysis,	12
	random number generation analysis, rank and percentile	
	analysis, regression analysis, T-test, Z-test, Histogram	
Pedagogy	Suggested strategies to use to accelerate the attainment of	
Pedagogy	the various course outcomes.	
	1. Lecture method need not be only a traditional lecture	
	method, but alternativeeffective teaching methods	
	could be adopted to attain the outcomes. You may	
	use	
	a. Video/Animation to explain various concepts.	
	b. Collaborative, Peer, Flipped Learning etc.	
	2. Ask at least three HOT (Higher-order Thinking)	
	questions in the class, whichpromotes critical	
	thinking.	
	3. Adopt ProblemBased Learning (PBL), which fosters	
	students' Analytical skills, develop design thinking	
	skills such as the ability to design, evaluate,	
	generalize, andanalyse information rather than simply	
	recall it.	
	4. Introduce Topics in manifold representations.	
	5. Show the different ways to solve the same problem	
	and encourage the students tocome up with their	
	own creative ways to solve them.	
	6. Discuss how every concept can be applied to the real	
	world - and when that's possible, it helps improve the	
	students' understanding	
	7. To promote self-learning give atleast one assignment	
	(equivalent to 50% assignment weightage) where	
	they can complete atleast one MOOCs (certificate or	
	equivalent) course out of lecture hour. Test their	
	understanding through quizzes or presentations.	
	8. One assignment in the form of mini-project	
	collecting data and using analytic tools may be given	
	to the students.	
References/R	i) Kenneth N Berk, Data Analysis with Microsoft	
eadings	Excel	
	ii) Microsoft Excel 2019 Data Analysis And Business	

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	Modeling, Sixth Edition, Microsoft.	
Course	On completion of the course learners will be able to:-	
Outcomes	 Understand the basics of spreadsheets and advanced functions 	
	 Apply data analysis and data visualization using charts and pivot tables. 	
	Apply the knowledge of power query and DAX in spreadsheets.	
	 Apply data analysis tools and solve simple real life data analysis applications. 	

Programme: Any Discipline

Course Code: CSA-144

Title of the Course: 2D Animation

Number of Credits: 03 (1T	+ 2P) Effective from AY: 2023-24
Prerequisite for the	Basic concepts of graphics design.
Course :	
Course Objectives :	1. Familiarize with various approaches, methods and techniques
	of Animation Technology.
	2. Study the basics of color theory and graphics.
	3. Master traditional & digital tools to produce stills and moving images.
	4. Develop expertise in life-drawing and related techniques.
	Apply laws of human motion and psychology in 2-D characters.
	 Apply Audio and Video Production Techniques to an Animation Project.

#	Title Content		No of Hours (75)	
		THEORY	15	
1	Introduction to Animation	 Introduction to Animation, Terms used in Animation Types of Animation- Cel (Celluloid) Animation, 2D Animation, 3D Animation, Motion Graphics, Stop Motion. Animation Techniques- Hand-drawn animation, Cut-out animation, Model animation or Stop motion animation, Computer animation or computer generated imagery. Equipment required for animation- Pen tablet, Graphic tablet, Artist glove, Ergo stand, Flex arm. 	3	
11	Principles of Animation	 Disney's twelve basic principles of animation- Squash Principles of Animation and stretch, Anticipation, Staging, Straight ahead action and 	3	

			Std. Com.X AC-6
		pose to pose, Follow through and overlapping	15 & 22.05.2023
		action, Slow in and slow out, Arc, Secondary action, Timing, Exaggeration, Solid drawing, Appeal string slices, immutability, string functions and methods, string module; Lists as arrays.	
III	Fundamentals of Drawing and Design	 Basic Drawing techniques, Concepts of Visualization- Perspective drawing, Illustration and Sketching techniques, Basic Shapes and Sketching Techniques, Modelling digital objects that one can find reference for in the real world Modelling hard surface, Developing Animation Character, shading objects and techniques. 	
IV	Color Theory and	 Color fundamentals- primary colors, secondary colors, Tertiary Colors, Color balance, Propertie of color-Hue, Reflective Value, Tints and Shades Saturation, 	s
	Graphics	 Color tone – Intensity Color swatches, Color Charts, Safety Colors & Industrial Identification - Additive Color System (RGB) - Subtractive Color System (CMYK). 	3
		 Vector and Raster graphics - Overlapping shape Reshaping lines and shape outlines - Snapping (object snapping, pixel snapping, snap alignment), Working with color, strokes and fills. 	s,
v	2D Animation	 2D Animation tools processing 2D animation software paradigms-Scripting & Storyboarding, Usage of tools for Digital Painting and vector drawings, How to develop a characte and background creation, Usage of timeline and its purpose, Creation of symbols, Onion skinning Basics of 2D Animation Introduction to 2D Animation, 2D motion graphics, Incorporating images into 2D animation, Incorporating sound into 2D animation Exporting your work to various formats-Still image, GIF, Video, Flash. 	er
VI	Motion Data Processing	 History of motion capture, recording actions of human actors, and using that information to animate digital character models in 2D computer animation 	1
		PRACTICAL	60

			<u>m.X AC-6</u> 2.05.2023
List of	suggested Practical:		
1.	Flip Book		
	Drawing simple flip book with minimum 10 pages		
2.	Frame by frame animation		
	Creating simple frame by frame animation for a short animation	on	
	(maximum 20 sec with color drawings and background.		
3.	Tween		
	Creating simple animation with shape, classic & motion		
	tweening.		
4.	Ball animation		
	Drawing the ball with gradient color, Creating key frames for t	he	
	animation sequence, Creating stretch and squash for the ball		
	animation, Giving tween to the sequence of ball animation.		
5.	Character drawing		
	Drawing simple character with pen tool or shape tool, Prepari	ng	
	the character for animation, dividing each body parts into		
	symbol and creating motion		
6.	Human/ Animal walk cycle		
	Drawing cycle sheet for an animal walk cycle, Creating four		
	different types of walk cycle (jump, run, tip toe, crawl)		
7.	Mini project		
	Creating a short animation film		

Pedagogy:	Suggested strategies to use to accelerate the attainment of the various
	course outcomes.
	1. Lecture method need not be only a traditional lecture method, but
	alternative effective teaching methods could be adopted to attain the
	outcomes. You may use
	a. Video/Animation to explain various concepts.
	b. Collaborative, Peer, Flipped Learning etc.
	2. Introduce Topics in manifold representations.
	3. Show the different ways to solve the same problem and encourage the
	students tocome up with their own creative ways to solve them.
	4. Discuss how every concept can be applied to the real world - and when
	that's possible, it helps improve the students' understanding
	5. To promote self-learning give atleast one assignment (equivalent to
	50% assignment weightage) where they can complete atleast one
	MOOCs (certificate or equivalent) course out of lecture hour.
	6. Course delivery pattern, evaluation scheme, prerequisite shall be
	discussed at the beginning.
	7. Lectures preferably to be conducted with the aid of multi-media
	projector,
	black board, group activities, cases, etc.
	8. One internal written/practical exam would be conducted as a part of
	internal theory evaluation.
	9. One assignment based on the course content may be given to the
	students to evaluate how learning of objectives was achieved.

ve an
ing taught in
flash/animate,
g you need to
Educational
animation,
of Methods,
Stop Motion
mputer
raphics Second
IS.
igery.

Annexure III

M.Sc Integrated (Data Science) Programme Structure Semester VI onwards subjects specific to Data Science only

Semester I	Credits	Semester II	Credits
DSTC 101: Management Concepts and Organisation Behaviour	4	DSTC 108: Business Analytics	2
DSTC 102: Environmental Studies	4	DSTC 109: Microeconomics	4
DSTC 103: Probability and Statistics - I	4	DSTC 110: Linear Algebra	4
DSTC 104: Programming in Python	4	DSTC 111: Algorithms and Data structures	4
DSTC 105: Soft Skills - I (Oral Communication)	2	DSTC 112: Probability and Statistics - II	4
DSTC 106: Perspective Building Course - I (Film Appreciation)	2	DSTC 113: Soft Skills - II (Written Communication)	2
DSPC 107: Programming in Python Lab	2	DSPC 114: Algorithms and Data structures Lab	2
	22		22
Semester III	Credits	Semester IV	Credits
DSTC 201: Marketing Analysis	4	DSTC 208: Machine Learning	4
DSTC 202: Deductive and Inferential	4	DSTC 209: Data Modeling and	2
Mathematics		Visualization	
Mathematics DSTC 203: Macroeconomics	4	C C	4
		Visualization DSTC 210: Linear Programming &	4
DSTC 203: Macroeconomics DSTC 204: Database Management		Visualization DSTC 210: Linear Programming & Optimization	

		15 & 22.05	.2025
DSPC 207: Database Management Systems Lab	2	DSPC 214: Machine Learning Lab	2
		DSPC 215: Data Modeling and Visualization Lab	2
	22		22
Semester V	Credits	Semester VI *	Credits
DSTC 301: Computer Organization & Operating Systems	4	DSTC 310: Introduction to Data Science	4
DSTC 302: Programming in C++	4	DSTC 311: Big Data Framework	4
DSTC 303: Data Science Toolkit	2	DSPC 312: Introduction to Data Science Lab	2
DSTC 304: Strategic Management 4 DSPC 313: Big Data Framework La		DSPC 313: Big Data Framework Lab	2
DSTC 305: Econometrics II	4	DSTE 314: Elective 1	4
DSTC 306: Perspective Building Course - IV (Leadership)	se 2 DSTE 315: Elective 2		4
DSPC 307: Computer Organization & Operating Systems Lab	2	Project/Dissertation/Internship	6
DSPC 308: Programming in C++ Lab	2		
DSPC 309: Data Science Toolkit Lab	2		
	26		26
Semester VII (Discipline)	Credits	Semester VIII (Discipline)	Credits
DSTC 401: AI - Search Methods and Problem Solving	4	DSTC 408: Reinforcement Learning	4
DSTC 402: Research methodology and IP	4	DSTC 409: Optimization Techniques for Analytics	4
DSTC 403: Deep Learning	4	DSTC 410: MLOps at scale	4
DSTC 404: Design thinking for Data Driven App development	4	DSPC 411: Optimization Techniques for Analytics Lab	2

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

			15 G 22105	
DSPC 405: AI- search methods and Problem Solving Lab	2	DSPC 412: MLOps at scale I	_ab	2
DSPC 406: Deep Learning Lab	2	DSTE 413: Elective 4		4
DSTE 407: Elective 3	4	DSTE 414: Elective 5		4
	24			24
Semester IX * (Discipline)	Credits	Semester X		Credits
DSTE 501: Elective 6	6			
DSTE 502: Elective 7	6			
DSTE 503: Elective 8	4			
	16	Project/Dissertation		16
* Semester includes an audited Project/Dissertation/Internship. Total Credits (5 years) = 220				

(Back to Index) (Back to Agenda)

Programme: MSc Integrated Course Code: DSTC 101

Title of the Course:ManagementConceptsandOrganisational BehaviourContact Hours: 48hours (48L-0T-0P)

Number of Credits: 4(4L-OT-OP) Effective from AY: 2020-21

Prerequisites for the course:	Same as programme pre-requisites.	
Objective:	At the end of the course, the student should have the ability to understand managerial processes and have the competence to deal with people at work-place	
Content:	Management Science: basic concepts and its role in decision making: Planning, organizing, staffing, leading and controlling. Organization Structure and Design: Role in Individual and Interpersonal behavior at work-place Introduction to Determinants of Individual Behaviour: Perception, Personality, Attitudes, , learning, Self- Concepts ; Theories/ Models for understanding these determinants Fundamentals of Interpersonal Behaviour: Group Dynamics, Tools for Interpersonal Analysis, Fundamentals of Leadership and Motivation and their application, Theories/ Models/	8 hours 4 hours 15 hours 15 hours 6 hours

		15	& 22.05.2023
	Styles		
	Organizational Change and Development; Models of Change	2;	
	Organizational Climate and Culture; Conflict, and		
	Negotiations. Power and Politics in Organization.		
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/ outreach		
	activities/ project work/ vocational training/viva/ seminars/	/	
	term papers/ assignments/ presentations/ self-study/ Case		
	Studies etc. or a combination of some of these. Sessions		
	shall be interactive in nature to enable peer group learning.		
References/	1. Weihrich, Heinz and Harold Koontz; 'Essentials of		
Readings	Management: An International Perspective'; McGraw-H	ill,	
	Inc.; 10 th edition, 2015		
	2. Robbins, Stephen and Mary Coulter; 'Fundamentals of		
	Management'; Prentice Hall of India Pvt. Ltd.; New Delh	i;	
	9 th edition, 2018		
	3. Luthans, Fred; 'Organizational Behavior'; McGraw– Hill,		
	Inc, 12 th edition, 2017		
	4. Robbins, Stephen P; 'Essentials of Organizational		
	Behavior'; Pearson Education India, 18 th edition, 2018.		
Learning	The participant will be able to understand people's behavio	r	
Outcomes	at work-place, and take managerial decisions.		

Std. Com.X AC-6

Programme: MSc Integrated Course Code: DSTC 102 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Environmental Studies Contact Hours: 48 hours(48L-0T-0P) Common Prescribed Syllabus ...

Programme: MSc Integrated Course Code: DSTC 103 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Probability and Statistics - I Contact Hours: 48 hours (48L-0T-0P)

Prerequisites	Same as programme pre-requisites	
for the course:		
Objectives:	This course aims to introduce the basic concepts of	
	probability theory	
Content:	Module	
	 Experiments and sample spaces, events, algebra of events, probability axioms, conditional probability, independence of events, mutually exclusive events. Bayes theorem. One dimensional random variable: discrete and continuous random variable, characteristics of distributions, cumulative distribution function, functions of one random variable. Two dimensional random variable: marginal and conditional distributions, conditional expectation 	12 hours 12 hours 12 hours 5 hours 7 hours

		15	& 22.05.2023
	independence.		
	4. Covariance and correlation. Understanding linkages,		
	visualizing		
	5. Discrete distributions: Bernoulli, Binomial, Poisson		
Pedagogy:	Lectures/ tutorials/assignments/self-study		
References/	1. William W. Hines and Douglas C. Montgomery, Probabili	ty	
Readings	and Statistics in Engineering and Management Science,		
	Wiley India Pvt. Ltd., 2003		
	2. T.Veerarajan, Probability, Statistics and Random Process	es,	
	Tata McGraw Hill Pub. Co. Ltd., 2009		
Learning	Upon successful completion of this course, students will have	ve	
Outcomes	a good understanding of elementary probability ,One		
	dimensional random variable, Two dimensional random		
	variable, Covariance and correlation and Discrete distribution	ns	

Std. Com.X AC-6

Programme: MSc Integrated Course Code: DSTC 104 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Programming in Python **Contact Hours:** 48 hours(48L-0T-0P)

Prerequisites for the course:	Same as programme pre-requisites	
Objectives:	The aim of the course is to provide an exposure to solve common computing problems through programming using Python language. The course is designed with a lab component to give the student hands-on experience of the basic concepts of programming.	
Content:	Introduction to computer systems and data representation: Functional units of a Computer, Characteristics of a Computer, Data representation and Storage,Evolution of Programming Languages, Compilation and Interpretation, Structured and Procedural Programming languages The Problem Solving Process: – Requirement Analysis, Algorithmic Construction, Identifying Test Cases, Desk	3 hours
	Checking, Implementation, Testing and maintenance issues, Data verification and validation. Python Programming Environment: Python overview, Structure of Python program, character Set, variable declarations and data types, Program Statements, Types of Instructions, Expression Evaluation rules, Type Conversions. Managing I/O operations Selection and Iterative Constructs :Writing conditions, IF-ELSE constructs Conditional operators, SWITCH ,WHILE and FOR loops, Use of BREAK and CONTINUE statements. Nested	4 hours 4 hours
	Loops	9 hours

	Γ	Std. Com.X AC-6
		15 & 22.05.2023
	Advance Data types: Lists, Tuples, Set, Dictionaries, Strings,	6 hours
	Unicode, formatting strings, docString. Searching and sorting	g 5 hours
	algorithms without using library functions.	
	Modular Programming: Importance of User Defined Function	15,
	Hierarchy charts, fan-in/out, cohesion and coupling and	
	loosely coupled modules. Fan-in – Fan-out concepts.	
	User Defined Functions: Local and Global Variables, Scoping	7 hours
	Rules, Parameters & arguments. Function with variable	
	arguments. Modules, packages, scope. Recursion & Recursive	re l
	Functions. Recursive v/s Iterative Functions.	
	Custom Data Types and File Management: Object of a Class	
	and basic concept of classes & OOP, Files, Exceptions in file	4 hours
	handling.	
	Introduction to Packages: Python packages for plotting,	
	mathematical computation & linear regression.	6 hours
Pedagogy:	Lectures/Practical/ tutorials/assignments/self-study.	
References/	1. Taneja Sheetal, Kumar Naveen, —Python Programming -	A
Readings	modular approach, Pearson 2017	
	2. Guttag John V., —Introduction to Computation and	
	Programming using Python, MIT Press, 2nd Edition 2016.	
	3. Maureen Sprankle, Jim Hubbard — Problem Solving and	
Leeveine	Programming Concepts, Pearson, 9th Edition 2012	
Learning Outcomes	Upon successful completion of the course, a student will be able to:	
Outcomes	 Analyze a given problem and develop a Python program 	
	to solve it.	
	 Identify test cases for a given problem. 	
	 Understand, test, trace programs written in Python 	
	language.	
	 Working with python Standard Libraries, User Defined 	
	Functions, Custom Data Types and File Management and	
	Packages	
L	(Back to Index)	

Programme: MSc Integrated Course Code: DSTC 105 Number of Credits: 2(2L-0T-0P) Effective from AY: 2020-21

Title of the Course: Soft Skills - I (Oral Communication) **Contact Hours:** 24 hours (24L-0T-0P)

Prerequisites	Same as programme pre-requisites		
for the course:			
Objective:	To introduce the essentials of effective communication in		
	different contexts		
Content:	Difference between formal and informal communication; Communication process, types, Effectiveness in communication – the Roles of Sender, Receiver and the medium; Role of culture in communication; cross cultural communication; Non Verbal Communication – aspects and	12 hours	

		-	& 22.05.2023
	- Successformer	15	Q 22.05.2025
	importance.		
	Oral Communication: Skills required for effective		
	interpersonal and group communication, Effective Public		
	speaking. Noise in communication and its prevention. Barrie	ers	12 hours
	and Gateways in Communication;		
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/ outreach		
	activities/ project work/ vocational training/viva/ seminars/		
	term papers/assignments/ presentations/ self-study/ Case		
	Studies etc. or a combination of some of these. Sessions sha	all	
	be interactive in nature to enable peer group learning.		
Learning	The participant will be able to facilitate interpersonal		
Outcomes	Communication, Effectiveness in communication, Role of		
	culture in communication, Oral Communication Skills,		
	participate in group discussions, and to write effectively.		
References/	1. Business and Professional Communication by Kelly M.		
Readings	Quintanilla and Shawn T. Wahl, 2018, Sage Publications		
	2. Effective Business Communication by Anjanee Sethi		
	,Bhavna Adhikari, 2009; Tata MacGraw Hill Education,		
	India.		
	3. How to be a Great Communicator in Person, On Paper, and	nd	
	on Podiumby Nido Qubein, 2008; Viva Books, India.		
		-	

Std. Com.X AC-6

Programme: M.Sc Integrated Course Code: DSTC 106

Title of the Course: Perspective Building Course-I (Film Appreciation) Contact Hours: 24 hours (24L-0T-0P)

Number of Credits: 2(2L-OT-OP) Effective from AY: 2020-21

Prerequisites	Same as programme pre-requisites	
for the course		
Objective:	To help the participants appreciate cinema (national and	
	international) as having its own distinct language and	
	philosophy, the way it stimulates people, and helps in making	
	sense of the world.	
Content:	Approaches to Films	6 hours
	Document, Documentary and Narratives; Thought Orientation	6 hours
	in Films; Text, Context and Non-Text	6 hours
	Film and Other Art Forms	6 hours
	Photography and Representation; Symbolism and Metaphors;	
	Music, Dance and Drama; Presenting Reality and Fiction	
	Films and our Minds	
	Films and Emotions; Imagination; Identifying the Audience	
	(Spectatorship); Communication and Persuasion	
	Films and Morality	
	Lessons from Films; Authorship and Copyright; Film Criticism;	
	Evils and Issues – Pornography, Free Will, Laws and Artistic	

		15	& 22.05.2023
	License		
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/ outreach		
	activities/ project work/ vocational training/viva/ seminars/		
	term papers/assignments/ presentations/ self-study/ Case		
	Studies etc. or a combination of some of these. Sessions sha	all	
	be interactive in nature to enable peer group learning.		
Learning	After completion of the course, students will develop the		
Outcomes	ability to		
	1. Appreciate films as works of art		
	2. Recognize the impact of films on society 3. Critique films		
References/	1. Jim Piper (2014) The Film Appreciation Book, 1st Edition	;	
Readings	Allworth Publishers, USA		
	2. Satyajit Ray (2006) Speaking of Films, International Edition	on	
	Penguin, India		
	3. Gregory Currie (1995) Image and Mind, Film, Philosophy	/	
	and Cognitive Science; Cambridge University Press.		

Std. Com.X AC-6

Programme: MScIntegrated	
Course Code: DSPC 107	
Number of Credits: 2(0L-0T-4P)	Tota
Effective from AV, 2020 21	

Title of the Course: Programming in Python Lab al Contact Hours: 48hours(0L-0T-48P)

		•	
Effective	from A	Y: 2020-21	

Prerequisites	Python programming	
for the course:		
Objective:	How to write a program in python and learn the fundamentals	
	of python programming for data science.	
Content	Suggested Lab Assignments: minimum 16 assignments and	12 hours
	duration of carrying out each assignment 3 hrs.	
	1. Introduction to UNIX environment- Introduction to	
	Fedora/Ubuntu, Basic directory and file handling	
	commands, Editor (vi editor), man pages, installation of	
	Python and Jupyter notebook.	
	Programs using decision control, branch and loop control	
	structure	
	 Program to find the largest of three numbers 	
	2. Program to print the reverse of a given number.	
	 Program to check whether a given number is Armstrong or not 	
	4. Program to print the prime numbers from 2 to n, where n is an input given by the user.	12 hours
	 Program to print the patterns. Programs using List, Set, Tuple, Dictionary & Strings 	
	6. Program to find the largest and smallest number in a list of integers (without using library function).	
	7. Program to sort a given integer list in ascending order(without using library function). 8. Program to print	

		<u>Stc</u>	<u>l. Com.X AC-6</u>
		15	& 22.05.2023
	 the sum and average of the elements of the list(without using library function). 8. Program to find the duplicate elements in the list(withou using library function). 9. Program to reverse a given string and check whether it is palindrome (without using library function). 10. Program to read a string and count the number of vowels in it. 11. Program to concatenate two strings without using library functions 12. Program to arrange the list of names in alphabetical order 13. Program to find the union, interaction and difference between two sets. 15. Programs using functions & Recursion. 15. Write functions for addition, subtraction and multiplication of two matrices. Each function has two matrices as parameters and returns the result. 16. Program to print the Fibonacci series using recursion. 	15 it s s / er.	
	parameters and returns the result.	ory	12 hours
	 than 5 years of experience with the company. b) Increase the salaries according to the pay scale rules 1. Program to create a custom data type of Student with fields Roll No, Name, course, and Total_Marks. Read the data from the user and store them in a file. Write a function to display the Roll No, name of the student who has secured the highest marks. 23. Program to count the number of characters in a file. 2. Program to search for a particular word in a file. 3. Program to handle various file exceptions. 4. Program to implement linear regression method. 5. Program to plot graphs. 	C	
Pedagogy:	Lab assignments		

Std. Com.X AC-6
15 & 22.05.2023

Outcomes	Programs using decision control, branch and loop control
	structure and Programs user-defined data types & file
	handling.

Programme: M.Sc. Integrated Course Code: DSTC 108 Number of Credits: 2(2L-0T-0P) Effective from AY: 2020-21

Title of the Course: Business Analytics **Contact Hours:** 24 hours(24L-0T-0P)

Prerequisites	Nil	
for the course		
Objective	To introduce fundamentals of financial management	
Content	Reading of Annual Report, Balance Sheet, Profit and Loss	8 hours
	Account, Vertical Form, Cash Flow statements, Comparative	
	statements, Common Size Statements, Profitability Ratios.	8 hours
	Basic Accounting Standards. Directors" Report, Auditor"s	8 hours
	Report, Notes to Accounts,	
	Understanding Annual Reports of Companies with Ratio	
	Analyses and making basic performance decisions.	
	Time Value of Money, Forecasting cash flows, Estimation of	
	Project Cost, Techniques of Capital Budgeting, N. P. V., I. R.	
	R., Discounted Payback, profitability Index.	
Pedagogy	Lectures/tutorials/laboratory work/ field work/ outreach	
	activities/ project work/ vocational training/viva/ seminars/	
	term papers/assignments/ presentations/ self-study/ Case	
	Studies etc. or a combination of some of these. Sessions shall	
	be interactive in nature to enable peer group learning.	
Learning	1. The Students will be able to analyze financial information	
Outcomes	that facilitates long term and short term financial decisions.	
	2. The Students will be able to make primary basic	
	assessment of making capital investment decisions.	
References/	1. N. Ramchandran, Ram Kumar Kakani: "How to Read A	
Readings	Balance Sheet", Tata McGraw-Hill Professional: Finance	
	Made Easy Series,2009.	
	2. N. Ramchandran, Ram Kumar Kakani: "How to Read A	
	Profit and Loss Account", Tata McGraw-Hill Professional:	
	Finance Made Easy Series, 2017	
	3. N. Ramchandran, Ram Kumar Kakani: "How to Read A	
	Cash Flow Statement", Tata McGraw-Hill Professional:	
	Finance Made Easy Series, 2017	

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSTC 109 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Microeconomics Contact Hours: 48hour (48L-0T-0P)

Prerequisites	Nil	
for the Course:		
Objective:	Equip the students to understand consumer and firm	
	behavior under profit and non-profit maximizing framework.	
Content:	Module 1: Introduction and Basic Concepts	10 hours
	Nature and scope of micro economics – concept of	14 hours
	equilibrium – static, dynamic and neutral equilibrium – Partial	
	Vs. General equilibrium – role and limitations of price	
	mechanisms in a free market economy	14 hours
	Module 2: Theory of Demand	10 hours
	Theory of Consumer Behavior- Utility, indifference curve,	
	[income and substitution effects, Slutsky"s theorem,	
	compensated demand]; Revealed preference; consumer	
	surplus;	
	Module 3: Theory of production and costs	
	Production function –short period and long period; law of	
	variable proportions and returns to scale; Isoquants – least	
	cost combination of inputs; Returns of factors; Economies of	
	scale; Elasticity of substitution; Euler"s Theorem; Cobb-	
	Douglas, CES, VES and Translog. Cost functions, cost curves,	
	Elasticity of supply.	
	Module 4: price and output determination	
	Demand and supply equilibrium; Cobweb theorem. Market	
	forms – perfect and imperfect forms – equilibrium under	
	perfect, monopoly, monopolistic, duopoly and oligopoly –	
	importance of time element in price theory – price	
	discrimination and measure of monopoly power – control and	
	regulation of monopoly.	
Pedagogy:	Lectures/ tutorials/assignments/self-study	
Reference/	1. Varian, Hal R., Intermediate Microeconomics, Current	
Readings:	Edition, W.W. Norton and Company	
	2. Andreu Mas-colell, Michael D. Whinston and Jerry R. Green	
	John, Microeconomic Theory, Oxford University Press,	
	Current Edition.	
Learning	Students will be able to understand the factors that determine	
Outcomes:	consumption and production decisions under different	
	market structures.	

Programme: M.Sc. Integrated Course Code: DSTC 110 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Linear Algebra **Contact Hours:** 48hours (48L-0T-0P)

Prerequisites	Standard XII mathematics	
for the course:		

		15 & 22.05.2023
		15 & 22.05.2025
Objectives:	The aim of this course is to provide students an introduction	
<u> </u>	to vectors and matrices and their use in Data Sciences.	
Content:	Linear Equations in Linear Algebra: Systems of linear	8 hours
	equations, row reduction, and echelon forms, Vector	
	equations, matrix equation, solution sets of linear systems,	
	linear independence, Matrix of linear transformation.	
	Matrix Algebra: characteristics of invertible matrices,	
	Partitioned matrices, matrix factorizations, application to	4 hours
	computer graphics, dimension and rank.	4 hours
	Determinants: Properties, Cramer"s rule, volume and linear	8 hours
	transformations.	8 hours
	Vector Spaces: vector spaces and subspaces, linear	8 hours
	transformations, Bases, coordinate systems, Dimension of a	8 hours
	vector space, rank, change of bases	
	Eigenvalues and eigenvectors: Characteristics equation,	
	diagonalization, eigenvectors and linear transformations,	
	discrete dynamical systems	
	Orthogonality: inner product, length, and orthogonality,	
	orthogonal sets, orthogonal projections, Gram-Schmidt	
	process, inner product spaces	
	Symmetric matrices and quadratic forms: diagonalization of	
	symmetric matrices, quadratic forms, constrained	
	optimization, Singular Value Decomposition (SVD).	
Pedagogy:	Lectures/ tutorials/assignments/self-study	
References/	1. David C. Lay, Linear Algebra and its Applications, Pearson.	
Readings:	2. Jim DeFranza and Daniel Gagliardi, Introduction to Linear	
	Algebra with Application, McGraw Hill Education (India)	
	3. Steven J. Leon, Linear Algebra with Applications 8th	
	Edition, Pearson.	
	4. Gilbert Strang, Introduction to Linear Algebra 4th Ed. Sout	h
	Asian Edition, Wellesley-Cambridge Press	
Learning	Students will be able to understand Linear Equations in	
Outcomes:	Linear Algebra, Matrix Algebra, Determinants, Vector Space	s,
	Eigenvalues and eigenvectors, Orthogonality, Symmetric	
	matrices and quadratic forms.	

Std. Com.X AC-6

Programme: M.Sc. Integrated Course Code: DSTC 111 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Algorithms and Data Structures **Contact Hours:** 48L(48L-0T-0P)

Prerequisites	Programming in Python	
for the course:		
Objectives:	The aim of the course is to introduce the fundamental concept	
	of data structures and to emphasize the importance of data	

		<u>5td. Com.x AC-0</u> 15 & 22.05.2023
	structures in developing and implementing efficient algorithms. It provides an exposure to various data structure and algorithm analysis including lists, stacks, queues, trees, and various sorting and searching algorithms.	
Content:	 Introduction: Three level Approach - Application/User level, Abstract/Logical level, Physical/Implementation level; Concept of Abstract Data Types (ADTs), Data Structure definition, Data type vs. data structure, Applications of data structures, Algorithms analysis and its complexity, Best case, worst case and Average case performance, time-space tradeoff, Asymptotic Analysis, Big-O notation. Linear Data Structures: Array and its application: Polynomials Sparse matrices, String-pattern Matching. Linked Lists, Doubl linked list, Circular linked list, Stack and Queues. Nonlinear Data Structures: Trees: Binary tree representation. 	, 2 hours 12 hours s, 6 hours ly
	 Binary Search Trees, AVL Trees, M-way Search Trees, B-trees B tree algorithms, Heap Structures. Graphs: Graph representations; Graph Traversals Complexity of Searching & Sorting algorithms: Bubble sort, Quick sort, Selection sort, Insertion sort, Merge sort and Heat sort. An Empirical Comparison of Sorting Algorithms, Lower bounds for Sorting. Linear search, binary search. Dynamic programming and Greedy algorithms: Assembly line scheduling, Matrix-chain multiplication; Prim[®]s Algorithm, Kruskal[®]s Algorithm 	ар
Pedagogy: References/	lectures/Practical/ tutorials/assignments/self-study 1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Freed. Sundamentals of data structures in C. Will Freeman 8. Co.	
Readings:	 Fundamentals of data structures in C. WH Freeman & Co., 1992. 2. Benjamin Baka, Basant Agarwal, "Hands on Data Structure and Algorithms with Python", Second Edition, O"Reilly, 2018 3. Cormen Thomas, L. Charles, R. Ronald, S. Clifford, "Introduction to Algorithms", Second Edition, EEE, PHI. 4. Allen, Weiss Mark. Data structures and algorithm analysis i C. Pearson Education India, 2011. 5. Algorithms, by Dasgupta, Papadimitriou, and Vazirani, McGraw-Hill. 	n
Learning Outcomes:	 Upon successful completion of the course, a student will be able to Implement common data structures such as lists, stacks, queues, graphs, and binary trees for solving programming problems. Identify and use appropriate data structures in the context a solution to a given problem. 	of

Std. Com.X AC-6

Programme: M.Sc Integrated Course Code: DSTC 112 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Probability & Statistics - II **Contact Hours:** 48 hours(48L-0T-0P)

Prerequisites	Nil	
for the course:		
Objectives:	This course aims to introduce the basic concepts of probability	
	theory and statistical analysis.	
	Students will get exposure to fundamental theory of	
	distribution of random variables, the basic theory and	
	techniques of parameter estimation and tests of hypotheses.	
Content:	Module 1: Continuous distributions: Uniform, exponential,	12 hours
	normal, standard normal, T-distribution, Chi-Square and F	
	distribution	12 hours
	Module 2: Sampling distributions, Parameter Estimation of	12 hours
	mean and proportion.	12 hours
	Module 3: Hypothesis tests about mean and proportion, Chi	
	square tests, analysis of variance, least squares curve fitting,	
	the coefficient of Determination, Confidence Intervals	
	Module 4: Non parametric tests: sign test, Rank test, Median	
	test	
Pedagogy:	Lectures/ tutorials/assignments/self-study	
References/	1. T.Veerarajan, Probability, Statistics and Random Processes,	
Readings	Tata McGraw Hill Pub. Co. Ltd.	
	2. P.S.Mann, Introductory Statistics, Wiley Student edition	
Learning	Upon successful completion of this course, students will be	
Outcomes:	able to:	
	 Apply the central limit theorem to sampling distribution 	
	 Perform and analyze hypothesis testing 	
	(Beak to Index) (Be	

(Back to Index) (Back to Agenda)

Programme: M.Sc Integrated

Course Code: DSTC 113 Number of Credits: 2(2L-OT-OP) Effective from AY: 2020-21 **Title of the Course:** Soft Skills - II (Written Communication) **Contact Hours:** 24 hours(24L-0T-0P)

Prerequisites	Nil	
for the course:		
Objective:	To introduce the essentials of effective communication in	
	different contexts	
Content:	Written Communication: Fundamentals of effective writing;	12 hours
	different forms of written communication; report writing,	12 hours
	creative writing; Structure and content of various types of	
	reports; Creativity in Communication	
	Competitive versus collaborative communication, types of	

Std. Com.X AC-6	
15 & 22.05.2023	

	15 4 22:05:2	.020
	negotiation, barriers in effective negotiation, interests versus positions in negotiation;	
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/ outreach activities/ project work/ vocational training/viva/ seminars/ term papers/assignments/ presentations/ self-study/ Case Studies etc. or a combination of some of these. Sessions shall be interactive in nature to enable peer group learning.	
Learning	The participant will be able to facilitate interpersonal	
Outcomes:	Communication, participate in group discussions, and to write effectively.	
References/ Readings:	 Business and Professional Communication by Kelly M. Quintanilla and Shawn T. Wahl, latest Edition, Sage Publications Effective Business Communication by Anjanee Sethi ,Bhavna Adhikari, Tata MacGraw Hill Education, India. How to be a Great Communicator in Person, On Paper, and on Podiumby Nido Qubein, Viva Books, India. 	

Programme: M.Sc Integrated Course Code: DSPC 114 Number of Credits: 2(0L-0T-4P) Effective from AY: 2020-21

Title of the Course: Algorithms and Data Structures Lab **Contact Hours:** 48 hours(0L-0T-48P)

Prerequisites	Python programming	
for the course:		
Objective:	Aimed at teaching implementation of data structure using	
	python	
Content:	Suggested Lab Assignments: minimum of 16 assignments	
	with duration of 3 hrs for each assignment	
	Object-Oriented Design Goals, Object-Oriented Design	
	Principles.	
	1. The programming assignment should introduce and	
	enforce the concepts of encapsulation, polymorphism	
	and Inheritance. ADT Specifications and Implementation	
	of following basic data structures	
	2. Singly Linked Linear Lists	
	3. Singly Linked Circular Lists	
	4. Doubly Linked Linear Lists	
	5. Doubly Linked circular Lists	
	6. Stack using linked list	
	7. Queue using linked list	
	8. ADT Specifications and Implementation of following non-	
	linear data structures 8. Binary Trees	
	9. Binary Search Trees	
	10. AVL Trees	
	11. B-Trees and its variants	

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

12. Application of stack 13. Program to convert the given infix expression to postfix expression using stack. 14. Program to traverse a binary tree in the following way: Pre-order, In-order, Post-order 15. Applications of Binary Trees 16. Write a program to implement Huffman encoding using Binary tree. 17. Write a program to create a binary tree for the given infix expression. Applications of AVL Trees 18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting 19. Program to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort 21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal*s Algorithm 27. Assembly line scheduling 28. Kruskal*s Algorithm 26. Kruskal*s Algorithm 27. Hore should be able to implement data structure			_	
expression using stack.13. Program to evaluate a postfix expression using stack.14. Program to traverse a binary tree in the following way: Pre-order, In-order, Post-order15. Applications of Binary Trees16. Write a program to implement Huffman encoding using Binary tree.17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		12. Application of stack		
expression using stack.14. Program to traverse a binary tree in the following way: Pre-order, In-order, Post-order15. Applications of Binary Trees16. Write a program to implement Huffman encoding using Binary tree.17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		13. Program to convert the given infix expression to postfix		
14. Program to traverse a binary tree in the following way: Pre-order, In-order, Post-order15. Applications of Binary Trees16. Write a program to implement Huffman encoding using Binary tree.17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		expression using stack. 13. Program to evaluate a postf	ix	
Pre-order, In-order, Post-order15. Applications of Binary Trees16. Write a program to implement Huffman encoding using Binary tree.17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using lterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim "s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		expression using stack.		
15. Applications of Binary Trees16. Write a program to implement Huffman encoding using Binary tree.17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		14. Program to traverse a binary tree in the following way:		
16. Write a program to implement Huffman encoding using Binary tree.17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		Pre-order, In-order, Post-order		
Binary tree.17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		15. Applications of Binary Trees		
17. Write a program to create a binary tree for the given infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		16. Write a program to implement Huffman encoding using		
infix expression.Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		Binary tree.		
Applications of AVL Trees18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		17. Write a program to create a binary tree for the given		
18. Write a program that reads a list of names and telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		infix expression.		
telephone number from a text file and inserts them into an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		Applications of AVL Trees		
an AVL tree. Write a function to allow the user to search the tree. Searching and sorting19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		18. Write a program that reads a list of names and		
the tree.Searching and sorting19.Program to implement Binary search technique using Iterative method and Recursive methods.20.Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21.Implementation of Dynamic programming 22.22.Assembly line scheduling 23.23.Matrix-chain multiplication 24.24.Implementation of Greedy algorithms 25.25.Prim"'s Algorithm 26.26.Kruskal''s Algorithm27.Lab assignments28.Students should be able to implement data structure using		telephone number from a text file and inserts them into)	
19. Program to implement Binary search technique using Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		an AVL tree. Write a function to allow the user to search	۱	
Iterative method and Recursive methods.20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using				
20. Programs to implement following sorting algorithm- Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s Algorithm 26. Kruskal"s AlgorithmPedagogy:Lab assignmentsLearningStudents should be able to implement data structure using				
Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort21. Implementation of Dynamic programming22. Assembly line scheduling23. Matrix-chain multiplication24. Implementation of Greedy algorithms25. Prim"s Algorithm26. Kruskal"s Algorithm27. Lab assignmentsLearningStudents should be able to implement data structure using				
Merge sort and Heap sort21. Implementation of Dynamic programming22. Assembly line scheduling23. Matrix-chain multiplication24. Implementation of Greedy algorithms25. Prim"s Algorithm26. Kruskal"s Algorithm27. Lab assignmentsLearningStudents should be able to implement data structure using				
21. Implementation of Dynamic programming 22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s Algorithm 26. Kruskal signments Learning Students should be able to implement data structure using				
22. Assembly line scheduling 23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s Algorithm 27. Lab assignments Learning Students should be able to implement data structure using				
23. Matrix-chain multiplication 24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s Algorithm Pedagogy: Lab assignments Learning Students should be able to implement data structure using				
24. Implementation of Greedy algorithms 25. Prim"s Algorithm 26. Kruskal"s Algorithm Pedagogy: Lab assignments Learning Students should be able to implement data structure using				
25. Prim"s Algorithm 26. Kruskal"s Algorithm Pedagogy: Lab assignments Learning Students should be able to implement data structure using				
26. Kruskal"s Algorithm Pedagogy: Lab assignments Learning Students should be able to implement data structure using				
Pedagogy:Lab assignmentsLearningStudents should be able to implement data structure using		-		
Learning Students should be able to implement data structure using				
		-		
Outcomes python.	Learning			
	Outcomes	python.		

(Back to Index) (Back to Agenda)

Programme: M.Sc Integrated Course Code: DSTC 201 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Marketing Analysis Contact Hours: 48 hours(48L-0T-0P)

Prerequisites	Same as programme prerequisites	
for the course:		
Objective:	At the end of the course, the students would have competence in understanding and using Marketing Frameworks, Theories and analytical tools for analysing and decision making in the area of Marketing.	
<u>Content:</u>	Role of Marketing, Core Concepts of Needs, Wants and Demands, Marketing Orientation of Companies. Strategic Planning and Marketing Management Process. External Environment including Customers and Suppliers.	12 hours

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	Consumer Behaviour and Consumer markets, Theories of Consumption Behaviour, Buying Process and decision making	6 hours
	process. Types of Buying behavior. Organisational Buying behavior, Industrial Market, Reseller Markets, Government Markets.	
	Marketing Information Systems, concepts and components, Market Measurement and Forecasting techniques, Demand Estimation, Segmentation, Targeting and Positioning, Types or segmentation, Basis for Segmentation.	6 hours f
	Marketing Plan, Process and evaluation, New Product Development Process, Product Life Cycle concept, different strategies of different stages of PLC, Strategies for Leaders, Followers, Challengers and Nichers.	6 hours
	Product Concept and hierarchy, Product decesions, Branding and Packaging Decisions, Pricing and setting of Price, Methods of Pricing and initiating responses to Price Cuts. Channels of Distribution, Role and Types of Channel, Distribution Channel design and management and modification. Retailing and Wholesaling. Advertising and Integrated Marketing Communication. Advertising decisions, Media decisions, Sales	
	promotion concept and designing. Sales Management and Personal Selling. Digital Marketing and Social Media Marketin	
	Marketing Plan, Audits and Control of Marketing Decisions. Annual Plan Control, Profitability Control, Efficiency Control a Strategic Control.	nd 6 hours
Pedagogy:	Pedagogy includes interactive sessions involving lectures, case studies, presentations, debates and field based work.	2
<u>Learning</u> <u>Outcomes</u>	At the end of the course, the students would have competenc in understanding and using Marketing Frameworks, Theories and analytical tools for analysing and decision making in the area of Marketing.	e
References/ Readings	 Majarao, Simon; 'The Essence of Marketing'; Prentice Hall India Limited; New Delhi; Latest edition. Brand Equity and News Items of Economic Times, Articles from Popular Business Periodicals, etc. Kotler, Philip., Keller Kevin., Koshy Abraham., and Jha Mithileshawar; 'Marketing Management: A South Asian Perspective'; Pearson Education India, Latest edition. Ramaswami., Namkumari; Marketing Management, McMila IndiaLtd. New Delhi. Latest Edition Baines, Paul; Chris, Fill; Kelly, Page; Sinha, Piyush Kumar: 	

Marketing Management; Oxford Press, India. Latest Edition.

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSTC 202

Title of the Course: Deductive and Inferential Mathematics Contact Hours: 48 hours(48L-0T-0P)

Number of Credits: 4(4L-OT-OP) Effective from AY: 2020-21

Prerequisites	XII Mathematics	
for the Course:		
Objective:	On completion of this course, the learner should be able to	
	successfully explore, conjecture and reason logically to arrive at	
	a solution to a given problem using appropriate mathematical	
	methods and will learn to estimate the impact of a	
	policy/decision in the presence of uncertainty	
Content:	unit -1 :Mathematical Logic-An open sentence, a closed	
	sentence, Definition of proposition or a Statement.	
	Strong emphasis on the Distinction between Inclusive OR and	
	Exclusive ORIn Logic, Mathematics and in Computer Science	
	theory, only inclusive OR is used unless otherwise stated	
	Logical Connectives - NOT(negation \neg ~)- AND (conjunction	
	∧), OR (disjunction \lor), IFTHEN(one way implication \Rightarrow →)	
	and IF, AND ONLY IF (two ways implication $\Leftrightarrow \leftrightarrow$)	
	Truth tables for each one of the aboveCompound	
	Proposition.Technique of determining the Truth value of a	
	compound proposition using the truth tables and without using	
	the truth tablesEquivalent statements (\equiv .). Examples and	
	important logical results. De Morgan Laws for	
	negation.Converse, Inverse and Contrapositive of conditional	
	proposition. Tautology and Contradiction. Definition and	
	Examples.Functionally complete set of connectives.Other	
	Connectives such as XOR(<i>Exclusive OR</i> : ∇), NAND (Not and	
	: ↑) and NOR (Not or :↓)Both NAND and NOR singly form a	
	functionally complete set of connectives by deriving that all	- 1
	other connectives can be expressed exclusively in terms of only	5 hours
	NAND or NOR. How the proof by contradiction works $: p \Rightarrow$	
	$q \equiv \neg q \Rightarrow \neg p$ -Meaning of some as at least one.	
	unit 2-Well-formed-formulae .	
	Equivalence of formulae. Various laws governing the well-	
	formed formulae.	
	Duality law.	
	Normal Form. Disjunctive normal form, conjunctive normal	
	form, Principal disjunctive normal form, Principal conjunctive	
	normal form.	5 hours
	Propositional Calculus. Predicate Calculus. Predicate Formula.	

		d. Com.X AC-6
	15	& 22.05.2023
Equivalence of Predicate Formulae. Inference Theory.		
 unit -3 :SET THEORY: (Quick revision and recapturing) Definition. Different ways of expressing a set such as Set Built Method, Venn Diagram, Roster Method. Equality of two sets. Different types of sets. Empty set, Universal set, Finite Sets, Infinite Sets, Universal Sets etc. Proper emphasis on explaining the Universal Set. Set Operations such as Union, Intersection, Complementation Set Theoretical Difference. Their properties. De Morgan Laws for the complementation. Comparison of sets through subset, super set. Properties. Set Identities. Sets of Natural Numbers, Integers, Rational Numbers, Real Numbers and relation among them. Mathematical Induction. Functions: Relation on sets. Definition of a function as a relation. Domain, Co-domain and the range of a function. Or to-one (injective), Onto (surjective) One-to-one and Onto (bijective) functions. Composition of functions. Various properties of composition of functions with composition as a operator on the set of all functions with common domain and co-domain. Inverse of a function. Condition for existence of a inverse of a function. Uniqueness of the inverse. Properties of inverses of functions. 	ng n, ne- n d	5 hours
unit 4 :- Counting Principle. Principle of Inclusion and Exclusion: Counting the number of elements in the union of finitely mar finite sets in terms of the number of the elements of the individual sets and the number of elements of possible intersections of the sets involved. Principle of inclusion and exclusion for finitely many finite sets.	ıy	
 unit - 5:- Inferential Statistics Introduction to Probability Theory using Kolmogorov Technique: Definition of an experiment. Outcomes of an experiment. Outcomes which are not decomposable. Sample space as the set of all non-decomposable outcomes of an experiment. Event as any subset of the sample space of an experiment under consideration. Probability of an event. Laws of probability. Exclusive events and Independent events. Conditional Probability. Extension of conditional probability. Revision of Permutations and Combinations. Stress on solving problems in obtaining permutations and combinations when the elements are repeated. 		5 hours

		d. Com.X AC-6
(For the topic of combination of repeated elements, refer	15	& 22.05.2023
Discrete Mathematics by Kenneth Rosen)		
Idea of variations. Standard deviation as the root mean squa	re	
deviation with respect to the mean. Mathematical Expectati	on	8 hours
and Expected Values. Random Variables: Idea of Distribution of a Function. Some		5 hours
standard Distributions such as Binomial., Normal, Poisson ar	d	5 110015
Exponential. Their standard properties with the stress on		
Normal Distribution. Use of Normal Distribution Table to sol	ve	
problems.		
unit - 6 :- Sampling Techniques		
Testing Statistical Hypothesis.		
Parameters are statistical constants such as Mean, Variance		
In sampling techniques, Statistics are the parameters estimation (of the population) from the samples drawn from the	leu	
population. Clear distinction to be made between the		
parameters and statistics.		
Standard Error is the standard deviation of the sampling		5 hours
distribution of the statistics.		
Null Hypothesis and Alternate Hypothesis. Critical Region an Intervals of confidence, the Level of Significance.	d	
Errors in Sampling: Type I and Type II errors.		
One tailed and two tailed tests.		
unit - 7 :- Tests of Significance for the large Samples:		
(i) Testing Significance of single proportion (ii) Testing		5 hours
Significance of for the difference of proportions of two large		
samples (ii) Test of Significance for single Mean (iv) Test of		
Significance for Difference of Means of two large samples Tests of Significance for the small Samples		
(using Student t-test)		
Concept of t-distribution. Degree of freedom.		5 hours
unit -8 :-Tests of Significance of Large Samples:		
(i)Testing Significance of single proportion (ii) Testing		
Significance of for the difference of proportions of two small		
samples (ii) Test of Significance for single Mean (iv) Test of		
Significance for Difference of Means of two small samples.		
unit-9 :- Resampling Techniques: Resampling. Need for		
carrying out resampling. Advantages.		
Some selected methods of resampling:		
(a) Bootstrapping and Normal Resampling,(b) Permutation Resampling		
(c) Cross Validation		
Pedagogy Assignments/Presentations		

Std. Com.X AC-6 15 & 22.05.2023

	15 & 22.05.2023
Reference/	1. A textbook of Discrete Mathematics by Dr. S. K. Sarkar S,
Readings	Chand & Company, New Delhi.
	2. Discrete Mathematics and its Applications by Kenneth
	Rosen, Tata McGraw Hill.
	3. Discrete Mathematics for Computer Scientists by John Truss,
	Addison Wesley (Pearson Education).
	4. Discrete Mathematics and Graph Theory by Purna Chandra Biswal, Prentice Hall of India.
	5. Statistics for Management by Richard Levin and David Rubin, Prentice Hall of India.
	6. Statistics for Business and Economics by Anderson, Sweeney and Williams, Thomson South Western.
	7. Statistics for Management by Anand Sharma, Himalaya
	Publishing House, Mumbai.
	8. Engineering Mathematics Volume II by Kandasamy,
	Tilagavathy and Gunavanthy S. Chand & Company, New Delhi.
Learning	1. Learner will understand how to explore, conjecture and reason logically to
Outcomes	model/arrive at a solution to a given problem
	2. Learner will be able to use a variety of mathematical methods effectively to solve problems
	3. Learner will learn decision making in the presence of uncertainty and will
	learn to quantify the uncertainty in estimation /the decision
	(Back to Index) (Back to Agenda)

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSTC 203 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Macroeconomics **Contact Hours:** 48 hours(48L-0T-0P)

Prerequisites for the course:	Same as programme pre-requisites	
Objectives:	Provide a basic understanding of how aggregate variables like national income, aggregate prices, employment, and exchange rates get determined by interaction of public policy and individual agents	
<u>Content:</u>	Module 1: Introduction to Macroeconomics : What is it about. Aggregate Income and its Dimensions, Measuring output, Real and Nominal Incomes, Savings, Balance of Payments and the Money supply. The sources and Use of Savings, The Balance of Payments, The Money supply	10 hours
	Module 2: Consumption & Investment. Keynes on Consumption, Consumption Smoothing, Temporary and Permanent Shocks, Stochastic Income Expectations, Effect of Interest Rates, Aggregating Across Individuals, Savings and	

	Γ	Std	. Com.X AC-6
		15	& 22.05.2023
	Portfolio Choice, Profit Maximization and the Optimal Capital Stock, Adjustment Costs and Investment Decisions, Financial Structure and Investment, Residential and Inventory Investment, Irreversibility and Investment, Investment in Developing Countries, Investment in India		14 hours
	Module 3: Trade Balance and Exchange rates, Demand for Money, Labour market. The Real Exchange Rate, Other Approaches to the Trade Balance, Exchange Rates and Assets, Purchasing Power Parity, Choice of Exchange Rate Regimes, Money, Bonds, and Private Wealth, Nominal and Real Interest Rates, Financial Assets and the Budget Constraint, Money as a store of value, Seigniorage, Profit Maximization and Labour Demand, Utility and Labour Supply, Aggregate Supply with / without Money illusion, Introducing Unemployment, Cyclical Unemployment and the Output Gap, The Static Phillips Curve, The Dynamic Phillips Curve Module 4: IS-LM model : Walras Law, Nominal Versus Real Rate of Interest, The IS Curv The LM Curve, IS and LM - Fiscal and Monetary Policy, IS - LM	ve,	14 hours
	India, Ricardian Equivalence– determination of equilibrium income and interest rates – fiscal and monetary policy.		10 hours
Pedagogy:	Lectures/ tutorials/assignments/self-study		
<u>References/</u>	Essential Reading		
<u>Readings</u>	 Macroeconomics by Errol D'Souza, Pearson Education, Del Second Edition 2012 <i>Additional Reading</i> Macroeconomics: Theories and Policies, by Richard T. Froyen, Pearson Education, 10th Edition or later, 2013 	lhi	
Learning	Understand the factors that determine consumption and		
Outcomes	production decisions under different market structures.		
L	1		

Programme: M.Sc. Integrated Course Code: DSTC 204 Number of Credits: 4(4L-0T-0P) Effective from AY: 2020-21

Title of the Course: Database Management Systems Contact Hours: 48 hours(48L-0T-0P)

Prerequisites for the course:	Operating Systems, Data and File Structures, A programming language	
Objectives:	To Provide students with theoretical knowledge and practical skills to effectively design, implement and query a relational	

			d. Com.X AC-6
I		15	& 22.05.2023
Cantant	database application		
Content:			-
	Basic concepts		
	Database & Database Users, Characteristics of the Databas	e	6 hours
	Approach,		0110013
	Database Systems, Concepts & Architecture Data Models,		
	Schemes & Instances, DBMS Architecture of Dat	а	
	Independence,		10 hours
	Data Base languages & Interfaces		
		_	
	Relational Model	-	
	The Relational Model, Overview of Design Process, Dat	a	
	Modelling using the Entity – Relationship approach , Structure of Relational Databases, Relational Algebra	4	12 hours
	SQL-A Relational Database Language Data		
	Data Definition in SQL, structure of SQL queries, S	et	
	operations,		10 hours
	aggregate functions, Nested Subqueries, Modification of th database,	ie	
	Views Specifying Integrity Constraints & Indexes		
	in SQL. A Relational Database Management System		
	Relational DataBase Design		10 hours
	Features of a Good Relational design, Function Dependencies	8	
	Normalization, Normal forms based on primary keys (1NF, 21	NF,	
	3NF, BCNF) Covers of Functional Dependencies, Canonical		
	covers. Loss less join and Dependency preserving		
	decomposition algorithms.		
	Transactions		
	Concept and states of transactions, Properties of Transactions	ç	
	issues in Concurrent execution of transactions, concept of	,	
	serializability, Recovery techniques		
Pedagogy:	Lectures/ tutorials/assignments/class presentations and		
	debates/peer reviews/workshops/self-study		
References/Re	1. Korth, Silberchartz, "Database System Concepts"		
adings	McGrawhill Publication.		
	2. Elmasri and Navathe, " Fundamentals of Database System	s",	
	Addison Wesley, New Delhi.		
	3. Database Management Systems – R. Ramakrishnan, J.Gehr	rke	
	– T.McGraw Hill	_	
	4. Desai B., "An Introduction to Database Concepts", Galgot	ıa	
	Publications, New Delhi.	_	
	5. Rob,Coronel, "Database Systems (Design, Implementation	n	

		Sto	d. Com.X AC-6
		15	& 22.05.2023
	and Management)"		
	6. Date C. J. , " An Introduction to Database Systems",		
	Publication House, New Delhi.		
Learning	1. Understand and evaluate the role of database manageme	ent	
<u>Outcomes</u>	systems in information technology applications within		
	organizations;		
	2. Recognise and use logical design methods and tools for		
	databases;		
	3. Implement a database solution to an information		
	technology problem;		
	4. Understand the SQL data definition and SQL query		
	languages;		
	5. Develop sophisticated queries to extract information from	า	
	databases.		
	6. Understand how the database manages and recovers fror	n	
	concurrent and multiple transactions		

Programme: M.Sc. Integrated Course Code: DSTC 205

Title of the Course: Soft Skills - III (Interview Facing Skills and Mock Interviews) Contact Hours: 24 hours(24L-0T-0P)

Number of Credits: 2(2L-OT-OP) Effective from AY: 2020-21

<u>Prerequisites</u>	Same as programme prerequisites	
for the course:		
Objective:	To introduce the basics of writing resumes and preparatory	
	skills required to face interviews	
Content:	Fundamentals of Resume Writing, Writing effective Cover	4 hours
	letters and emails to organizations.	
		4 hours
	Group Discussions – different types, Different types of	
	interviews and basic competencies required in facing	4 hours
	interviews.	
		12 hours
	Preparation required prior to facing an interview – industry and	
	firm analysis. SWOT analysis; Frequently asked questions in	
	interviews	
	Mock interviews to assess conceptual clarity, domain	
	knowledge, soft skills, and perspectives held, etc.	
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/ outreach	
	activities/ project work/ vocational training/viva/ seminars/	
	term papers/assignments/ presentations/ selfstudy/ Case	
	Studies etc. or a combination of some of these. Sessions shall	
	be interactive in nature to enable peer group learning	
Learning	An ability to face interviews	

 Outcomes
 15 & 22.05.2023

 References/Re
 1.Prasad, Hari Mohan, How to prepare for Group Discussion and

 adings
 Interview, Tata McGraw Hill, Latest Edition

 2. Patnaik, Priyadarshini, Group Discussion and Interview Skills, Cambridge University Press, Latest Edition

(Back to Index) (Back to Agenda)

Std. Com.X AC-6

Programme: M.Sc. Integrated Course Code: DSTC 206

Title of the Course: Perspective Building course -II (Character Development) Contact Hours: 24 hours(24L-0T-0P)

Number of Credits: 2(2L-OT-OP) Effective from AY: 2020-21

Prerequisites	Same as programme prerequisites	
for the course		
Objective:	Have a holistic outlook towards life, to face and solve the challenges in their day to day life by strengthening their Emotional intelligence. Using their Talents to develop their personality and using this to bring happiness in their life and career. Changing their behaviour by becoming passionate and positively energized in doing their studies, job and life.Help them to become productive, proactive and persevere in all that they do in their lives and to become good Managers and professionals	
Content:	Talents you are born with, using Talents to enhance your	4 hours
	personality and succeed. Using the E – Enthusiasm. Using this to build your passion and positive Energy.	4 hours
	E - Efforts – Persevere and reach your goals.	4 hours
	In Efficiency - un Productive and not planned or not Pro active . Dealing with their negative Self Awareness, Self Regulation, Motivation, Empathy and Social Skill.	4 hours
	E - Positive Emotional Intelligence to reach your goals. Negative Attitude with regards to oneself, family and Friends.	4 hours
	Positive Attitude	4 hours
Pedagogy:	Use of Presentations, Activities, Discussions	
<u>Learning</u> <u>Outcomes</u>	 Students will be able to To face and solve the challenges in their day to day life by strengthening their Emotional intelligence. Using their Talents to develop their personality and using this to bring happiness in their life and career. Change their behaviour by becoming passionate and 	
	positively energized in doing their studies, job and life.	
References/Re adings	 Rich Dad Poor Dad – Robert Kiyosaki . Warner books Think and grow Rich – Napoleon Hill. The Ralston Society The Power of now- Eckhart Tolle. Namaste Publishing 	

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSPC 207

Title of the Course: Database Management Systems (Lab) Contact Hours: 48 hours(0L-0T-48P)

Number of Credits: 2(0L-0T-4P) Effective from AY: 2020-21

Prerequisites for the course:	Database management system concepts and programming
Objective:	The objective of the course is to present an introduction to
	database management systems, with an emphasis on how to
	organize, maintain and retrieve - efficiently, and effectively -
	information from a DBMS.
Content:	Suggested Lab Assignments:
<u>content.</u>	A. Installation of DBMS Software
	A. Installation of DBIVIS Software
	B. Data Definition Language(DDL) Statements
	1. Creating tables, with or without constraints.
	2. Understanding Data types.
	3. Creating User Defined data Types
	4. Altering the structure of the table
	5. Dropping tables.
	6. CreatingSequences
	C. Query in Data Dictionary
	 To view the structure of the table created by the user.
	2. To view user information.
	3. To view integrity constraints.
	D. Data Manipulation Language(DML) Statements
	1. Inserting Data into the table.
	2. Updating Data into the table.
	3. Deleting Data from the table.
	E. Simple SQL statements
	1. Displaying all the attributes and tuples from the table.
	 Displaying selected attributes/tuples from the table.
	3. Using Logical and comparison operators.
	4. Ordering data
	F. Complex SQL Statements
	1. Using aggregate functions (using Group by and having
	clauses).
	2. Creating SQL Aliases and View.
	3. Joins and Nested queries.
	4. Creating temporary tables in SQL statements

		Sto	l. Com.X AC-6
		15	& 22.05.2023
	G. Transaction Control Language(TCL) statements		
	H. Embedded SQL statements		
	1. Procedures with and without cursors		
Pedagogy:	Lab Assignments		
Learning	Upon successful completion of this course, students should	be	
Outcomes	able to: • Describe the fundamental elements of relational		
	database management systems • Explain the basic concepts	5	
	of relational data model, entity-relationship model, relational	al	
	database design, relational algebra and SQL. • Design ER-		
	models to represent simple database application scenarios	•	
	Convert the ER-model to relational tables, populate relation	al	
	database and formulate SQL queries on data. • Improve the		
	database design by normalization.		

Programme: M.Sc. Integrated Course Code: DSTC 208 Number of Credits: 4(4L-0T-0P) Effective from AY: 2021-22

Title of the Course: Machine Learning Contact Hours: 48 hours(48L-0T-0P)

Prerequisites for the course:	Familiarity with linear algebra, statistics & probability theory	
<u>Objectives:</u>	This course provides students with an in-depth introduction to three main areas of Machine Learning: supervised and unsupervised and reinforcement learning.this course will cover some of the main models and algorithms for regression, classification, clustering and Markov decision processes. Topics will include linear and logistic regression, regularisation, SVMs and kernel methods, ANNs, clustering, and dimensionality reduction ,sequential learning Like HMM and deep learning CNN and RNN	
<u>Content:</u>	1. Introduction: well posed learning problem, designing a learning system, perspectives and issues in machine learning-types of learning - supervised, unsupervised and reinforcement learning	3 hours
	2. Concept learning: concept learning task , notation, inductive learning hypothesis, concept learning as search, version space and candidate elimination algorithm, decision tree, random forest.	5 hours
	3. Linear regression: logistic regression - Support vector machine kernel, Model selection and feature selection-Ensemble methods: Bagging, boosting, Evaluating and debugging learning algorithms.	5 hours

			<u>d. Com.X AC-6</u> & 22.05.2023
	4. Continuous Latent Variables: Principal Component Analys Maximum variance formulation, Minimum error formulation, Applications of PCA, PCA for high-dimensional data.		5 hours
	5. Neural Networks: -Feed-forward Network, Functions, perceptron, -Weight-space symmetries, Network Training, Parameter optimization, Local quadratic approximation, Use gradient information, Gradient descent optimization, Error Backpropagation, Evaluation of error-function derivatives, Efficiency of backpropagation.	of	10 hours
	6. Deep learning: Deep Feedforward Networks, Gradient-Bas Learning, Hidden Units, -Architecture Design, CNN and RNN (simple RNN and LSTM).	ed	5 hours
	7. Unsupervised learning; Clustering, K-means, EM.Mixture c Gaussians.	of	5 hours
	8. Sequential Data: Markov Models, Hidden Markov Models, Maximum likelihood for the HMM, The forward-backward algorithm, The sum-product algorithm for the HMM, Scaling factors, -The Viterbi algorithm.		5 hours
	9. Reinforcement learning: introduction- learning task-Q learning, non deterministic rewards and actions-temporal difference learning.		5 hours
Pedagogy:	lectures/ tutorials/assignments/self-study/lab assignment/ project work		
<u>References/</u> <u>Readings</u>	 Main Reading :- James, Gareth, et al. An introduction to statistical learning. Vol. 112. New York: springer, 2013. Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020. Hart, Peter E., David G. Stork, and Richard O. Duda. Patter classification. Hoboken: Wiley, 2000. Flach, Peter. Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, 2012. Bishop, Christopher M. "Pattern recognition and machine learning: springer New York." (2006). Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Dee learning. MIT press, 2016. Mitchell, Tom, and Machine Learning McGraw-Hill. "Edition." (1997). machine learning and Al online google course by cassie 	/	

		15	& 22.05.2023
	kozyrkov		
Learning	By the end of the course, students will be able to:		
Outcomes	 develop an appreciation for what is involved in learning from data. understand a wide variety of learning algorithms. understand how to apply a variety of learning algorithms data. understand how to perform evaluation of learning algorithms and model selection. Equips them with a general understanding of deep learning 		
	(Back to Index)	(Ba	ck to Agenda)

Programme: M.Sc. Integrated Course Code: DSTC 209 Number of Credits: 4(4L-0T-0P) Effective from AY: 2021-22

Title of the Course: Data modeling and visualization **Contact Hours:** 48 hours(48L-0T-0P)

Std. Com.X AC-6

		1
<u>Prerequisites</u>	A basic understanding of data management concepts and	
for the course:	knowledge of relationship database tables	
Objective:	 Learn to understand practical techniques to analyze and model data as part of the overall data management lifecycle to expose students to visual representation methods and 	
	techniques that increase the understanding of complex data.	
	 Learn to design good design practices for visualization, tools for visualization of data from a variety of fields and visualization software like Processing, GapMinder and Tableau. 	
Content:	Data modeling fundamentals : The purpose and role of data	9 hours
	modelling- basic data modeling concepts and terminology, data modeling building blocks- hierarchies for the entities, data	
	model	4 hours
	constraints for your attributes: specify cross-entity	
	dependencies through strong and weak entities -summary of real-world entity and attributes complexities	6 hours
	real-world complexities to relationships why relationship cardinality and complexities matter - build real-world complexities into data model relationships-define the maximum cardinality of a relationship -define the minimum cardinality of relationship -use crow's foot notation for	4 hours
	minimum and maximum cardinality -summary of cardinality and complex relationships.	4 hours
	move across the different levels of data model: Harmonize	4 hours

		Std. Com.X AC-6
·		15 & 22.05.2023
normalization -fo model - more da engineer a physi	of data model - brief look a relational databas orward-engineering your conceptual data ta model forward engineering - reverse ical model back into conceptual model - to work with different levels of data model	se 4 hours
Software for dat	a modeling : The importance of data modelin data model with a drawing program - build	3 hours ng 4 hours
model with data	modeling software tool	
Visualisation-Dif	ght graph for right data, Components of a Da ferent Types of Graphs, Deadly Sins of Graph void Being Mislead with GraphsSession	
	alization Sessions - Effective Use of Form and	d
	Graphs - Integrity in Visualization-Visual Quantitative Communication Reading - Effecti Space	ive
	of Tables and Graphs Readings: Summary at a sign Summary at a Glance: Graph Design	3
	ructs and Multivariate Analysis- Escaping 2 nated Scatter-Plots-Introduction to gn	
summary -data m	nodelling and visualization	
project	theory assignments /mini case study/capsto	
Readingsguide for busiPublications,		
Information	, The Visual Display of Quantitative d R., Nora Hillman Goeler, and Richard Benso	n.
Envisioning in 1990.	formation. Vol. 2. Cheshire, CT: Graphics pre	255,
	alizing data: Exploring and explaining data w g environment. " O'Reilly Media, Inc.", 2008.	
	uild data model by carrying out mini project	
<u>Outcomes</u> 2. The use of a c	lata visualization software for investigating a ata-set .	

Programme: M.Sc. Integrated Course Code: DSTC 210 Number of Credits: 4(4L-0T-0P) Effective from AY: 2021-22

Title of the Course: Linear Programming & Optimization **Contact Hours:** 48 hours(48L-0T-0P)

Prerequisites for the course: Linear Algebra Objective: To provide students the theoretical knowledge to effectively formulate linear programming problem and optimization. Content: Introduction to Operational Research (OR): Origin & Development, Different Phases of OR study, Methodology of OR, Scope and Limitations of OR, Applications of OR. 4 hours Linear Programming: Linearly independent / dependent vectors, Basis, Convex sets, Extreme points. Graphical method. 12 hours Simplex method and its variant: Simplex method, Artificial variable techniques- Two Phase Method; M-Charnes Method, Special cases in LPP. 4 hours Duality: Definition of the dual problem, Primal-dual relationships, Economic Interpretation of Duality, Dual simplex Method. 6 hours Sensitivity analysis: Changes in cost and resource vector Special Cases of Optimization Problems: Assignment Problems, Transportation Problem 1. G. Hadley: Linear Programming, Narosa, 2002 (reprint). Pedagogy: 1. G. Hadley: Linear Programming, Narosa, 2002 (reprint). 2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005. 3. Hamdy A. Taha: Operations Research-An Introduction,
Objective:To provide students the theoretical knowledge to effectively formulate linear programming problem and optimization.Content:Introduction to Operational Research (OR): Origin & Development, Different Phases of OR study, Methodology of OR, Scope and Limitations of OR, Applications of OR.4 hoursLinear Programming: Linearly independent / dependent vectors, Basis, Convex sets, Extreme points. Graphical method.12 hoursSimplex method and its variant: Simplex method, Artificial variable techniques- Two Phase Method; M-Charnes Method, Special cases in LPP.6 hoursDuality: Definition of the dual problem, Primal-dual relationships, Economic Interpretation of Duality, Dual simplex Method.6 hoursSensitivity analysis: Changes in cost and resource vectorSpecial Cases of Optimization Problems: Assignment Problems, Transportation Problem1. G. Hadley: Linear Programming. Narosa, 2002 (reprint). 2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.9
Content:Introduction to Operational Research (OR): Origin & Development, Different Phases of OR study, Methodology of OR, Scope and Limitations of OR, Applications of OR.4 hoursLinear Programming: Linearly independent / dependent vectors, Basis, Convex sets, Extreme points. Graphical method.12 hoursSimplex method and its variant: Simplex method, Artificial variable techniques- Two Phase Method; M-Charnes Method, Special cases in LPP.4 hoursDuality: Definition of the dual problem, Primal-dual relationships, Economic Interpretation of Duality, Dual simplex Method.6 hoursPedagogy: Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-study1. G. Hadley: Linear Programming. Narosa, 2002 (reprint). 2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.
vectors, Basis, Convex sets, Extreme points. Graphical method.12 hoursSimplex method and its variant: Simplex method, Artificial variable techniques- Two Phase Method; M-Charnes Method, Special cases in LPP.4 hoursDuality: Definition of the dual problem, Primal-dual relationships, Economic Interpretation of Duality, Dual simplex Method.6 hoursSensitivity analysis: Changes in cost and resource vector Special Cases of Optimization Problems: Assignment Problems, Transportation Problem12 hoursPedagogy:Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-study1. G. Hadley: Linear Programming. Narosa, 2002 (reprint).2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.1.
Simplex method and its variant: Simplex method, Artificial variable techniques- Two Phase Method; M-Charnes Method, Special cases in LPP.4 hours 6 hoursDuality: Definition of the dual problem, Primal-dual relationships, Economic Interpretation of Duality, Dual simplex Method.6 hoursSensitivity analysis: Changes in cost and resource vector Special Cases of Optimization Problems: Assignment Problems, Transportation Problem9Pedagogy:Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-study9References/ Readings1. G. Hadley: Linear Programming. Narosa, 2002 (reprint).2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.4
Simplex method, Artificial variable techniques- Two Phase Method; M-Charnes Method, Special cases in LPP.4 hours 6 hoursDuality: Definition of the dual problem, Primal-dual relationships, Economic Interpretation of Duality, Dual simplex Method.6 hoursSensitivity analysis: Changes in cost and resource vector Special Cases of Optimization Problems: Assignment Problems, Transportation Problem9Pedagogy:Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-study9References/ Readings1. G. Hadley: Linear Programming. Narosa, 2002 (reprint). 2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.4
Duality: Definition of the dual problem, Primal-dual relationships, Economic Interpretation of Duality, Dual simplex Method.6 hoursSensitivity analysis: Changes in cost and resource vectorSpecial Cases of Optimization Problems: Assignment Problems, Transportation Problem6 hoursPedagogy:Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-study6 hoursReferences/ Readings1. G. Hadley: Linear Programming. Narosa, 2002 (reprint).2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.6 hours
Special Cases of Optimization Problems: Assignment Problems, Transportation ProblemPedagogy:Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-studyReferences/ Readings1. G. Hadley: Linear Programming. Narosa, 2002 (reprint). 2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.
Pedagogy:Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-studyReferences/ Readings1. G. Hadley: Linear Programming. Narosa, 2002 (reprint). 2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.
debates/peer reviews/workshops/self-studyReferences/ Readings1. G. Hadley: Linear Programming. Narosa, 2002 (reprint).2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.
Readings2. A. Ravindran, D. T. Phillips and James J. Solberg: Operations Research-Principles and Practice, John Wiley & Sons, 2005.
Prentice Hall, 8th Edition, 2008. 4. F.S. Hillier. G.J. Lieberman: Introduction to Operations Research- Concepts and Cases, 9th Edition, Tata McGraw Hill. 2010.
Learning1. Understand applications of OROutcomes2. Formulation of Linear programming problem
3. Understanding primal dual relationship

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSTC 211 Number of Credits: 4(4L-0T-0P)

Title of the Course: Econometrics I **Contact Hours:** 48(48L-0T-0P)

Effective from AY: 2021-22

Prerequisites for the Course:	Understanding of probability and statistics	
Objective:	Equip the students to make sense of empirical data using multiple variables and analytical approaches	
Content:	Module 1: The Nature of Econometrics and Economic; Regression Analysis with Cross-Sectional Data; The Simple Regression Model	12 hours
	Module 2: Multiple Regression Analysis: Estimation and Inference; OLS Asymptotics	12 hours
	Module 3: Multiple Regression Analysis with Qualitative Information: Binary (or Dummy) Variables; Heteroskedasticity; Other Specification and Data Issues	12 hours
	Module 4: Regression Analysis with Time Series: Basic Regression Analysis with Time Series Data; Serial Correlation and Heteroskedasticity in Time Series Regressions	12 hours
Pedagogy:	Lectures/ tutorials/assignments/self-study	
Reference/ Readings:	Essential Reading Wooldridge, J. (2018). <i>Introductory econometrics: A modern</i> <i>approach</i> (7th edition). Cengage Learning.	
	Additional Reading Angrist, J. D., & Pischke, JS. (2009). Mostly harmless econometrics: An empiricist's companion. Princeton University Press.	
	Heiss, F. (2020). Using R for introductory econometrics. https://elopage.com/s/florian-heiss/using-r-for-introductory- econometrics	
<u>Learning</u> Outcomes:	Understand causality among variables and draw inferences based on data relations	

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSTC 212 Number of Credits: 2(2L-0T-0P) Effective from AY: 2021-22

Title of the Course: Soft Skills IV (Public Speaking Skills) **Contact Hours:** 24 hours(24L-0T-0P)

Prerequisites	Nil	
for the course:		
Objective:	To provide students with an ability to address larger	
	audien!1+1ces confidently.	
Content:	Preparation for delivering a speech: Selection of topic,	8 hours
	Relevant data collection, Draft preparation etc.	
		8 hours
	Listening to famous speeches.: The faculty will choose some	
	famous public speeches and make them listen to the students.	8 hours
	The students then will have to analyse them.	
	Making speeches: The students will be asked to make public	
	speeches by implementing the learning.	
Pedagogy:	Lectures/ tutorials/assignments/class presentations/Role plays	
	and debates/peer reviews/workshops/self-study	
<u>References/</u>	1. Dale Carnegie with J. Berg Eisenwen: The art of public	
<u>Readings</u>	speaking, Rupa publications India Pvt. Ltd., Latest edition.	
	2. Topher Morrison: The Book on Public Speaking, MJ	
	Publishers, Latest Edition	
	3. Chris Anderson et.al: HBR's 10 Must Reads on Public	
	Speaking and Presenting, HBR, Latest Edition	
<u>Learning</u>	At the end of the course, the participant will be able to make	
Outcomes	a public speech with confidence.	

Programme: M.Sc. Integrated Course Code: DSTC 213

Title of the Course: Perspective Building Course - III (Music Appreciation) Contact Hours: 24 hours(24L-0T-0P)

Number of Credits: 2(2L-OT-OP) Effective from AY: 2021-22

Prerequisites the for course:	Nil	
Objective:	To make the participants appreciate different genres of music.	
Content:	 What is Sound/Music?, Facets of Music, Art of listening to Music. 	4 hours
	 How Music works, Elements of Music. 	4 hours
	• Fundamentals of Music. Rhythm, Melody, Harmony, Timbre.	4 hours
	 Music instruments genres- Strings, Wood wind, Percussion, Brass EDM. 	4 hours
	• Different Musical Eras, History of Music, Genres of Music.	4 hours
	 Appreciating forms, styles and genres of Classical Music: Film music, fusion music 	4 hours
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/ outreach	
	activities/ project work/ vocational training/viva/ seminars/	

		Sto	d. Com.X AC-6
		15	& 22.05.2023
	term papers/assignments/ presentations/ self-study/ Case		
	Studies etc. or a combination of some of these. Sessions sha		
	be interactive in nature to enable peer group learning.		
Learning	Students will be able to		
Outcomes :	Develop the ability to distinguish different genres of musi	с,	
	Indian & Western; and appreciate the works of some		
	famous artistes		
References/	1. Music Videos from Dave Conservatoire.		
Readings:	2. Music Videos from Stephen Titra.		
	3. Baugh's Music Theory videos from YouTube.		
	4. The Young Person's Guide to the Orchestra. Harcourt		
	Childrens Books, 1996 or later edition		
	5. How Music Works series by Howard Goodall, Channel 4		
	Network; 2010 or latest edition		
-	(Deals to Juday)	1-	

Programme: M.Sc. Integrated Course Code: DSPC 214 Number of Credits: 2(0L-0T-4P) Effective from AY: 2021-22

Title of the Course: Machine Learning Lab Contact Hours: 48 hours(0L-0T-48P)

Prerequisites	Machine learning theory and programming in python	
<u>for the</u>		
<u>course:</u>		
Objective:	Aimed at imparting implementation of machine learning	
	algorithms using python and its APIs	
Content:	Suggested Lab assignments/work with respect to the	
	following using python (scikit /keras libraries) /amazon sage	
	maker/matlab toolbox - each assignment with duration of 4	
	hrs and 8 hrs for project work	
	1. Write a program to implement version space.	
	2. Write a program to implement a decision tree for given	
	data.	
	3. Write a program to implement linear regression for given data.	
	4. Write a program to implement logistic regression.	
	5. Write a program to implement SVM.	
	6. Write a program to implement perceptron.	
	7. Write a program to implement a multilayer perceptron.	
	8. Write a program to implement RNN.	
	9. Write a program to implement CNN.	
	10. Write a program to implement HMM.	
	Capstone mini project work is given to assess the overall	
	learning.	
Pedagogy:	Lab Assignments	
Learning	Students should be able to write program in python for	

Programme: M.Sc Integrated Course Code: DSTC 301

Title of the Course: Computer Organization & Operating Systems Contact Hours: 48 hours(48L-0T-0P)

Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

for the course:The aim of the course is to provide students the theoretical and conceptual knowledge of Computer System Architecture and Operating systems .2 hoursContent:Introduction to digital electronics: Logic gates, boolean algebra, combinational circuits2 hoursData Representation and Basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro programmed control. Instruction formats, addressing modes.3 hours
conceptual knowledge of Computer System Architecture and Operating systems .2 hoursContent:Introduction to digital electronics: Logic gates, boolean algebra, combinational circuits2 hoursData Representation and Basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
Operating systems .2 hoursContent:Introduction to digital electronics: Logic gates, boolean algebra, combinational circuits2 hoursData Representation and Basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
Content:Introduction to digital electronics: Logic gates, boolean algebra, combinational circuits2 hoursData Representation and Basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction2 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, micro3 hours
algebra, combinational circuits2 hoursData Representation and Basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
algebra, combinational circuits2 hoursData Representation and Basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
Data Representation and Basic Computer Arithmetic: Number systems, complements, fixed and floating point representation, character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
systems, complements, fixed and floating point representation, character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
character representation, addition, subtraction4 hoursBasic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
Basic Computer Organization and Design: Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.4 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
Computer registers, instruction set, instruction cycle, input- output and interrupt, Bus Interconnection design of basic computer.3 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
output and interrupt, Bus Interconnection design of basic computer.3 hoursCentral Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
computer.Central Processing Unit : Register organization, arithmetic and logical micro-operations, stack organization, micro3 hours
Central Processing Unit : Register organization, arithmetic and 3 hours logical micro-operations, stack organization, micro
logical micro-operations, stack organization, micro
programmed control. Instruction formats, addressing modes. 4 hours
Memory and Input-Output Organization: Cache memory, 12 hours
Associative memory, mapping, Input / Output: External Devices,
I/O Modules, Programmed I/O, Interrupt-Driven I/O, Direct
Memory Access.
6 hours
Introduction to Operating Systems Basic OS functions,
resource abstraction, types of operating systems. 5 hours
Operating System Organization: Processor and user modes, 3 hours
kernels, system calls and system programs.
Process Management: System view of the process and
resources, process abstraction, process hierarchy, threads,
threading issues, thread libraries; Process Scheduling, non-pre-
emptive and preemptive scheduling algorithms; concurrent and

		<u>Sto</u>	d. Com.X AC-6
		15	& 22.05.2023
	processes, critical section, semaphores, methods for inter- process communication; deadlocks.		
	Memory Management: Physical and virtual address space; memory allocation strategies -fixedand variable partitions, paging, segmentation, virtual memory		
	File and I/O Management: Directory structure, file operation file allocation methods, device management.	ıs,	
	Protection and Security: Policy mechanism, Authentication, Internal access Authorization		
Pedagogy:	Lectures/ tutorials/assignments/class presentations and debates/peer reviews/workshops/self-study		
References/	1. M. Mano, Computer System Architecture, Pearson		
<u>Readings</u>	Education 1992		
	 W. Stallings, Computer Organization and Architecture Designing for Performance, 8th Edition, Prentice Hall of India,2009 M.M. Mano , Digital Design, Pearson Education Asia,2013 A Silberschatz, P.B. Galvin, G. Gagne, Operating Systems Concepts, 8th Edition, John Wiley Publications 2008. A.S. Tanenbaum, Modern Operating Systems, 3rd Edition, Pearson Education 2007. G. Nutt, Operating Systems: A Modern Perspective, 2nd Edition Pearson Education 1997. W. Stallings, Operating Systems, Internals & Design Principles , 5th Edition, Prentice Hall of India. 2008. M. Milenkovic, Operating Systems- Concepts and design, Tata McGraw Hill 1992. 		
<u>Learning</u> <u>Outcomes</u>	 The students will learn: data representation and computer arithmetic. organisation of CPU, register, I/O and memory. the services provided by and the design of an operating system. the structure and organization of the file system. what a process is and how processes are synchronized ar scheduled. different approaches to memory management. the implementation and use of system calls for managing processes, memory and the file system. 	3	

Programme: M.Sc. Integrated Course Code: DSTC 302 Number of Credits: 4(4L-0T-0P)

Title of the Course: Programming in C++ Contact Hours: 48 hours(48L-0T-0P)

Effective from AY: 2022-23

Prerequisites	Nil	
for the course:		
Ohiostivov		
Objective:	The subject aims to provide the student with:	
	1. An understanding of the concept of object oriented	
	programming.	
	2. An understanding of the concepts of data hiding, data	
	abstraction, polymorphism inheritance and exception	
	handling.	
	3. Ability to understand the generic principles of object	
	oriented programming using "C++".	
	4. An understanding of the use of templates in "C++".	
	5. An ability to plan, design, execute and document	
	sophisticated object oriented programs to handle different	
	computing problems.	
<u>Content:</u>	Programming paradigm; procedural to object oriented, Basic	
	concepts of Object-Oriented Programming: Objects, Classes,	
	Data Abstraction and Encapsulation, Inheritance,	
	Polymorphism, Dynamic Binding, Message Passing. Benefits of	
	Object-Oriented Programming. Structure of a C++ program,	
	Data types, Constants, tokens, expressions, control structures,	12 hours
	functions, recursion, arrays.	12 110013
	Classes and Objects, Constructors and destructors, Friend	
	functions and friend classes, Concepts of polymorphism:	
	Function overloading, operator overloading. Overloading types,	
	& rules, explicit & implicit type conversion operators, Pointers.	12 hours
	Inheritance: Introduction, Single, Multilevel, Multiple,	
	Hierarchical, Hybrid. Virtual Base Class, Abstract classes. 'this'	
	pointer, pointers to deriver classes Virtual functions, pure	
	virtual functions. I/O streams and classes, managing output	12
	with Manipulators, Classes for file streams, file I/O operations	12 hours
	and functions. String processing.	
	Functions Templates and Class Templates, Exception handling:	
	Basics of Exception Handling, Exception Handling mechanism,	
	Throwing Mechanism, Throwing Mechanism, Catching	
	mechanism, Re-throwing mechanism. Introduction to the	
	Standard Template Library: Components of STL, Containers and	
	Adapter: stack, queue, priority queue adapter algorithms,	12 haure
De de	Iterators, Applications.	12 hours
Pedagogy:	Lectures/tutorials/practical assignments/self-study	
References/Re	1. C++ : from control structures through objects / Tony Gaddis.	
	 C++ . Hom control structures through objects / Tony Gaudis. Timothy Budd, —An Introduction to Object Oriented 	
<u>adings</u>	2. Innotity budu, —An introduction to Object Oriented	

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	Programming, Pearson Education, 3rd Edition 3. Paul Deitel and Harrey Dietel; C++, How to Program; sever edition. 4. E Balaguruswamy; Object oriented programming with C++ Tata McGraw Hill. 6th edition.	hth
<u>Learning</u> <u>Outcomes</u>	 The students will learn: The various programming constructs in C++ and their usag To write modular and readable code using C++ To trace the execution of code fragments. Learner will appreciate mapping real-world scenarios in the object-oriented world Learner will understand object-oriented principles Learner will be able to design object oriented software's Learner will be able to analyse 	

Programme: M.Sc. Integrated Course Code: DSTC 303 Number of Credits: 2(2L-0T-0P) Effective from AY: 2022-23

Title of the Course: Data Science Toolkit Contact Hours: 24(24L-0T-0P)

Prerequisites	Knowledge of data science and data analytics	
for the course:		
Objective:	The aim of this course is to provide an introduction to the main	
	tools and ideas in the data scientist's toolbox.	
<u>Content:</u>	Excel for Data Visualization : Predefined, custom number and conditional data format for cells; macros; sorting and filtering data; plotting charts and graphs; working across sheets in excel file; creating interactive dashboards, Pivot table, lookup functions	6 hours
	Numeric and Statistical Computing: Programming and functions; strings, lists, arrays, matrices and data frames; R packages; working with data (e.g. csv, excel, xml, json); plot graphs and charts; R statistical functions and models	6 hours
	Markdown: Document structure; basic text formatting; paragraphs; headings; lists; links and images; code blocks; escape characters; HTML elements; converting markdown to html web pages Source Version Control:	6 hours
	Version Control; introduction to SVN and Git; Git repositories; Git cloning, forks and branches; Git stash; Git pull requests; resolving Git merge conflicts; maintaining your Git pages	6 hours

	Γ	Std. Com.X AC-6
		15 & 22.05.2023
Pedagogy:	Lectures/tutorials/practical assignments/self-study	
References/Re	1. Alexander, Kusleika, Walkenbach, "Excel Bible", Wiley	
adings	2. Wickham, Grolemund, "R for Data Science", O'Reilly	
	3. Matt Cone, "The Markdown Guide"	
	4. Chacon, Straub, "Pro Git", Apress	
Learning	At the end of course students will able to	
Outcomes	Create a Github repository	
	 Explain essential study design concepts 	
	• Set up R, R-Studio, Github and other useful tools	
	Understand the data, problems, and tools that data analyst	.s
	work with.	
	(Back to Index) (Back to Agend	

Programme: M.Sc. Integrated Course Code: DSTC 304 Number of Credits: 4(4L-0T-0P) Effective from AY: 2021-22

Title of the Course: Strategic Management **Contact Hours:** 48 hours(48L-0T-0P)

Prerequisites	Nil	
for the course:		
Objective:	To create an awareness of knowledge and tools used for	
	industry and firm analysis in designing organizational	
	strategies and their implementation	
Content:	Introduction to Strategy	8 hours
	Strategy meaning & importance, Strategy development	
	process, Vision, Mission statements, Objectives of the	
	company.	
	External and Internal Analysis of Firms	
	Evaluating company's external environment (Porter's 5 Forces	20 hours
	Analysis, Political Economic Social Technological	
	Environmental Legal (PESTEL) Analysis), Evaluating company's	
	internal environment (Strength Weakness Opportunity	
	Threats (SWOT) Analysis), resource capabilities, &	
	competitive environment	
	Crafting Strategy	
	Five generic competitive strategies: Low cost, Broad	
	Differentiation, Focussed Differentiation, Focussed Low Cost,	
	Best Cost Strategy.	20 hours
Pedagogy:	Lectures/ tutorials/laboratory work/ field work/ outreach	
	activities/ project work/ vocational training/viva/ seminars/	
	term papers/assignments/ presentations/ self-study/ Case	
	Studies etc. or a combination of some of these. Sessions shall	
	be interactive in nature to enable peer group learning.	
Learning	At the end of the course, the participants shall be able to	

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
Outcomes	analyse the structure of an industry and indicate sustainable strategies for competitive advantage.	
References/ Readings	 Arthur Thompson Jr., Margaret Petarf, John Gamble, Strickland III & Arun K. Jain, "Crafting and Executing Strategy", MacGraw Hill Publication, Latest Edition. Bowman, Cliff: 'The Essence of Strategic Management'; Prentice Hall of India Private Ltd; New Delhi; Latest Edition Faulkner, David and Cliff Bowman; 'The Essence of Competitive Strategy'; Prentice Hall of India Private Ltd; New Delhi; Latest Edition. Industry notes and business stories from popular business periodicals, databases. 	

Programme: M.Sc Integrated Course Code: DSTC 305 Number of Credits: 4(4L-0T-0P) Effective from AY: 2021-22

Title of the Course: Econometrics II **Contact Hours:** 48 hours(48L-0T-0P)

- • •		1
Prerequisites	Understanding of probability and statistics and basic	
for the Course:	Econometrics 1 or equivalent.	
Objective:	Equip the students to make sense of empirical data using	
	multiple variables and analytical approaches	
Content:	Module 1: Pooling Cross Sections Across Time: Simple Panel	12 hours
	Data Methods; Advanced Panel Data Methods	
	Module 2: Instrumental Variables Estimation and Two Stage Least Squares; Simultaneous Equations Models	12 hours
	Module 3: Limited Dependent Variable Models and Sample Selection Corrections; Logit and Probit Models for Binary Response; Tobit censored models	12 hours
	Module 4: Advanced Time Series: Distributed Lag Models; Testing for Unit Roots; Spurious Regression; Cointegration; Error Correction Models; Forecasting	12 hours
Pedagogy:	Lectures/ tutorials/assignments/self-study	
Reference/Rea dings:	 Wooldridge, J. (2018). Introductory econometrics: A modern approach (7th edition). Cengage Learning. Angrist, J. D., & Pischke, JS. (2009). Mostly harmless econometrics: An empiricist's companion. Princeton University Press. Heiss, F. (2020). Using R for introductory econometrics. <u>https://elopage.com/s/florian-heiss/using-r-for-introductory- econometrics</u> 	

Advance use of econometric tools along with software handling.

ing.

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSTC 306

Title of the Course: Perspective Building Course - IV (Leadership) Contact Hours: 24(24L-0T-0P)

Number of Credits: 2(2L-OT-OP) Effective from AY: 2022-23

Prerequisites	Nil	
for the course:		
Objective	To introduce the concepts of leadership and developing leaders	
	at work-place.	
Contents	Unit I	6 hours
	Introduction to Leadership Leadership and Person, Personality, cultural values and ability, Leadership that gets results, Emotional Intelligence, Models of Leadership, Leadership theories: Traits, Situational, and Functional leadership, Leadership and Power, Leadership and Influence: Interpersonal Conflict and Negotiation, Leadership in Groups and Teams	
	Unit II Leadership and Organisation Organizations as Complex Systems: Strategy, Structure & Environment, Organizational Culture, Leading Teams: Design and Structure, Leadership and Communication, Leading Change	6 hours
	Unit III Leadership Development Identifying potential leaders, Leader Development Vs Leadership Development, Process of leadership Development, Developmental Readiness of employees, Tools and interventions for developing leadership	6 hours
	Unit IV Special Leadership dimensions Identifying potential dark/ Negative leadership, Corrective measures, Public Leadership, Academic Leadership, Spiritual Leadership, Transformational leadership, Leadership in different types of organisations: Small businesses, Family Businesses, Global Organisations	6 hours
Pedagogy	lectures/ tutorials/laboratory work/ field work/ outreach activities/ project work/ vocational training/viva/ seminars/ term papers/assignments/ presentations/ self-study/ Case Studies etc. or a combination of some of these. Sessions shall	

		Std. C	om.X AC-6
		15&2	22.05.2023
	be interactive in nature to enable peer group learning.		
Learning	An ability to be effective leaders and to promote leadership		
<u>Outcomes</u>	among others at workplace.		
References/	1. RL Hughes, RC Ginnett, GJ Curphy; Leadership; Tata		
Readings.	McGraw Hill; 2022 or latest edition.		
	2. James Kouzes, Barry Posner, Jossey-Bass; The Leadership		
	Challenge; 2002 or Latest edition.		
	3. J Owen, Kogan; The Leadership Skills Handbook; Page		
	Publishing; 2020 or latest edition.		
	4. WG Rowe, L Guerrero; Cases in Leadership; Sage		
	Publications; 2015 or latest edition.		
	5. JH Zenger, JR Folkman; The Extraordinary Leader; Tata		
	McGraw Hill; 2002 or latest edition.		
	(Back to Index)	(Pook)	to Acondo)

Programme: M.Sc Integrated Course Code: DSPC 307

Title of the Course: Computer Organization & Operating Systems Lab Contact Hours: 48(0L-0T-48P)

Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Prerequisites	Computer organization and OS theory and programming	
for the course:	background	
Objective:	Aimed at teaching programming to implement concepts learnt in theory.	
Content:	Suggested Lab Assignments with each assignment with	
content.	duration of 4 hrs	
	 Sample assignment for introduction to the environment of the Unix program. 	
	 Sample assignment for introduction to vi editor. Assignment for use of paths: absolute, relative and search. Assignment for use of unix file commands. 	
	 Assignment for use of unix firectory commands. Assignment for use of simple filters: who, sorts, tail, head, 	
	etc. 7. Introduction to Command substitution : foreground and	
	background processors.	
	 Assignment for use of process management commands. Assignment for sse of redirection commands. 	
	 Assignment for use of wildcards and regular expressions. Assignment for use of complex commands: pipelining commands. 	
	 Assignment for use of advanced filters: grep, sed, tr and awk. 	
Pedagogy:	Lab Assignments/Presentations	
Learning	should be able to implement any computer organization	

Programme: M.Sc. Integrated Course Code: DSPC 308 Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Title of the Course: Programming in C++ Contact Hours: 48(0L-0T-48P)

Prerequisites for the course:	Programming in C++ concepts	
Objective:	Aimed at imparting programming using C++	
Content:	 Suggested Lab Assignments - with minimum duration of 4 hrs for each assignment. 1. Assignment on Basics of C++ (input /output / control statements / array). 2. Assignment on Classes and objects. 3. Assignment on Function Overloading. 4. Assignment on Operator Overloading. 5. Assignment on Constructors and Destructors. 6. Assignment on Inheritance and Polymorphism. 7. Assignment on Console I/O and Files. 8. Assignment on Templates. 9. Assignment on Exception Handling. 10. Assignment on Standard Template Library. 11. Mini project using OOP paradigm 	
Pedagogy:	Lab Assignments	
Learning Outcomes	Should be able to write a program in C++	

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated Course Code: DSPC 309 Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Title of the Course: Data Science Toolkit Lab **Contact Hours:** 48 hours(OL-OT-48P)

Prerequisites	
for the course:	Knowledge of data science and data analytics
Objective:	The aim of this course is to provide an introduction to the main
	tools and ideas in the data scientist's toolbox.
Content:	Suggested Lab Assignments
	(1) Sample Assignments using Excel
	(a) Using a provided sample dataset excel file (containing
	office supplies dats, or food sales), format the columns
	for different currency (currency unit and thousands'

		Std. Com.X AC-6
		15 & 22.05.2023
	delimiter) based on geo location mentioned	
	(2) Sample Assignments using R	
	(3) Sample Assignments using Markdown	
	(4) Sample Assignments using Git	
Pedagogy:	Lab Assignments	
Learning	At the end of course students will able to	
Outcomes	Create a Github repository	
	 Explain essential study design concepts 	
	• Set up R, R-Studio, Github and other useful tools	
	Understand the data, problems, and tools that data	
	analysts work with.	

Programme: MSc Integrated Course Code: DSTC 310 Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Introduction to Data Science **Contact hours:** 48 hours(48L-0T-0P)

Prerequisites	Statistics and Probability theory and Python Programming	
for the course		
<u>Objectives</u>	To get started with basics of Data Science and learn all aspects	
	of Data Science in its entirety	
<u>Content</u>	Unit-1: Basics of Data Science:	6 hours
	Introduction; Typology of problems-Data science in a big data	
	world: Benefits and uses of data science and big data-Facets of	
	data-The data science process-The big data ecosystem and data	
	science- The data science process: Overview of the data science	
	process- Defining research goals and creating a project charter-	
	Retrieving data-Cleansing, integrating, and transforming data-	
	Exploratory data analysis-Build the models- Presenting findings	7 hours
	and building applications on top of them.	
	Unit -2: Mathematics for Data science (Revision):	
	• Importance of linear algebra, statistics and optimization	
	from a data science perspective; Structured thinking for	
	solving data science problems.	
	• Linear Algebra: Matrices and their properties (determinants,	
	traces, rank, nullity, etc.); Eigenvalues and eigenvectors;	
	Matrix factorizations; Inner products; Distance measures;	
	Projections; Notion of hyperplanes; half-planes.	
	Probability, Statistics and Random Processes: Probability	7 hours
	theory and axioms; Random variables; Probability	
	distributions and density functions (univariate and	7 hours
	multivariate); Expectations and moments; Covariance and	
	correlation; Statistics and sampling distributions; Hypothesis	
	testing of means, proportions, variances and correlations;	
	Confidence (statistical) intervals; Correlation functions;	
	White-noise process.	

		<u>Std</u> .	Com.X AC-6
		15 8	& 22.05.2023
			7 hours
	Unit -3: Introduction to Data Science Methods:		
	Linear regression as an exemplar function approximation		7 hours
	problem; Linear classification problems.		
			7 hours
	Unit -4: Handling large data on a single computer:		
	The problems you face when handling large data-General		
	techniques for handling large volumes of data-General		
	programming tips for dealing with large data sets-Case stu	udy	
	1: Predicting malicious URLs-First steps in big data-		
	Distributing data storage and processing with frameworks	5	
	Unit 5: Join the NoSQL movement-Introduction to NoSQL		
	Unit 6: The rise of graph databases:		
	 Introducing connected data and graph databases 		
	 Introducing Neo4j: a graph database 		
	Unit 7: Data visualization to the end user:		
	Data visualization options		
	 Crossfilter, the JavaScript MapReduce library 		
	Creating an interactive dashboard with dc.js		
	Dashboard development tools		
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/	1. Practical Statistics for Data Science by Peter Bruce,		
Readings	Andrew Bruce, Peter Gedeck, May 2017		
	2. Naked Statistics by Charles Wheelon, 2012		
	3. Business Data Science by Matt Taddy, McGraw Hill, 2019		
	4. Elements of statistical learning by Jerome H. Friedman,		
	Robert Tibshirani, and Trevor Hastie,2001		
	5. Python for Data Analysis by Wes McKinney, 2nd edition,		
	2017		
	6. Data Science and Big Data Analytics -EMC2		
Learning	Students will be able to understand the basics of data science	2,	
Outcomes	Mathematics for Data science, Data science Methods, Handlin	ng	
	large data on a single computer, to join the NoSQL movemen	t	
	and understand NoSQL, Graph database and Data visualization		
L	(Back to Index)		

Programme: MSc Integrated Course Code: DSTC 311 Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Big Data Frameworks **Contact hours:** 48 hours(48L-0T-0P)

Prerequisites for the course	Probability and Statistics; Python Programming	
<u>Objectives</u>	 To understand the need of Big Data, challenges and different analytical architectures Installation and understanding of Hadoop Architecture and its ecosystems 	

		<u>15 & 22.05.2023</u>
	 Processing of Big Data with Advanced architectures like 	
	Spark.	
	 Describe graphs and streaming data in Spark 	
Contont	Introduction to Big Data: Data Storage and Analysis -	
<u>Content</u>		0 hours
	Characteristics of Big Data – Big Data Analytics - Typical	9 hours
	Analytical Architecture – Requirement for new analytical	
	architecture – Challenges in Big Data Analytics – Need of big	
	data frameworks	7 hours
	Hadoop framework: Hadoop – Requirement of Hadoop	
	Framework - Design principle of Hadoop –Comparison with	7 hours
	other system - Hadoop Components – Hadoop 1 vs Hadoop 2	-
	Hadoop Daemon's – HDFS Commands – Map Reduce	
	Programming: I/O formats, Map side join, Reduce Side Join,	7 hours
	Secondary sorting, Pipelining MapReduce jobs -	
	Hadoop Ecosystem : Introduction to Hadoop ecosystem	6 hours
	technologies: Serialization: AVRO, Co-ordination: Zookeeper,	
	Databases: HBase, Hive, Scripting language: Pig, Streaming:	6 hours
	Flink, Storm	
	Spark framework: Introduction to GPU Computing, CUDA	6 hours
	Programming Model, CUDA API, Simple Matrix, Multiplication	in
	CUDA, CUDA Memory Model, Shared Memory Matrix	
	Multiplication, Additional CUDA API Features.	
	Data analysis with spark shell: Writing Spark Application -	
	Spark Programming in Scala, Python, R, Java - Application	
	Execution	
	Spark SQL and Graph X : SQL Context – Importing and Saving	
	data – Data frames – using SQL – GraphX overview – Creating	
	Graph – Graph Algorithms.	
	Spark Streaming: Overview – Errors and Recovery – Streaming	α
	Source – Streaming live data with spark	Б
Podagogy	Assignment / Quiz / Project / Seminar	
Pedagogy References/		
<u>References/</u>	1. Mike Frampton, "Mastering Apache Spark", Packt	
<u>Readings</u>	Publishing, 2015.	
	2. Tom White, "Hadoop : The Definitive Guide", O'Reilly,	
	4thEdition, 2015.	
	3. Nick Pentreath, Machine Learning with Spark, Packt	
	Publishing, 2015.	
	4. Mohammed Guller, Big Data Analytics with Spark, Apress,	
	2015.	.
	5. Donald Miner, Adam Shook, "Map Reduce Design Pattern"	,
	O'Reilly, 2012.	
Learning		
Leanning	Students will be able to understand Big Data, Hadoop	
Outcomes	Students will be able to understand Big Data, Hadoop Framework, and Ecosystem, Spark framework, Data analysis	

Std. Com.X AC-6

Programme: MSc Integrated Course Code: DSPC 312 Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Title of the Course: Introduction to Data Science Lab Contact hours: 48 hours (0L-0T-48P)

Droroquisitos	Knowledge of Duthen Drogramming	
<u>Prerequisites</u> for the course	Knowledge of Python Programming	
<u>Objectives</u>	 To provide necessary knowledge on how to manipulate data objects, produce graphics, analyze data using common statistical methods and generate reproducible statistical reports with programming in Python Apply the concepts learnt in Data Science. 	
<u>Content</u>	Suggested Lab Assignment:	
	Program to understand these concepts : Numpy Arrays objects, Creating Arrays, basic operations, Indexing, Slicing and iterating, copying arrays, shape manipulation, Identity array, eye function, Universal function	15 hours
		5 hours
	Program to understand these concepts: Linear algebra with Numpy, eigen values and eigen vectors with Numpy	5 hours
	Program to understand these concepts: Aggregation and Joining, Pandas Object: Concatenating and appending data frames, index objectsHandling Time series data using pandas	5 hours
		5 hours
	Program to understand these concepts: Handling missing values using pandas	5 hours
	Program to understand these concepts: Reading and writing the data including JSON data	4 hours
	Program to understand these concepts: Web scraping using python, Combining and merging	4 hours
	Program to understand these concepts: Data transformations Basic matplotlib plots, common plots used in statistical analysis in python	
	Program to understand these concepts: Common plots used in statistical analysis in python Data Types	
	Program to understand these concepts: Sequence generation, Vector and subscript, Random number generation Data frames and functions-Data manipulation and Data Reshaping using plyr, dplyr, reshape	
	Program to understand these concepts: Parametric statistics	

and Non-parametric statistics- Continuous and Discrete Probability distribution using python Correlation and covariance, contingency tables- Overview of Sampling, different sampling techniques- and database connectivity2. Pedagogy Lab Assignments References/ Readings 1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, Ist Edition, 2010. 2. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013. 3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014. 4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012. 5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. 6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. 7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.php Learning Outcomes Students will be able: 0utcomes • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python Ibraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				& 22.05.2023
Probability distribution using python Correlation and covariance, contingency tables- Overview of Sampling, different sampling techniques- and database connectivity2.PedagogyLab AssignmentsReferences/ Readings1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, Ist Edition, 2010.2.Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013.3.Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014.4.Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012.5.Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6.Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7.https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8.8.http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: 0 To solve the analytical problems using Python9.To communicate results of analysis effectively using visualizations in Python		and Non-parametric statistics. Continuous and Discrete	1.1	G 22.0J.2023
Correlation and covariance, contingency tables- Overview of Sampling, different sampling techniques- and database connectivity2.PedagogyLab AssignmentsReferences/ Readings1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, 1st Edition, 2010.2. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013.3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 				
Sampling, different sampling techniques- and database connectivity2.PedagogyLab AssignmentsReferences/ Readings1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, Ist Edition, 2010.2. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013.3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014.4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012.5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: 0 Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
connectivity2.PedagogyLab AssignmentsReferences/ Readings1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, Ist Edition, 2010.2. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013.3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014.4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012.5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
Pedagogy Lab Assignments References/ Readings 1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, Ist Edition, 2010. 2. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013. 3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014. 4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012. 5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. 6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. 7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.php Students will be able: 0utcomes • To solve the analytical problems using Python • Develop competency in the Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
References/ Readings 1. James Payne, "Beginning Python: Using Python 2.6 and Python 3.1" Wrox, Ist Edition, 2010. 2. Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013. 3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014. 4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012. 5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. 6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. 7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.php Students will be able: Outcomes • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
ReadingsPython 3.1" Wrox, Ist Edition, 2010.2.Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013.3.Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014.4.Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012.5.Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6.Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7.https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8.8.http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: 0 Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
 Michael T. Goodrich, Roberto Tamassia, Michael H. Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference http://www.python-course.eu/numpy.php Learning Students will be able: To solve the analytical problems using Python Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 				
Goldwasser, "Data Structures and Algorithms in Python", John Wiley & sons, 2013.3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014.4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012.5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning OutcomesOutcomes• To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python	Readings			
John Wiley & sons, 2013.3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014.4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012.5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning OutcomesOutcomes• To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python		2. Michael T. Goodrich, Roberto Tamassia, Michael H.		
 3. Ivan Idris, "Python Data Analysis", Packt Publishing Limited, 2014. 4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012. 5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. 6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. 7. https://docs.scipy.org/doc/numpy-dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.php Learning Outcomes To solve the analytical problems using Python Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 		Goldwasser, "Data Structures and Algorithms in Python",		
 2014. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference http://www.python-course.eu/numpy.php Students will be able: To solve the analytical problems using Python Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 		John Wiley & sons, 2013.		
 4. Wes McKinney, "Python for Data Analysis Data Wrangling with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012. 5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. 6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. 7. https://docs.scipy.org/doc/numpy-dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.php Learning Outcomes Students will be able: 0 To solve the analytical problems using Python 0 Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 		3. Ivan Idris, "Python Data Analysis", Packt Publishing Limite	d,	
with Pandas, NumPy, and IPython", O'Reilly Media, Ist Edition, 2012.5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference8. http://www.python-course.eu/numpy.phpLearning Outcomes0utcomes9. To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python		2014.		
Edition, 2012.5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning Outcomes0utcomes9. To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python		4. Wes McKinney, "Python for Data Analysis Data Wrangling	g	
Edition, 2012.5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning Outcomes0utcomes9. To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python			-	
 5. Michael Heydt, "Learning Pandas - Python Data Discovery and Analysis Made Easy", Packt Publishing Limited, 2015. 6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016. 7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.php Students will be able: 0utcomes 5. To solve the analytical problems using Python Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 				
and Analysis Made Easy", Packt Publishing Limited, 2015.6. Jacqueline Kazil,Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning Outcomes0utcomes8. http://www.python-course.eu/numpy.phpLearning Outcomes0utcomes9. To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python			,	
 6. Jacqueline Kazil, Katharine Jarmul, "Data Wrangling with Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, 1st Edition, 2016. 7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.php Learning Outcomes Students will be able: To solve the analytical problems using Python Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 				
Python: Tips and Tools to MakeYour Life Easier", O'Reilly Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference8. http://www.python-course.eu/numpy.phpLearning Outcomes0utcomes5tudents will be able: • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
Media, Ist Edition, 2016.7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference8. http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
7. https://docs.scipy.org/doc/numpy- dev/reference/index.html#reference 8. http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
dev/reference/index.html#reference8. http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
8. http://www.python-course.eu/numpy.phpLearning OutcomesStudents will be able: • To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
Learning Students will be able: Outcomes To solve the analytical problems using Python • Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy • To communicate results of analysis effectively using visualizations in Python				
 Outcomes To solve the analytical problems using Python Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 	Learning			
 Develop competency in the Python programming language and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 				
 and a number of data related Python libraries such as Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 	Outcomes			
 Pandas, Numpy, and Scipy To communicate results of analysis effectively using visualizations in Python 			e	
 To communicate results of analysis effectively using visualizations in Python 				
visualizations in Python				
		· · · -		
			.	
		Import, export and manipulate data and produce statistic	al	
summaries of continuous and categorical data in Python		-		
To perform exploratory data analysis using Python. (Pack to Index) (Pack to Agenda)				

Std. Com.X AC-6

Programme: MSc Integrated Course Code: DSTC 313 Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Title of the Course: Big data frameworks Lab Contact hours: 48 hours(0L-0T-48P)

Prerequisites	Introduction to Data Science and Python Programming	
for the course		
Objectives	To appreciate the concepts learnt in Big data analytics	
Content	Suggested Lab Assignments:	
	1. Downloading and installing Hadoop; Understanding different	6 hours
	Hadoop modes. Startup scripts, Configuration files.	

		Sto	d. Com.X AC-6
		15	& 22.05.2023
	2. Hadoop Implementation of file management tasks, such as	5	6 hours
	Adding files and directories, Retrieving files and Deleting fi	les	6 hours
	 Implement of Matrix Multiplication with Hadoop Map Reduce 		6 hours
	4. Run a basic Word Count Map Reduce program to understa	nd	6 hours
	Map Reduce Paradigm.		6 hours
	5. Implementation of K-means clustering using Map Reduce		6 hours
	6. Installation of Hive along with practice examples.		6 hours
	 Installation of HBase, Installing thrift along with Practice examples 		
	8. Patrice importing and exporting data from various databas	es	
<u>Pedagogy</u>	Lab Assignments		
References/	Big Data Analysis with Python By Ivan Marin, Ankit Shukla,		
Readings	Sarang VK, Packt Publishing Limited, 2019		
Learning	Students will be able to install all the relevant tools required	for	
<u>Outcomes</u>	big data analytics and write a program in python to appreciat big data concepts.	e	

Programme: MSc Integrated Course Code: DSTC 401 Problem Solving Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Al-Search Methods for

Contact hours: 48 hours(48L-0T-0P)

Ducucautation	Descriptions shills. Data structures Mathematical Foundations	
<u>Prerequisites</u>	Programming skills, Data structures, Mathematical Foundations	
<u>for the course</u>		
Objectives	The Objective of this course is to learn the fundamentals of	
	Artificial Intelligence. The focus is on blind search methods -	
	blind search , heuristic search methods etc and appreciate how	
	formulating the problem as state space representation.	
Content	Introduction and philosophy. The Turing Test. The Winograd	
	Schema Challenge. Placing search in the landscape of AI. Search	
	spaces. Examples. State space search. Depth First, Breadth First,	12 hours
	Iterative Deepening. Analysis. Heuristic search. Heuristic	
	functions. Solution space search. Escaping local optima.	
	Stochastic local search.	
	Population based methods. Genetic Algorithms, emergent	12 hours
	systems, Ant Colony Optimization. Finding optimal paths.	
	Algorithm A*. Admissibility of A*. The monotone condition.	
	Space saving versions of A*. Sequence alignment.	12 hours
	Game playing. Board games. Algorithms Minimax, Alpha-Beta,	
	and SSS*. Automated domain independent planning. Goal Stack	
	Planning, Partial Order Planning. Problem decomposition with	12 hours
	goal trees. Algorithm AO*.	
	Pattern directed inference systems. Forward chaining inference	
	engine. The Rete algorithm.Constraint processing. Algorithm	

Std.	Com.X	AC-6
15 &	22 05	2023

T		15 & 22.05.2023
	Backtracking. Arc consistency. Combining search and reasoning	ng.
	Waltz algorithm. Model based diagnosis.	
Pedagogy	Hands-on Assignments / Tutorials / Peer-teaching /	
	Presentations	
References/	1. Deepak Khemani. A First Course in Artificial Intelligence	ce,
Readings	McGraw Hill Education (India), 2013. (Chapters 1 – 8,	
	some parts from Chapters 9 and 10))	
	2. John Haugeland, Artificial Intelligence: The Very Idea, A	
	Bradford Book, The MIT Press, 1985.	
	3. Pamela McCorduck, Machines Who Think: A Personal	
	Inquiry into the History and Prospects of Artificial	
	Intelligence, A K Peters/CRC Press; 2nd edition, 2004.	
	4. Eugene Charniak and Drew McDermott, Introduction to	
	Artificial Intelligence, Addison- Wesley Publ., 1985.	
	5. Zbigniew Michalewicz and David B. Fogel. How to Solve I	t:
	Modern Heuristics. Springer; 2nd edition, 2004.	
	6. Judea Pearl. Heuristics: Intelligent Search Strategies for	
	Computer Problem Solving, Addison-Wesley, 1984.	
	7. Elaine Rich and Kevin Knight. Artificial Intelligence, Tata	
	McGraw Hill, 1991.	
	8. Stuart Russell and Peter Norvig. Artificial Intelligence: A	
	Modern Approach, 3rd Edition, Prentice Hall, 2009.	
	9. Patrick Henry Winston. Artificial Intelligence, Addison-	
	Wesley, 1992.	
	10. Stefan Edelkamp and Stefan Schroedl. Heuristic Search:	
	Theory and Applications, Morgan Kaufmann, 2011.	
<u>Learning</u>	Students will be able to understand:	
<u>Outcomes</u>	1. A historical and philosophical perspective on artificial	
	intelligence.	
	2. The ability to formulate problems in a general problem	
	solving framework.	
	3. Knowledge of domain independent search based probler	n
	solving algorithms.	
	4. Knowledge of stochastic, local, and population based	
	search algorithms.	
	5. The foundations of problem decomposition and rule base methods.	ed
	6. To implement game playing algorithms.	
	7. The relation between search methods and other	
	formulations including planning, constraints and logical	
	reasoning.	
	1.00000005.	

Programme: MSc Integrated Course Code: DSTC 402 Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Research Methodology and IP **Contact hours:** 48 hours(48 L-0T-0P)

Prerequisites		
for the course	Basics of probability and statistics , Programming skills	
Objectives	Present research methodology and the technique of	
	defining a research problem.	
	 Learn the meaning of interpretation, techniques of 	
	interpretation, precautions is to be taken in interpretation	
	for research process,	
	 Application of statistical methods in research 	
	 Learn intellectual property rights and its constituents. 	
Content	Unit 1	
	Introduction to research, Definitions and characteristics of	
	research, Types of Research, Research Process, Problem	12 hours
	definition, Objectives of Research, Research Questions,	
	Research design, Quantitative vs. Qualitative Approach, Building	
	and Validating Theoretical Models, Exploratory vs. Confirmatory	
	Research, Experimental vs. Theoretical Research, Importance of	
	reasoning in research.	12 hours
	Unit 2	
	Problem Formulation, Understanding Modeling & Simulation,	
	Literature Review, Referencing, Information Sources,	
	Information Retrieval, Indexing and abstracting services,	
	Citation indexes, Development of Hypothesis, Measurement	
	Systems Analysis, Error Propagation, Validity of experiments,	
	Statistical Design of Experiments, Data/Variable Types &	
	Classification, Data collection, Numerical and Graphical Data	12 hours
	Analysis: Sampling, Observation, Interpretation of Results.	
	Unit 3	
	Statistics: Probability & Sampling distribution, Estimation,	
	Measures of central Tendency, Arithmetic mean, Median,	
	Mode, Standard deviation, Co-efficient of variation (Discrete	
	serious and continuous serious), Hypothesis testing &	12 hours
	application, Correlation & regression analysis, Orthogonal array,	
	ANOVA, Standard error, Concept of point and interval	
	estimation, Level of significance, Degree of freedom, Analysis of	
	variance, One way and two way classified data, 'F' test.	
	Unit 4	
	Preparation of Dissertation and Research Papers, Tables and	
	illustrations, Guidelines for writing the abstract, introduction,	
	methodology, results and discussion, conclusion sections of a	
	manuscript. References, Citation and listing system of	
	documents. Intellectual property rights (IPR) patents copyrights	
	Trademarks Industrial design geographical indication. Ethics of	
	Research Scientific Misconduct Forms of Scientific Misconduct.	
	Plagiarism, Unscientific practices in thesis work, Ethics in	
	science.	
<u>Pedagogy</u>	Lectures/ Tutorials/Assignments/Self-study	

		Std. Com.X AC-6
		15 & 22.05.2023
<u>References/</u> <u>Readings</u>	 K. S. Bordens, and B. B.Abbott, , "Research Design and Methods – A Process Approach", 8th Edition, McGraw Hill, 2011. C. R. Kothari, "Research Methodology – Methods and Techniques", 2nd Edition, New Age International Publishers,2014 Douglas C. Montgomary&George C. Runger, Applied Statist & probabilityfor Engineers, 3rd edition,2007,Wiley. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in the New Technological Age". Aspendent Law & Business; 6th edition July 2012. 	ics
	5. A Beginners Guide to Latex, Chetan Shirore, 5 July 2015.	
<u>Learning</u> <u>Outcomes</u>	 Students will be able to: Design and formulation of research problems. Analyze research related information and statistical methods in research. Carry out research problem individually in a perfect scientific method Understand the filing patent applications processes, Paten search, and various tools of IPR, Copyright, and Trademark 	

Programme: MSc Integrated Course Code: DSTC 403 Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Deep Learning **Contact hours:** 48 hours(48L-0T-0P)

Prerequisites		
for the course	Machine Learning, Programming, Probability and Statistics,	
	Linear Algebra	
Objectives	To study the basics of Neural Networks and their various	
	variants such as the Convolutional Neural Networks and	
	Recurrent Neural Networks, to study the different ways in	
	which they can be used to solve problems in various domains	
	such as Computer Vision, Speech and NLP.	
<u>Content</u>	Moving beyond Linearity-Non-Linear regression-polynomial and	4 hours
	spline-polynomial regression, step function, basis function,	
	regression splines -piecewise polynomials, constraints and	
	splines, the spline basis representation etc - smoothing	
	splines, Generalized additive models	
	History of Deep Learning, McCulloch Pitts Neuron, Thresholding	
	Logic, Perceptron Learning Algorithm and Convergence.	8 hours
	Multilayer Perceptrons (MLPs), Representation Power of MLPs,	
	Sigmoid Neurons, Gradient Descent. Feedforward Neural	
	Networks, Representation Power of Feedforward Neural	
	Networks, Backpropagation. Gradient Descent(GD), Momentum	12 hours
	Based GD, Nesterov Accelerated GD, Stochastic GD, Adagrad,	

		Sto	d. Com.X AC-6
		15	& 22.05.2023
	AdaDelta,RMSProp, Adam,AdaMax,NAdam, learning rate schedulers.		
	Autoencoders and relation to PCA , Regularization in		
	autoencoders, Denoising autoencoders, Sparse autoencoders	ŝ,	
	Contractive autoencoders. Bias Variance Tradeoff, L2		12 hours
	regularization, Early stopping, Dataset augmentation,		
	Parameter sharing and tying, Injecting noise at input, Ensemb methods, Dropout	ole	
	Greedy Layer Wise Pre-training, Better activation functions,		12 hours
	Better weight initialization methods, Batch Normalization.		12 110013
	Learning Vectorial Representations Of Words, Convolutional		
	Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogLeNe	et	
	ResNet. Visualizing Convolutional Neural Networks, Guided	20,	
	Backpropagation, Deep Dream, Deep Art, Fooling Convolution	nal	
	Neural Networks.		
	Recurrent Neural Networks, Backpropagation Through Time		
	(BPTT), Vanishing and Exploding Gradients, Truncated BPTT.		
	Gated Recurrent Units (GRUs), Long Short Term Memory (LST	M)	
	Cells, Solving the vanishing gradient problem with LSTM.	,	
	Encoder Decoder Models, Attention Mechanism, Attention or	ver	
	images, Hierarchical Attention, Transformers.		
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/	1. Ian Goodfellow and Yoshua Bengio and Aaron Courvil	le.	
Readings	Deep Learning. An MIT Press book. 2016.		
	2. Charu C. Aggarwal. Neural Networks and Deep Learning: A	4	
	Textbook. Springer. 2019.		
Learning	Students will be able to understand:		
Outcomes	• A brief history of deep learning and its success stories.		
	Perceptrons, Sigmoid neurons and Multi-Layer Perceptron	ns	
	(MLP) with specific emphasis on their representation pow	/er	
	and algorithms used for training them (such as Perceptron	n	
	Learning Algorithm and Backpropagation).		
	 Gradient Descent (GD) algorithm and its variants like 		
	Momentum based GD,AdaGrad, Adam etc Principal		
	Component Analysis and its relation to modern		
	Autoencoders.		
	• The bias variance tradeoff and regularisation techniques		
	used in DNNs (such as L2 regularisation, noisy data		
	augmentation, dropout, etc).		
	• Different activation functions and weight initialization		
	strategies		
	• Convolutional Neural Networks (CNNs) such as AlexNet,		
	ZFNet, VGGNet, InceptionNet and ResNet.		
	Recurrent Neural Network (RNNs) and their variants such	as	
	LSTMs and GRUs (in particular, understanding the		
	vanishing/exploding gradient problem and how LSTMs		
	overcome the vanishing gradient problem)		

l	• Applications of CNN and RNN models for various computer
l	vision and Natural Language Processing (NLP) problems.

Programme: MSc Integrated Course Code: DSTC 404

Title of the Course: Design Thinking for Data-Driven App Development Contact hours: 48 hours(48L-0T-0P)

Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

<u>Prerequisites</u>	None	
for the course		
<u>Objectives</u>	This course helps you learn the basics of Design Thinking in an experiential way. This course aims at an empathy-led data- driven app development approach for data scientists. The learners will launch a fully functioning app in a real app store at the end of the course.	
<u>Content</u>	Introduction to Design Thinking – Course outline and projects,Intro to the Design of Everyday Things, Intro to Design Thinking in software apps, Project management. Empathize phase (Iteration #1) Emotional and intellectual map of the	12 hours
	user stories from interviews, User story creation and Customer Journey Mapping Analyze phase (Iteration #1) - Stated needs and unsaid/latent needs, Root cause analysis, Multiple perspectives of customers	12 hours
	and manufacturers, Frame conflicts from popular movies. Solve phase (Iteration #1)Structured and unstructured creativity, Dynamics of group thinking, Optimal conditions of creativity, Natural creativity, Concept creation via group activities, Silent	12 hours
	brainstorming, inventive principles and concept consolidation Test phase (Iteration #1)/ Empathize phase (Iteration #2) - Basics of prototyping, Assumptions in creation of new concepts, Features rather than ideas. Basics of Digital Marketing, User Experience Design, Website Development	12 hours
	Analyze phase (Iteration #2) Solve phase (Iteration #2) - Introduced problems via the solution from iteration #1, the subsequent ideation process in iteration #2, apply solutioning and analysis tools in iteration #2, subsequent testing and field trial skills required for iteration #3, analytical tools and data oriented tools on iteration #3. Test (Iteration #2) / Empathize (Iteration #3) - Basics of obtaining insights from feedback from a live audience. Analyze (Iteration #3). Test phase (Iteration #3) - Launch of the App.	
<u>Pedagogy</u>	Hands-on assignments / Tutorials / Peer-teaching /Presentations	
References/	1. Design of everyday things by Don A. Norman, 2013.	

		<u>Stc</u>	<u>l. Com.X AC-6</u>
		15	& 22.05.2023
Readings	2. This is Service Design thinking- basics , tools and cases by		
	Marc Stickdorn, 1st edition, John Wiley & Sons Inc, 2012.		
Learning	Students will be able to:		
Outcomes	Recall the basics of Design Thinking		
	 Apply Agile method to developing software 		
	• Design an App using the principles of Design Thinking		
	Develop an App for Android		
	Collaborate with other developers using git version contr	ol	
	method		
	• Learn the basics of marketing and customer support		
	through their website		

Programme: MSc Integrated Course Code: DSPC 405

Title of the Course: AI-Search Methods for Problem Solving Lab Contact hours: 48 hours(0L-0T-48P)

Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Prerequisites	Programming Knowledge, Basic AI concepts	
for the course		
Objectives	Learn to write a program to appreciate the concepts of AI	
<u>Content</u>	Implementation of Toy problems	4 hours
	Developing Agent programs for real world problems	4 hours
	Implementation of constraints satisfaction problems	4 hours
	Implementation and Analysis of DFS and BFS for an application Developing Best First search and A* Algorithm for real world	4 hours
	problems	4 hours
	Implementation of minimax algorithm for an application	
	Implementation of unification and resolution for real world	4 hours
	problems	4 hours
	Implementation of knowledge representation schemes-use	
	cases	4 hours
	Implementation of uncertain methods for an application	4 hours
	Implementation of block world problem	4 hours
	Implementation of learning algorithm for an application	4 hours
	Development of ensemble model for an application	4 hours
Pedagogy	Hands-on assignments / tutorials / presentations	
References/	• Artificial programming in Python (zero to zero)By Perry Xiao,	
Readings	2022	
	 Al and Machine Learning for coders by Lawrence, O'Reilly Publication,2020 	
Learning	Students will be able to write a program to implement AI	
<u>Outcomes</u>	Techniques.	

Programme: MSc Integrated Course Code: DSPC 406 Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Title of the Course: Deep Learning Lab Contact hours: 48 hours(0L-0T-48 P)

		1
<u>Prerequisites</u>	Programming in Python, Machine learning and Deep learning	
<u>for the course</u>	concepts	
<u>Objectives</u>	To study the basics of Neural Networks and their various variants such as the Convolutional Neural Networks and Recurrent Neural Networks, to study the different ways in which they can be used to solve problems in various domains such as Computer Vision, Speech and NLP.	
Content	Suggested lab assignments	
	 Data representation for neural networks . The gears of neural networks -Tensor operations. Engine of neural network – implementation of gradient - based optimization algorithm. Getting started with keras- setting up a deep learning 	4 hours 4 hours 4 hours 4 hours
	 bectang started with kerds setting up a deep rearing workstation . 5. Writing program to classify movie reviews-binary classification example. 6. Classifying newswires -multi classification example 	4 hours
	 Predicting house prices-regression example Program to understand the effect of underfitting and overfitting . Training a Convnet on a small dataset. Learning to use predefined convnet. Sequencing processing example using recurrent network and LSTM Generative deep learning assignment-Text generations with LSTM 	4 hours 4 hours 4 hours 4 hours 4 hours 4 hours 4 hours
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study	
References/ Readings	 Deep Learning with Python by Francois Chollet, 2017 Deep Learning from scratch by Acth Eidman, O'Reilly Publication, 2019. Deep learning with PyTorch by Eli Stevens, Luca Antiga, Thomas, 2020. 	
Learning	Students will be able to write a program in python to	
Outcomes	implement deep learning algorithms.	

(Back to Index) (Back to Agenda)

Programme: MSc Integrated Course Code: DSTC 408 Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Reinforcement Learning Contact hours:48 hours(48L-0T-0P)

Prerequisites Programme prerequisites, Machine Learning

		15 & 22.05.2023
<u>for the course</u>		
<u>Objectives</u>	To enable the student to understand the reinforcement learning paradigm, to be able to identify when an RL formulation is appropriate, to understand the basic solution approaches in RL, to implement and evaluate various RL algorithms.	
<u>Content</u>	Review of ML fundamentals – Classification, Regression. Review of probability theory and optimization concepts. RL Framework; Supervised learning vs. RL; Explore-Exploit Dilemma; Examples.	w 12 hours
	MAB: Definition, Uses, Algorithms, Contextual Bandits, Transition to full RL, Intro to full RL problem	12 hours
	Intro to MDPs: Definitions, Returns, Value function, Q-function Bellman Equation, DP, Value Iteration, Policy Iteration, Generalized Policy Iteration. Evaluation and Control: TD learning, SARSA, Q-learning, Monte Carlo, TD Lambda, Eligibility Traces.	12 hours
	 Maximization-Bias & Representations: Double Q learning, Tabular learning vs. Parameterized, Q-learning with NNs Function approximation: Semi-gradient methods, SGD, DQNs, Replay Buffer. Policy Gradients: Introduction, Motivation, REINFORCE, PG theorem, Introduction to AC methods Actor-Critic Methods, Baselines, Advantage AC, A3C Advanced Value-Based Methods: Double DQN, Prioritized Experience 	12 hours
	Replay, Dueling Architectures, Expected SARSA. Advanced PG/A-C methods: Deterministic PG and DDPG, Soft Actor-Critic (SAC) HRL: Introduction to hierarchies, types of optimality, SMDPs, Options, HRL algorithms POMDPS: Intro, Definitions, Belief states, Solution Methods; History-based methods, LSTMS, Q-MDPs, Direct Solutions, PSR. Model-Based RL: Introduction, Motivation, Connections to Planning, Types of MBRL, Benefits, RL with a Learnt Model, Dyna-style models, Latent variable models, Examples, Implicit MBRL. Case study on design of RL solution for real-world problems.	
<u>Pedagogy</u>	Hands-on assignments / Tutorials / Peer-teaching / Presentations	
References/ Readings	 Reinforcement learning - Introduction by Richard Sutto and Andrew barto,1992. Algorithms for reinforcement learning by Csaba Szepesvar Ronald Brachman, et al, 2010 	
<u>Learning</u> Outcomes	Students will be able to understand the fundamentals of reinforcement learning and its role in building gaming applications and in turn helps to understand the challenges of	

Std. Com.X AC-6

real world problems , and how RL will help them.

(Back to Index) (Back to Agenda)

Programme: M.Sc. Integrated **Course Code:** DSTC 409

Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23 Title of the Course:Optimization Techniques for Analytics Contact Hours:48 hours(48 L-0T-0P)

D		
Prerequisites	Linear Algebra, Vector Algebra	
for the course:		
<u>Objective:</u>	 To familiarize the students with some basic concepts of optimization techniques and approaches. To formulate a real-world problem as a mathematical programming model. To develop the model formulation and applications are used in solving decision problems. To solve specialized linear programming problems like the transportation and assignment problems. 	
<u>Content:</u>	Introduction to Operations Research Introduction-Mathematical models of Operation Research - Scope and applications of Operation Research - Phases of Operation Research study - Characteristics of Operation Research - Limitations of Operation Research.	6 hours
	Linear Programming Introduction –Properties of Linear Programming-Basic assumptions-Mathematical formulation of Linear Programming- Limitations or constraints-Methods for the solution of LP Problem-Graphical analysis of LP-Graphical LP Maximization problem-Graphical LP Minimization problem.	6 hours
	Linear Programming Models Simplex Method-Basics of Simplex Method - Formulating the Simplex Method-Simplex Method with two variables - Simplex Method with more than two variables - Big M Method.	6 hours
	Dual Linear Programming Introduction- Primal and Dual problem - Dual problem properties-Solution techniques of Dual problem - Dual Simplex method-Relations between direct and dual problem-Economic interpretation of Duality.	6 hours
	Transportation and Assignment Models Introduction:Transportation problem - Balanced - Unbalanced - Methods of basic feasible solution Optimal solution-MODI	6 hours

			d. Com.X AC-6
	method. Assignment problem-Hungarian Method.	12	& 22.05.2023
	Network Analysis Basic concepts-Construction of Network-Rules and precaution CPM and PERT Networks Obtaining critical path. Probability a cost consideration. Advantages of Network.		6 hours
	Theory of Games Introduction-Terminology-Two Person Zero-Sum game-Soluti of games with saddle points and without saddle points-2X2 games-dominance principle – mX2 and 2Xn games-Graphical method.	on	8 hours
	Industry Perspective Research and Analytical problems on various applications of t industrial issues.	the	4 hours
Pedagogy:	Assignment / Quiz		
References/ Readings	 Text Book(s) Hamdy Taha, Operations Research, 10th edition, Prentice Hall India, 2019. P. K. Gupta and D. S. Hira, Operations Research, S. Chand & co., 2007. Reference Books S.D. Sharma (2000), Operations Research, Nath & Co., Meerut. Maurice Solient, Arthur Yaspen, Lawrence Fridman, (2003) OR methods and Problems, New Age International Edition. J K Sharma (2007), Operations Research Theory & Applications, 3e, Macmillan India Ltd. P. Sankara Iyer, (2008), Operations Research, Tata McGraw Hill. A Ravindran, Don T Philips and James J Solberg, Operations Research: Principles and practice, 2nd edition, John Wiley and sons, 2007 	, /-	
<u>Learning</u> Outcomes	 Student will be able to Apply operations research techniques like linear programming problems in industrial optimization problems Solve allocation problems using various OR methods. Understand the characteristics of different types of decision making environments and the appropriate decision making approaches and tools to be used in each type. Recognize competitive forces in the marketplace and deve appropriate reactions based on existing constraints and resources. 	on B	

Programme: MSc Integrated Course Code: DSTC 410 Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: MLOps At Scale Contact hours: 48 hours(48L-0T-0P)

Prerequisites	Familiarity with linear algebra, probability theory, machine	
for the course	learning , familiarity with python.	
<u>Objectives</u>	This course is aimed at any one who wishes to explore deep	
	learning from scratch. This course offers a practical hands on	
	exploration of deep learning, avoiding mathematical	
	notation, preferring instead to explain quantitative concepts	
	through programming using python API	
<u>Content</u>	Introduction to MLOps Rise of the Machine Learning Engineer	
	and MLOps-What Is MLOps?-DevOps and MLOps-An MLOps	3 hours
	Hierarchy of Needs-Implementing DevOps-Configuring-	
	Continuous Integration with GitHub Actions-DataOps and Data	
	Engineering-Platform Automation-MLOps	
	MLOps Foundations-Bash and the Linux Command Line-Cloud	5 hours
	Shell Development Environments-Bash Shell and Commands-	
	List Files Run CommandsFiles and Navigation-Input/Output-	
	Configuration-Writing a Script-Cloud Computing Foundations	
	and Building Blocks-Getting Started with Cloud Computing-	
	minimalistic python revision-Descriptive Statistics and Normal	5 hours
	Distributions-Optimization-Machine Learning Key Concepts-	
	Doing Data Science-Build an MLOps Pipeline from Zero	
	MLOps for Containers and Edge Devices Containers-Container	5 hours
	Runtime-Creating a Container Running a Container-Best	
	Practices-Serving a Trained Model Over HTTP-Edge Devices-	
	Coral Azure Percept-TFHub-Porting Over Non-TPU Models-	5 hours
	Containers for Managed ML Systems-Containers in Monetizing	
	MLOps-Build Once, Run Many MLOps Workflow	
	Continuous Delivery for Machine Learning Models-Packaging for	
	ML Models-Infrastructure as Code for Continuous Delivery of	5 hours
	ML Models-Using Cloud Pipelines-Controlled Rollout of Models-	
	Testing Techniques for Model Deployment	
	AutoML and KaizenML-AutoML-MLOps Industrial Revolution-	5 hours
	Kaizen Versus KaizenML-Feature Stores-Apple's Ecosystem-	
	Apple's AutoML: Create ML-Apple's Core ML Tools orGoogle's	
	AutoML and Edge Computer Vision or Azure's AutoMLor AWS	
	AutoML-Open Source AutoML Solutions-Ludwig-FLAML-Model	5 hours
	Explainability	
	Monitoring and Logging-Observability for Cloud MLOps-	
	Introduction to Logging-Logging in Python-Modifying Log	
	Levels-Logging Different Applications-Monitoring and	5 hours
	Observability-Basics of Model Monitoring-Monitoring Drift with	
	AWS SageMaker-Monitoring Drift with Azure ML	

		td. Com.X AC-6
[5 & 22.05.2023
	MLOps for AWS-Introduction to AWS-Getting Started with AWS	5 hours
	Services-MLOps on AWS-MLOps Cookbook on AWS-CLI Tools-	
	Flask Microservice-AWS Lambda Recipes-AWS Lambda-SAM	
	Local-AWS Lambda-SAM Containerized Deploy-Applying AWS	
	Machine Learning to the Real World	
	Machine Learning Interoperability-Why Interoperability Is	
	Critical-ONNX: Open Neural Network Exchange-ONNX Model	
	Zoo-Convert PyTorch into ONNX -Convert TensorFlow into	
	ONNX-Deploy ONNX to Azure-Apple Core ML-Edge Integration.	
	Building MLOps Command Line Tools and Microservices-Python	
	Packaging-The Requirements File-Command Line Tools-Creating	
	a Dataset Linter Modularizing a Command Line Tool-	
	Microservices-Creating a Serverless Function-Authenticating to	
	Cloud Functions-Building a Cloud-Based CLI-Machine Learning	
	CLI Workflows	
	Machine Learning Engineering and MLOps Case StudiesUnlikely	
	Benefits of Ignorance in Building Machine Learning Models-	
	MLOps Projects at Sqor Sports Social Network-Mechanical Turk	
	Data Labeling-Influencer Rank-Athlete intelligence (Al product)-	
	The perfect techniques versus the real world-critical challenges in MLops- Ethical and unintended consequences-lack of	
	operational excellences- focus on prediction accuracy vs the big	
	picture	
Pedagogy	Lectures/ tutorials/lab assignments/self-study	
References/	Main Reading :-	
Readings	1. Practical MLops – Noah Gift and AlfredoDeza,O'Reilly	
	Media, Inc, 2021.	
	2. Introduction to MLOps – Noah Gift and AlfredoDeza,	
	Pragmatic AI Solutions, 2021.	
Learning	Student will be able to understand	
Outcomes	What Is MLOps	
	MLOps Foundations	
	Continuous Delivery for Machine Learning	
	Monitoring and Logging	
	MLOps for AWS-Introduction	
	Machine Learning Interoperability	
	Machine Learning Engineering	

Programme: M.Sc. Integrated Course Code: DSPC 411

Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23 Title of the Course: Optimization Techniques for Analytics Lab Contact Hours: 48 hours(0L-0T-48P)

Prerequisites	Programming background, Linear Algebra, Vector Algebra	
for the course:		

		Std. Com.X AC-6	
		15 8	& 22.05.2023
Objective:	Learn to implement optimization techniques		
Content:	Suggested Assignments		
	Implementation of simplex method(two different problems)		
	Implementation of dual simplex method(two different problems)		12 hours
	Implementation of hungarian method(two different problems Finding critical path method (two different problems)	s	12 hours
	Game Theory(two different problems)		12 hours
	Solution of the game using saddle point.(two different	t	
	problems)		12 hours
	Mini Project using any one technique		
Pedagogy:	Assignment/Presentations		
References/Re	 Optimization- Optimization in nutshell, 2021 		
adings	 Pyomo-Optimization modeling in Python by William E Ha 	rt,	
	2021		
Learning	Student will be able to:		
<u>Outcomes</u>	 Implement optimization techniques using programming language of your choice 		

Programme: MSc Integrated Course Code: DSPC 412 Number of Credits: 2(0L-0T-4P) Effective from AY: 2022-23

Title of the Course: MLOps at Scale Lab Contact hours: 48 hours(0L-0T-48P)

Prerequisites	Machine learning background, Python programming and MLOps	
for the course	background	
Objectives	After carrying out machine learning projects , learning to deploy	
	the models.	
<u>Content</u>	Machine Learning in Production	12 hours
	 A journey through Data 	
	Data Labelling	
	Machine Learning Data Lifecycle in Production	
		12 hours
	TFDV Exercise	
	Data Validation	
	Simple Feature Engineering	
	Feature Engineering Pipeline	
	Feature Selection	
	ML Metadata	
	Iterative Schema	
	Data Pipeline Components for Production ML	12 hours
	Feature Engineering with Weather Data	
	Feature Engineering with Accelerometer Data	
	 Feature Engineering with Images 	
	Machine Learning Modeling Pipelines in Production	

			d. Com.X AC-6
		15	& 22.05.2023
	 Intro to Keras Tuner 		12 hours
	Hyperparameter tuning and model training with TFX		
	 Manual Dimensionality 		
	 Algorithmic_Dimensionality 		
	 Quantization and Pruning 		
	 TensorFlow Model Analysis 		
	 Model Analysis with TFX Evaluator 		
	Fairness Indicators		
	Shapley Values		
	 Permutation Feature Importance 		
	Deploying Machine Learning Models in Production		
	Intro to Docker and installation -First look at Tensorflo	SW	
	Serving with Docker -Serve a model with TensorFlow		
	Serving		
	Intro to KFP		
	TFX Custom Components		
	TFS Model Versioning		
Dealessa	Github Actions		
Pedagogy	Lab Assignments/ Presentations		
<u>References/</u>	Practical MLOps by Noah Gift & Alfredo Deza,O'Reilly		
<u>Readings</u>	Media, Inc, 2021.		
	 https://github.com/amanchadha/coursera-machine- 		
	learning-engineering-for-prod-mlops-specialization		
Learning	Students will be able to deploy the ML models.		
<u>Outcomes</u>	(De dute to dev)		

LIST OF ELECTIVE COURSES -

Programme: MSc Integrated Course Code:

Title of the Course: Advanced Database Management Systems Contact hours: 72 hours (24 L-0T-48P)

Number of Credits: 4(2L-0T-4P) Effective from AY: 2022-23

Prerequisites	Database Management Systems	
for the course		
<u>Objectives</u>	 To evaluate emerging architectures for database management systems. To develop an understanding of the manner in which relational systems are implemented and the implications of the techniques of implementation for database performance. To assess the impact of emerging database standards on the facilities which future database management systems will provide. 	
Content	Unit 1	
	Theoretical concepts, Relational model conformity and	6 hours

			Com.X AC-6
		15 &	22.05.2023
	Integrity, Advanced SQL programming		
	Unit 2		
	Query optimization, Concurrency control and Transaction	6	hours
	management, Database performance tuning, Distributed		
	relational systems and Data Replication		
	Unit 3	6	hours
	Object oriented, deductive, spatial, temporal and constraint		
	database management systems, New database applications ar	nd	
	architectures: e.g. Data Warehousing; Multimedia; Mobility;		
	NoSQL, Native XML databases (NXD), Document oriented		
	databases	6	hours
	Unit 4	.	
	SQL standards development, Standards for interoperability and	d	
	integration e.g. Web Services Unit 5 Database security - Data		
	Encryption, redaction and masking techniques. Authentication	1	
Dedegegy	and authorization. Database auditing		
Pedagogy	Lectures/ tutorials/assignments/self-study		
References/	Text Book:		
<u>Readings</u>	1. Date C. J., An Introduction to Database Systems, AddisonWesley Longman (8th Ed), 2003.		
	2. Silberschatz A., Korth H., and Sudarshan S., Database System	n	
	Concepts, McGraw-Hill (6th Ed), 2010.	"	
	Reference Book:		
	3. Melton, J., & Simon A., SQL 1999, Understanding Relational		
	Language Components, MorganKaufmann, 2003.		
	4. Peter Adams : SQL: The Ultimate Guide from Beginner to		
	Expert - Learn and Master SQL in No Time, Addison Wesley,		
	2016.		
Learning	After reading this subject, students will be able to:		
Outcomes	Critically assess new developments in database technolog	sy 🛛	
	• Interpret and explain the impact of emerging database		
	standards		
	• Evaluate the contribution of database theory to practical		
	implementations of database management systems.		

List of Challenging Experiments (Indicative)		
1.	Basic SQL Intermediate SQL Advanced SQL	6 hours
2.	ER Modeling	6 hours
3.	Database Design and Normalization	6 hours
4.	Accessing Databases from Programs using JDBC	6 hours

		d. Com.X AC-6 & 22.05.2023
5.	Building Web Applications using PHP & MySQL	6 hours
6.	Indexing and Query Processing	6 hours
7.	Query Evaluation Plans	6 hours
8.	Concurrency and Transactions	6 hours

Programme: MSc Integrated Course Code: Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Cloud Computing Contact hours: 48 hours(48L-0T-0P)

Prerequisites	Web Development, Programming	
for the course		
Objectives	1. To provide students with the fundamentals and essentials of	
	Cloud Computing.	
	2. To provide students a sound foundation of Cloud Computing	
	so that they are able to start using and adopting Cloud	
	Computing services and tools in their real life scenarios.	
	3. To enable students to explore some important cloud	
	computing driven commercial systems such as Google Apps,	
	Microsoft Azure and Amazon Web Services and other	
	businesses cloud applications.	
	4. To impart knowledge in applications of cloud computing	
<u>Content</u>	Introduction to Cloud Computing	
	Cloud Computing Overview: Characteristics – challenges,	6 hours
	benefits, limitations, Evolution of Cloud Computing, Cloud	
	computing architecture, Cloud Reference Model (NIST	
	Architecture)	
		7 hours
	Infrastructure as a Service	
	Service Model, Characteristics, Benefits, Enabling Technologies	7 1
	Case Study : AWS, OpenStack	7 hours
	Platform as a Service	7 h a
	Service Model, Characteristics, Benefits, Enabling Technologies	7 hours
	Case Studies : IBM Bluemix, GAE, Microsoft Azure	7 h a
		7 hours
	Software as a Service	7 hours
		7 110015
	Service Model, Characteristics, Benefits, Enabling Technologies Case Study : Salesforce.com, CRM, Online Collaboration	
	Services	7 hours
		7 110015
	Data Analytics as a Service	

		Sto	d. Com.X AC-6
			& 22.05.2023
	Hadoop as a service, MapReduce on Cloud, Chubby locking		
	Service		
	Introduction to Public and Private Clouds		
	Shared Resources – Resource Pool – Usage and Administratio	n	
	Portal – Usage Monitor – Resource Management– Cloud		
	Security – Workload		
	Distribution – Dynamic provisioning.		
	Storage as a service		
	Historical Perspective, Datacenter Components, Design		
	Considerations,		
	Power Calculations, Evolution of Data Centers, Cloud data		
Destaura	storage - CloudTM		
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/	1) Kai Hwang, Geoffrey Fox, Jack J. Dongarra, Morgan		
<u>Readings</u>	Kaufmann, "Distributed and Cloud Computing: From Parallel		
	Processing to the Internet of Things," 1st Edition, 2011.		
	2) Gautham Shroff, "Enterprise Cloud Computing: Technology	Ι,	
	Architecture, Applications", Cambridge press, 2010.	r	
	Kris Jamsa, "Cloud Computing", Jones & Barlett Learning, 201		
	4) Rajkumar Buyya, James Broberg, Andrzej Goscinski, "Cloud Computing Principles and Paradigms", John Wiley & Sons, 20		
	5) John Rhoton and Risto Haukiojal, "Cloud Computing	11.	
	Architectured : Solution Design Handbook", Recursive Press,		
	2013.		
	6) George Recse, "Cloud Application Architectures: Building		
	Application and Infrastructure in the Cloud", O' Reilly Media	,	
	First Edition, 2009.		
	7) Dinkar Sitaram, Geetha Manjunathan, "Moving to the Clou	d:	
	Developing Apps in the new world of Cloud Computing",		
	Syngress, 2012.		
	8) Samee. U. Khan, Albert. Y. Zomaya, "Handbook on Data		
	Centers", Springer, 2015.		
<u>Learning</u>	Students will be able to Understand:		
<u>Outcomes</u>	1. Design, Develop & Demonstrate real-world application	ns	
	from the Cloud Computing		
	2. The subtle architectural difference in Public and Private		
	Clouds.		
	3. The requirements of various service paradigms in Cloud		
	Computing.		
	4. The methods of processing multimedia elements and other	er	
	information presentation concepts during multimedia		
	communications.	1-	
	(Back to Index)	/n-	all the America day

Programme: MSc Integrated

Course Code:	Title of Course: Data Driven Web App Development
Number of Credits: 4 (2L-0T-4P	Contact hours: 72 hours (24L-0T-48P)
Effective from AY: 2022-23	

		15 & 22.05.2023
Prerequisites	Knowledge of programming	
for the course		
<u>Objectives</u>	The course will help the learner build websites and web	
	applications.	
<u>Content</u>	 Foundation in Internet Technologies Basic concepts in Computer Networks; Protocols Evolution of Internet and World Wide Web (WWW) Web Architectures & Standards 	3 hours
	Browsers & browser-engines	
	Web page design	5 hours
	 HTML:- markup language; XML & HTML; tag & attribute semantic (header, main, nav, etc.) & non-semantic elements (div, span); headings, paragraphs, textformatting tags; colors & background; tables & lists; entities, charsets; links; iframe; form & input - attribute & elements; SVG & canvas CSS:- syntax & selectors; box model; text & font properties; display, position, z-index; float & clear; stylin for images & html form elements; 2-D/3-D transform, transition, animation; responsive, adaptive & mobile-fir layout; viewport & media queries CSS library/ framework (e.g. Bootstrap, Foundation) Client-side scripting Dynamic web pages 	s; es ng
	 JavaScript:- programming features; events; functions; Manipulating DOM; Beyond ECMA 4 Javascript library/ framework (e.g. JQuery, ReactJS) 	
	 HTTP & Middle-ware HTTP, Request & Response, methods & error code, headers, URL encoding & decoding XML, data & XPath JSON 	4 hours
	 Server-side Programming Server instance Request handling & response creation HTML forms & file uploads Session management & application data Database connectivity AJAX Introduction to a Server-side library and/or template engine and/or framework (e.g. PHP - Laravel; JSP - Sprint Data-driven web pages User Experience Fundamentals:- gulf of evaluation and execution; 7 fundamental & universal design principles; 	4 hours
	Design Elements (line, color, shape, form vs space, value texture, dot, typography, movement); Visual Design Principles (scale, dominance/emphasis, balance,	2,

Std. Com.X AC-6

			& 22.05.2023
		13	& 22.0J.2025
	harmony); Wireframing, Mockup & Prototype (Paper &		
	Digital); Use of tools (e.g. Pencil, Adobe XD, Sketch and/	or	
	Figma); Interaction & Animation		
	 Use of any data visualization library (D3.js, Chart.js):- 		
	charts, graphs, maps, diagrams; SVG; scales & visuals fo	r	
	multi-device		
	 Building UI for large forms, paginated tables, etc. 		
	 JSON API & AJAX; lazy loading 		
Pedagogy	Hands-on assignments / tutorials / peer-learning / project		
References /	1. Robert W. Sebesta, "Programming the World Wide		
Readings	Web", Pearson Education, 8th Edition		
	2. https://www.w3schools.com/		
	3. Steven Holzner, "HTML 5 Black Book", 1st Edition		
	4. https://www.tutorialspoint.com/		
	5. Frank W. Zammetti, "Modern Full-Stack Development",		
	Apress, 1st Edition (2020)		
	6. https://www.youtube.com/watch?v=xkBheRZTkaw "Data		
	Visualization with D3 – Full Course for Beginners [2022]"		
	(free course from freecodecamp.org)		
Learning	1. Learner will be able to make decision on what web		
Outcomes	technology to use and for what purpose		
	2. Learner will have fair idea on the popular		
	3. technologies used in website development		
	4. Learner will appreciate the architecture of web		
	5. applications and the design decisions		
	6. Learner will be able to design web applications for data		
	driven		

Std. Com.X AC-6

Suggested Lab Assignments (48 hours):

- 1. Web page design Assignments
 - a. Create a website on a topic given by the instructor, evaluating the website with rubrics for good web design.
 - b. Build a website using HTML & CSS by looking at a screenshot/picture of a website component given by the instructor.
 - c. Websites built with tables, forms, images, iframes, etc.
 - d. A website for each of design strategies (fixed, adaptive, responsive, fluid, mobile-first, etc.).
 - e. Assignments using css pseudo-classes & -elements; grid & flex design; understanding the CSS box model & working with the browser developer tools; CSS transformations, transitions & animations
 - f. Assignment to create a website built with Bootstrap based on a topic given by the instructor.
- 2. Client-side scripting Assignments

- a. An assignment for understanding the programming aspects of JavaScript and working with the browser developer tools. The use of the newer features of JavaScript (after ECMA 4) is encouraged.
- b. An assignment working with regular expressions. A search and filter utility can be built.
- c. Assignments for form data processing and validation and use of HTML5 form elements. A web page with form and validated data could be put in a table. The code could be written using table DOM methods and/or HTML DOM methods and/or XML DOM methods.
- d. Assignments using various events (mouse, keyboard, etc. events for the form elements, drag-and-drop, window, browser, etc.).
- e. A web component built using HTML, CSS & JavaScript based on a existing Bootstrap component (e.g. Accordion)
- f. Assignment with the use of a JavaScript library (JQuery, AngularJS, ReactJS, etc.)
- 3. Server-side programming Assignments
 - a. Assignments to work with HTTP headers for passing data and meta-data, cookies, localStorage
 - b. Assignments to handle data from web forms; handling the request and response payload
 - c. Assignment to manage web sessions
 - d. Assignment to develop a CRUD functionality by connecting to a database; AJAX calls
- 4. Data-driven web pages Assignments
 - a. Build a dashboard for tourism data or bank branch
 - b. Build a log visualiser
 - c. Build a interactive region-map with drill-down, drill-up
 - d. Take an API for weather forecast api and map it onto GoogleMap/OSM map
- 5. Developing a Game with HTML, CSS & JavaScript. The game should have at least 500 lines of (HTML+Javascript) code and make use of various mouse/keyboard events

Programme: MSc Integrated

Course Code:Title of the Course:Data warehousing and Data MiningNumber of Credits:4(4L-0T-0P)Contact hours:48 hours(48 L-0T-0P)Effective from AY:2022-23

<u>Prerequisites</u>	Probability and Statistics	
for the course		
	Data warehousing and data mining are the essential components of decision support systems for the modern day industry and business. These techniques enable the knowledge worker (analyst, manager, executive) to make better and faster decisions. The objective of this course is to introduce the student to various Data Warehousing and Data Mining concepts and techniques. A database perspective has to be used throughout the course to introduce principles, algorithms, architecture, design and implementation of data mining and	

15 & 22.05.2023 data warehousing techniques. Introduction and Background: Introduction to the Content multidisciplinary field of data mining. Discussion on the 6 hours evolution of database technology that has led to the need for data warehousing and data mining. Stress on importance of its application potential. Introduction to the different key words and techniques. 6 hours Data Warehousing And OLAP: Insight of data warehouse and on-line analytical processing, AggregationOperations, models for data Warehousing, star schema, fact and dimension tables Conceptualization of data warehouse and multidimensional 12 hours databases. Life cycle of data warehouse development. Relationship between data warehouse and data mining. Data Mining Primitives: Data preprocessing including data cleaning, data integration, data transformation. Definition and Specification of a generic data mining task. Description of Data mining query language with few example queries. Association Analysis: Different methods(algorithms) for mining 12 hours association rules in transaction based databases. Illustration of confidence and support. Multidimensional and multilevel association rules. Classification of association rules. Discussion on few association rule algorithms e.g. Apriori, frequent pattern growth etc. 12 hours Classification and Predictions: Different Classification algorithm, including C4.5, CART etc., use of genie index, decision tree induction, Bayesian classification, neural network technique of back propagation, fuzzy set theory and genetic algorithms. Clustering: Partition based clustering, Hierarchical clustering, model based clustering for continuous and discrete data. Discussion on scalability of clustering algorithms. Parallel approaches for clustering. Web Mining: Web usage mining, web content mining, web log attributes. Use of web mining in efficient surfing and personalization Mining Complex Type of Data: Data mining issues in object oriented databases, spatial databases and multimedia databases, time series databases, and text databases. Applications of Data Warehousing And Data Mining: Exploration of websites on data warehousing and data mining applications including bibliography databases, Corporate Houses and Research labs. Pedagogy Lectures/ Tutorials/Hands-on assignments/Self-study

Std. Com.X AC-6

		15	& 22.05.2023
References/	Main Reading:		
<u>Readings</u>	1. Jiawei Han and Micheline Kamber, "Data Mining Concepts		
	and Techniques," 1st Edition Indian Reprint 2001, Harcourt		
	India Private Limited, ISBN 1-55860-489-8.		
	2. Margaret Dunham, "Data Mining: Introductory and Advance	ced	
	Topics," 1st Edition, 2003, Prentice Hall (Pearson Publication)	,	
	ISBN 0-13-088892-3.		
	3. Arun K Pujari, "Data Mining Techniques". University Press,		
	2001.		
	Supplementary Reading		
	1. T. Mitchell, "Machine Learning", 1997, McGraw Hill.		
	2. S.M. Weiss and N. Indurkhya, "Predictive Data Mining", 19	98,	
	Morgan Kaufmann.		
	3. M. Jarke, M. Lenzerni, Y. Vassiliou, and P. Vassiladis,		
	"Fundamentals of Data Warehouses", 2000, Springer Verlag,		
	Isbn 3-540-65365-1.		
Learning	Students will be able to understand Data Warehousing And		
Outcomes	OLAP, Data Mining Primitives, Association Analysis,		
	Classification and Predictions, Clustering, Web Mining, Mining	g	
	Complex Type of Data and applications of data mining and da	ita	
	warehousing.		

Std. Com.X AC-6

Programme: MSc Integrated Course Code: Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Domain Specific Predictive Analytics Contact hours: 48 hours(48L-0T-0P)

Prerequisites	Data science fundamentals and programming background	
for the course		
<u>Objectives</u>	It introduces theoretical foundations, algorithms,	
	methodologies for analyzing data in various domains	
	such Retail, Finance, Risk and Healthcare.	
Content	Retail Analytics	
	Understanding Customer: Profiling and Segmentation,	
	Modelling Churn. Modelling Lifetime Value, Modelling	8 hours
	Risk, Market Basket Analysis.	
	Risk Analytics	
	Risk Management and Operational Hedging: An	
	Overview, Supply Chain Risk Management, A Bayesian	8 hours
	Framework for Supply Chain Risk Management, Credit	
	Scoring and Bankruptcy Prediction	
	Financial Data Analytics	8 hours
	Financial News analytics: Framework, techniques, and metrics,	
	News events impact market sentiment, Relating news analytics	
	to stock returns	8 hours

			d. Com.X AC-6
		15	& 22.05.2023
	Financial Time Series Analytics Financial Time Series and Their Characteristics, Common Financial Time Series models, Autoregressive models, Marke chain models, Time series models with leading indicators, Lo term forecasting		8 hours
	Introduction HealthcareAnalytics An Introduction to Healthcare Data Analytics, Electronic Health Records, Privacy-Preserving Data Publishing Method in Healthcare, Clinical Decision Support Systems	S	8 hours
	Healthcare Data Analytics Natural Language Processing and Data Mining for Clinical Te Core NLP Components, Information Extraction and Named Entity Recognition, Social Media Analytics for Healthcare: Tracking of Infectious Disease Outbreaks, Readmission risk prediction.	xt:	
	Genomic Data Analytics Microarray Data, Microarray Data Analysis, Genomic Data Analysis for Personalized Medicine, Patient Survival Prediction from Gene Expression Data, Genome Sequence Analysis	on	
<u>Pedagogy</u>	Lectures/ tutorials/assignments/self-study		
<u>References/</u> <u>Readings</u>	 Chris Chapman, Elea McDonnell Feit "R for Marketing Research and Analytics", Springer, 2015. Olivia Parr Rud "Data Mining Cookbook: Modeling Data for Marketing, Risk, and Customer Relationship Management", Wiley, 2001. Chandan K. Reddy, Charu C. Aggarwal "Healthcare Data Analytics", CRC Press, 2015. 4. Rene Carmona "Statistical Analysis of Financial Data in R", Springer, 2014. 5. James B. Ayers "Handbook Of Supply Chain Management" Auerbach Publications, 2006. PanosKouvelis, Lingxiu Dong, OnurBoyabatli, Rong Li "The Handbook of Integrated Risk Management in Global Supply Chains", Wiley, 2012. 		
<u>Learning</u> <u>Outcomes</u>	Students will be able to understand Retail Analytics, Risk Analytics, Financial Data Analytics, Financial Time Series Analytics, Healthcare Analytics, Healthcare Data Analytics and Genomic Data Analytics.		
	(Back to Index)	(Ba	ck to Agenda)

Programme: MSc Integrated Course Code: Number of Credits: 6(4L-0T-4P) Effective from AY: 2022-23

Title of the Course : Image processing Contact hours: 96 hours(48L-0T-48P)

Prerequisites	Programming Skills(Java/Python)	
for the course		
Objectives	 To introduce the concepts of image processing and basic analytical methods to be used in image processing. To familiarize students with image enhancement and restoration techniques. To explain different image compression techniques. To introduce segmentation and morphological processing techniques. 	
Content	 Introduction: Image formation model, representation, spatial and Gray Level resolution, Colour models-RGB, CMY and HIS models Image Enhancement In Spatial Domain: Piecewise linear transformation, Histogram equalization,Histogram specification, image averaging, spatial filters – smoothing and sharpening, Laplacian filter, sobel operator, Canny edge detector. Image Enhancement In Frequency Domain: 2D Discrete Fourier transform and its inverse, filtering in frequency domain, Ideal and Gaussian Low pass filters, high pass filtering, separability property Of 2D Fourier transform, Fast Fourier Transform. Image Segmentation: Line detection, Edge detection, Edge linking and boundary detection, Hough Transform, Thresholding, Region based segmentation Morphological Image Processing: Logic operations involving binary images, Dilation and Erosion, Opening and closing, Applications to Boundary extraction, region filling, connected component extraction. Image Compression: Coding redundancy- Huffman coding, LZW coding, run length coding, Lossy compression – Lossy predictive coding, transform coding- DCT, bit allocation, Compression standards – JPEG, video Compression. Image Representation: Boundary description, Shape numbers, Fourier descriptors, Texture, principal Components based description. 	12 hours 12 hours 12 hours 12 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	
<u>References/</u> <u>Readings</u>	Main Reading: 1. Gonzalez and Woods, "Digital Image Processing"' 2002, Pearson education, Asia.	

		Sto	<u>l. Com.X AC-6</u>
		15	& 22.05.2023
	2. Sonka, Hlavac and Boyle Brooks/Cole, "Image Processing,		
	Analysis, and Machine Vision", 1999, Thomson Asia Pte Ltd		
	Singapore.		
	Supplementary Reading:		
	1. Jain and Rangachar, "Machine Vision", 1999, McGraw Hill		
	International Edition.		
	2. Schalkoff, John Wiley and Sons, "Digital Image Processing &	۶.	
	Computer, 1989.		
Learning	After the successful completion of the course the students wi	ill	
Outcomes	be able to:		
	1. Explain the fundamentals of digital image and its processin	g	
	2. Perform image enhancement techniques in spatial and		
	frequency domain.		
	3. Elucidate the mathematical modelling of image restoration	ı i	
	and compression		
	4. Apply the concept of image segmentation.		

Suggested Lab Assignments (6 * 8 = 48 hours)

- 1. Program to calculate Fourier Transform of an Image
- 2. Program to calculate the Grayscale Histogram of an Image
- 3. Program to perform Median Filtering
- 4. Program to obtain the Gradient Image using Sobel-Operator.
- 5. Program for Optimal Thresholding Segmentation.
- 6. Program for Border-Tracing.
- 7. Program for Binary Erosion.
- 8. Program to generate the Binary Skeleton of an Image.

(Back to Index) (Back to Agenda)

Programme: MSc Integrated	
Course Code:	Title of the Course: Industry 4.0
Number of Credits: 4(4L-OT-OP)	Contact hours: 48 hours (48L-0T-0P)
Effective from AY: 2022-23	

Prerequisites	Programme prerequisites and fundamentals of data science,	
for the course	machine learning	
<u>Objectives</u>	To describe various facets of Industry 4.0, to connect questions raised by Industry 4.0 with appropriate data science techniques, to develop data science tools for Industry 4.0, and to build data- centric business models.	
<u>Content</u>	Introduction to Industry 4.0 – Evolution and history Pillars of Industry 4.0 Industry 4.0 – India context Supplier selection as a classification problem Manufacturing 4.0	12 hours 12 hours

			l. Com.X AC-6
		15	& 22.05.2023
	Prognosis		12 hours
	Quality 4.0		
	Inventory Optimization		
	Dynamic Pricing		12 hours
	Logistics 4.0		
	Future of Manufacturing Business Focus on new paradigm		
	Next decade of Industry 4.0		
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/	1. Industry 4.0: Increasing the Competitiveness of Industrial		
<u>Readings</u>	Manufacturing. Published by Intueri, 2011		
	2. Industry 4.0: The Industrial Internet of Things by Alasdair		
	Gilchrist, 2011		
	The Fourth Industrial Revolution by Klaus Schwab		
	3.Sustainability in Manufacturing Enterprises: Concepts,		
	Analyses and Assessments for Industry 4.0 by Ibrahim		
	Garbie,2016		
	4.Industry 4.0: Managing the digital transformation by Alp		
	ustantag, Emry cevikan, 2018.		
Learning	Students will be able to understand Evolution and history of		
<u>Outcomes</u>	Industry 4.0, Pillars, India context, Supplier selection as a		
	classification problem, Manufacturing 4.0, Prognosis, Quality		
	4.0, Inventory Optimization, Dynamic Pricing, Logistics 4.0,		
	Future of Manufacturing Business Focus on new paradigm an	d	
	Next decade of Industry 4.0.		

Programme: MSc Integrated Course Code: Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Information Retrieval **Contact hours:** 48 hours (48 L-0T-0P)

<u>Prerequisites</u>	Linear Algebra, Programming skills	
for the course		
Objectives	Basic and advanced techniques for text-based information	
	systems: efficient text indexing; Boolean and vector based	
	retrieval models; Web search including crawling.	
<u>Content</u>	Overview of Information Retrieval:	
	Function of an IR system, Kinds of IR systems, Components of an IR system, Problems in designing an IR system. The nature of unstructured and semi-structured text.	12 hours
	Text Analysis and Indexing:	
	Preliminary stages of text analysis and document processing,	
	tokenization, stemming, lemmatization, stop words, phrases,	12 hours
	Indexing: Boolean IR models, inverted files, indexing, signature	

		Std. Com.X AC-6
		15 & 22.05.2023
files, PAT trees, Positional indices TF/IDF term weighing, similarity issues. Index construction and Compres Postings size estimation, merge s positional indexes, n-gram index compression and postings lists co gamma codes, Zipf's Law. Blockin Query Processing: Query expansion: spelling correc queries, permuterm indices, n-g	measures, test collections ar sision: sort, dynamic indexing, ses. Index compression: lexico ompression. Gap encoding, ng. Extreme compression. tion and synonyms. Wild-car	on 12 hours
soundex, language detection.		
Matching techniques: Similarity between documents an fielded search. Document zones model, tf.idf weighting. Scoring of scoring, the cosine measure, effi dimensionality approximations, I random projection, Page Ranking	. The vector space retrieval locuments, vector space iciency considerations, reduc Latent Semantic Indexing (LS	
Information Extraction: Information extraction, Named e Answering. Summarization - Qua summary types, extract summary	alities of good summary,	
Evaluation of IR systems: Assessment of the performance F-Measure. Criteria for evaluation of IR systems. Presentation of search results, manipulation of search re Relevance feedback: User modeling and information re judgments. Additional term sele respond ally to judgments and second	on, measuring 'goodness', tes arch results, display of searc esults. need: user profiling, Relevanc ctions to the system, Dynami	ts h
search. Taxonomy and Ontology: Creating domain specific ontolog Distributed and Parallel IR: Relationships between documen networked collections, Multiple simultaneously.	ts, Identify appropriate	
Web Search Engines: Web crawlers, robot exclusion, V Collaborative filtering, Web ager finder,), Economic, ethical, lega	nts (web shopping, bargain	er,

		15	& 22.05.2023
	Multimedia IR:		
	Techniques to represent audio and visual documents, Query		
	databases of multimedia documents, Display the results of		
	multimedia searches.		
<u>Pedagogy</u>	Lectures/ tutorials/assignments/self-study		
References/	1. Managing Gigabytes, by I. Witten, A. Moffat, and T. Be	ell,	
Readings	1999.		
	2. Modern Information Retrieval, by R. Baeza-Yates and	В.	
	Ribeiro-Neto, 1999.		
	3. Information Retrieval: Algorithms and Heuristics by D.		
	Grossman and O. Frieder, 1998.		
Learning	Students will be able to understand Overview of Information		
Outcomes	Retrieval, Text Analysis and Indexing, Index construction and		
	Compression, Query Processing, Matching techniques,		
	Information Extraction, Evaluation of IR systems, Relevance		
	feedback, Taxonomy and Ontology, Distributed and Parallel II	R <i>,</i>	
	Web Search Engines and Multimedia IR.		

Std. Com.X AC-6

Programme: MSc Integrated Course Code: Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: IoT Contact hours: 48 hours(48L-0T-0P)

1		
<u>Prerequisites</u>	Internet Technologies, Computer Organization and architecture,	
for the course	Operating Systems.	
Objectives	To understand the fundamentals of Internet of Things and the	
	protocols and standards designed for IoT	
<u>Content</u>	Introduction to IoT: Introduction, IoT ecosystem, Applications,	
	Challenges.	
	Fundamentals: IoT Devices - Sensors, Actuators, and gateways,	10 hours
	Basics of the wireless sensor network.	
	IoT Architecture & Design: oneM2M, IoTWF, Additional	
	Reference Models, Core functional stack, Data Management	
	and compute stack.	
	Communicating smart objects: Communication criteria,	
	communication models, IoT access technologies – 3GPP MTC,	14 hours
	IEEE 802.11, IEEE 802.15, WirelessHART, ZWave, Bluetooth Low	
	Energy, Zigbee Smart Energy, DASH7	
	IoT Network Layer: IP as IoT network layer, IPv6, 6LoWPAN,	14 hours
	6TiSCH, RPL, CORPL, CARP	
	IoT Transport and Application protocols:	
	Transport Layer: TCP, UDP, DCCP, SCTP, TLS, DTLS	
	IoT application transport methods, HTTP, CoAP, XMPP, MQTT,	

15 & 22.05.2023 AMQP, DDS IoT Transport and Application protocols: Transport Layer: TCP, UDP, DCCP, SCTP, TLS, DTLS IoT application transport methods, HTTP, CoAP, XMPP, MQTT, AMQP, DDS Security in IoT: MAC802.15.4, 6LoWPAN, RPL, Application Layer 10 hours security. IoT Application case study: Discuss any 3 applications of IoT Lectures/ Tutorials/Hands-on assignments/Self-study Pedagogy 1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert References/ Barton, Jerome Henry, "IoT Fundamentals: Networking Readings Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017 2. Hersent, Olivier, David Boswarthick, and Omar Elloumi, The internet of things: Key applications and protocols. John Wiley & Sons, 2011. 3. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and Paradigms. Elsevier, 2016. Learning After completing the course, students will be able to: • Understand the concepts of the IoT Architecture Outcomes Reference model • Identify the IoT networking components and protocols.

(Back to Index) (Back to Agenda)

Std. Com.X AC-6

Programme: MSc Integrated Course Code: Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23

Title of the Course: Numerical Methods Contact hours: 48 hours(48L-0T-0P)

Prerequisites	Basic knowledge of multivariate calculus and elementary real	
for the course	analysis	
Objectives	Aimed at imparting numerical techniques required for dealing	
	with data of scientific applications and builds Foundations for	
	solving equations for Machine Learning models	
<u>Content</u>	Root finding: Functions and polynomials, zeros of a function,	10 hours
	roots of a nonlinear equation, bracketing, bisection, secant, and	
	Newton-Raphson methods. Interpolation, splines, polynomial	
	fits, Chebyshev approximation.	14 hours
	Numerical Integration and Differentiation: Evaluation of integrals, elementary analytical methods, trapezoidal and Simpson's rules, Romberg integration, Gaussian quadrature and orthogonal polynomials, multidimensional integrals, summation of series, Euler-Maclaurin summation formula, numerical	10 hours
	differentiation and estimation of errors.	14 hours

			. Com.X AC-6
		15 8	& 22.05.2023
	Optimization: Extremization of functions, simple search, Nelder-Mead simplex method, Powell's method, gradient-bas methods, simulated annealing.	sed	
	Complex analysis: Complex numbers, functions of a complex variable, analytic functions, conformal mapping, Cauchy's theorem. Calculus of residues. Fourier and Laplace Transform Discrete Fourier Transform, z transform, Fast Fourier Transfor (FFT), multidimensional FFT, basics of numerical optimization	ns, rm	
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/ Readings	 * Richard L. Burden and J. Douglas Faires, Numerical Analysis: Theory and Applications, India Edition, Cengage Brooks-Cole Publishers, 2010. * Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in C/FORTRAN, Prentice Hall of India, New Delhi, 1994. * Borse, G.J., Numerical Methods with MATLAB: A Resource f Scientists and Engineers, PWS Publishing Co., Boston, 1997. 		
<u>Learning</u> Outcomes	Students will be able to understand Root finding, Numerical Integration and Differentiation, Optimization and Complex analysis.		

Programme: MSc Integrated Course Code: Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Title of Course: Programming Paradigms Contact hours: 48 hours (48L-0T-0P)

Prerequisites for the course	Knowledge of programming	
Objectives	To learn and understand various programming paradigms.	
<u>Content</u>	 Understanding Programming Paradigm Programming paradigm concept, motivation, types and classification of paradigms. Factors with respect to programming languages: Binding times and flexibility; Scoping; First class values; Abstraction; Typing; Storage Allocation & Dynamic Memory 	6 hours
	 Imperative Programming Variables and data types; Operators and expressions; Input/Output operations, Decision constructs; Looping constructs Procedural (<i>in Python/C</i>) blocks & scope; procedures (functions) Object Oriented (<i>in Java/C++</i>) classes & objects, 	6 hours

	Г	Std. Com.X AC-6
		15 & 22.05.2023
	object-oriented principles (encapsulation, abstraction, inheritance, polymorphism)	
	 Functional Programming (in Haskell/Clojure/Scala) Revision of mathematical Functions' concepts Gide affecte Data functions 	10 hours
	 Side effects; Pure functions Type induction Defining functions 	
	 Currying; Function composition Recursion Low evaluation infinite lists 	
	 Lazy evaluation; infinite lists List comprehensions Higher order functions; Folds 	
	 Logic Programming (in Prolog/ECLiPSe Constraint language) Revision of mathematical Logic concepts Programming "without algorithms" Logic programming with facts, rules and goals 	10 hours
	 Recursion; Lists Constraint logic programming; constraints as relationship between variables; solving puzzles (like sudoku) 	
	 Event-driven Programming (in Python/.NET) Events Main loop & callback Scheduler & Event handlers; Triggers Exception handling Paliable exertises 	8 hours
	 Reliable eventing Asynchronous triggers Multi-Paradigms and more 	8 hours
	 Language support for multi paradigms; Benefits & issue Parallel programming Data Parallelism (<i>in OpenMP</i>) and Message Passing (<i>in MPI</i>) Reactive programming (<i>in Elm/ReactiveX for Java, JS</i>) Meta programming (<i>in Lisp</i>) Natural Language Programming (<i>in SciLab/MATLAB</i>) 	S
Pedagogy	Hands-on assignments / tutorials / peer-teaching / pair programming/ reading research papers/ presentations	
References/	• Terrance W. Pratt, Marvin V. Zelkowitz, "Programming	
<u>Readings</u>	 Languages - Design & Implementation" Robert L. Sebesta, "Concepts of Programming Languages" Ravi Sethi, "Programming Languages Concepts & Constructs" 	
	 Bruce J. Mac Lennan, "Principles of Programming Languages: Design, Evaluation, and Implementation" Kenneth C. Louden, "Programming Languages: Principle and Practice" 	25

Std. Com.X AC-6 15 & 22.05.2023

		13 & 22.03.2023
	Allen Tucker, Robert Noonan, "Programming Language	es:
	Principles and Paradigms"	
	 Graham Hutton, "Programming in Haskell" 	
	 W. Clocksin, "Programming in Prolog" 	
	 Slim Abdennadher, Thom Frühwirth, "Essentials of 	
	Constraint Programming"	
	Roland Kuhn, Brian Hanafee, Jamie Allen, "Reactive	
	Design Patterns"	
Learning	1. Learner will be able to distinguish between different	
Outcomes	programming paradigms	
	2. Learner will be able to choose an adequate	
	programming paradigm in solving specific software	
	engineering problems	
	3. Learner will be able to recognize the similar concepts	
	implemented in a different way across different	
	programming languages and paradigms	
		(Pack to Agonda)

(Back to Index) (Back to Agenda)

Programme: MSc Integrated
Course Code:
Number of Credits:4(4L-0T-0P)
Effective from AY: 2022-23

Title of the Course: Sequential Decision Making Contact hours: 48 hours(48L-0T-0P)

Machine learning	
Introductory level course for sequential decision making. It	
helps learners to find a stopping rule that optimizes the	
decision in terms of minimizing losses or maximizing gains,	
including observation costs.	
Introduction to Online Learning, Halving algorithm	
Online Machine Learning; Perceptron and Winnow	12 hours
Intro to Regret; Online learning with expert advice - Hedge	
algorithm	
	12 hours
Online linear optimization	
	12 hours
Contextual MAB - EXP4	
Stochastic MAB, Epsilon Greedy, Explore then commit	12 hours
Stochastic MAB, UCB, Thompson Sampling	
Stochastic MAB - Linear Bandits - LinUCB algorithm; MAB	
summary	
Introduction to Reinforcement Learning - Markov Decision	
Process	
Q-learning	
-	 helps learners to find a stopping rule that optimizes the decision in terms of minimizing losses or maximizing gains , including observation costs. Introduction to Online Learning, Halving algorithm Online Machine Learning; Perceptron and Winnow Intro to Regret; Online learning with expert advice - Hedge algorithm Online linear optimization Online convex optimization; Online learning summary Introduction to Multi armed Bandits - EXP3 Contextual MAB - EXP4 Stochastic MAB, Epsilon Greedy, Explore then commit Stochastic MAB - Linear Bandits - LinUCB algorithm; MAB summary Introduction to Reinforcement Learning - Markov Decision

		-	<u>d. Com.X AC-6</u> & 22.05.2023
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/ Readings	 Sequential decision making problems by cedric pralet, Thomas schiex, Gerard. Introduction to sequential decision making by yan che chiic yu wang, Ray liu. 	en,	
Learning Outcomes	At the end of the course, students will be able to understand the differences between the various sequential decision making problems based on the type of feedback involved, recognize practical ML problems as sequential decision making problem whenever they are, learn about optimal algorithms for several sequential decision making settings, and apply the algorithms studied in the course to various practical sequential decision making scenarios.	ing ns al	

Programme: MSc Integrated Course Code: Number of Credits: 6(4L-0T-4P) Effective from AY: 2022-23

Title of the Course: Soft Computing **Contact hours:** 96 hours (48L-0T-48 P)

Prerequisites	Machine Learning	
for the course		
Objectives	The objective of this course is to introduce methods for	
	handling imprecise and uncertain data using Rough sets, Neuro	
	Fuzzy Systems and foster their abilities in designing and	
	implementing optimal solutions for real-world and engineering	
	problems using derivative free optimization techniques.	
<u>Content</u>	Module:1 Introduction to Soft Computing	8 hours
	Soft Computing Overview – Uncertainty in data, Hard vs Soft	
	Computing	
		10 hours
	Module:2 Neural Networks	
	Introduction, RBF Networks, Self-Organizing Map, Boltzmann	
	Machines, Convolutional Neural Networks.	10 hours
	Module:3 Fuzzy Systems	10 hours
	Fuzzy Sets, Fuzzy Relations, and Membership functions,	
	Properties of Membership functions, Fuzzification and	
	Defuzzification.	10 hours
	Module:4 Fuzzy logic	
	Fuzzy Rule based systems, Fuzzy Decision making, Fuzzy	
	Classification, Fuzzy CMeans Clustering.	
	Module:5 Rough Sets	
	Rough Sets – Definition, Upper and Lower Approximations,	
	Boundary Region, Decision Tables and Decision Algorithms.	
	Properties of Rough Sets. Rough K-means clustering, Rough	

		15 & 22.05.2023
Pedagogy	Module:6 Optimization Techniques Introduction, Genetic Algorithm, Memetic Algorithms, Particl Swarm Optimization, Ant Colony Optimization, Frog-Leaping. Module:7 Hybrid Systems GA Based Back Propagation Networks, Fuzzy Back Propagation Networks, Evolutionary Ensembles Assignment / Quiz / Project / Seminar	
References/	Main Readings	
<u>Readings</u>	1. S.N. Sivanandham and S.N.Deepa, "Principles of Soft	
	Computing", 2nd Edition, Wiley Publications.	
	2. Andries P. Engelbrecht, "Computational Intelligence: An	
	Introduction", John Wiley & Sons,2007.	
	3. Laurene V. Fausett "Fundamentals of Neural Networks:	
	Architectures, Algorithms And Applications", Pearson, 1993.	
	4. Simon Haykin "Neural Networks and Learning Machines"	
	Prentice Hall,2008. Timothy Ross, "Fuzzy Logic with Engineeri	ing
	Applications", Third Edition, Wiley.	
Learning	After successfully completing the course the student will be	
<u>Outcomes</u>	able to	
	 Have a general understanding of soft computing 	
	methodologies, to deal with imprecise and uncertain data	
	Develop computational neural network models for some	
	simple biological systems;	
	• Develop fuzzy models for engineering systems, particularly	for
	control systems;	
	Apply derivative free optimization methods to solve real	
	world problems Demonstrate some applications of	
	computational intelligence Student Learning Outcomes (SLO)	:

List of Challenging Experiments (Indicative) (6 * 8 =48 hours)

Project

The following is the sample project that can be given to students to be implemented in any programming language.

- Develop Fuzzy Decision-Making for Job Assignment Problem
- Implement TSP using OptimizationTechniques
- Develop a suitable method for Health Care Application using Neuro- Fuzzy Systems
- Develop a suitable method for Face RecognitionSystem
- Layout Optimization using GeneticAlgorithms
- Fault Diagnosis using rough set theory

• Software safety analysis using rough sets A Neuro-fuzzy Approach to Bad Debt Recovery in Healthcare

(Back to Index) (Back to Agenda)

Std. Com.X AC-6

Programme: MSc Integrated Course Code: Number of Credits: 6(4L-0T-4P) Effective from AY: 2022-23

Title of the Course: Streaming processing and Analytics **Contact hours:** 96 hours (48 L-0T-48 P)

Prerequisites	None	
for the course		
Objectives	It introduces theoretical foundations, algorithms,	
	methodologies, and Applications of streaming data and also	
	provides practical knowledge for handling and analyzing	
	streaming data.	
Content	Module:1 Introduction	
	Characteristics of the data streams, Challenges in mining data	8 hours
	streams Requirements and principles for real time processing,	
	Concept drift Incremental learning.	
	Module:2 Data Streams	
	Basic Streaming Methods, Counting the Number of Occurrence	
	of the Elements in a Stream, Counting the Number of Distinct	8 hours
	Values in a Stream, Bounds of Random Variables, Poisson	
	Processes, Maintaining Simple Statistics from Data Streams,	
	Sliding Windows, Data Synopsis, Change Detection: Tracking	
	Drifting Concepts, Monitoring the Learning Process	8 hours
	Module:3 Decision Trees	
	The Very Fast Decision Tree Algorithm (VFDT), The Base	
	Algorithm, Analysis of the VFDT Algorithm, Extensions to the	
	Basic Algorithm: Processing Continuous Attributes, Functional	
	Tree Leaves, Concept Drift.	
	Module:4 Clustering from Data Streams	8 hours
	Clustering Examples: Basic Concepts, Partitioning Clustering -	
	The Leader Algorithm, Single Pass k-Means, Micro Clustering,	
	Clustering Variables: A Hierarchical Approach	
	Module:5 Frequent Pattern Mining	8 hours
	Mining Frequent Itemsets from Data Streams- Landmark	
	Windows, Mining Recent Frequent Itemsets, Frequent Itemsets	
	at Multiple Time Granularities Sequence Pattern Mining-	
	Reservoir Sampling for Sequential Pattern Mining over data	
	streams	
	Module:6 Evaluating Streaming Algorithms	8 hours
	Evaluation Issues, Design of Evaluation Experiments, Evaluation	
	Metrics, Error Estimators using a Single Algorithm and a Single	
	Dataset, Comparative Assessment, The 0-1 loss function,	
	Evaluation Methodology in Non-Stationary Environments, The	
	Page-Hinkley Algorithm.	
	Module:7 Complex Event Processing	
	Introduction to Complex Event Processing, Features of CEP,	
	Need for CEP, CEP Architectural Layers, Scaling CEP, Events,	
	Timing and Causality, Event Patterns, Rules and Constraint,	

Std. Com.X AC-6
15 & 22.05.2023

			a 22.05.2025
	STRAW-EPL, Complex Events and Event Hierarchies		
Pedagogy	Assignment / Quiz / Project / Seminar		
References/	1. Joao Gama, "Knowledge Discovery from Data		
Readings	Streams", CRC Press, 2010.		
	2. David Luckham, "The Power of Events: An		
	Introduction to Complex Event Processing in Distribut	ed	
	Enterprise Systems", Addison Wesley, 2002.		
	3. Charu C. Aggarwal, "Data Streams: Models And		
	Algorithms", Kluwer Academic Publishers, 2007.		
Learning	1. Recognize the characteristics of data streams that make it		
Outcomes	useful to solve real-world problems.		
	2. Identify and apply appropriate algorithms for analyzing the	è	
	data streams for a variety of problems.		
	3. Implement different algorithms for analyzing the data		
	streams		
	4. Identify the metrics and procedures to evaluate a model		

List of Challenging Experiments (Indicative) (6 * 8 =48 hours)

1Exploring one stream processing engine like storm or STREAM etc2Implementation of algorithms for example : VFDT, CVFDT3Implementation of Clustering4Implementation of Frequent pattern mining5Exploring one CEP engine like ESPER or DROOLS6Exercise with continuous queries Logical operations on single stream7Exercise with continuous queries Logical operations on multiple streams8Exercise with continuous queries temporal operators on single stream9Exercise with continuous queries temporal operators on multiple streams for example streams		
 3 Implementation of Clustering 4 Implementation of Frequent pattern mining 5 Exploring one CEP engine like ESPER or DROOLS 6 Exercise with continuous queries Logical operations on single stream 7 Exercise with continuous queries Logical operations on multiple streams 8 Exercise with continuous queries temporal operators on single stream 9 Exercise with continuous queries with logical, relational & temporal operators on multiple 	1	Exploring one stream processing engine like storm or STREAM etc
 Implementation of Frequent pattern mining Exploring one CEP engine like ESPER or DROOLS Exercise with continuous queries Logical operations on single stream Exercise with continuous queries Logical operations on multiple streams Exercise with continuous queries temporal operators on single stream Exercise with continuous queries temporal operators on multiple streams Exercise with continuous queries temporal operators on multiple streams Exercise with continuous queries temporal operators on multiple streams Exercise with continuous queries temporal operators on multiple streams 	2	Implementation of algorithms for example : VFDT, CVFDT
 5 Exploring one CEP engine like ESPER or DROOLS 6 Exercise with continuous queries Logical operations on single stream 7 Exercise with continuous queries Logical operations on multiple streams 8 Exercise with continuous queries temporal operators on single stream 9 Exercise with continuous queries temporal operators on multiple streams Exercise with continuous queries temporal operators on multiple streams Exercise with continuous queries temporal operators on multiple streams Exercise with complex continuous queries with logical, relational & temporal operators on multiple 	3	Implementation of Clustering
 6 Exercise with continuous queries Logical operations on single stream 7 Exercise with continuous queries Logical operations on multiple streams 8 Exercise with continuous queries temporal operators on single stream 9 Exercise with continuous queries temporal operators on multiple streams Exercise with continuous queries temporal operators on multiple streams Exercise with continuous queries temporal operators on multiple streams exercise with complex continuous queries with logical, relational & temporal operators on multiple 	4	Implementation of Frequent pattern mining
 7 Exercise with continuous queries Logical operations on multiple streams 8 Exercise with continuous queries temporal operators on single stream 9 Exercise with continuous queries temporal operators on multiple streams Exercise with complex continuous queries with logical, relational & temporal operators on multiple 	5	Exploring one CEP engine like ESPER or DROOLS
 8 Exercise with continuous queries temporal operators on single stream 9 Exercise with continuous queries temporal operators on multiple streams Exercise with complex continuous queries with logical, relational & temporal operators on multiple 	6	Exercise with continuous queries Logical operations on single stream
9 Exercise with continuous queries temporal operators on multiple streams Exercise with complex continuous queries with logical, relational & temporal operators on multiple	7	Exercise with continuous queries Logical operations on multiple streams
complex continuous queries with logical, relational & temporal operators on multiple	8	Exercise with continuous queries temporal operators on single stream
	9	complex continuous queries with logical, relational & temporal operators on multiple

(Back to Index) (Back to Agenda)

Programme: MSc Integrated Course Code: Number of Credits: 6(4L-0T-4P) Effective from AY: 2022-23

Title of the Course: Text Analytics and Text Mining Contact hours: 96 hours(48 L-0T-48P)

Machine Learning Probability and Statistics	
Widely used in knowledge-driven organizations, text mining is the process of examining large collections of documents to discover new information or help answer specific research questions. Text mining identifies facts, relationships and assertions that would otherwise remain buried in the mass of textual big data.	
An overview of natural language processing techniques and text representation, which are the foundation for all kinds of text- mining applications, and word association mining with a particular focus on mining one of the two basic forms of word associations (i.e., paradigmatic relations.)	6 hours 6 hours
Word association mining with a particular focus on mining the other basic form of word association (i.e., syntagmatic relations), and start learning topic analysis with a focus on techniques for mining one topic from text.	12 hours 12 hours
Topic analysis in depth, including mixture models and how they work, Expectation-Maximization (EM) algorithm and how it can be used to estimate parameters of a mixture model, the basic topic model, Probabilistic Latent Semantic Analysis (PLSA), and how Latent Dirichlet Allocation (LDA) extends PLSA.	12 hours
Text clustering, including the basic concepts, main clustering techniques, including probabilistic approaches and similarity- based approaches, and how to evaluate text clustering. You will also start learning text categorization, which is related to text clustering, but with predefined categories that can be viewed as pre-defining clusters.	
Various methods for text categorization, including multiple methods classified under discriminative classifiers, and you will also learn sentiment analysis and opinion mining, including a detailed introduction to a particular technique for sentiment classification (i.e., ordinal regression). Sentiment analysis and opinion mining with a focus on Latent Aspect Rating Analysis (LARA), and you will learn about techniques for joint mining of text and non-text data, including contextual text mining techniques for analyzing topics in text in association with various context information such as time,	
	the process of examining large collections of documents to discover new information or help answer specific research questions. Text mining identifies facts, relationships and assertions that would otherwise remain buried in the mass of textual big data. An overview of natural language processing techniques and text representation, which are the foundation for all kinds of text- mining applications, and word association mining with a particular focus on mining one of the two basic forms of word associations (i.e., paradigmatic relations) Word association mining with a particular focus on mining the other basic form of word association (i.e., syntagmatic relations), and start learning topic analysis with a focus on techniques for mining one topic from text. Topic analysis in depth, including mixture models and how they work, Expectation-Maximization (EM) algorithm and how it can be used to estimate parameters of a mixture model, the basic topic model, Probabilistic Latent Semantic Analysis (PLSA), and how Latent Dirichlet Allocation (LDA) extends PLSA. Text clustering, including the basic concepts, main clustering techniques, including probabilistic approaches and similarity- based approaches, and how to evaluate text clustering. You will also start learning text categorization, which is related to text clustering, but with predefined categories that can be viewed as pre-defining clusters. Various methods for text categorization, including multiple methods classified under discriminative classifiers, and you will also learn sentiment analysis and opinion mining, including a detailed introduction to a particular technique for sentiment classification (i.e., ordinal regression). Sentiment analysis (LARA), and you will learn about techniques for joint mining of text and non-text data, including contextual text mining techniques for analyzing topics in text in

		Sto	d. Com.X AC-6
		15	& 22.05.2023
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/	1. Natural Language Processing with Python by Steven Bird,		
<u>Readings</u>	Ewan Klein and Edward Loper. 2. Text Mining with R by Julia Silge and David Robinson.		
	3. Taming Text by Grant Ingersoll, Thomas Morton and Drew		
	Farris. 4.Deep Learning in Natural Language Processing by Li Deng,		
	Yang Liu.		
Learning	Students will be able to understand artificial intelligence (AI)		
<u>Outcomes</u>	technology that uses natural language processing (NLP) to		
	transform the free (unstructured) text in documents and		
	databases into normalized, structured data suitable for analys	sis	
	or to drive machine learning (ML) algorithms.		

Suggested Lab Assignments (6 *8 = 48 hours)

- 1. Programming exercises to understand the basic library of python- NLTK, Numpy and Scipy Write program to implement naïve bayes classifier.
- 2. Write program to implement hierarchical clustering
- 3. Write a program to implement a back propagation model of a neural network.
- 4. Write program to implement forward algorithm of HM
- 5. Write a program to implement the Viterbi algorithm of HMM.
- 6. Write program to implement baum Welsh
- 7. Document level sentiment analysis
- 8. Sentence level sentiment analysis
- 9. Aspect based sentiment analysis

10. (Back to Index) (Back to Agenda)

Programme: MSc Integrated

Course Code: Number of Credits: 4(4L-0T-0P) Effective from AY: 2022-23 Title of the Course: Video Analytics Contact hours: 48 hours(48L-0T-0P)

Prerequisites for the course	Image Processing, Probability, Linear Algebra.	
<u>Objectives</u>	The main goal of video analytics is to automatically recognize temporal and spatial events in videos. A person who moves suspiciously, traffic signs that are not obeyed, the sudden appearance of flames and smoke; these are just a few examples of what a video analytics solution can detect.	

		<u>Stc</u>	l. Com.X AC-6
		15	& 22.05.2023
Content	Revisit to Digital Image and Video Processing Camera Models		12 hours
	Background Modelling		
	Object Detection and Recognition		12 hours
	Local Feature Extraction		
	Biologically Inspired Vision		12 hours
	Object Classification		
	Segmentation		12 hours
	Object Tracking		
	Activity Recognition		
	Anomaly Detection		
	Handling Occlusion		
	Scale and Appearance changes		
	Other Applications		
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study		
References/	1. Richard Szeliski, Computer Vision: Algorithms and		
Readings	Applications, Springer 2010.		
	 Forsyth, D.A., and Ponce, J., Computer Vision: A Mode Approach, Pearson Education, 2003. 	rn	
<u>Learning</u>	Students will be able to understand Digital Image and Video		
<u>Outcomes</u>	Processing, Camera Models, Background Modelling, Object		
	Detection and Recognition, Local Feature Extraction,		
	Biologically Inspired Vision, Object Classification, Segmentatic	on,	
	Object Tracking, Activity Recognition, Anomaly Detection,		
	Handling Occlusion, Scale and Appearance changes and Other Applications.	r	

	VISED COURSE STRUCTURE to be effectiv SEMESTER – 1					
Course-Code	Course Title		L	Τ	Р	Credits
	Discipline Specific Core Courses(D	SCC)				
CSA-500	Data Structures & Algorithms		2	0	0	2
CSA-501	Object Oriented Concepts		2	0	0	2
CSA-502	Operating Systems		2	0	0	2
CSA-503	Internet Technologies		3	0	0	3
CSA-504	Data Structures & Algorithms Lab		0	0	4	2
CSA-505	Object Oriented Programming Lab		0	0	4	2
CSA-506	LINUX Lab		1	0	4	3
	Total Credits for DSCC					16
	Discipline Specific Elective Courses(DSEC)				
CSA-521	Mathematics for Computer Science		4	0	0	4
CSA-522	Discrete Mathematical Structures		4	0	0	4
	Total Minimal Credits for DSEC					4
	Total Minimum Credits Semester	·-1				20
	Courses, Students to be encouraged / n ot considered for GPA Calculation, will a			-	-	ough the
	Yoga and Meditation		0	0	4	0
	Any Community Engagement Course lik Swachh Bharat Student Internship(SBS)		0	0	4	0
	or Community Engagement and Rural Development (CERD) Course					
MCA RE	Development (CERD) Course	ve from	n Aca	demic	: Year 20	22-23
	Development (CERD) Course VISED COURSE STRUCTURE to be effectiv SEMESTER – 2		1	demic		
Course-Code	Development (CERD) Course VISED COURSE STRUCTURE to be effectiv SEMESTER – 2 Course Title	L	T	demic	Р	Credits
Course-Code CSA-507	Development (CERD) Course VISED COURSE STRUCTURE to be effective SEMESTER – 2 Course Title Web Development	L 2	т 0	demic	P 0	Credits 2
Course-Code CSA-507 CSA-508	Development (CERD) Course VISED COURSE STRUCTURE to be effective SEMESTER – 2 Course Title Web Development Database Management Systems	L 2 2	т 0 0	demic	P 0 0	Credits 2 2
Course-Code CSA-507 CSA-508 CSA-509	Development (CERD) Course VISED COURSE STRUCTURE to be effective SEMESTER – 2 Course Title Web Development Database Management Systems Machine Learning	L 2 2 3	т 0 0 0	demic	P 0 0 0	Credits 2 2 3
Course-Code CSA-507 CSA-508 CSA-509 CSA-510	Development (CERD) Course VISED COURSE STRUCTURE to be effective SEMESTER – 2 Course Title Web Development Database Management Systems Machine Learning Web Development Lab	L 2 2 3 1	T 0 0 0 0		P 0 0 0 0 4	Credits 2 2 3 3
Course-Code CSA-507 CSA-508 CSA-509	Development (CERD) Course VISED COURSE STRUCTURE to be effective SEMESTER – 2 Course Title Web Development Database Management Systems Machine Learning	L 2 2 3	т 0 0 0	demic	P 0 0 0	Credits 2 2 3

					Std. Com.X AC
					15 & 22.05.20
	Total Credits for DSCC				16
CC 4 5 3 3	Discipline Specific Elective Co	1	-		
CSA-523	Cryptography and Network Security	4	0	0	4
CSA-524	Natural Language Processing	2	0	2	4
CSA-525	Network Programming	4	0	0	4
CSA-526	Human Computer Interaction	4	0	0	4
CSA-527	Agile Methodology	4	0	0	4
CSA-528	Modern Development Platforms	4	0	0	4
CSA-529	Ethical Hacking	4	0	0	4
CSA-530	Advanced Unix Programming	4	0	0	4
CSA-531	Theory of Computation	4	0	0	4
	Total Minimum Credits for DSE	C			4
	Total Minimum Credits Semester	- 2			20

٦

Γ

SEMESTER – 3							
Course-Code	Course Title	L	Τ	Ρ	Credits		
The following	Research Specific Elective Courses(RS	EC) to be o	pted in	n consultati	on with the		
Mentor based	on the Dissertation type opted by the	e student fo	or Sem	ester 4.			
CSA-600	Speech Processing	2	0	4	4		
CSA-601	Machine Translation	2	0	4	4		
CSA-602	Educational Technology	2	0	4	4		
CSA-603	Computer Graphics	2	0	4	4		
CSA-604	Data Science	2	0	4	4		
CSA-605	IoT Architecture and Protocols	4	0	0	4		
CSA-606	Mobile App Development	2	0	4	4		
CSA-607	Research Methodology	2	0	4	4		
CSA-608	Deep Learning	2	0	4	4		
CSA-609	Programming Paradigms	4	0	0	4		
CSA-610	Software Testing	2	0	4	4		
CSA-611	Artificial Intelligence	2	0	4	4		
CSA-612	MLOps	2	0	4	4		
CSA-613	IoT application development	2	0	4	4		
	Total Minimum Credits for I	RSEC			8		

	Generic Elective Courses(GEC)- total 1	2 credit	s to be o	opted	
CSA-621	Corporate Skills	4	0	0	4
CSA-622	Seminar Course	4	0	0	4
	Value Added Course / Skill	2	0	4	4
	Enhancement Courses / Community				
	Engagement Course /				
	Multidisciplinary Course				
	Any one offered by Commerce	4	0	0	4
	Discipline for that semester can be				
	opted				
	Any one offered by Economics	4	0	0	4
	Discipline for that semester can be				
	opted				
	Any one offered by Management	4	0	0	4
	Studies Discipline for that semester				
	can be opted				
	Foreign or Indian Language Course	4	0	0	4
					1
Total Minimum Credits for GEC					12
SWAYAM /	MOOC Courses can be opted over and ab	ove the	regular	prescribed	l as Audit
	Courses				
	Total Minimum Credits for Semes	ter 3			20

MCA REVISED COURSE STRUCTURE to be effective from Academic Year 2022-23
SEMESTER – 4

The following Research Specific Elective Courses(RSEC) to be opted in consultation with the Mentor based on the Dissertation type opted by the student for Semester 4. It could be completed in Semester 3 before going for Internship.

CSA-600	Speech Processing	2	0	4	4
CSA-601	Machine Translation	2	0	4	4
CSA-602	Educational Technology	2	0	4	4
CSA-603	Computer Graphics	2	0	4	4
CSA-604	Data Science	2	0	4	4
CSA-605	IoT Architecture and Protocols	4	0	0	4
CSA-606	Mobile App Development	2	0	4	4
CSA-607	Research Methodology	4	0	0	4
CSA-608	Deep Learning	2	0	4	4
CSA-609	Programming Paradigms	4	0	0	4

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

				15 & 22.05.202	
Software Testing	2	0	4	4	
Artificial Intelligence	2	0	4	4	
MLOps	2	0	4	4	
IoT application development	2	0	2	4	
Total Minimum Credits for RS	SEC			4	
Dissertation Type					
Industry Internship / Software Project De	velopme	ent OF	2	16	
Research Project in Academic or Research	Institute	es			
Total Credits for Dissertation				16	
Total Minimum Credits for Semes	ter-4			20	
otal Minimum Credits for two-year MCA de	aree Pro	aramm	e	80	
	Artificial Intelligence Artificial Intelligence MLOps IoT application development Total Minimum Credits for RS Dissertation Type Industry Internship / Software Project De Research Project in Academic or Research Total Credits for Dissertation Total Minimum Credits for Semes	Artificial Intelligence 2 MLOps 2 IoT application development 2 Total Minimum Credits for RSEC Dissertation Type Industry Internship / Software Project Developmer Research Project in Academic or Research Institute Total Credits for Dissertation Total Minimum Credits for Semester-4	Artificial Intelligence 2 0 MLOps 2 0 IoT application development 2 0 Total Minimum Credits for RSEC 0 Dissertation Type 0 Industry Internship / Software Project Development 0 Research Project in Academic or Research Institutes 0 Total Credits for Dissertation 0 Total Minimum Credits for Semester-4 0	Artificial Intelligence 2 0 4 MLOps 2 0 4 IoT application development 2 0 2 Total Minimum Credits for RSEC 0 2 Dissertation Type 0 0 Industry Internship / Software Project Development OR Research Project in Academic or Research Institutes 0 Total Credits for Dissertation 0	

(Back to Index) (Back to Agenda)

MCA SEMESTER I COURSES

Programme: MCA Course Code: CSA-500 Number of Credits: 2 (2L-0T-0P) Effective from AY: 2022-23

Title of Course: Data Structures & Algorithms Contact Hours: 30 hours (30L-0T-0P)

Prerequisites	Programming using any Programming Language	
for the course		
Objectives	The aim of the course is to emphasize the importance of data	
	structures in implementing efficient algorithms. It provides an	
	exposure to various algorithm design techniques and an	
	introduction to algorithm analysis.	
<u>Content</u>	Revision of Programming & Data Structures	5 hours
	Problem solving, Data Types: Primitive and User Defined	
	Selection Constructs, Repetition Constructs, Recursion	
	Pointers	
	Algorithm Representation: - Pseudocode and flowcharts	
	Three level Approach	
	Abstract Data Types (ADTs)	
	Basic Linear Data Structures (LinkedList, Stack, Queue)	
	Algorithm Analysis	3 hours
	Analysis of Algorithms	
	Algorithm Complexity: Space and Time	
	Cases of Complexity: Best, Worst and Average	
	Growth of Functions: Asymptotic Notation	
	Advanced Linear Data Structures	4 hours
	Variants of Linked List and its applications (e.g. Polynomial	

]	Std. Com.X AC-6
		15 & 22.05.2023
	addition, Sparse matrices) Applications of stacks (e.g. Infix-to-Postfix conversion, Evaluating Postfix Expressions, Bracket Matching) Variants of Queue and Applications	
	Nonlinear Data Structures:	10 hours
	Trees: Binary Search Trees, AVL Trees, B-trees & variants. Tree Traversal Algorithms	10 110013
	Heaps and its applications (e.g. implementation of Priority Queue) Graph: Adjacency Matrix and Adjacency List Representations	
	Graph Traversal Algorithms: Breadth First Search and Depth First Search	
	Divide & Conquer Strategy Algorithms based on Divide and Conquer Strategy: Sorting Algorithms (QuickSort, MergeSort) Binary Search	3 hours
	Greedy Algorithms Huffman Coding Algorithm Minimum Cost Spanning Tree (Prim's, Kruskal's)	2 hours
	Single Source Shortest Path (Dijkstra's)	
	Dynamic Programming Coin Change Problem Longest Common Subsequence All-pair shortest Path (floyd-warshall)	3 hours
Pedagogy	 Lectures/Tutorials/Assignments/Quizzes Each data structure should be explained along with implementation of its ADT, its applications and complexity 	
References/ Readings	 Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Free "Fundamentals of data structures in C" WH Freeman & Co., Latest Edition. 	
	 Thomas H. Cormen, Charles E. Leiserson, et al "Introduction to Algorithms", Latest Edition 	
	3. Allen, Weiss Mark. Data structures and algorithm analysis in C. Pearson Education India, Latest Edition.	
	4. Dasgupta, Papadimitriou, and Vazirani, Algorithms, by McGraw-Hill.	
	 Jeri R. Hanly and Eliot B. Koffman "Problem Solving an Program Design in C" Pearson Education, VII Edition, 2012 	
	6. R.G.Dromey "How to Solve it by Computer ", PHI , Late Edition	est
Learning Outcomes	Upon successful completion of the course, a student will be able to	
	 Implement common data structures such as lists, stack queues, graphs, and binary trees for solving programming problems. 	(5,

context of a solution to a given problem.		 Identify and use appropriate data structures in the context of a solution to a given problem.
Be able to analyze the complexity of a given algorithm		o 1

Programme: MCA Course code: CSA-501 Number of credits: 2 (2L-0T-0P) Effective from AY: 2022-23

Title of course: Object Oriented Concepts Contact hours: 30 hours(30L-0T-0P)

Effective from A	/: 2022-23	
Prerequisites	Knowledge of Programming using any Programming Language	
for the course		
Objectives	Aim of this course is to introduce the learner to the object	
	oriented paradigm.	
<u>Content</u>	Classes and objects	8 hours
	Programming paradigm; procedural to object oriented	
	Class; attributes & methods; classes as modules & types;	
	uniform type system, wrapper type classes	
	Object; object references; objects instantiation & interaction;	
	constructor & destructor; pass-by-reference & pass-by-value	
	Object copying & cloning; composite objects	
	Static & non-static members	
	Enumeration & Annotations	
	Object oriented principles	8 hours
	Encapsulation	
	Inheritance; types of inheritance; diamond problem	
	Abstraction; virtual methods	
	Polymorphism; overloading and overriding	
	Object oriented features	8 hours
	Interfaces	
	Access modifiers	
	Errors & Exceptions; user-defined exceptions	
	Collections	
	Anonymous & Inner classes	
	Type parametric polymorphism (e.g. Generics in Java &	
	Templates in C++)	
	Advanced features	6 hours
	Persistence & Serialization; JSON	
	User packages & custom libraries; reflection	
	Predicates & streams	
	Lambda functions	
Pedagogy	Hands-on assignments / tutorials / peer-teaching / flip	
	classroom. Concepts can be explained using UML class	
	diagrams.	
<u>References/</u>	Main Reading	
<u>Readings</u>	1. Timothy Budd, "An Introduction to Object Oriented	
	Programming", Pearson Education, 3rd Edition	
	2. Brett D. McLaughlin, Gary Pollice & David West, "Head	

	Std. Com.X	<u>AC-6</u>
	15 & 22.05.	2023
	First Object-Oriented Analysis Design", O'Reilly	
	3. Ken Arnold, James Gosling, David Holmes, "The Java	
	Programming Language", Addison-Wesley Professional	
	4. Stanley Lippman, "C++ Primer", Addison Wesley	
	5. Cay S. Horstmann, "Core Java Volume I—	
	Fundamentals", Pearson	
	6. Herbert Schildt, "Java: The Complete Reference", Oracle	
	Press	
	7. Joshua Bloch, "Effective Java", Addison Wesley	
	8. Kathy Sierra & Bert Bates, "Head First Java", O'Reilly	
	9. Bjarne Stroustroup, "The C++ Programming Language",	
	Addison Wesley	
	10. https://www.tutorialspoint.com/java/index.htm	
Learning	1. Learner will appreciate mapping real-world scenarios in	
<u>Outcomes</u>	the object-oriented world	
	2. Learner will understand object-oriented principles	
	3. Learner will be able to design object oriented softwares	
	4. Learner will be able to analyse a given problem and	
	breakdown into logical units and solve via a bottom-up	
	approach	

г

Programme: MCA Course Code: CSA-502 Number of Credits: 2 (2L-0T-0P) Effective from AY: 2022-23

Title of the Course: Operating System Contact hours: 30 hours (30L-0T-0P)

Effective from Ay	. 2022-23	
Prerequisites	Computer Architecture Basics	
for the course		
Objectives	This course focuses on the principles and understanding of the	
	functionality of an operating system and evaluates their trade-	
	off in various environments.	
Content	Introduction and Systems Structures	2 hours
	Computing Environments, Operating-systems Services, System	
	Calls, System Programs, Virtual Machines, monolithic and micro	
	kernel architectures	
	Process Management	3 hours
	Process - Concept and states, Process Creation and Control,	
	Scheduling Criteria, Scheduling Algorithms, MultiLevel Queues,	
	Multiple-processor scheduling, Real time CPU scheduling	
	Threads	3 hours
	Motivation and Challenges, Multithreading Models, Threading	
	Issues, Thread libraries, Thread scheduling	
	Process Synchronization	4 hours
	Cooperating processes and Race Conditions, The critical-section	
	problem, Peterson's solution, mutex locks, Synchronization	
	Hardware, Semaphores and their Implementation, Classic	
	problems of synchronization	

			22.05.2023
	Inter process Communication	150	22.05.2023
	Inter process Communication,		Z HOUIS
	Overview of IPC, Examples of IPC Systems, Communication in		
	Client Server Systems.		
	Deadlocks		3 hours
	System Model, Deadlock characterization, Methods for		
	Handling Deadlocks, Deadlock Prevention, Deadlock Avoidan	ce,	
	Deadlock Detection, Recovery From Deadlock		
	Memory Management		4 hours
	Hardware Support, Address Binding, Swapping, Contiguous		
	Memory Allocation, Fragmentation, Memory Protection,		
	Paging, Structure of the page table, Segmentation, Example:		
	Intel architecture		
	Virtual-Memory Management		4 hours
	Background, Demand Paging, Copy-on-write, Page Replacem	ent	
	algorithms, Allocation of Frames, Thrashing, Allocating Kerne		
	Memory		
	File System		3 hours
	File Concept, Access Methods, Directory Structure, File-syste	m	0 110 410
	mounting, File sharing, Protection. Virtual file systems,		
	Implementing File Systems, Directory implementation,		
	Allocation Methods, Free-space Management, Efficiency and		
	performance, Recovery, Log-structured file systems		
			2 hours
	Secondary-storage Structure		2 hours
	Overview of Mass-storage Structure, Disk Structure, Disk		
	Attachment, Disk Scheduling, Disk Management, Swap-Space	2	
	Management		
<u>Pedagogy</u>	lectures/ tutorials/assignments/class presentations and		
	debates/peer reviews/self-study.		
<u>References/</u>	Main Reading		
Readings	1. Silberschatz , Galvin and Gagne , Operating systems		
	Principles – 8th edition or Later(Wiley Asia Student		
	Edition)		
	2. Deitel H.M., "An Introduction to Operating Systems",		
	Addison Wesley Publishers Company, Latest Edition		
	3. Milenkovic M., "Operating Systems : Concepts and	1	
	Design", McGraw Hill International Edition Compute	er	
	Science series ; Latest Edition		
	4. Tanenbaum A. S., Modern Operating Systems", Prenti	ice	
	Hall of India Pvt. Ltd.,Latest Edition		
	5. Operating Systems – a modern perspective - Gary Nu	tt ,	
	Addison Wesley, Latest Edition	<i>,</i>	
Learning	1. To understand the services provided by and the desig	n	
Outcomes	of an operating system.	••	
	 To understand the structure and organization of the f 	ile	
	system.		
		ro	
	To understand what a process is and how processes a synchronized and scheduled	ie	
	synchronized and scheduled.		

Std. Com.X AC-6

	<u>Std. Com.X AC-6</u> 15 & 22.05.2023
4. To understand different approaches to memory management.	
 Students should be able to understand the implementation and use of system calls for managing processes, memory and the file system. 	
Students should understand the data structures and algorithms used to implement an OS.	
7. Evaluate operating system implementations	

Programme: MCA
Course Code: CSA-503
Number of Credits: 3 (3L-0T-0P)
Effective from AY: 2022-23

Title of the Course: Internet Technologies Contact Hours: 45 hours (45L-0T-0P)

Effective from	AY: 2022-23	
	//// 2022 20	

<u>Prerequisites</u> for the course	Programme requisites	
Objectives:	The objective of the course is to introduce the TCP/IP architecture and allied protocols of the Internet by following a top-down approach.	
<u>Content:</u>	Computer Networks and the Internet: Networking and Internetworks, Internetworking devices, Internet: Network edge, and the Network core. TCP/IP protocol stack: Protocol stack, Connection-oriented, connectionless services, Packet switching, circuit switching, Delay, Loss, and Throughput in Packet-Switched Networks.	6 hours
	Application layer: Principles of Application Layer Protocols, the Web and HTTP, MIME, mail access protocols, DNS, Peer to Peer Applications, Video Streaming, and Content Distribution Networks.	8 hours
	Transport layer: Transport-layer services, Multiplexing and demultiplexing, UDP protocol, Principles of reliable data transfer, Connection-oriented transport - TCP protocol, Principles of congestion control, TCP congestion control.	8 hours
	Network layer: Packet switching: virtual circuit & datagram networks, Forwarding and Routing (Network Data and control planes). The Internet Protocol (IP): IPv4 Datagram format, fragmentation, IPv4 Addressing in the Internet, route aggregation, subnetting, CIDR, Network Address Translation, DHCP, ICMP. Control Plane: Routing protocols- shortest path, link state routing algorithm, distance vector routing. Autonomous Systems (AS), Intra-AS Routing in the Internet: OSPF, Internet routing: RIP, OSPF, BGP, Address Resolution Protocol (ARP), and RARP.	12 hours
	Wireless and Mobile Networks: WiFi (802.11 Wireless LAN),	5 Hours
	Bluetooth, and Cellular Internet Access. Security in Computer Networks: Basic cryptography concepts,	6 hours

Std. Com.X AC-6
15 & 22.05.2023

		13 & 22.03.2023	
	Secure Socket Layer (SSL), Internet Security Protocol (IPSec),		
	Virtual Private Network (VPN).		
Pedagogy:	lectures/ tutorials/assignments/self-study/ flipped classroom	1	
<u>References/</u>	1. Forouzan, Behrouz A., and Firouz Mosharraf. "Computer	networks: a top-	
Readings	down approach". McGraw-Hill, 2012.		
	2. Andrew S. Tanenbaum., "Computer Networks", (5th Edition) Prentice Hall of India.		
	3. James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down		
	Approach" Pearson, Sixth Edition 2017.		
Learning	After completion of this course, students will be able to		
<u>Outcomes</u>	Have a good understanding of layered communication arcl and knowledge of some of the important networking proto	ocols	
	• Understand the concepts of reliable data transfer and how TCP implements these concepts.		
	 Basic knowledge of routing algorithms. 		
	Basic knowledge of security in computer networks.		
	(Back to Index)	(Back to Agenda)	

Programme: MCA

Course Code: CSA-504Title of Course: Data Structures & Algorithms LabNumber of Credits: 2 (0L-0T-2P)Contact Hours: 60 hours (0L-0T-60P)

Effective from AY: 2022-23

	. 2022-23	
<u>Prerequisites</u>	Programing Knowledge	
for the course		
Objectives	To develop skills to design and implement linear and nonlinear	
	data structures and to identify the most appropriate data	
	structure for solving a real world problem.	
Content	Lab Assignments may be based on the following	
	Advanced Linear Data Structures	8P
	Infix-to-Postfix conversion,	
	Evaluating Postfix Expressions,	
	Bracket Matching	
	Non-linear data structures	
	Binary Trees	20P
	Tree Traversal Algorithms	
	Binary Search Trees	
	Неар	
	Priority Queue using Heap	
	Heap Sort	
	Graph implementation using Adjacency list and matrix	
	Graph Traversal Algorithms	
	Divide & Conquer Strategy	
	MergeSort	
	QuickSort	
	Binary Search Algorithm	
	Greedy Algorithms	12P
	Huffman Coding Algorithm	

		Std. Com.X AC-6
		15 & 22.05.2023
	Prims' and Kruskal's Algorithm Dijkstra's Algorithm Dynamic Programming Coin Change Problem Longest Common Subsequence Floyd-Warshall Algorithm A Mini Project	12P 8P
Pedagogy	Programming assignments/ discussions/ self-review/ peer- review/ testing of code/ debugging of code/ projects	
References/ Readings	 Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-Free "Fundamentals of data structures in C" WH Freeman & Co., Latest edition. Thomas H. Cormen, Charles E. Leiserson, et al "Introduction to Algorithms", Latest Edition Allen, Weiss Mark. "Data structures and algorithm analysis in C." Pearson Education India, Latest Edition. Dasgupta, Papadimitriou, and Vazirani, "Algorithms" McGraw-Hill. 2017 	
Learning Outcomes	 Upon successful completion of the course, a student will be able to Implement common data structures such as lists, stack queues, graphs, and binary trees for solving programming problems. Identify and use appropriate data structures in the context of a solution to a given problem. 	<s,< th=""></s,<>

Programme: MCACourse code: CSA-505Title of course: Object Oriented Programming LabNumber of credits: 2 (0L-0T-4P)Contact hours: 60 hours (0L-0T-60P)Effective from AY: 2022-23

Prerequisites	Basic Programming Skills	
for the course		
Objectives	To impart programming skills using object oriented paradigms.	
<u>Content</u>	 Understanding Object Oriented Programming Suggested sample (non-exhaustive) assignments using an OO visual programming platform like Greenfoot/Alice:- Given a game scenario and conditions, create a game and check/modify the OO code generated (e.g. Racing game, Archery, etc.) 	12 hours
	 Suggested sample (non-exhaustive) assignments using an OO language like Java/C++/C# (No CLI input. All values hardcoded in the main method.):- Write a procedural program in the OO language (to familiarize with the syntax) and convert the same to an 	

Std. Com.X AC-6 15 & 22.05.2023

	OO code	
	Applying Object Oriented Principles	24 hours
	Suggested sample (non-exhaustive) assignments using an OO	
	language like Java/C++/C# (No CLI input, all values hardcoded in	
	the main method.):-	
	• Write source code for OO design of a board game (e.g.	
	Chess, Solitaire, etc.)	
	 Write source code for OO design of an outdoor game (a.g. Football, Toppic) 	
	 (e.g. Football, Tennis) Write source code for OO design of your house and 	
	allow navigating in the house.	12 hours
	Leveraging the OO features provided by languages Various lab assignments can be given demonstrating the use of	12 Hours
	the feature and advanced features in the attached 'Object	
	Oriented Concepts' course.	
	Mini-Project	12 hours
		12 110013
<u>Pedagogy</u>	Hands-on assignments / pair programming / group project/ git	
	project management.	
<u>References/</u>	Main Reading	
<u>Readings</u>	1. Timothy Budd, "An Introduction to Object Oriented	
	Programming", Pearson Education, Latest Edition.	
	2. Brett D. McLaughlin, Gary Pollice & David West, "Head First	
	Object-Oriented Analysis Design", O'Reilly, Latest Edition.	
	3. Ken Arnold, James Gosling, David Holmes, "The Java	
	Programming Language", Addison-Wesley Professional,	
	Latest Edition	
	4. Stanley Lippman, "C++ Primer", Addison Wesley, 2012	
	5. Cay S. Horstmann, "Core Java Volume I—Fundamentals",	
	Pearson, 2018	
	6. Herbert Schildt, "Java: The Complete Reference", Oracle	
	Press, latest edition	
	7. Joshua Bloch, "Effective Java", Addison Wesley	
	8. Kathy Sierra & Bert Bates, "Head First Java", O'Reilly, 2012	
	9. Bjarne Stroustroup, "The C++ Programming Language",	
	Addison Wesley, Latest Edition	
1	10. https://www.tutorialspoint.com/java/index.htm	
Learning	1. Learner will be able to write good object oriented code	
<u>Outcomes</u>	2. Learner will understand object-oriented principles	
	3. Learner will be able to design object oriented softwares (Back to Index) (Back to Index)	

(Back to Index) (Back to Agenda)

Programme: MCA	
Course Code: CSA-506	
Number of Credits: 3 (1L-0T-2P)	
Effective from AY: 2022-23	

Title of the Course: LINUX Lab Contact hours: 75 hours (15L-0T-60P)

Prerequisites	Program Prerequisites	
for the course		
Objectives:	The objective is to introduce students to the Linux operating system environment and provide knowledge of basic Linux commands and shell scripting and system call API.	
<u>Content:</u>	LINUX Environment Linux Installation and disk partitioning. Shell, Linux commands, Internal and External Commands, using the documentation/manual, users in Linux: user id, effective user id, use of commands su, sudo, id Basic commands: echo, who, whoami, date, cal, ls, passwd, history, shutdown. Input and output redirection operators (<,<<, >, >>)	3L + 12P
	The Linux File System, File and Directory management Structure of LINUX file system. Parent-child relationship. Concept of Home directory, current working directory and referring to home directory. Special Files: . and Absolute and relative pathnames. Use of PATH variable, Use of command: mkdir, rmdir, pwd, Is and cd. Use of file management commands: nano, touch, cat, cp, mv and rm. FIND command: Searching for a file using find, Finding List of files and directories. Concept of hard disk partitions, file system, Superblock and Inodes, General structure of Linux inode. use of stat command. Analysing the output of Is -I command. File type and permission. Use of chmod command. File ownership: Changing ownership using chown and chgrp commands. Modification and access times. Default file and directory permissions. Use of umask command. Concept of symbolic links. Hard and soft links. Use of In command to create hard and soft links. Use of commands du, df, tar, zip, gzip, type, which	3L + 12P
	Filters: File commands- sort, wc, uniq, comm, cmp, diff, pg, tail, head, less, and more , Cut and Paste command Shells' sequence of interpretation of a command; Connecting commands with pipes Regular expressions: grep & sed command AWK script: Selection criteria and action- The BEGIN and END sections, Splitting a line into fields and using printf. Getline function and reading input from files. Writing output to file and pipes. Awk	4L + 16P

Boolean operations. Command line parameters and environment variables. Programming constructs: if, for, while. 1L + 4P Process Management Concept of UNIX process. Role of init in process creation. Process ID and exit status of a process. Displaying process attributes using ps command, Killing processes, foreground and background processes. Use of commands job, fg, bg Package management: Installing & removing packages 4L + 16P Shell Script 4L + 16P Shell Script and execution methods. The dot command, Interactive and Non Interactive execution. Use of export command, Aliases and command history. Shell variables, Special variables, Built-in shell parameters. Command line arguments. Escaping and quoting. Difference between single and double quotes. Command substitution, brace and tilde expansion, I/O using read and echo. Escape sequences, 'test' command, arithmetic expressions, operators, Control flow: For, If, While, Case. Shell functions, error handling, debugging. Pedagogy: Practical/ tutorials/assignments/self-study References/ Readings 1. Unix Concepts and Applications – Sumitaba Das, Tata MacGraw Hill. 2. Unix and Shell Programming – Graham Glass and King Ables Pearson Education 3. UNIX man pages Learning Upon completion of this course, the student will be able to: 1. Run various LINUX commands 2. Write shell script on LINUX OS. 3. Use various advanced LINUX tools such as grep, SED and			Std. Com.X AC-6
environment variables. Programming constructs: if, for, while. IL + 4P Process Management 1L + 4P Concept of UNIX process. Role of init in process creation. Process ID and exit status of a process. Displaying process attributes using ps command, Killing processes, foreground and background processes. Use of commands job, fg, bg 1L + 4P Package management: Installing & removing packages 4L + 16P Shell Script Shell Script sand execution methods. The dot command, Interactive and Non Interactive execution. Use of export command, Aliases and command history. Shell variables, Special variables, Built-in shell parameters. Command line arguments. Escaping and quoting. Difference between single and double quotes. Command substitution, brace and tilde expansion, I/O using read and echo. Escape sequences, 'test' command, arithmetic expressions, operators, Control flow: For, If, While, Case. Shell functions, error handling, debugging. Pedagogy: Practical/ tutorials/assignments/self-study References/ 1. Unix Concepts and Applications – Sumitaba Das, Tata MacGraw Hill. 2. Unix and Shell Programming – Graham Glass and King Ables Pearson Education 3. UNIX man pages Upon completion of this course, the student will be able to: 1. Run various LINUX commands 2. Write shell script on LINUX COS. 3. Use various advanced LINUX tools such as grep, SED and			15 & 22.05.2023
Concept of UNIX process. Role of init in process creation. Process ID and exit status of a process. Displaying process attributes using ps command, Killing processes, foreground and background processes. Use of commands job, fg, bg Package management: Installing & removing packages4L + 16PShell Script4L + 16PShell Scripts4L + 16PShell scripts and execution methods. The dot command, Interactive and Non Interactive execution. Use of export command, Aliases and command history. Shell variables, Special variables, Built-in shell parameters. Command line arguments. Escaping and quoting. Difference between single and double quotes. Command substitution, brace and tilde expansion, I/O using read and echo. Escape sequences, 'test' command, arithmetic expressions, operators, Control flow: For, If, While, Case. Shell functions, error handling, debugging.Pedagogy:Practical/ tutorials/assignments/self-studyReferences/ Readings1. Unix Concepts and Applications – Sumitaba Das, Tata MacGraw Hill. 2. Unix and Shell Programming – Graham Glass and King Ables Pearson Education 3. UNIX man pagesLearning OutcomesUpon completion of this course, the student will be able to: 1. Run various LINUX commands 2. Write shell script on LINUX OS. 3. Use various advanced LINUX tools such as grep, SED and			
Shell scripts and execution methods. The dot command, Interactive and Non Interactive execution. Use of export command, Aliases and command history. Shell variables, Special variables, Built-in shell parameters. Command line arguments. 		Concept of UNIX process. Role of init in process creation. Process ID and exit status of a process. Displaying process attributes using ps command, Killing processes, foreground ar background processes. Use of commands job, fg, bg Package management:	
Pedagogy: Practical/ tutorials/assignments/self-study References/ 1. Unix Concepts and Applications – Sumitaba Das, Tata Readings MacGraw Hill. 2. Unix and Shell Programming – Graham Glass and King Ables Pearson Education 3. UNIX man pages Learning Upon completion of this course, the student will be able to: 0utcomes 1. Run various LINUX commands 2. Write shell script on LINUX tools such as grep, SED and		Shell Script Shell scripts and execution methods. The dot command, Interactive and Non Interactive execution. Use of export command, Aliases and command history. Shell variables, Spec variables, Built-in shell parameters. Command line arguments Escaping and quoting. Difference between single and double quotes. Command substitution, brace and tilde expansion, I/C using read and echo. Escape sequences, 'test' command, arithmetic expressions, operators, Control flow: For, If, While,	ial
Learning OutcomesUpon completion of this course, the student will be able to:1. Run various LINUX commands 2. Write shell script on LINUX OS. 3. Use various advanced LINUX tools such as grep, SED and	References/	 Unix Concepts and Applications – Sumitaba Das, Tata MacGraw Hill. Unix and Shell Programming – Graham Glass and King Ables 	5
I AWK		Upon completion of this course, the student will be able to:1. Run various LINUX commands2. Write shell script on LINUX OS.	

Programme: MCA

Course code: CSA-521	Title of course: Mathematics for Computer Science
Number of credits: 4 (4L-0T-0P)	Total contact hours: 60 hours (60L-0T-0P)
Effective from AY: 2022-23	

Prerequisites for the course	Program prerequisites	
<u>Objectives</u>	 To build a strong foundation in maths required for learning computer science/data science subjects. To understand fundamental concepts and tools in linear algebra etc with emphasis on their applications to computer science in particular data science/machine learning 	
<u>Content</u>	Mathematical logic: Statement (Proposition), Logical	8 hours
	Connectives, Conditional, Bi-conditional, Converse, Inverse,	

			I. Com.X AC-6
Г I		15	& 22.05.2023
	ve, Exclusive OR, NAND, NOR, Tautology,		
	n, Satisfiable, Duality Law, Algebra of proposition		10 h
	d Relations: Basics of Set theory, Application of		10 hours
	ions and their properties, n-ary relations and the	eir	
	representing relations, closures of relations,		
	relations, partial orderings. Functions, properties	s of	
	mposition of Functions, Recursive functions.		4.0.1
· · ·	c Concepts of Graphs, Computer Representation	S	12 hours
	omorphic Graphs, Paths, Cycles and Circuits,		
	Hamiltonian Graphs, Planar Graphs, Graph		
	plications of Graphs. Trees: Trees, Spanning trees	s,	
	nning Trees, Rooted Trees, Binary Trees, Binary		
Search Trees			
Linear Algeb			15 hours
	ors, Matrices and Tensors -Multiplying Matrices		
	- Identity and Inverse Matrices -Linear Depender		
	orms -Special Kinds of Matrices and Vectors - Eig	en	
· · · ·	on -Singular Value Decomposition -The Moore-		
	udoinverse -The Trace Operator - The Determina	nt	
	incipal Components Analysis.		
Numerical Co	omputation		
	d Underflow -Poor Conditioning - Gradient-Based		
	- Constrained Optimization -Example: Linear Lea	ast	
Squares.			
Calculus			
	a single variable, limit, continuity, differentiabili	-	
	heorems, indeterminate forms, L'Hospital's rule	:-	
	minima-Product and chain rule-Taylor's series,		
	s summation/integration concepts-Fundamental	1	
	lue-theorems of integral calculus, evaluation of		
	improper integrals-Beta and gamma functions-		
	multiple variables, limit, continuity, partial		
	asics of ordinary and partial differential equation	ns.	
	Statistics, and Information Theory		15 hours
	lity? -Random Variables -Probability Distribution		
	bability - Conditional Probability -The Chain Rule	e of	
	Probabilities -Independence and Conditional		
-	e -Expectation, Variance and Covariance -Comm	ion	
-	istributions - Useful Properties of Common		
Functions -Ba	ayes' Rule - Technical Details of Continuous		
Variables - Ir	formation Theory -Structured Probabilistic Mod	els	
.			
Statistics			
Data summa	ries and descriptive statistics, central tendency,		
variance, cov	ariance, correlation-Basic probability: basic idea	, ا	
expectation,	probability calculus, Bayes' theorem, conditiona	d I	
	robability distribution functions: uniform, norma		

			l. Com.X AC-6
	binomial, chi-square, Student's t-distribution, central limit theorem-Sampling, measurement, error, random number generation-Hypothesis testing, A/B testing, confidence intervals, p-values, ANOVA, t-test-Linear regression, regularization		& 22.05.2023
<u>Pedagogy</u>	Problem-solving approach and carrying out small project wor using MatLab tools	k	
<u>References/</u> <u>Readings</u>	 Kenneth H. Rosen, Discrete Mathematics and Its Applications, Tata McGraw-Hill Pub. Co. Ltd. (latest edition) Sheldon M. Ross, "A First Course in Probability", Pearson Prentice Hall, latest edition. Andy Field, Jeremy Miles, Zoë Field, "Discovering Statistic Using R", SAGE, latest edition Omi M Inouye, "Introductory Calculus For Infants", latest edition Robert S. Witte, John S. Witte, "Statistics", Wiley, latest edition. Gilbert Strang, "Introduction to Linear Algebra", Wellesle Cambridge Press, Fifth Edition (2016). 	cs t	
Learning	Students will be able to: Apply mathematics concepts in the		
<u>Outcomes</u>	modelling and design of computational problems and gain a deeper understanding of subjects like machine learning/deep learning and other computer science subjects.	c	

Programme: MCA

Course Code: CSA-522Title of the Course: Discrete Mathematical StructuresNumber of Credits: 4 (4L-0T-0P)Contact Hours: 60 hours (60L-0T-0P)Effective from AY: 2022-23

Effective from A	. 2022-23	
Prerequisites	Programme requisites	
for the course		
Objectives:	The objective of the course is to introduce concepts of mathematinduction, relations, graph theory and boolean functions.	tical
Content:	Logic, Propositional equivalences, predicates and quantifiers, nested quantifiers, methods of proof, functions.	6 hours
	Mathematical induction, recursive definitions and structural induction, recursive algorithms, programme correctness, Pigeonhole principle, permutations and combinations.	6 hours
	Recurrence relations, solving recurrence relations, divide and conquer algorithms and recurrence relations, generating functions, inclusion and exclusion, applications of inclusion and exclusion.	12 hours
	Relations and their properties, n-ary relations and their applications, representing relations, closures of relations,	12 hours

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

		10	a 22.05.2025
	equivalence relations, partial orderings.		
	Introduction to graphs, graph terminology, representing graph	hs	12 hours
	and graph isomorphism, connectivity, Euler and Hamiltonian		
	paths, shortest path problems, planar graphs.		
	Introduction to trees, applications of trees, tree traversal,		6 hours
	spanning trees, minimum spanning trees.		
	Boolean functions, representing Boolean functions, logic gate	s,	6 hours
	minimization of circuits.		
Pedagogy:	lectures/ tutorials/assignments/self-study/ flipped classroom		
References/Re	1. Kenneth H. Rosen, Discrete Mathematics and Its Applications, Tata		
adings	McGraw-Hill Pub. Co. Ltd.		
	2. Edgar G. Goodaire and Michael M. Parmenter, Discrete	e Ma	athematics
	with Graph Theory, PHI Learning Pvt. Ltd.		
<u>Learning</u>	After completion of this course, students will be able to		
<u>Outcomes</u>	• Have a good understanding of mathematical induction.		
	 Understand the concepts of Recurrence relation. 		
	 Inherits fundamental knowledge graph theory. 		
	 Acquire Basic knowledge of boolean functions. 		

(Back to Index) (Back to Agenda)

MCA SEMESTER II COURSES

Programme: MCA	A	
Course code: CSA		
Number of credit	•	-0T-0P)
Effective from AY		
Prerequisites	Knowledge of HTML and basic of CSS; Internet Technologies &	
for the course	required protocols; object oriented programming	
Objectives	This course will introduce the learner to the different website	
	development technologies	
Content	Introduction	1 hour
	Evolution of internet & World Wide Web	
	Client-Server Architecture	
	Revisit HTML & CSS	
	Enhancing HTML & CSS	2 hours
	HTML 5	
	• CSS3	
	Front-end Design	4 hours
	Good Design Rubrics	
	• Separation of concerns for HTML & CSS; structure vs visual	
	representation	
	HTML DOM	
	 CSS Box Model, pseudo -classes & -elements, CSS animation 	
	 Adaptive & responsive design, viewport & media queries, 	
	mobile-first design	
	 Introduction to a design library and/or & framework (e.g. 	

		Std. Com.X AC-6
		15 & 22.05.2023
	Bootstrap)	
	Client-side Scripting	8 hours
	Dynamic web pages	
	• JavaScript, programming features, javascript events &	
	functions	
	Manipulating DOM	
	Beyond ECMA 4	
	• Introduction to a Javascript library and framework (e.g.	
	JQuery, ReactJS)	
	HTTP & Middle-ware	3 hours
	• HTTP, Request & Response, methods & error code, headers	S,
	URL encoding & decoding	
	• XML, data & XPath	
	• JSON	
	Server-side Programming	6 hours
	Server instance Descure handling 8 reasons creation	
	Request handling & response creation	
	 HTML forms & file uploads Session management & application data 	
	 Database connectivity 	
	 Introduction to a Server-side library and/or template engine 	
	and/or framework (e.g. PHP - Laravel; JSP - Spring)	
	Advanced Web Development	6 hours
	Model-View-Controller (MVC) & Model-View-ViewModel a	
	others	
	Web service architecture and micro-services	
	• REST calls, Asynchronous JavaScript and XML (AJAX)	
	 Independent client-server web development 	
	• Difference between Server-side vs client-side rendering	
	 Introduction to Web stacks, JAM stack & full stack 	
	development	
Pedagogy	Hands-on assignments / tutorials / peer-teaching / flip	
	classroom/ presentations	
<u>References/</u>	1. Robert W. Sebesta, "Programming the World Wide Wel	b",
<u>Readings</u>	Pearson Education	
	2. https://www.w3schools.com/	
	3. Steven Holzner, "HTML 5 Black Book"	
	4. https://www.tutorialspoint.com/	
	5. Frank W. Zammetti, "Modern Full-Stack Development",	
	Apress 6. Nader Dabit, "Full Stack Serverless", O'Reilly	
Learning	1. Learner will be able to make decision on what web	
Outcomes	technology to use and for what purpose	
	2. Learner will have fair idea on the popular technologies used	d
	in website development	v
	3. Learner will appreciate the architecture of web applications	IS
		-

and the design decisions

(Back to Index) (Back to Agenda)

Programme: MCA Course Code: CSA-508 Number of Credits: 2 (2L-0T-0P) Effective from AY: 2022-23

Title of Course: Database Management Systems Contact hours: 30 hours (30L-0T-0P)

Duouonuisitoo		
Prerequisites	A High-Level Programming Language,	
for the course	Data Structures and Algorithms(CS101),	
	Operating Systems(CS103).	
<u>Objectives</u>	This course will enable the learner to understand the different	
	issues involved in the design and implementation of a database	
	system and provide both theoretical knowledge and practical	
	skills required in the creation and use of a Relational DataBase	
	Management System.	
<u>Content</u>	Basic concepts: Database & Database Users, Characteristics of	3 hours
	the Database Approach, Database Systems, Concepts &	
	Architecture Data Models(RDBMS, Legacy systems, Object	
	Oriented, NoSQL), Schemes & Instances DBMS Architecture of	
	Data Independence, Database languages & Interfaces	
	Data Modelling using the Entity – Relationship approach	4 hours
	Relational Model, Languages & Systems	5 hours
	Relational Data Model & Relational Algebra Relational Model	
	Concepts Relational Model Constraints, Relational	
	Algebra/Relational Calculus	
	SQL-A Relational Database Language Data	2 hours
	SQL - DDL, DML. Views & Queries in SQL. Specifying Constraints	
	& Indexes in SQL.	
	Nested Subqueries, correlated Subqueries	
	Advanced SQL	2 hours
	Embedded SQL, Dynamic SQL, Triggers and Stored Procedures.	
	Relational Database Design	5 hours
	Function Dependencies & Normalization for Relational	0
	Database Functional Dependencies Normal forms based on	
	primary keys (1NF, 2NF, 3NF, BCNF) Covers of Functional	
	Dependencies, Canonical covers. Lossless join and Dependency	
	preserving decomposition algorithms.	
	Transactions and Recovery Techniques	4 hours
	Concept of a transaction, Recovery concepts, Recovery	
	Techniques.	
	Concurrency Control	5 hours
	Serializability, Locking Techniques, Time stamp ordering	
	Granularity of Data items	
Pedagogy	Hands-on assignments / tutorials / peer-teaching /	
	troubleshooting	
	,	

		l. Com.X AC-6 & 22.05.2023
References/	Main Reading	 <u>a 22:05:2025</u>
Readings	1. Korth, Silberchartz, "Database System Concepts" McGrawhill Publication.	
	 Elmasri and Navathe, "Fundamentals of Database Systems", Addison Wesley, New Delhi. 	
	 Database Management Systems –R. Ramakrishnan, J.Gehrke – T.McGraw Hill 	
	 Desai B., " An Introduction to Database Concepts", Galgotia Publications, New Delhi. 	
	 2. Rob,Coronel, "Database Systems (Design, Implementation and Management)" 	
	6. Date C. J. , " An Introduction to Database Systems", Publication House, New Delhi.	
Learning	1. Understand and evaluate the role of a DBMS in	
<u>Outcomes</u>	information Technology applications in Organizations.	
	 Recognise and use logical design methods and tools required in the design of DB applications. 	
	3. Understand the relational database design principles.	
	4. Implement a database Solution to an IT Platform.	
	 Understand the basics of SQL and construct queries using SQL. 	
	 Develop sophisticated queries to extract information from databases. 	
	7. Use embedded SQL queries in a Host Level Language.	
	Understand how the DBMS manages and recovers fro concurrent and multiple transactions.	

Programme: MCA	
Course Code: CSA-509	Title of the Course: Machine Learning
Number of Credits: 3 (3L+0T-0P)	Contact hours: 45 hours(45L-0T-0P)
Effective from AY: 2022-23	

Prerequisites for the course	Basic concepts of Linear Algebra, Probability theory	
Objectives:	This course provides students with an in-depth introduction to three main areas of Machine Learning: supervised and unsupervised and reinforcement learning.this course will cover some of the main models and algorithms for regression, classification, clustering and Markov decision processes. Topics will include linear and logistic regression, regularisation, SVMs and kernel methods, ANNs, clustering, and dimensionality reduction ,sequential learning Like HMM and reinforcement learning.	
<u>Content:</u>	1. Introduction :- well posed learning problem – designing a learning system-perspectives and issues in machine learning.	2 hours

		Sto	d. Com.X AC-6
		15	& 22.05.2023
	2. Concept learning – concept learning task –notation – inductive learning hypothesis-concept learning as search- version space and candidate elimination algorithm-decision t –random forest.	ree	5 hours
	3. Linear regression - logistic regression-Support vector mach kernel- Model selection and feature selection-Ensemble methods: Bagging, boosting. Evaluating and debugging learni algorithms.		6 hours
	4. Continuous Latent Variables-Revision of Principal Compon- Analysis -Maximum variance formulation - Minimum-error formulation - Applications of PCA - PCA for high-dimensional data.	ent	6 hours
	5. Neural Networks -Feed-forward Network Functions – perceptron -Weight-space symmetries -Network Training - Parameter optimization -Local quadratic approximation - Use gradient information - Gradient descent optimization - Error Backpropagation - Evaluation of error-function derivatives - A simple example - Efficiency of backpropagation .		8 hours
	6. Probabilistic model – The normal distribution and its geometric interpretation-probabilistic models for categorical data -using naïve bayes model for classification,training a naï bayes model -discriminative learning by optimizing condition likeleihood -probability models with hidden variables : Expectation-Maximization,Gaussian mixture model	ve	6 hours
	7. Distance-based models – neighbour and exemplers -neared neighbour classification -distance based clustering -K means algorithm, clustering around medoids, silhouetees-hierarchie clustering -from kernels to distances		5 hours
	8. Sequential Data - Markov Models - Hidden Markov Models Maximum likelihood for the HMM -The forward-backward algorithm - The sum-product algorithm for the HMM -Scaling factors - The Viterbi algorithm.		4 hours
	9. Reinforcement learning – Introduction- learning task-Q learing-non deterministic rewards and actions-temporal difference learning.		3 hours
Pedagogy:	Lectures/ tutorials/assignments/self-study		
References/Re adings	Main Reading :- 1.Introduction to Statistical Learning, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer, 2013. 2. EthemAlpaydin, Introduction to Machine Learning, MIT Press.		

		<u>Sto</u>	d. Com.X AC-6
		15	& 22.05.2023
	3. Richard O. Duda, Peter E. Hart, David G. Stork Pattern		
	Classification,.		
	4. Peter Flach , Machine Learning , Cambridge		
	5.Christopher M. Bishop,Pattern recognition and machine		
	Learning, springer.		
	6.Deep Learning, Ian Good fellow, MIT press		
	7.Tom Michele, Machine Learning, McGraw-Hill.		
Learning	By the end of the course , students should:		
<u>Outcomes</u>	Develop an appreciation for what is involved in learning fro	om	
	data.		
	 Understand a wide variety of learning algorithms. 		
	 Understand how to apply a variety of learning algorithms t 	0	
	data.		
	 Understand how to perform evaluation of learning 		
	algorithms and model selection.		
	Equips them with a general understanding of deep learning	g.	

Programme: MCA		
Course code: CSA		
Number of credit	•	
Effective from AY	: 2022-23	
Prerequisites	Hands-on experience working with HTML and basic of CSS;	
for the course	Internet Technologies; object oriented programming	
Objectives	This course will focus on the practical use and aspects of the	
	different website development technologies	
<u>Content</u>	Web Design Assignments	3L +15P
	Suggested Sample (non-exhaustive) Assignments:-	
	 Create a website on a topic given by the instructor. 	
	Evaluating the website with rubrics for good web design.	
	 Build a website using HTML & CSS by looking at a 	
	screenshot/picture of a website component given by the	
	instructor.	
	 Websites built with tables, forms, images, iframes, etc. 	
	 A website for each of design strategies (fixed, adaptive, 	
	responsive, fluid, mobile-first, etc.).	
	 Assignments using css pseudo-classes & -elements; grid & 	
	flex design; understanding the CSS box model & working with	
	the browser developer tools; CSS transformations, transitions	
	& animations	
	• Assignment to create a website built with Bootstrap based on	
	a topic given by the instructor.	
	Client-side Scripting Assignments	3L + 15P
	Suggested Sample (non-exhaustive) Assignments:-	
	 An assignment for understanding the programming aspects 	
	of JavaScript and working with the browser developer tools.	
	The use of the newer features of JavaScript (after ECMA 4) is	

		Sto	d. Com.X AC-6
		15	& 22.05.2023
	encouraged.		
	• An assignment working with regular expressions. A search		
	and filter utility can be built.		
	• Assignments for form data processing and validation and u	se	
	of HTML5 form elements. A web page with form and		
	validated data could be put in a table. The code could be		
	written using table DOM methods and/or HTML DOM		
	methods and/or XML DOM methods.		
	• Assignments using various events (mouse, keyboard, etc.		
	events for the form elements, drag-and-drop, window,		
	browser, etc.).		
	• A web component built using HTML, CSS & JavaScript base	d	
	on a existing Bootstrap component (e.g. Accordion)		
	• Assignment with the use of a JavaScript library (JQuery,		
	AngularJS, ReactJS, etc.)		
	Developing a Game with HTML, CSS & JavaScript. The game	_	1L + 4P
	should have at least 500 lines of (HTML+Javascript) code and		
	make use of various mouse/keyboard events.		
	Server-side Programming Assignments		2L + 12P
	Suggested Sample (non-exhaustive) Assignments:-		
	 Assignments to work with HTTP headers for passing data a 	nd	
	meta-data, cookies, localStorage		
	• Assignments to handle data from web forms; handling the		
	request and response payload		
	 Assignment to manage web sessions 		
	 Assignment to develop a CRUD functionality by connecting 	, to	
	a database; AJAX calls		
	Full stack Web Developments		2L + 2P
	Develop a CRUD application with MEAN/MERN stack		
	Mini-project		4L + 12P
	Ideally done in a group. It should include design and		
	implementation of a web application. Project implementation	۱	
	should mandatorily be built using a templating engine or		
	programming framework (client-side and/or server-side).		
	Project should also use a design framework (e.g. Bootstrap).		
	Conduct and progress of the project could follow industry		
Dedesser	practices (e.g. git, scrum etc.).		
Pedagogy	Hands-on assignments / tutorials / peer-teaching / projects		
References/	1. Robert W. Sebesta, "Programming the World Wide		
<u>Readings</u>	Web", Pearson Education		
	2. https://www.w3schools.com/ 3. Steven Holzner, "HTML 5 Black Book"		
	3. Steven Holzner, "HTML 5 Black Book"		
	4. https://www.tutorialspoint.com/		
	5. Frank W. Zammetti, "Modern Full-Stack Development",		
	Apress 6. Nader Dabit, "Full Stack Serverless", O'Reilly		
Learning			
<u>Learning</u>	1. Learner will be gain experience and be able to create		

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

<u>Outcomes</u>	complete websites	
	2. Learner will be able to make decision on what web	
	technology to use and for what purpose	
	3. Learner will appreciate the architecture of web applications	
	and the design decisions	

Programme: MCA	
Course Code: CSA-511	Title of Course: Database Management Systems LAB
Number of Credits: 3 (1L-0T-2P)	Contact hours: 75 hours (15L-0T-60P)
Effective from AY: 2022-23	

	1: 2022-23	
Prerequisites	Hands-on experience in object-oriented programming.	
for the course		
<u>Objectives</u>	This course aims at enabling learners to develop a skill set to	
	design and implement a realistic application, representative of a	
	typical real-life software system.	
	Installation of DBMS Softwares	2P
<u>Content</u>	Data Definition Language(DDL) Statements	1L+4P
	 Creating a Database. 	
	 Creating a table, with or without constraints. 	
	 Understanding Data types. 	
	Altering the structure of the table like adding attributes	
	at a later stage, modifying size of attributes or adding	
	constraints to attributes.	
	 Removing the table created, i.e Drop table in SQL. 	
	 Creating Sequence (Auto increment field) 	
	Query in Data Dictionary	1L+2P
	• To view the structure of the table created by the user.	
	• To view user information.	
	• To view integrity constraints.	
	Altering Session Parameters	
	Data Manipulation Language(DML) Statements	1L+4P
	 Inserting Data into the table. 	
	 Updating Data into the table. 	
	• Deleting Data from the table.	
	Simple SQL statements	2L+6P
	• Displaying all the attributes and tuples from the table.	
	• Displaying selected attributes/tuples from the table.	
	 Using Logical and comparison operators. 	
	String manipulation	
	Date Comparisons	
	Complex SQL Statements	4L+14P
	• Using aggregate functions (using Group by and having	
	clauses).	
	• Sorting Data.	
	Creating SQL Aliases and Views.	

		Std. Com.X AC-6
r		15 & 22.05.2023
	 Joins and Nested queries. Correlated subquery Derived tables Given a complex table structure, display records from 	
	tables.	
	 Transaction Control Language(TCL) statements Transactions could be made permanent in memory To rollback the transaction. 	1L+2P
	Embedded SQL statements	4L+16P
	 Loops/ if else statements Creating Triggers/Procedures/packages ArrayList and Cursor. PL/SQL Strings PL/SQL Object Oriented Exceptions 	
	No SQL	1L+4P
	Project	6P
	 The analysis of project Design (ER diagram and normalized tables) and implementation of a real life project of students choic The project report that they submit consists of (i) Feasibility study (ii) ER Diagrams (iii) Tables normalized in an appropriate normal form with integrity and domain constraints noted. (iv) User Interface Design - Form and Report design , including triggers that may need to be written (v) User Manual Peer reviews of EF are held in the class. 	d
Pedagogy	Hands-on assignments / tutorials / peer-teaching / troubleshooting	
References/ Readings	 Korth, Silberchartz, "Database System Concepts" McGrawhill Publication. Elmasri and Navathe, "Fundamentals of Database System Addison Wesley, New Delhi. 	ıs",
<u>Learning</u> <u>Outcomes</u>	 Design and implement a database schema for a given problem-domain Create and maintain tables using SQL Populate and query a database Use Transaction Control Language Creating and Using User Defined Data Types Writing Triggers & Stored Procedures Prepare reports 	
	8. Application development using PL/SQL & front end tools	(Back to Agenda)

Programme: MCA Course Code: CSA-512 Number of Credits: 3 (1L+0T+ 2P) Effective from AY: 2022-23

Title of the Course: Machine Learning Lab Contact Hours: 75 hours (15L-0T-60P)

Prerequisites	Course: Mathematics for Computer Science and Programming	
for the course	language background.	
Objectives:	The objective is to learn to build the different machine learning	
<u></u>	models by doing a set of assignments and mini projects.	
<u>Content:</u>	Introduction to python libraries for machine learning - scikit learn, tensor flow, keras, pytorch,pandas, matplotlib, seaborn, numpy and other relevant libraries.	1L + 5P
	Four branches of machine learning-supervised, unsupervised,self-supervised, reinforcement, Evaluating machine learning models, Data preprocessing,featue engineering and feature learning, overfitting and underfitting- Numerical Programming fundamentals-finding nearest neighbours via euclidean distance-splitting data sets into training and testing.	1L+ 8P
	Regression, cross validation and regularization-polynomial regression -model selection on a fixed validation set - Polynomial Regression - Model Selection with Cross-Validation- Polynomial Regression with L2 Regularization - Model Selection with Cross-Validation-Comparison of methods on the test set. Evaluating Binary Classifiers and Implementing Logistic Regression-Binary Classifier for movies reviews-classifying newswires-predicting house prices -Computing the Loss for Logistic Regression without Numerical Issues	2L + 10P
	Neural Networks and Stochastic Gradient Descent-MLPs with L- BFGS: What model size is effective?-MLPs with SGD: What batch size and step size?-Producing your own figure comparing batch size and learning rate.	2L + 10P
	Trees and Random Forests for Bag of Words-Code Implementation of Decision Tree Regression-Decision Trees for Review Classification -Random Forests for Review Classification -Comparing Trees to Linear Models for Review Classification.	2L + 5P
	Implementation of CNN, RNN, LSTM, Implementation of Boltzmann machine and Transformers (BERT, GPT3) .Generative deep learning (GAN).	
	Project discussions -Classifying Images with Feature	2L + 10 P

		Std. Com.X AC-6
		15 & 22.05.2023
	Transformations-Classifying Sentiment from Text Reviews- Recommendation Systems via Matrix Factorization-Text summarization - language Translation -Sentimental analysis- speech to text translatioXiv, Explore the keras ecosystem.	2L + 5P
Pedagogy:	Programming in lab and practical exercises	
References/Re		
adings	1. Hands on machine learning with scikit learn by Aurieli	ien
	2. Deep learning with python by Francois	
	3. Text Analytics with Python: A Practitioner's Guide to	
	Natural Language Processing by dipanjan sarkar.	
	4. keras: the python deep learning API	
	5. https://www.cs.tufts.edu/comp/135/2020f/assignme	<u>nts</u>
	<u>.html</u>	
	6. Python library reference	
Learning	To be able to collect data and preprocess them and choose th	ne
Outcomes	suitable machine learning model and study its performance a	nd
	able to carry out mini project	

Programme: MCA

Course Code:CSA-523Title of Course: Cryptography and Network SecurityNumber of Credits: 4 (4L-0T-0P)Contact Hours: 60 hours (60L-0T-0P)Effective from AY: 2022-23Contact Hours: 60 hours (60L-0T-0P)

Litective itom At		
Prerequisites	Internet Technologies	
for the course		
<u>Objectives</u>	 To understand the basics of Cryptography and Network Security. To be able to secure a message over an insecure channel by various means. To learn about how to maintain the Confidentiality, Integrity and Availability of data. To understand various protocols for network security to protect against the threats in the networks. 	
<u>Content</u>	Foundations of Cryptography and Security Ciphers and Secret Messages, Security Attacks and Services. Classical encryption techniques. Mathematical Tools for Cryptography	6 hours 3 hours
	Substitutions and Permutations, Modular Arithmetic, Euclid's Algorithm, Finite Fields, Polynomial Arithmetic. Design Principal of Block Ciphers Theory of Block ciphers, Feistel Cipher network Structures,	9 hours

			d. Com.X AC-6 & 22.05.2023
	DES and triple DES, Modes of Operation (ECB, CBC, OFB,	12	& 22.05.2023
	CFB), Strength of DES, AES		
			3 hours
	Pseudo Random Numbers and Stream Ciphers		
	Pseudo random sequences, Linear Congruential generators,		
	Cryptographic generators, Design of stream Ciphers, RC4.		
	Public Key Cryptography		3 hours
	Prime Numbers and testing for primality. Factoring large		
	numbers, Discrete Logarithms.		9 hours
	Asymmetric Algorithms		5 110013
	RSA, Diffie-Hellman, ElGamal, Introduction of Ecliptics curve		
	cryptosystems, Key Management, Key exchange algorithms, Public Key Cryptography Standards.		
			6 hours
	Hashes and Message Digests		
	Message Authentication, MD5, SHA-3, HMAC		
	Digital Signatures, Certificate and Standards		6 hours
	Digital signature standards (DSS and DSA), Public Key Infrastructures, Digital certificates and Basics of PKCS standards.		
	Authentication		3 hours
	Kerberos , X509 Authentication Service		
	Web Security protocols		6 hours
	IP Security, Transport Layer Security(TLS), Wireless Security,		
	System Security		6 hours
	Intrusion detection, Password management, Firewalls		
	management		
Pedagogy	Lectures/ Hands-on assignment/tutorials/Presentations		
References/	Main Reading:		
<u>Readings</u>	1. Stallings William, "Cryptography and Network Security:		
	Principles and Practises", 5 th edition, Prentice Hall 2. Kahate Atul, "Cryptography and Network Security" Tata		
	McGraw-Hill.		
Learning	1. Provide security of the data over the network.		
Outcomes	2. Implement various networking security protocols.		
	3. Protect any network from the threats in the world.		

Programme: MCA Course Code: CSA 524 Number of Credits: 4 (2L-0T-2P) Effective from AY: 2022-23

Title of Course: Natural Language Processing Contact Hours: 90 hours (30L-0T-60P)

Duovousiaitea	Fundamentals of Artificial Intelligences Mathematical	
Prerequisites	Fundamentals of Artificial Intelligence; Mathematical	
for the course	Foundations for Artificial Intelligence.	
	Machine Learning and Programming background. Introduction	
	to NLP (Theory), Mathematical foundations for Al.	
<u>Objectives</u>	This course will focus on understanding the essentials of	
	Natural Language Processing (NLP), areas in NLP, algorithms,	
	and NLP tasks.	
	Students who complete this course will gain a foundational	
	understanding in natural language processing methods and	
	strategies. They will also learn how to evaluate the strengths	
	and weaknesses of various NLP technologies and frameworks as	
	they gain practical experience in the NLP toolkits available.	
<u>Content</u>	Part I: Foundations of Natural Language Processing	8 hours
	Introduction	
	Natural Language Processing - Problems and perspectives	
	 Introduction/Recall to/of probability calculus 	
	 N-grams and Language Models 	
	o Markov Models	
	Introduction to Machine Learning and Deep Learning	
	Recurrent Neural Network Language Models	
	The evaluation of NLP applications	
	Corpora	
	Corpora and their construction: representativeness	
	Concordances, collocations and measures of words	
	association	
	Methods for Text Retrieval	
	Regular expressions	
	Part II: Natural Language Processing	16 hours
	 Computational Phonetics and Speech Processing 	
	 Speech samples: properties and acoustic measures 	
	 Analysis in the frequency domain, Spectrograms 	
	 Applications in the acoustic-phonetic field. 	
	 Speech recognition with HMM and Deep Neural 	
	Networks	
	 Tokenisation and Sentence splitting 	
	 Computational Morphology 	
	 Morphological operations 	
	Static lexica, Two-level morphology Computational Suptax	
	Computational Syntax Dart of speech tagging	
	Part-of-speech tagging Grammars for natural language	
	Grammars for natural language	
	 Natural language Parsing 	

		Std. Com.X AC-6
		15 & 22.05.2023
	 Supplementary worksheet: formal grammars for NL Formal languages and Natural languages. Natural language complexity Phrase structure grammars, Dependency Grammars 	
	 Treebanks Modern formalisms for parsing natural languages Computational Semantics Lexical semantics: WordNet and FrameNet 	
	 Word Sense Disambiguation Distributional Semantics & Word-Space models Logical approaches to sentence semantics III: Applications and Case studies: 	6 hours
•	Solving Downstream Tasks: Document classification, Sentiment Analysis, Named Entity Recognition, Semantic Textual Similarity Prompting Pre-Trained Language Models Network Embedding	
Sam Ass	ple list of Assignments ignment -1 -Import nItk and download the 'stopwords' ar nkt' packages.	nd 3 hours
Ass	ignment-2 -Import spacy and load the language model.	3 hours
	ignment -3 -How to tokenize a given text?	3 hours
	ignment-4 -How to get the sentences of a text document ignment- 5-How to tokenize a text using the `transforme	
pac Ass	kage? ignment -6 - How to tokenize text with stopwords as	3 hours
	imiters?	2 h aura
	ignment- 7- How to remove stop words in a text? ignment -8- How to add custom stop words in spaCy?	3 hours 3 hours
	ignment - 9 - How to remove punctuations?	3 hours
	ignment-10 - How to perform stemming?	3 hours
	ignment -11 -How to lemmatize a given text?	3 hours
	ignment-12 -How to extract usernames from emails?	3 hours
Ass	ignment -13-How to find the most common words in the texcluding stopwords	
	ignment -14- How to do spell correction in a given text?	3 hours
	ignment -15- How to tokenize tweets?	3 hours
	ignment -16- How to extract all the nouns in a text?	3 hours
	ignment -17- How to extract all the pronouns in a text?	3 hours
Ass	ignment - 18 - How to find similarity between two words	? 3 hours
	ignment -19- How to find similarity between two cuments?	3 hours
Ass	ignment -20 -How to find the cosine similarity of two cuments?	3 hours
	ds-on assignments/tutorials / peer-teaching / pair	<u> </u>
i cuasosy fidile	as on assignments/tatonals / peer-teaching / pair	

Std. Com.X AC-6 15 & 22.05.2023

r		15 & 22.05.2023
	programming/presentations / mini-project.	
	Lectures / Practical / tutorials / assignments / self-study / min	i-
	project	
References/	1. Allen, James, Natural Language Understanding, Second	
Readings	Edition, Benjamin/Cumming, 1995.	
	2. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993.	
	3. Jurafsky, Dan and Martin, James, Speech and Language	
	Processing, Second Edition, Prentice Hall, 2008.	
	4. Manning, Christopher and Heinrich, Schutze,	
	Foundations of Statistical	
	5. Natural Language Processing, MIT Press, 1999.	
	6. Tamburini, F Neural Models for the Automatic	
	Processing of Italian, Bologna: Pàtron. 2022	
	7. T. McEnery and A. Wilson. Corpus Linguistics, EUP. 200	1
	8. https://corpora.ficlit.unibo.it/NLP/	
	9. https://www.machinelearningplus.com/nlp/nlp-	
	<u>exercises/</u>	
	10. Deep Learning by Goodfellow, Bengio, and Courville fre	e
	online	
	11. Machine Learning — A Probabilistic Perspective by Kev	in
	Murphy online	
	12. Natural Language Processing by Jacob Eisenstein free	
	online Speech and Language Processing by Dan Jurafsky	y
	and James H. Martin (3rd ed. draft)	
<u>Learning</u>	1. Learners will learn about the concepts in natural	
<u>Outcomes</u>	language processing.	
	2. Learners will have a fair idea of different areas in NLP	
	3. Learners will appreciate the complexities involved in	
	natural language processing.	
	4. Through lectures and practical assignments, students	
	will learn the necessary tricks for making their models	
	work on practical problems.	
	5. They will learn how to contribute towards the	
	development of NLP Resources and Tools.	

(Back to Index) (Back to Agenda)

Programme: MC	CA	
Course Code: C	SA-525 Title of Course: Network Programming	g
Number of Cred	its: 4 (4L-0T-0P) Contact Hours: 60 hours (60L-0T-0P)	
Effective from A	Y : 2022-23	
Prerequisites	Linux lab, Internet technology, Operating Systems	
for the course		
Objectives	To introduce the basic concept of network programming in	
	UNIX and Windows OS environments.	
<u>Content</u>	Basic UNIX programming: Overview of process, signal handling	6 hours
	and related system calls. Systems calls related to process, user	

			d. Com.X AC-6
r		15	& 22.05.2023
	and signal Management. File descriptors and inheritance.		
	Named and unnamed pipes and related system calls.		
	Elementary Socket Programming: Berkley Sockets Overview,		15 hours
	Introduction to sockets, Socket addresses, Basic Socket system	n	
	calls, Error handling. Concept of Reserved ports, Elementary		
	TCP and UDP socket programming. Socket options. Name and		
	Address Conversion functions. Interface Operations using 'ioc	tľ.	
	I/O Operations: Synchronous vs. Asynchronous I/O. I/O		15 hours
	Multiplexing using 'select' and 'pselect'., Sockets and signals,		
	Signal driven I/O. Nonblocking I/O: Non blocked 'accept' and	_	
	'connect'. Broadcasting and Multicasting. Sending and Receivi	ing	
	Out of Band data using 'select' and signals. Advance I/O		
	functions.		
	Daemon processes and Inetd Super Server		4 hours
	Network Programming in the .NET Framework:		6 hours
	System.Net classes overview, working with URI, IP addresses,		
	DNS class, Requests and responses, authentication, and		
	permission.		
	Socket programming in .NET		8 hours
	Working with sockets in .NET, Asynchronous programming,		
	socket permission, support for IPv6, support for TCP, .NET		
	Remoting, support for UDP, multicast sockets. Network tracin	g,	
	network information, cache management, security.		
	Programming applications: Time and date routine, Ping, Trivia	al	6 hours
	file transfer protocol, design of chat application using multication	st	
	socket programming.		
Pedagogy	lectures/ Hands-on assignment/tutorials		
<u>References/</u>	Main Reading:	_	
Readings	1. Steven W.R., Unix Network Programming, Prentice Hall of		
	India.		
	2. Microsoft Software Developers Network Documentation.		
Learning	After completing the course, students will be able to:		
<u>Outcomes</u>	 Analyze and write socket API based programs 		
	 Design and implement client-server applications using 		
	TCP and UDP sockets (Reals to Index)		

Programme: MC	CA		
Course Code: CSA-526		Title of Course: Human Computer Interaction	
Number of Credits: 4 (4L-0T-0P)		Contact hours: 60 hours (60L-0T-0P)	
Effective from A	Y: 2022-23		
Prerequisites	Program Prerequisites		
for the course			
<u>Objectives</u>		esign skills, so that you have the create excellent interfaces with any	

		Std. Com.X AC-6
		15 & 22.05.2023
<u>Content</u>	Introduction: Human-Computer Interaction, The Power of	8 hours
	Prototyping, Evaluating Designs, The Birth of HCI	
	Needfinding: Participant Observation, Interviewing, Additiona	al 8 hours
	Needfinding	
	Rapid Prototyping: Paper Prototyping and Mockups, Video	10 hours
	Prototyping, Creating and Comparing Alternatives	
	Heuristic Evaluation: Heuristic Evaluation — Why and How?	8 hours
	Design Heuristics	
	Direct Manipulation and Representations: Direct Manipulatio	n, 10 hours
	Mental Models, Representations Matters, Distributing	
	Cognition	
	Visual Design and Information Design: Visual Design,	8 hours
	Typography, Grids and Alignment, Reading and Navigating	
	Designing experiments: Designing Studies That You Can Learn	8 hours
	From, Assigning Participants To Conditions, InPerson	
Podagogy	Experiments, Running Web Experiments, Comparing Rates. Hands-on assignments / tutorials / peer-teaching / pair	
<u>Pedagogy</u>	programming / presentations / mini-project	
References/	1. Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell	
Readings	Beale, Human-Computer Interaction (3rd Edition),	
neuungo	Pearson, 2004.	
	 Ben Shneiderman and Catherine Plaisant, Designing th 	ne
	User Interface: Strategies for Effective HumanComput	
	Interaction (5th Edition), 5th ed., Pearson Addison-	
	Wesley, 2009	
	3. Donald A. Norman, The Design of Everyday Things, Ba	sic
	Books, 2002	
Learning	2. Learners will be introduced to the concepts in Human	
<u>Outcomes</u>	centered design skill.	

Programme: MCA Course Code: CSA-527 Number of Credits: 4 (4L-0T-0P)

Title of Course: Agile Methodology **Contact Hours:** 60 hours (60L-0T-0P)

Effective from AY: 2022-23

Prerequisites	Programming Knowledge	
for the course		
<u>Objectives</u>	The objective of the course is to provide students with a theoretical as well as practical understanding of agile software development practices and how small teams can apply them to create high-quality software.	
<u>Content</u>	Introduction to Agile Software Development: Understanding how traditional software development works and it's problems; Role of Agile practices in the world of software development & Tools used Agile Project Planning And Management:	

		Std. Com.X AC-6
		15 & 22.05.2023
	Requirement Analysis, Estimation techniques, Iteration planning, Introduction to development practices:TDD : Test Driven Development & Pair Programming, Introduction to Q Practices:Fail Fast & Automated functional testing, Introduction to Continuous Integration	
	Coding and testing practices:	
	Practicing TDD and pair programming as alternative to traditional documentation; Configuring Continuous Integration tools; Automated function testing in detail, Sour Control	ce
	Agile Software development and deployment:	
	Iterative and incremental software development, Automate and scripted deployment strategies, Handling change requests	d
Pedagogy	Lectures/ Hands-on assignment/tutorials	
References/	1. Agile Software Development with Scrum, Ken Schwaber	,
Readings	Mike Beedle, Prentice Hall 2. Agile Estimating and Planning by Mike Cohn, Prentice Hall PTR	
	3. Continuous Integration: Improving Software Quality and Reducing Risk, Paul M. Duvall, Steve Matys, Andrew Glover, Addison Wesley	,
	4. Leading Lean Software Development: Results Are not the Point Mary Poppendieck , Tom Poppendieck	
Learning	Student will be able to understand, appreciate and apply Agil	e
Outcomes	practices for Software development as well as in real life	

Programme: MCACourse Code: CSA-528Title of Course: Modern DeNumber of Credits: 4 (4L-0T-0P)Contact hours: 60 h

Effective from AY: 2022-23

Title of Course: Modern Development Platforms Contact hours: 60 hours (60L-0T-0P)

Prerequisites	Programming(Program Prerequisites), Knowledge of OS (CSC-	
for the course	103), Internet Technologies (CSC-104) and Web Development	
	(CSC-201,CSC-205)	
Objectives	This course will focus on the modern development	
	technologies, tools and platforms prevalent in the software	
	development industry	
<u>Content</u>	Overview	2 hours
	• Ever-changing development terrain, Importance of	
	development at scale. Emergence of Cloud Services, Devops	
	Development at scale	4 hours
	Introduction to API Query	

		Std. Com.X AC-6
, 	Introduction to FLK stock	15 & 22.05.2023
	Introduction to ELK stack	
	 Cloud Computing Overview Cloud Models - IaaS, PaaS, SaaS, Public/Private/Hybrid Cloud Components - Virtualisation & VMs, File Storage, Server Instances, Content Delivery Network, etc. Setting up cloud Cloud Services Case study of any one cloud (e.g. Amazon AWS/ Google Cloud/ MS Azure) DevOps 	24 hours 18 hours
	 Overview of DevOps: Introduction to DevOps DevOps Lifecycle DevOps Delivery Pipeline Continuous Integration/ Continuous Delivery (CI/CD) Introduction to CI/CD Continuous Delivery v/s Continuous Deployment Case study of any one CI/CD tool(CircleCI/Jenkins, etc). Case study should include architecture, pipelir and plugin management Configuration Management Introduction to Configuration Management Configuration Management Case study of any one Configuration Management(e.g. Ansible, Chef, etc). Case study should include Infrastructure as Code, Inventory Management, playbooks/cookbooks Containerization Introduction to Containerization Containerization Introduction to Containerization tool (e.g. Docker, etc) which should include namespaces, commands,CLI, image creation, image registry Continuous Monitoring Introduction to continuous monitoring Types: Infrastructure Monitoring, Application Monitoring and Network Monitoring Case study on one continuous monitoring tool(e.g. Nagios, Prometheus, etc) Mini Project Ideally done in a group. Concepts and tools (or similar, learnt in the course will need to be 	ne 12 hours
Pedagogy	implemented/incorporated.	
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / pair programming / presentations / mini-project	

		15 & 22.05.2023
References/	1. Frank W. Zammetti, "Modern Full-Stack Development	<i>"</i>
Readings	Apress	
	2. Nader Dabit, "Full Stack Serverless", O'Reilly	
	3. Joakim Verona, "Practical DevOps"	
	4. https://www.elastic.co/guide/index.html	
	5. https://docs.aws.amazon.com/	
	6. https://cloud.google.com/docs	
	7. https://docs.microsoft.com/enus/azure/?product=featur	ed
	8. https://docs.docker.com	
Learning	1. Learner will learn about the latest tools and platforms used	b
Outcomes	in the software industry	
	2. Learner will have fair idea on the popular cloud services us	ed
	3. Learner will appreciate the different devops tools and why	
	devops is important	
	(Pack to Index)	(Back to Agenda)

Std. Com.X AC-6

Programme: MCA Course Code: CSA-529 Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Title of Course: Ethical Hacking **Contact Hours:** 60 hours (60L-0T-0P)

Effective from AY	: 2022-23	
<u>Prerequisites</u>	Internet Technologies, Operating System, Database	
for the course	Management, Programming Skills	
Objectives	To introduce the students to ethical hacking tools and	
	practices used to protect systems from the wide-ranging impact	
	of data breaches and cybersecurity incidents.	
<u>Content</u>	Introduction: The importance of security, The various phases	2 hours
	involved in hacking, An overview of attacks and exploit	
	categories, The legal implications.	
	Footprinting: Introduced to footprinting, Information gathering	3 hours
	methodology, Tools used for the reconnaissance phase,	
	countermeasures.	
	Scanning: Detecting 'live' systems on target network,	3 hours
	Discovering services running/ listening on target systems, port	
	scanning techniques, active and passive fingerprinting,	
	Automated discovery tools.	
	Enumeration: Identifying valid user accounts or poorly	3 hours
	protected resource shares, active connections to systems and	
	directed queries, Null Session, NetBIOS Enumeration, SNMP	
	enumeration, Applications and Banners.	
	System Hacking: Remote password guessing, Eavesdropping,	5 hours
	Denial of Service, Buffer overflows, Privilege escalation,	
	Password cracking, keystroke loggers, sniffers, Remote control	
	and backdoors, Port redirection, Covering tracks, Hiding files	
	Trojans and Backdoors: Defining Trojans and Backdoors,	2 hours
	Understanding the various backdoor genres, Trojan tools,	
	Prevention methods and countermeasures, Anti-Trojan	
	software.	4 hours

		<u>Stc</u>	l. Com.X AC-6
		15	& 22.05.2023
	 Sniffers: Active and Passive Sniffing, ARP Spoofing and Redirection, DNS and IP Sniffing and Spoofing. Denial of Service: DOS and Distributed DOS Attacks, Types of denial of service attacks, Tools for running DOS attacks, Tools 		3 hours
	for running DDOS attacks, Pools for running DOS attacks, Pools Social Engineering: Common Types of Attacks, Online Social Engineering, Reverse Social Engineering, Policies and		3 hours
	Procedures, Employee awareness. Session Hijacking: Spoofing Vs Hijacking, Types of session hijacking, TCP/IP concepts, Performing Sequence prediction,		4 hours
	ACK Storms, Session Hijacking Tools. Web Server Hacking: Web Servers and Common Vulnerabiliti Apache Web Server Security, IIS Server	es,	3 hours
	Security, Attacks against Web Servers, Countermeasures Web Application Vulnerabilities: Common Web Application Security Vulnerabilities, Penetration Methodologies, Input Manipulation, Authentication And Session Management, Too	Is	5 hours
	and Countermeasure. Password cracking: HTTP Authentication Basic & Digest, NTLM Authentication, Certificate Based Authentication, Forms Base Authentication, Password Guessing, Password cracking Tools.	vi d	3 hours
	SQL injection: Exploiting the weakness of Server Side Scripting Using SQL Injection techniques to gain access to a system, SQ Injection Scripts, Prevention and Countermeasures	g,	3 hours
	Buffer Overflow: What is a Buffer Overflow, Exploitation, CPU OS Dependency, Understanding Stacks, Stack Based Buffer Overflow, Defense against Buffer Overflows	ר / ו	4 hours
	Hacking wireless networks: Introduction to 802.1, WEP, Cracking WEP Keys, WPA, WLAN Scanners, WLAN Sniffers, Securing Wireless Networks.		4 hours
	Viruses: Types of viruses, virus signatures, Anti-virus software few examples. Evading Firewalls, IDS and Honeypots: Intrusion Detection	2,	2 hours
	System, Integrity Verifiers, Intrusions Detection, Anomaly Detection, Signature Recognition, Protocol Stack Verification, Application Protocol Verification, Hacking Through Firewalls, Honey Pots.		4 hours
Pedagogy			
<u>References/</u> <u>Readings</u>	 Main Reading 1. "Hacking Exposed", Osborne/ Mc Graw Hill. 2. "Hacking Exposed: Network Security Secrets and solutions Osborne/ Mc Graw Hill. 3. "Hacking Exposed: Linux Security Secrets and Solutions", I Graw Hill. 4. "Hacking Exposed: Windows Security Secrets and Solution 	Мc	
	Mc Graw Hill. 5. "Hacking Exposed: Web Application Security Secrets and		

Std. Com.X AC-6 15 & 22.05.2023

	Solutions", Mc Graw Hill/Osborne.	
Learning	3. Discover the elements of a four-phase penetration test and	
<u>Outcomes</u>	how the four phases help successfully identify system vulnerability.	
	 Learn about the different tools and techniques that hackers—including ethical hackers—employ. 	

(Back to Index) (Back to Agenda)

Title of Course: Advanced Unix Programming

Contact Hours: 60 hours (60L-0T-0P)

Programme: MCA			
Course Code: CSA-530			
Number of Credits: 4 (4L-0T-0P)			
Effective from AV. 2022-23			

Effective from AY	2022-23	
<u>Prerequisites</u>	Basic knowledge of Programming in C and Operating systems	
<u>for the course</u>		
<u>Objectives</u>	 Introduces system administration tasks, including software installation, system configuration, and managing user accounts. Introduce the concept of UNIX system programming including process, signals and interprocess communication. 	
<u>Content</u>	Introduction: Organization of UNIX interface, Programmer interfaces. System call API, Error handling. UNIX standardization. UNIX implementations. Relationship of standards and implementation. File I/O and Directories : File descriptor and basic file I/O calls. Duplicating file descriptors. File Types, File access permissions, Set-user-id and set-group-id bits. Setting file permissions. Changing file ownership. Soft and hard links. Reading directories. Synchronising file contents. Standard I/O library.	15 hours
	Process : Environment of UNIX process. Command Line arguments. Environment variables. Memory allocation. Process relationship, Process groups, sessions, Controlling Terminal, Process related system calls. Foreground, Background Processes and Job control. Orphaned process groups.	15 hours
	Signals: Signal concept, Reliable and unreliable signals, Signal sets, Signal related system calls. Non local jumps. Job control using signals.	10 hours
	Terminal I/O: Special Input Characters. Canonical and Non canonical modes. Terminal Option flags. Getting and setting terminal attributes. Pseudo terminals. Opening and using pseudo Terminals. Advanced I/O: Nonbloking I/O, Record locking. Stream, I/O multiplexing, Memory mapped I/O, Asynchronous I/O.	10 hours
	Inter-process communication: Pipes, Message queues, Semaphores and shared memory.	10 hours
Pedagogy	lectures/ tutorials/Hands-on assignments/self-study	
References/ Readings	1. Steven W R, Advanced Programming in UNIX Environment, Addison Wesley.	

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	2. Unix man pages and Standard C library (libc) Documentat	L
Learning Outcomes	 After completing the course, students will be able to: Manage UNIX users, file systems, and devices using ropowers. Access UNIX file management and process management functions via system calls. Develop complex system-level software in the C programming language 	

Programme: MCA Course Code: CSA-531 Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Title of Course: Theory of Computation **Contact Hours:** 60 hours (60L-0T-0P)

Prerequisites	Programme Prerequisites	
for the course		
<u>Objectives</u>	 To give an overview of the theoretical foundations of computer science from the perspective of formal languages To illustrate finite state machines to solve problems in computing. 	
<u>Content</u>	General Concepts of Automata Theory: Alphabets Strings, Languages, Grammars, Applications of Automata Theory.	3 hours
	Finite Automata (FA): Introduction, Deterministic Finite Automata (DFA) - definition and notations, language of a DFA. Nondeterministic Finite Automata (NFA)- Definition, language of an NFA, Equivalence of DFA and NFA, Applications of FA. Finite Automata with Epsilon Transitions, Eliminating Epsilon transitions, Minimization of DFA. Finite automata with output (Moore and Mealy machines) and inter-conversion. Regular Expressions (RE): Introduction, Identities of RE.	12 hours 10 hours
	Finite Automata and Regular Expressions - conversions, Algebraic Laws for Regular Expressions, applications of RE. Regular grammars: Definition, regular grammars, and FA, Proving languages to be non-regular (Pumping lemma), Properties of Regular Language, applications.	10 110015
	Context-Free Grammar (CFG): Definition, Derivations Using a Grammar- Leftmost and rightmost derivation, Parse tree, Applications, Ambiguity in CFG. Minimization of CFG, CNF, GNF, Pumping Lemma for CFL's.	10 hours
	Pushdown Automata (PDA): Definition, Language of PDA- Acceptance by Final State and Acceptance by Empty stack, Equivalence of CFG and PDA, Deterministic PDA, Chmosky normal form of CFG Turing Machines (TM): Formal definition and behavior, Languages of a TM, TM as accepters, and TM as a computer of	15 hours

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

	integer functions, Types of TMs.	
	Recursive And Recursively Enumerable Languages (REL):	10 hours
	Properties of recursive and recursively enumerable languages	5,
	Universal Turing machine, The Halting problem, Undecidable	
	problems about TMs. Context-sensitive language and linear	
	bounded automata (LBA), Chomsky hierarchy, Decidability.	
<u>Pedagogy</u>	lectures/ tutorials/assignments/self-study	
References/	1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman,	
<u>Readings</u>	Introduction to Automata Theory Languages and	
	Computation, Pearson Education, India (latest edition)	
	2. H.R.Lewis and C.H.Papadimitriou, Elements of the Theory	of
	Computation, PHI, (latest edition)	
	3. J.Martin, Introduction to Languages and the Theory of	
	Computation, TMH (latest edition)	
<u>Learning</u>	At the end of the course students will be able to:	
Outcomes	 use basic concepts of formal languages of finite automata 	a
	techniques	
	design Finite Automata for different Regular Expressions	
	and Languages	
	 Construct context-free grammar for various languages 	
	(Deals to Index)	(Back to Agenda)

(Back to Index) (Back to Agenda)

MCA SEMESTER III & IV COURSES

Programme: MCA	A	
Course Code: CSA	-600 Title of the Course: Speech Processing	
Number of Credit	s: 4 (2L-0T-2P) Contact Hours: 90 hours (30L-0	T-60P)
Effective from AY	: 2022-23	
Prerequisites	CSA521-Mathematics for Computer Science and CSA-509 Machin	e Learning
for the course		
Objectives:	The objective of the course is to study fundamental concepts of a speech recognition.	utomatic
Content:	Anatomy & Physiology of Speech Organs, The process of Speech Production, The Acoustic Theory of Speech Production, Digital models for speech signals.	6 hours
	Formants of vowels, spectrogram of vowels, Acoustic analysis of vowels.	6 hours
	Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System.	6 hours
	Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMs, Adapting to variability in speech (DTW), Language models.	6 hours
	Issues in speaker recognition and speech synthesis of different	6 hours

		Std. Com.X AC-6
_		15 & 22.05.2023
	speakers. Text to speech conversion, Speech to text system.	
	End-to-end systems.	
	Basic tools	10 hours
	Installation of speech processing tools eg. Praat audac	city
	etc.	
	Spectrogram visualization	
	Phonetics and speech signals	15 hours
	 Introduction to International phonetic alphabets 	
	Audio signal processing and cleaning	
	Annotation of speech signal	
	Formant analysis	15 hours
	Formant analysis of vowels	
	Nasalisation of vowels	201
	Advance concepts	20 hours
	Installation of kaldi for building ASR	
	Creation of phonetic dictionary	
	Creation of language model Puilding ASB system	
Pedagogy:	 Building ASR system Lab assignments/ research paper reading/ discussion/ tools d 	lomonstration/
reuagogy.	mini project.	lemonstration
References/	1. Digital processing of speech signals - L.R Rabiner and S.W	/ Schafer
Readings	Pearson Education.	- Contarteri
	2. Speech Communications: Human & Machine - Douglas O	'Shaughnessy,
	2nd ed., IEEE Press.	8 //
	3. Fundamentals of Speech Recognition. L.R Rabinar and B.H	H. Juang.
Learning	After completion of this course, students will be able to	
Outcomes	Have a good understanding of human speech product	tion system
	Understand the basics of pattern recognition approact	hes.
	Have knowledge of the concepts in speech recognition	n.
		(Back to Agenda)

Programme: MCA

Course Code: CSA-601 Number of Credits: 4 (2L-0T-2P) Effective from AY: 2023-24 Title of Course: Machine Translation Contact hours: 90 hours (30L-0T-60P)

Prerequisites for the course	Knowledge of Mathematics for Computer Science and Machine Learning will prove beneficial, A previous course on Artificial Intelligence and Natural Language Processing will help; Exposure to Linguistics is useful, though not mandatory	
Objectives:	The objective of the course is to understand and get an insight into the different approaches used for Machine Translation (MT).	
Content:	Introduction: Data-driven MT, MT Approaches, Language divergence, three major paradigms of MT, MT Evaluation,	8 hours
	Bilingual Word Mappings: Combinatorial Argument, One-to-One	4 hours

		Std. Com.X AC-	· <u>6</u>
		15 & 22.05.202	23
	Alignment, Heuristic and Iterative bases computation, Mathematics of Alignment, Expectation Maximization, IBM models of Alignment		
	Phrase-Based Machine Translation (PBMT): Need, Examples, Phrase Table, Mathematics of Phrase-Based SMT, Decoding.	10 hours	
	Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua and Word Knowledge, UNL conversion, Transfer- based MT.	5 hours	
	Example-Based Machine Translation (EBMT): Essential steps of EBMT, Text similarity computation, Translation memory, Statistical Machine Translation	of 3 hours	
	Practical		
	Assignment 1: Data-driven MT, MT Approaches, Language divergence, three major paradigms of MT, MT Evaluation,	16 hours e	
	Assignment 2: Bilingual Word Mappings: Combinatorial Argument, One-to-C Alignment, Heuristic and Iterative bases computation, Mathematics of Alignment, Expectation Maximization, IBM models of Alignment	8 hours One	
	Assignment 3: Phrase-Based Machine Translation (PBMT): Need, Examples, Phrase Table, Mathematics of Phrase-Based SMT, Decoding.	20 hours	
	Assignment 4: Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua and Word Knowledge, UNL conversion, Transfer- based MT.	10 hours	
	Assignment 5: Example-Based Machine Translation (EBMT): Essential steps of EBMT, Text similarity computation, Translation memory, Statistical Machine Translation	of 6 hours	
Pedagogy:	lectures/ tutorials/assignments/self-learning/ flipped classroo	om	
References/ Readings	 Machine Translation by Pushpak Bhattacharyya, Chapmar February 2015 	n and Hall/CRC,	
	 Machine Translation on Coursera by Prof. Alexander Wai Niehues <u>https://www.coursera.org/learn/machinetransla</u> An Open Source Neural Machine Translation System <u>http</u> Bhachini Project – <u>https://bhashini.gov/in/bhashadaan/e</u> 	<u>ation</u> ps://opennmt.net	t/
Loorning	4. Bhashini Project – <u>https://bhashini.gov.in/bhashadaan/e</u>		
Learning Outcomes	 After completion of this course, students will - Understand the Machine Translation Approaches Understand the differences between Phrase-Based, R 	Rule-Based, and	
	 Example-Based Machine Translation explain, apply, and assess evaluation methods for machine describe and critically discuss the architecture of machine 		;
	 build their own translation model using existing tools 		

translation and evaluate and analyse the translation results;
• compare different types of machine translation strategies, such as rule-
based, statistical, and neural machine translation;
• implement components of machine translation systems or components
used in evaluation or pre-processing

Programme: MCA Course code: CSA-602 Number of Credits: 4 (2L-0T-2P)

Title of course: Educational Technology Contact Hours: 90 hours (30L-0T-60P)

Effective from AY: 2022-23

<u>Prerequisites</u>	Web Technology	
for the course		
	Course aims at Software Developers who wish to develop technology solutions for using Educational Technology in classroom and online mode. Course will offer students an overview of the theories and practices involved in Educational Technology Students will present examples showing the use of technology for classroom management, administration, teaching and learning. Students will select and evaluate appropriate software and hardware for application in the classroom Students will demonstrate legal and ethical use of technology in the classroom. Students will apply technology to develop higher-order skills and creativity	
	Learning theories. Learning objectives and Bloom's taxonomy; constructivist and situated theories of learning; factors affecting and facilitating learning; learning styles Technologies for creating new resources. Examples include video, multimedia, animations and simulations, Web 2.0/3.0.	8 hours 4 hours 8 hours
	Instructional Design (ID). Basic ID models (eg ADDIE model), ID models for e-learning and blended learning (eg Dick and Carey model), online course development using ID. Digital Storytelling Technologies for content delivery. Examples include Learning	5 hours
	Management Systems (e.g. Moodle) classroom management systems (e.g. Jhoomla), Open Education Resources, intelligent tutoring systems.	5 110013
	Case Studies: MOOC such as EdX/Coursera, Swayam-NPTEL	5 hours
	Introduction to various types of Education Technology tools.	4 hours
	Content Authoring Tools: eg Raptivity, Articulate	6 hours
[Assessment Tools: Hot Potato,	4 hours

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	Concept Mapping Tools: e.g. CMAP, MindMap, Compendium	4 hours
	Visualization Tools: e.g. R, Highcharts	6 hours
	Analytics Tools: e.g. SPSS, R-language, CAQDAS	6 hours
	Learning Management System: e.g. Moodle, Sakai	8 hours
	Educational Data Mining: e.g. Weka, Rapidminer, KNIME	4 hours
	MOOC: e.g. EdX	8 hours
	Collaboration Tools: e.g. Wiki	2 hours
	Tutoring system development. e.g. CTAT, ASPIRE	2 hours
	Animation tools. E.g. Flash, Gimp, Others: Camstudio for the screencast, image editing, audio editing (audacity), video management, etc	6 hours
Pedagogy	Hands-on assignments / tutorials / peer-teaching /active learning	
<u>References/</u> <u>Readings</u>	 Foundations of Educational Technology: Integrative Approaches and Interdisciplinary Perspectives (Interdisciplinary Approaches to Educational Technology) BY J. Michael Spector, Routledge; 2nd edition Websites/tutorials for the tools 	
Learning Outcomes	 Create a portfolio-like presentation with samples reflecting ways technology can support classroom management, administration, and teaching. Create and evaluate products that critique various software and hardware tools for instructional purposes List and describe legal and ethical issues for using technology in the classroom 	

Programme: MCA Course code: CSA-603 Number of credits: 4 (2L-0T-2P) Effective from AY: 2022-23

Title of course: Computer Graphics Contact hours: 90 hours (30L-0T-60P)

Prerequisites	Knowledge of linear algebra, geometry and programming	
for the course		
Objectives	This course will introduce the learner to various concepts in 3D	
	modeling and computer graphics	
<u>Content</u>	Fundamentals	6 hours
	history of computer graphics, applications, graphics pipeline,	
	physical and synthetic images, synthetic camera, modeling,	

		Std. Com.X AC	<u>)-6</u>
		15 & 22.05.20	23
proces	tion, rendering, relation to computer vision and image sing, review of basic mathematical objects (Points, s, Matrix methods).	2	
Explor archite render indexe	ing OpenGL/WebGL ecture, primitives and attributes, simple modeling and ing of two- and three-dimensional geometric objects, d and RGB color models, frame buffer, double bufferin		
	interaction, events and callbacks, picking		
homog rotatio	etric Transformations geneous coordinates, affine transformations (translatio n, scaling, shear), concatenation, matrix stacks and use lel-view matrix in OpenGL/WebGL for these operations	se	
specify	g al three dimensional viewing, computer viewing, ring views, parallel and perspective projective prmations	4 hours	
for pol	g burces, illumination model, Gouraud and Phong shadin ygons. Rasterization- Line segment and polygon clippir ping, scan conversion, polygonal fill	-	
Discret	te Techniques e mapping, compositing, textures in OpenGL; Ray Traci ive ray tracer, ray-sphere intersection	4 hours ing-	
1) 2) 3) 4) 5) 6) 7) 8)	 Explore a 3D programming IDE (e.g. Alice 3D). Understand basic graphic concepts like objects, camered direction, projection, etc. Using OpenGL/WebGL/Canvas, write a program to create basic 2D/3D geometric shapes. Use RGB colors Using OpenGL/WebGL/Canvas, write a program to word around with basic shape transformations (translate, rotate, scale, skew, etc.). Using OpenGL/WebGL/Canvas, write a program to animate objects/shapes (e.g. bouncing ball). Try to incorporate basic physics laws. Using OpenGL/WebGL/Canvas, write a program to animate object physics laws. Using OpenGL/WebGL/Canvas, write a program to sho object collision. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. Using OpenGL/WebGL/Canvas, write a program to additexture to objects. 	s. ork now dd dd a	
Mini-P Ideally		20 hours	

		15 & 22.05.2023
	development of a graphic simulation. There should be some	
	interactivity involved. Objects in simulations should be in 3D.	
	Objects could be designed in 3D modeling tools like blender.	
	The texture to those objects could be added programmaticall	у
	in the simulation before rendering.	
	(e.g. simulation of solar system)	
Pedagogy	Hands-on assignments / tutorials / peer-learning / flip	
	classroom / analysis of research (or white) papers	
References/	• Edward Angel, Interactive Computer Graphics. A Top-	
<u>Readings</u>	Down Approach Using OpenGL (fifth edition), Pearson	
	Education, 2008	
	Donald Hearn and Pauline Baker, Computer Graphics	
	with OpenGL (third edition), Prentice Hall, 2003	
	• F. S. Hill Jr. and S. M. Kelley, Computer Graphics using	
	OpenGL (third edition), Prentice Hall, 2006	
	 Peter Shirley and Steve Marschner, Computer Graphic 	S
	(first edition), A. K. Peters, 2010.	
	 James D Foley, Andries Van Dam, Steven K Feiner, Joh 	n F
	Huges, Computer graphics with OpenGL: pearson	
	education	
	 Xiang, Plastock, Computer Graphics, 2nd edition, Tata 	
	McGraw	
	 Kelvin Sung, Peter Shirley, Steven Baer, Interactive 	
	Computer Graphics, Concepts and Applications, Cenga	age
	Learning	
	 M M Raiker, Computer Graphics using OpenGL, Elsevier 	er
<u>Learning</u>	Learner will	
<u>Outcomes</u>	1. understand and apply fundamental concepts within	
	computer graphics	
	2. compare and evaluate the ideas in some fundamental	
	algorithms for computer graphics	
	3. apply fundamental principles within interaction	
	programming	
	4. understand fundamental concepts of information and	
	scientific visualization	

Std. Com.X AC-6

Programme: MCA Course Code: CSA-604 Number of Credits: 4 (2L-0T-2P) Effective from AY: 2022-23

Title of the Course: Data science

Contact Hours: 90 hours (30L-0T-60P)

Prerequisites for the course	Statistics and probability theory and python programming. Python programming and Data science theory fundamentals.	
<u>Objectives</u>	To get started with basics of data science and learn all aspects of data science in its entirety. Learning Objectives Basic process of data science	

Std. Com.X AC-6 15 & 22.05.2023 Python and Jupyter notebooks An applied understanding of how to manipulate and analyze uncurated datasets Basic statistical analysis and basic machine learning methods like linear regression. How to effectively visualize results using python APIs or tools. Content Unit -1: Basics of Data Science: Introduction; Typology of 4 hours problems-Data science in a big data world: Benefits and uses of data science and big data-Facets of data-The data science process-The big data ecosystem and data science-The data science process: Overview of the data science process- Defining research goals and creating a project charter- Retrieving data-Cleansing, integrating, and transforming data-Exploratory data analysis-Build the models- Presenting findings and building applications on top of them. Unit -2 2 hours Mathematics for Data science • Importance of linear algebra, statistics and optimization from a data science perspective; Structured thinking for solving data science problems. • Linear Algebra: Matrices and their properties (determinants, traces, rank, nullity, etc.); Eigenvalues and eigenvectors; Matrix factorizations; Inner products; Distance measures; Projections; Notion of hyperplanes; half-planes. Probability, Statistics and Random Processes: Probability theory and axioms; Random variables; Probability distributions and density functions (univariate and multivariate); Expectations and moments; Covariance and correlation; Statistics and sampling distributions; Hypothesis testing of means, proportions, variances and correlations; Confidence (statistical) intervals; Correlation functions; White-noise process. **Unit -3** Introduction to Data Science Methods: Linear regression 2 hours as an exemplar function approximation problem; Linear classification problems. Unit -4 Handling large data on a single computer 2 hours The problems you face when handling large data-General techniques for handling large volumes of data-General programming tips for dealing with large data sets-Case study 1: Predicting malicious URLs-First steps in big data-Distributing data storage and processing with frameworks 4 hours Unit 5: Join the NoSQL movement-Introduction to NoSQL Unit 6: The rise of graph databases

		Std. Com.X AC-6
		15 & 22.05.2023
	 Introducing connected data and graph databases 	4 hours
	 Introducing Neo4j: a graph database 	
	Unit 7: Data visualization to the end user	4 hours
	 Data visualization options 	
	 Crossfilter, the JavaScript MapReduce library 	4 hours
	 Creating an interactive dashboard with dc.js 	
	Dashboard development tools	4 hours
	Data science Story telling.	
	1. Python libraries – Numpy, Matplotlib, seaborn, pandas.	2 hours
	2. Write program to do Exploratory data analysis using the	3 hours
	libraries above Data collection(Kaggle, github and	
	Machine learning repository), data cleaning (removing	3 hours
	missing values, reformatting data etc.	3 hours
	3. Write program to do univariate analysis using tools like Bo	
	plot, histogram etc.	3 hours
	4. Write program to do bivariate analysis using tools like	2.6
	scatter plots, box plots.	3 hours
	5. Demo on business intelligence tools -Business intelligence	
	tools help an organization analyze huge chunks of data;	4 hours
	they provide insights with actionable recommendations -	1E hours
	Tableau, Qlik,splunk,Trillium,Logi analytics, powerBl	15 hours
	 6. Write program to implement PCA. 7. Write program to implement SVD 	5 hours
	8. Use tools like tableau/Power BI to do Visualizatiation for	JIIOUIS
	large data set and create dashboard	
	9. Mini Project: With the tools of Jupyter notebooks, numpy	. 6 hours
	pandas, and Visualization, you're ready to do sophisticate	,
	analysis on your own. You'll pick a dataset we've worked	
	with already and perform an analysis for this first project	
	10. Machine Learning: To take your data analysis skills one sto	ep
	further, write program to do basics of machine learning a	
	how to use sci-kit learn - a powerful library for machine	
	learning.	
	11. Working with Text and Databases: You'll find yourself ofte	en
	working with text data or data from databases. This week	
	will give you the skills to access that data. For text data,	
	we'll also give you a preview of how to analyze text data	
	using ideas from the field of Natural Language Processing	
	and how to apply those ideas using the Natural Language	
	Processing Toolkit (NLTK) library.	
	12. Final Project: These weeks let you showcase all your new	
	skills in an end-to-end data analysis project. You'll pick the	
	dataset, do the data munging, ask the research questions	,
	visualize the data, draw conclusions, and present your	
	results.	
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study.	
	Lab assignments/ research paper reading/ discussion/ tools	

Std. Com.X AC-6 15 & 22.05.2023

		12	& 22.05.2023
	demonstration/ mini project.		
References/	1. Practical statistics for data science by peter bruce and		
<u>Readings</u>	andrew bruce		
	Naked statistics by charles wheelon		
	Business data science by matt taddy		
	 Elements of statistical learning by Trevor Hastie, Robert an jerome 	nd	
	5. Python for data analysis		
	6. Data science and big data analytics -EMC2		
	 Hands-On Data Structures and Algorithms with Python — I Dr. Basant Agarwal. 	Ву	
	 The Art of Data Science — by Roger D. Peng and Elizaber Matsui. 	th	
	 Automate the Boring Stuff With Python: Practical Programming— by Al Sweigart. 		
<u>Learning</u>	Enrich one's knowledge with overall basics of data science a	nd	
Outcomes	appreciate data science with this introduction to be able to g	et	
	started in the direction.		
	Students should be able to carry out mini data science projec	ts	
	using python libraries.		

(Back to Index) (Back to Agenda)

Programme: MCA Course Code:CSA-605 Number of Credits: 4 (3L-0T-1P)

Effective from AY: 2022-23

Title of Course: IoT architecture and protocols Contact Hours: 60 hours (60L-0T-0P)

Prerequisites	Internet Technologies, Computer Organization and architecture,	Operating				
for the course	Systems.					
Objectives	To understand the fundamentals of Internet of Things and the protocols and					
	standards designed for IoT					
<u>Content</u>	Introduction to IoT: Introduction, IoT ecosystem, Applications,	4 hours				
	Challenges.					
	Fundamentals: IoT Devices - Sensors, Actuators, and gateways,	6 hours				
	Basics of the wireless sensor network.					
	IoT Architecture & Design: oneM2M, IoTWF, Additional					
	Reference Models, Core functional stack, Data Management					
	and compute stack.					
	Communicating smart objects: Communication criteria,	12 hours				
	communication models, IoT access technologies – 3GPP MTC,					
	IEEE 802.11, IEEE 802.15, WirelessHART, ZWave, Bluetooth Low					
	Energy, Zigbee Smart Energy, DASH7					
	IoT Network Layer: IP as IoT network layer, IPv6, 6LoWPAN,	10 hours				
	6TISCH, RPL, CORPL, CARP					
	IoT Transport and Application protocols:	12 hours				
	Transport Layer: TCP, UDP, DCCP, SCTP, TLS, DTLS					
	IoT application transport methods, HTTP, CoAP, XMPP, MQTT,					

		15	& 22.05.2023
	AMQP, DDS		
	Security in IoT: MAC802.15.4, 6LoWPAN, RPL, Application Layer security.		4 hours
	IoT Application case study: Discuss any 3 applications of IoT		4 hours
Pedagogy	lectures/ tutorials/Hands-on assignments/self-study		
References/ Readings	 David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017 Hersent, Olivier, David Boswarthick, and Omar Elloumi, The internet of things: Key applications and protocols. John Wiley & Sons, 2011. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and Paradigms. Elsevier, 2016. 		
<u>Learning</u> Outcomes	 After completing the course, students will be able to: Understand the concepts of the IoT Architecture Refe Identify the IoT networking components and protocol 		e model

Std. Com.X AC-6

Programme: MCA Course code: CSA-606 Number of Credits: 4 (2L-0T-2P) Effective from AY: 2022-23

Title of course: Mobile App Development Contact hours: 90 hours (30L-0T-60P)

		1
<u>Prerequisites</u>	Knowledge of OS and networking; and web development basics	
<u>for the course</u>		
Objectives	On completion of this course, the learner should be able to	
	successfully build, debug and deploy android apps.	
<u>Content</u>	Android OS, Ecosystem & Basics	6 hours
	 Mobile Platforms & OSs; Approaches to mobile 	
	development; Android OS; Android System Architecture;	
	Android App Lifecycle; Play Store	
	Intro; Create Your First Android App; Layouts, Views and	
	Resources; Text and Scrolling Views; Resources to Help	
	You Learn	
	• Debugging your apps; Testing your app; Support libraries,	
	and Backwards Compatibility.	
	User Interface & Lifecycle	14 hours
	• Screen Sizes; User Interaction - User Input Controls,	
	Menus; Screen Navigation; RecyclerView	
	• Delightful User Experience; Drawables, Themes and Styles;	
	Material Design; Providing Resources for adaptive layouts	
	Testing the User Interface	
	• Activities and Intents; The Activity Lifecycle and Managing	
	State; Starting Activities with Implicit Intents	
	Background Tasks & Notifications	4 hours
	 Background Tasks; AsyncTask and AsyncTaskLoader; 	
	Connecting to the Internet; Broadcast Receivers; Services	

	Std. Com.X AC-6
	15 & 22.05.2023
 Triggering, Scheduling, and Optimizing Bac Notifications; Alarm Manager; Transferring Efficiently. 	-
Data Saving, Retrieving, Loading	6 hours
 Overview to storing data 	
 Shared Preferences; App Settings 	
 SQLite; Firebase 	
 Sharing Data: Content Resolvers and Content 	ent Providers
 Using Loaders to Load and Display Data 	
 Connecting with API service endpoints. 	
Suggested Sample List of Assignments:-	40 hours
1) Build an OO system (like elevators in a bu	
etc.). Employ use of design patterns (like	
Singleton, Observer, etc.)	, aupter,
2) Creating a Java/Kotlin project using build	tool (e g
Gradle, Maven)	1001 (C.g.
3) Create a hello world android app using I)F (preferably
Android Studio). Try deploying on emula	
Debug using logcat.	
	n installed in
4) Create a calculator app (similar to the ap	
the device used during development)	. Evalore baying
5) Using intents create a game (like a maze)	
raster images & vector graphics in the ap	
6) Create a CRUD app. Explore the use of va	arious form
elements/widgets and fragments.	
7) Create a To-Do app. Explore adding the v	-
groups programmatically (e.g. using infla	te, recycler
view). Use material design in the UI.	
8) Create an app accessing data exposed by	
service. Explore BroadcastReceiver, servi	
9) Create an app that will run in background	
communicate information through statu	s bar/ push-
notifications.	
10) Create a CRUD app using data stored loc	ally. Explore
ROOM, SQLite	
11) Create an app to consume an API and po	pulate the
layout with appropriate views.	
12) Create an app to contain a webapp.	
Mini-project	20 hours
Ideally done in a group. It should include design	
implementation of an android application. Proje	
implementation should mandatorily use at least	
specific functionality (to justify as a mobile app a	
app). The GUI of the app should follow design gu	uidelines (e.g.
Material/ Flat Design). Conduct and progress of	the project
could follow industry practices (e.g. UX mocks, g	it, scrum, etc.).
Pedagogy Assignments / tutorials / peer-learning / trouble	shooting/ case

15 & 22.05.2023 studies References/ Bill Philips & Brian Hardy, "Android Programming: The • **Readings** Big Nerd Ranch Guide" Dawn Griffiths & David Griffiths, "Head First Android • Development" • Ian F. Darwin, "Android Cookbook" https://developer.android.com • https://kotlinlang.org • https://material.io 1. Learner will understand the android ecosystem, android Learning **Outcomes** versions & compatibility across them. 2. Learner will be able to design user interfaces specifically to be run native android devices. 3. Learner will be able to evaluate which type of views & widgets are preferable for various use cases. 4. Learner will be able to build and design navigation flows in an app. 5. Learner will be able to connect the app to Android services or apps already available on the device. 6. Learner will be able to build apps that can store data locally or remotely.

(Back to Index) (Back to Agenda)

Std. Com.X AC-6

Programme: M.C.A	
Course Code: CSA-607	Title of the Course: Research Methodology
Number of Credits: 4 (4L-0T-0P)	Contact Hours: 60 hours (60L-0T-0P)
Effective from AY: 2022-23	

Prerequisites	Nil	
for the course		
Objectives:	The objective of the course is to introduce the theoretical as well aspects of Research	as practical
	Foundations of Research: Meaning, Objectives, Motivation, Utility. Concept of theory, empiricism, deductive and inductive theory. Characteristics of scientific method – Understanding the language of research – Concept, Construct, Definition, Variable. Research Process	15 hours
	Problem Identification & Formulation – Research Question – Investigation Question – Measurement Issues – Hypothesis – Qualities of a good Hypothesis –Null Hypothesis & Alternative Hypothesis. Hypothesis Testing – Logic & Importance	
	Research Design: Concept and Importance in Research – Features of a good research design – Exploratory Research Design – concept, types and uses, Descriptive Research Designs – concept, types and uses. Experimental Design: Concept of	

		Sto	d. Com.X AC-6	
		15	& 22.05.2023	
	Independent & Dependent variables.			
	Qualitative and Quantitative Research: Qualitative research - Quantitative research – Concept of measurement, causality,	_	15 hours	
	generalization, replication. Merging the two approaches.			
	Measurement: Concept of measurement– what is measured Problems in measurement in research – Validity and Reliabili Levels of measurement – Nominal, Ordinal, Interval, Ratio.			
	Sampling: Concepts of Statistical Population, Sample, Samplin Frame, Sampling Error, Sample Size, Non-Response. Characteristics of a good sample. Probability Sample – Simple Random Sample, Systematic Sample, Stratified Random Samp & Multi-stage sampling. Determining size of the sample – Practical considerations in sampling and sample size.	5		
	Data Analysis: Data Preparation – Univariate analysis (frequency tables, bar charts, pie charts, percentages), Bivariate analysis – Cross tabulations and Chi-square test including testing hypothesis of association. Interpretation of Data and results			
	Paper Writing – Layout of a Research Paper, Software for pap formatting like LaTeX/MS Office.	ber	15 hours	
	Journals in Computer Science, Impact factor of Journals, Whe and where to publish? Ethical issues related to publishing, Plagiarism and Self-Plagiarism. Software for detection of Plagiarism	en		
	Use of Encyclopedias, Research Guides, Handbook etc., Academic Databases for Computer Science Discipline. Use of tools / techniques for Research: methods to search required information effectively, Reference Management Software like Zotero/Mendeley			
Pedagogy:	Lecture/Presentations/Assignments/Case Study/			
References/ Readings	 Business Research Methods – Donald Cooper & Pame TMGH, 9th edition 			
	 Business Research Methods – Alan Bryman & Emma E Oxford University Press. Research Methodology: Methods and Techniques, C.F Revised Edition, New Age International Publishers Social Science Research: Principles, Methods, and Pra Bhattarchajee, University of South Florida, Scholar Co <u>https://digitalcommons.usf.edu/cgi/viewcontent.cgi?</u> <u>text=oa_textbooks</u> 	R.Kot ctice	hari, Second s, Anol ons.	
<u>Learning</u>	After completion of this course, students will –			
<u>Outcomes</u>	 Understand how to formulate a research problem 			

٠	Understand data collection and analysis techniques
•	Understand all aspects related to publishing research papers

Programme: MCA Course Code: CSA-608 Number of Credits: 4(2L+0T+2P) Effective from AY: 2023-24

Title of the Course: Deep Learning **Contact hours:** 90 hours(30L + 0T + 60 P)

Effective from AY: 2023-24			
Prerequisites	Familiarity with linear algebra, probability theory, machine		
for the course	learning , familiarity with python		
<u>Objectives:</u>	This course is aimed at any one who wishes to explore deep learning from scratch. This course offers a practical hands on exploration of deep learning, avoiding mathematical notation, preferring instead to explain quantitative concepts through programming using python API		
<u>Content:</u>	Introduction :- what is deep learning ?- Artificial Intelligence, machine learning and deep learning -learning representation from data-"the deep " in deep learning -understanding how deep learning works -what deep learning has achieved so far.	2 hours	
	Revision of Fundamentals of machine learning- probabilistic modeling – early neural networks- kernel methods-decision tree, random forest and gradient boosting machines -back to	3 hours	
	neural networks- what makes deep learning different-the modern machine learning landscape . Four branches of machine learning -supervised -unsupervised- self-supervised – reinforcement learning – evaluating machine	3 hours 3 hours	
	learning models – data processing, feature engineering- overfitting and underfitting -universal workflow of machine learning	3 hours	
	The mathematical building block of neural networks – a first look at neural networks – data representation for neural networks- the gears of neural networks :Tensor operations- the engine of neural networks : Gradient -based optimization.	3 hours	
	Neural networks – anatomy of neural networks- building blocks of deep learning -models of layers -loss functions and optimizers-keys to configuring the learning process introduction to keras -keras,tensor flow, theoano and CNTK –	3 hours	
	developing with keras -setting up a deep learning workstation - case studies – classification movie reviews – classification newswires -predicting house prices.	3 hours	
	Deep Learning for computer vision – Introduction to convnets – training convnets from scratch on small data sets – using pre trained convnet – visualizing what convnets learn	5 hours	

		<u>Std</u>	l. Com.X AC-6
		15	& 22.05.2023
	Deep learning for text and sequences – working with text -on- hot encoding of words and characters -using word embedding understanding recurrent neural networks – A recurrent layer Keras -understanding LSTM and GRU layers- A concrete LSTM example in Keras.	gs- in	5 hours
	Advanced use of recurrent neural networks- A temperature- forecasting problem – preparing the data – a common-sense, non machine learning baseline-using recurrent drop out to fig overfitting- stacking recurrent layers-using bidirectional RNNs sequences processing with convnets	ght	6 hours 6 hours 6 hours
	Generative deep learning – text generation with LSTM- deep Dream – neural style transfer-generative images with variational autoencoders- introduction to generative adversar networks.	rial	6 hours 6 hours
	 Practical Assignment 1 - Logistic Regression with a Neural Network mindset Assignment 2 - Planar data classification with one hidden layer Assignment 3 - Building your Deep Neural Network: Step by Step Assignment 4 - Deep Neural Network for Image Classification: Application Assignment 5 - Initialization and performance of model, Regularization and whether it helps eliminate overfitting, Gradient Checking with model used, Optimization Methods used for every model Assignment 7 - Convolution model Step by Step demo Assignment 8 - Convolution model Application for image classification Assignment 9- Keras Tutorial - Autonomous driving application - Car Detection, Face Recognition Assignment 10 - Art Generation with Neural Style transfer 	-	6 hours 6 hours 6 hours 6 hours 6 hours
Pedagogy:	Lectures/ tutorials/lab assignments/self-study		
<u>References/</u> <u>Readings</u>	 Main Reading :- Introduction to Statistical Learning, Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, Springer, 2013. EthemAlpaydin, Introduction to Machine Learning, MIT Press. Richard O. Duda, Peter E. Hart, David G. Stork Pattern Classification,. Peter Flach, Machine Learning, Cambridge Christopher M. Bishop, Pattern recognition and machine Learning, springer. 		

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

6. Deep Learning, Ian Good fellow, MIT press 7. Tom Michele, Machine Learning, McGraw-Hill.Learning OutcomesBy the end of the course , students should: • Develop an appreciation for what is involved in learning from data. • Revision of machine learning fundamentals • understand a wide variety of deep learning algorithms. • understand how to apply a variety of learning algorithms to data. • understand how to perform evaluation of learning algorithms and model selection.	15 & 22.05.2025		
Learning By the end of the course , students should: Outcomes Develop an appreciation for what is involved in learning from data. • Revision of machine learning fundamentals understand a wide variety of deep learning algorithms. • understand how to apply a variety of learning algorithms to data. understand how to perform evaluation of learning algorithms		6. Deep Learning, Ian Good fellow, MIT press	
 Develop an appreciation for what is involved in learning from data. Revision of machine learning fundamentals understand a wide variety of deep learning algorithms. understand how to apply a variety of learning algorithms to data. understand how to perform evaluation of learning algorithms 		7. Tom Michele, Machine Learning, McGraw-Hill.	
 data. Revision of machine learning fundamentals understand a wide variety of deep learning algorithms. understand how to apply a variety of learning algorithms to data. understand how to perform evaluation of learning algorithms 		By the end of the course , students should:	Learning
• Equips them with a general understanding of deep learning.	15	 data. Revision of machine learning fundamentals understand a wide variety of deep learning algorithms. understand how to apply a variety of learning algorithms to data. understand how to perform evaluation of learning algorithms and model selection. 	Outcomes

(Back to Index) (Back to Agenda)

Programme: MCA

Course code: CSA-609 Number of credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Title of course: Programming Paradigms Contact hours: 60 hours

Effective from AY	: 2022-23	
Prerequisites	Knowledge of programming	
for the course		
Objectives	To learn and understand various programming paradigms.	
<u>Content</u>	Understanding Programming Paradigm	4 hours
	 Programming paradigm concept, motivation, types and 	
	classification of paradigms.	
	• Factors with respect to programming languages: Binding	
	times and flexibility; Scoping; First class values;	
	Abstraction; Typing; Storage Allocation & Dynamic	
	Memory	
	Imperative Programming	4 hours
	 Variables and data types; Operators and expressions; 	
	Input/Output operations, Decision constructs; Looping	
	constructs	
	 Procedural (in Python/C) blocks & scope; procedures 	
	(functions)	
	 Object Oriented (in Java/C++) classes & objects, 	
	object-oriented principles (encapsulation, abstraction,	
	inheritance, polymorphism)	
	Functional Programming (in Haskell/Clojure/Scala)	20 hours
	 Revision of mathematical Functions' concepts 	
	 Side effects; Pure functions 	
	Type induction	
	 Defining functions 	
	 Currying; Function composition 	
	Recursion	
	 Lazy evaluation; infinite lists 	
	List comprehensions	
	 Higher order functions; Folds 	

		Std. Com.X AC-6
		15 & 22.05.2023
	 Logic Programming (in Prolog/ECLiPSe Constraint language) Revision of mathematical Logic concepts 	12 hours
	 Programming "without algorithms" 	
	 Logic programming with facts, rules and goals Recursion; Lists 	
	 Constraint logic programming; constraints as 	
	relationship between variables; solving puzzles (like	
	sudoku)	
	Event-driven Programming (in Python/.NET)	8 hours
	• Events	0 110013
	Main loop & callback	
	 Scheduler & Event handlers; Triggers 	
	 Exception handling 	
	Reliable eventing	
	 Asynchronous triggers 	
	Multi-Paradigms and more	12 hours
	 Language support for multi paradigms; Benefits & issue 	
	 Parallel programming Data Parallelism (<i>in OpenMP</i>) 	-
	and Message Passing (in MPI)	
	• Reactive programming (in Elm/ReactiveX for Java, JS)	
	Meta programming (<i>in Lisp</i>)	
	Natural Language Programming (<i>in SciLab/MATLAB</i>)	
Pedagogy	Hands-on assignments / tutorials / peer-learning / pair	
	programming/ analysis of research (or white) papers	
References /	• Terrance W. Pratt, Marvin V. Zelkowitz, "Programming	
<u>Readings</u>	Languages - Design & Implementation"	
	 Robert L. Sebesta, "Concepts of Programming 	
	Languages"	
	 Ravi Sethi, "Programming Languages Concepts & 	
	Constructs"	
	Bruce J. Mac Lennan, "Principles of Programming	
	Languages: Design, Evaluation, and Implementation"	
	Kenneth C. Louden, "Programming Languages: Principle	S.
	and Practice"	
	Allen Tucker, Robert Noonan, "Programming Languages	5:
	Principles and Paradigms"	
	Graham Hutton, "Programming in Haskell"	
	W. Clocksin, "Programming in Prolog" Clim. Abdamentlean Them. Evilyvinth, "Econstitute of	
	• Slim Abdennadher, Thom Frühwirth, "Essentials of	
	Constraint Programming"	
	 Roland Kuhn, Brian Hanafee, Jamie Allen, "Reactive Design Patterns" 	
Learning	1. Learner will be able to distinguish between different	
Outcomes	programming paradigms	
	2. Learner will be able to choose an adequate	
	programming paradigm in solving specific software	
	engineering problems	

3.	Learner will be able to recognize the similar concepts	
	implemented in a different way across different	
	programming languages and paradigms	

Programme: MCA Course code: CSA-610 Number of Credits: 4 (2L-0T-2P) Effective from AY: 2023-24

Title of course: Software Testing **Contact Hours:** 90 hours (30L-0T-60P)

ffective from A		1
<u>Prerequisites</u>	Software Engineering, OOT, Web Technology, Agile	
<u>for the course</u>	Methodology	
	Software Engineering, OOT, Web Technology	
<u>Objectives</u>	Inculcate the concepts and skills related to testing and quality	
	assurance	
	To empower the learner to evaluate and select appropriate	
	testing methods and tools	
	Develop Test first approach to software development.	
	Inculcate the concepts and skills related to testing and quality assurance.	
	Use various tools for testing and test automation	
	To empower the learner to evaluate and select appropriate	
	testing methods and tools.	
Content	Fundamentals of testing: Test, test case, test case design	8 hours
	Levels of testing: Unit, Integration, system, Acceptance Testing	
	Types of testing: White box and black box, various techniques –	
	Cyclomatic complexity, equivalence class partitioning, boundary	
	value analysis	
	Functional and non-functional testing.	
	Test Driven Development:	8 hours
	TDD frameworks and refactoring using Junit, pair programming	
	Debugging approaches and principles, debugging guidelines	4 hours
	Testing tools and frameworks for Web and App development:	4 hours
	Selenium, Jmeter, Jira, Bugzilla, API testing, DB testing,	
	Continuous Integrations and DevOPs	2 hours
	Quality Assurance: Reviews, walkthroughs, quality frameworks	4 hours
	Test management tool: keep track of all the testing activity, fast	6 hours
	data analysis, manage manual and automation test cases,	
	various environments, and plan and maintain manual testing	
	Bug tracking tool: commonly used bug tracking tools such as: Jira, Bugzilla	6 hours
	Automated testing tool: how to change the manual test cases	6 hours
	into a test script with the help of some automation tools.	
	commonly used automation testing tools: Selenium	

			d. Com.X AC-6
		15	& 22.05.2023
	Performance testing tool: test the performance of the softwa or an application. Performance testing tools such as Apache JMeter, LoadRunner	ire	6 hours
	Cross-browser testing tool: to test application on multiple browsers, perform compatibility testing through various browsers by using cross-browser testing tools such as LambdaTest, Sauce Labs		6 hours
	Integration testing tool: test the interface between modules and find the bugs. Some of the most used integration testing tools : Citrus, FitNesse		6 hours
	Unit testing tool using Junit/NUnit/phpunit and refactoring tools		6 hours
	Mobile/android testing tool to check the usability, functional security, and consistency of the application. Use of tools of mobile testing such as Appium	ity,	6 hours
	GUI testing tool GUI testing:Navigation validation, verify the check screens, da integrity validation, verification of usability situations, and als check the numeric, date field formats.		6 hours
	Security testing tool authorization, confidentiality, authentication, and availability types of aspect SonarQube ZAP		6 hours
<u>Pedagogy</u>	Classroom/handson instructions, assignments, mini projects. Demo of tools, Classroom/handson instructions, assignments mini projects		
<u>References/</u> <u>Readings</u>	 Agile Java: Crafting Code with Test-Driven Development, Prentice Hall; 1st edition, 2005 A Practitioner's Guide to Software Test Design, Lee Copelan Artech House Refactoring: Improving the Design of Existing Code by Mart 		
	Fowler, Pearson, 2009 4. Code Complete- Steve McConnel, Microsoft Press US; 2nd edition, 2004 Websites and online tutorials		
<u>Learning</u> Outcomes	 Learner will be able to design test cases Learner will be able to apply agile and lean principles in software design Learner will be able to configure and use various test 		
	 automation tools 4. Learner will be able to adopt best practices in software testing and quality assurance 5. Learner will be able to use testing tools for all aspects of software testing 6. Learner will be able to evaluate and select appropriate tools 	J	
	7. Learner will apply the tools on a software project		

Programme: MCA

Course Code: CSA-611
Number of Credits: 4 (2L-0T-2P)
Effective from AY: 2022-23

Title of the Course: Artificial IntelligenceContact Hours: 90 hours (30L-0T-60P)

Prerequisites for the course	 a)Strong knowledge of Mathematics. b)Good command over programming languages. c) Good Analytical Skills. d)Ability to understand complex algorithms. e) Basic knowledge of Statistics and modeling. 	
Objectives:	This course provides students with an in-depth introduction to Five main tribes of Artificial Intelligence-namely Symbolists,Connectionists,Bayesians,Evolutionariesand Analogizers.	
	symbolist systems include Decision trees,Random decision forests,Production rule systems,inductive programming.	
	connectionist include Artificial neural nets,Reinforcement learning,Deep learning	
	Bayseaian include Hidden Markov chains-Graphical models- Causal inference	
	Evolutionary -biologist - biologically inspired computing	
	Analogizers (psychologists) include k nearest neighbor algorithm and svm.	
	This course is aimed at exploring all facets of AI and obtain in- depth understanding of this facilitating field.	
<u>Content:</u>	Unit 1 :-Introduction to AI :- The roots of Artificial Intelligence - Five tribe of AI -The symbolist - connectionist -Evolutionaries- The Bayseians-Analogizer	1 hours
	Unit2:-Symbolic Tribe (Symbolic AI) Problem-solving-Solving Problems by Searching -Search in Complex Environments - Adversarial Search and Games -Constraint Satisfaction Problems . Knowledge, reasoning, and planning Logical Agents - First- Order Logic - Inference in First-Order Logic - Knowledge Representation -Automated Planning .	5 hours
	Unit -3 :-Bayesian Tribe :- Uncertain knowledge and reasoning - Quantifying Uncertainty -Probabilistic Reasoning-Probabilistic Reasoning over Time -Probabilistic Programming -Making Simple Decisions -Making Complex Decisions -Multiagent Decision Making	5 hours
	Unit 4:- Connectionism tribe :- Machine Learning - supervised learning -unsupervised learning-Artificial neural networks- perceptron-MLP-deep neural network -CNN-RNN-LSTM -hop	5 hours

		d. Com.X AC-6
field neural network	15	& 22.05.2023
Unit 5 :- Evolutionaries tribe:- An Overview of Combinatorial Optimization-An Introduction to Genetic Algorithms-Theoreti Foundations of Genetic Algorithms-Genetic Algorithms in Engineering and Optimization-Genetic Algorithms in Natural Evolution-Simulated Annealing and Tabu Search GALib-Genet Algorithm Optimization Toolbox (GAOT) under Matlab.		5 hours
Unit 6 :- Analogizers :- constrained optimization ,Margin and SVM- hard margin and soft margin, non-linearity - kernel-different types of kernels-k nearest neighbors		5 hours
Unit 7 :- Communicating, perceiving, and acting-Natural Language Processing -Deep Learning for Natural Language Processing -Computer Vision -Robotics		4 hours
Conclusions- Philosophy, Ethics, and Safety of AI - Explainable - The Future of AI	e Al	
 Practical Real-world path planning for pedestrians. In the first part, students implement A* over a map that includes roads/pa as well as elevations. In the second part, students collect actual data through walking around the real world, and the cost model is then learned via regression techniques. Solve maze via search -this assignment involves formulating 	е	5 hours
maze-solving as a search problem, image processing (via OpenCV) as a step in maze-solving, as well as guided performance/quality analysis of representational parameters.		5 hours
 Within the context of an artificial intelligence course, students are taught to identify ethical issues within technic projects and to engage in moral problem solving with regato such issues. Neural network for face recognition using tensor flow -builty of the such issues. 	rd	5 hours
feedforward neural networks for face recognition using TensorFlow. Students then visualize the weights of the neu networks they train. The visualization allows students to understand feedforward one-hidden layer neural network terms of template matching, and allows students to explor	s in	5 hours
 overfitting. Organic path finding -Students develop a "human-like" pathfinding technique by specializing a generic search algorithm with custom action cost and heuristic cost functions. Students apply classical search algorithms and reflect on example organic paths to achieve "human-like" pathfinding. 		5 hours

		Std. Com.X AC-6
		15 & 22.05.2023
	 Implement a genetic algorithm in Python to evolve strategie for Robby the Robot to collect empty soda cans that lie scattered around his rectangular grid world. Compare the performances of a brute-force search and a search employing the Minimum Remaining Values (MRV) heuristic in solving Sudoku puzzles. The students need to understand and extend an existing implementation of the back-propagation algorithm and use to recognize static hand gestures in images. Students learn about feedforward neural networks and the backpropagation algorithm by implementing a perceptron network for AND and XOR Boolean functions and, given an 	5 hours 5 hours
Pedagogy:	 implementation of a feedforward network, learn digit recognition using the MNIST data set. In this assignment students extend a Tic Tac Toe program to Ultimate Tic Tac Toe and implement a different search strategy than the example code. Lectures/ tutorials/assignments/self-study. 	5 hours
References/	Main Reading :-	
References/ Readings	 Main Reading :- Master algorithm by pedro domingos Artificial Intelligence -Modern approach -Russel and Norvig 4th Edition Hands on Machine learning with sci-kit learn and tensorflow-Orellie Deep learning with python by Francois - Elements of statistical learning - Trevor Hastie, Robert and Jerome -springer. Bayesian reasoning and machine learning - David barber Genetic algorithm by David E Goldberg. Artificial Intelligence- A Modern Approach (3rd edition) by norvig , russel Artificial Intelligence By Example-2nd edition by Denies Rothman, PACKT Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning Human Compatible: Artificial Intelligence and the Problem of Control by Stuart Russel 	e
	 References 12. Artificial Intelligence - A guide for thinking humans by Melaine Mitchell. 13. A world without work - by Daniel susskind. 14. Genius Makers -Cade Metz 15. what computer still cannot do by Hubert Dreyfus 16. The alignment problem -Brian Christian 17. Clara and sun by Kazuo Ishiguro 18. Rebooting AI by Gary Marcus and Ernest Davis 	

		13 & 22.03.2023
	19. Four futures -Peter Frase	
	20. Flake, The Computational Beauty of Nature, MIT Press	,
	1998.	
	21. von Neumann, The Computer and the Brain. Yale	
	University Press, 1958	
	22. https://formtek.com/blog/artificial-intelligence-the-fiv	/e-
	tribes-of-ai/	
Learning	By the end of the course , students should:	
<u>Outcomes</u>	 develop an appreciation for what is involved in AI systems 	5
	 understand a wide variety of AI algorithms. 	
	 learning to apply different tribes in different applications. 	
	 understand how to apply a variety of learning algorithms 	to
	data.	
	 understand how to perform evaluation of learning 	
	algorithms and model selection.	
	 further learn to understand the need to understand Master 	er
	algorithm - unification of all algorithms to solve complex	
	problems.	-
	 to carry out the mini project work with respect to symboli paradism 	IC
	paradigm.	
	 To carry out the mini project work with respect to connections in paradism 	
	connectionsim paradigm.	'n
	 To carry out the mini project work with respect to bayseia paradigm. 	111
	• To carry out the mini project work with respect to	
	analogiser paradigm.	
	• To carry out the mini project work with respect to	
	Evolutionary paradigm.	
L	(Pack to Index)	

(Back to Index) (Back to Agenda)

Programme: MCA Course Code: CSA-612 Number of Credits: 4 (2L+0T+2P) Effective from AY: 2022-23

Title of the Course:MLOps Contact hours: 90 hours (30L-0T-60P)

Prerequisites	Familiarity with linear algebra, probability theory, machine	
for the course	learning , familiarity with python.	
Objectives:	This course is aimed at any one who wishes to explore deep	
	learning from scratch. This course offers a practical hands on	
	exploration of deep learning, avoiding mathematical	
	notation, preferring instead to explain quantitative concepts	
	through programming using python API	
Content:	Unit 1. Introduction to MLOps Rise of the Machine Learning	3 hours
	Engineer and MLOps-What Is MLOps?-DevOps and MLOps-An	
	MLOps Hierarchy of Needs-Implementing DevOps-Configuring-	
	Continuous Integration with GitHub Actions-DataOps and Data	
	Engineering-Platform Automation-MLOps	

	Sto	d. Com.X AC-6
		& 22.05.2023
		3 hours
Unit 2. MLOps Foundations-Bash and the Linux Command Lin	e-	
Cloud Shell Development Environments-Bash Shell and		
Commands-List Files Run CommandsFiles and Navigation-		
Input/Output-Configuration-Writing a Script-Cloud Computin	g	
Foundations and Building Blocks-Getting Started with Cloud		
Computing- minimalistic python revision-Descriptive Statistic		
and Normal Distributions-Optimization-Machine Learning Key	/	3 hours
Concepts-Doing Data Science-Build an MLOps Pipeline from		
Zero		
Unit 3. MLOps for Containers and Edge Devices Containers-		
Container Runtime-Creating a Container Running a Container	-	
Best Practices-Serving a Trained Model Over HTTP-Edge		3 hours
Devices-Coral Azure Percept-TFHub-Porting Over Non-TPU		
Models-Containers for Managed ML Systems-Containers in		2 4 4
Monetizing MLOps-Build Once, Run Many MLOps Workflow		3 hours
Unit 4. Continuous Delivery for Machine Learning Models-		
Packaging for ML Models-Infrastructure as Code for Continuo		
Delivery of ML Models-Using Cloud Pipelines-Controlled Rollo	uι	3 hours
of Models-Testing Techniques for Model Deployment Unit 5. AutoML and KaizenML-AutoML-MLOps Industrial		5 nours
Revolution-Kaizen Versus KaizenML-Feature Stores-Apple's		
Ecosystem-Apple's AutoML: Create ML-Apple's Core ML Tool	5	3 hours
orGoogle's AutoML and Edge Computer Vision or Azure's	5	5 110013
AutoMLor AWS AutoML-Open Source AutoML Solutions-		
Ludwig-FLAML-Model Explainability		
Unit 6. Monitoring and Logging-Observability for Cloud MLOp	S-	
Introduction to Logging-Logging in Python-Modifying Log	-	3 hours
Levels-Logging Different Applications-Monitoring and		
Observability-Basics of Model Monitoring-Monitoring Drift w	ith	
AWS SageMaker-Monitoring Drift with Azure ML		3 hours
Unit 7. MLOps for AWS-Introduction to AWS-Getting Started		
with AWS Services-MLOps on AWS-MLOps Cookbook on AWS	<u>)</u> -	
CLI Tools-Flask Microservice-AWS Lambda Recipes-AWS		
Lambda-SAM Local-AWS Lambda-SAM Containerized Deploy-		
Applying AWS Machine Learning to the Real World		3 hours
Unit 8. Machine Learning Interoperability-Why Interoperabili	•	
Is Critical-ONNX: Open Neural Network Exchange-ONNX Mod	el	
Zoo-Convert PyTorch into ONNX -Convert TensorFlow into		
ONNX-Deploy ONNX to Azure-Apple Core ML-Edge Integratio		
Unit 9: Building MLOps Command Line Tools and Microservic		
Python Packaging-The Requirements File-Command Line Too		
Creating a Dataset Linter Modularizing a Command Line Tool		
Microservices-Creating a Serverless Function-Authenticating		
Cloud Functions-Building a Cloud-Based CLI-Machine Learning	5	
CLI Workflows		

			d. Com.X AC-6
		15	& 22.05.2023
	Unit 10. Machine Learning Engineering and MLOps Case StudiesUnlikely Benefits of Ignorance in Building Machine Learning Models-MLOps Projects at Sqor Sports Social Netwo Mechanical Turk Data Labeling-Influencer Rank-Athlete intelligence (AI product)-The perfect techniques versus the re world-critical challenges in MLops- Ethical and unintended consequences-lack of operational excellences- focus on prediction accuracy vs the big picture		
	 Practical: Perfect Project Structure – Cookiecutter & readme.so Speed Exploratory Data Analysis to Minutes – Pandas Profiling, SweetViz Track Data Science Projects with CI, CD, CT, CM –Data Version Control (DVC) Explainable AI / XAI – SHAP, LIME, SHAPASH Deploy ML Projects in minutes – Docker, FastAPI End to End Machine Learning – MLflow Building Production Ready ML Pipelines - Model Registry, Feature Store (Feast, ButterFlow) Big Data using Python, instead of PySpark – DASK Build a Chatbot and Deploy it (open-source) FaaS Framework implementation – Apache OpenWhis OpenFaas 		6 hours 6 hours
Pedagogy:	lectures/ tutorials/lab assignments/self-study		
References/ Readings	 Main Reading :- Practical MLops – Noah Gift and AlfredoDeza Introduction to MLOps – Noah Gift and AlfredoDeza 1 Machine Learning Engineering By Andriy Burkov 2.ML Ops: Operationalizing Data Science By David Sweenor, D Kannabiran, Thomas Hill, Steven Hillion, Dan Rope and Micha O'Connell-O'Reilly Building Machine Learning Pipelines By Hannes Hapke, Catherine Nelson Practical MLOps by Noah Gift, Alfredo Deza. O'Reilly Introducing MLOps By Mark Treveil & Dataiku Team Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft Azure By Sridhar Alla, Suman Kalyan Adari, O'Reilly 		
<u>Learning</u> Outcomes	Students will be able to handle deployment challenges in ML project carried out in the lab and would develop technical competence to deploy the Machine learning projects. (Back to Index)		

Programme: MCA
Course code: CSA-613

Title of course: IoT application development Contact Hours: 90 hours (30L-0T-60P) Number of Credits: 4 (2L-0T-2P)

Effective from AV. 2022-23

Effective from A		
Prerequisites	Programming skills, basic knowledge of electronics, Basics of	
for the course	networking	
Objectives	The basic objectives are:	
	• To introduce the concept of the Internet of Things and its	
	applications in various domains	
	• To explore the different protocols and communication	
	methods used in IoT systems	
	• To provide a working knowledge of Node-RED, a popular	
	programming tool for developing IoT applications	
	 To equip students with the skills to design and build IoT 	
	systems for a variety of use cases	
<u>Content</u>	Fundamentals of IoT	8 hours
	 Understanding IoT and its applications 	
	 IoT architecture and components 	
	 Introduction to sensors and actuators 	
	IoT protocols and communication	8 hours
	 Wired and wireless communication protocols 	
	 Overview of IoT protocols: MQTT, CoAP, HTTP, 	
	WebSocket, etc.	
	 LoRaWAN and its applications 	
	Cloud Computing for IoT	8 hours
	 Cloud computing fundamentals 	
	Cloud services for IoT	
	Cloud platforms for IoT	
	 IoT data management and storage on the cloud 	
	IoT Security and Privacy	6 hours
	 IoT security risks and challenges 	
	 IoT security protocols and practices 	
	 IoT privacy concerns and regulations 	
	Practical	
	Introduction to Node-RED	12 hours
	 features, architecture, and installation 	
	• Building the flow: understanding nodes, messages, and flows	
	• Debugging the flows: using the debug node, logging, and	
	error handling	
	Data acquisition and visualization	16 hours
	 Using sensors and actuators in Node-RED 	
	 Connecting to sensors and devices: using input nodes and 	
	protocols (MQTT, HTTP, WebSocket, etc.)	
	• Data processing and manipulation: using function nodes and	
	JavaScript	
	• Building dashboards: using the Node-RED Dashboard module	
	for data visualization and control	

		15 & 22.05.20	J23
	 Using APIs and cloud services in Node-RED 		
	IoT protocols and communication	16 hours	
	• Overview of IoT protocols: MQTT, CoAP, HTTP, WebSocket	t,	
	etc.		
	• Setting up an MQTT broker: installation, configuration, and	d	
	security		
	 MQTT publishing and subscribing: using MQTT nodes in 		
	Node-RED		
	• Building an MQTT-based IoT system: integrating sensors,		
_	actuators, and applications		
1	Advanced topics in IoT and Node-RED	16 hours	
	 Node-RED extensions and plugins 		
	 Deploying and scaling Node-RED: hosting Node-RED flows 	on	
	cloud platforms like AWS		
	IoT Project Development with Node-RED		
	• Developing IoT projects using Node-RED and sensors,		
	actuators, and communication protocols		
	Assignments / tutorials / peer-learning / troubleshooting/ cas	se	
	studies	un et l	
References/	1. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Intern	net	
<u>Readings</u>	of Things: Principles and paradigms. Elsevier, 2016. 2. Raj, Pethuru, and Anupama C. Raman. The Internet of Thin		
	Enabling technologies, platforms, and use cases. CRC press	-	
	2017.	»,	
	3. "Internet of Things: A Hands-on Approach", by Arshdeep		
	Bahga and Vijay Madisetti (Universities Press)		
	4. Research papers		
	5. Hagino, Taiji. Practical Node-RED Programming: Learn		
	powerful visual programming techniques and best practice	es	
	for the web and IoT. Packt Publishing Ltd, 2021.		
	6. https://cookbook.nodered.org/		
Learning	After completion of the course, the learner will be able to:		
<u>Outcomes</u>	1. will be able to design some IOT-based prototypes		
	2. Understand the various protocols and communication		
	methods used in IoT systems, including MQTT, CoAP, and		
	HTTP.		
	3. Implement various protocols and communication methods	S	
	used in IoT systems, including MQTT in NodeRED	5	
		S	

(Back to Index) (Back to Agenda)

Programme: MCA Course Code: CSA-621 Number of Credits: 4 (4L-0T-0P) Effective from AY: 2022-23

Title of Course: Corporate Skills Total contact hours: 60 hours

	·		22.05.2025
<u>Prerequisites</u> for the course	Programme prerequisites		
<u>Objectives</u>	The course is aimed at learners to gain practical and essential s to work effectively in the industry.	skills	
<u>Content</u>	 Understanding the Industry and Companies Understanding the evolution of the industry and technology and methods used Understanding Innovation and how new Impactful ideas hav evolved Types of companies and typical organization - Who does Wh Understanding companies - Domain, Offering, Customers, Strategy Company Culture & Professionalism Understanding companies financially 	ve	8 hours
	 Understanding Execution and day to day work in organizations Product Solutioning and Development - Understanding beyond the theory Product Management - Understanding beyond the theory Quality - Understanding beyond the theory Solutioning and Design - A key step between requirements a delivery Site Reliability, Devops, Support - Understanding beyond the theory Common Metrics and Measurements Key Tools in a Product Life Cycle Issues Management and Lifecycle - A key aspect of custome Satisfaction Software delivery models and Release cycles - how they work the real world Usability by end user - UI/UX and other key concepts and its importance Understanding Data engineering and Data science Writing good product or service specifications which can be translated to building a good product Understanding data from collection to modeling to usage How to do effective program management and scrum manager Designing for performance, scalability and reliability in prod Effective root cause analysis and building products which call and use it effective program management and scrum manager Designing for performance, scalability and reliability in prod Effective root cause analysis and building products which callow quicker RCA Understanding dev ops and its importance and role in a company Understanding product architecture with respect to a mono or modularity and its pros and cons Governance, alerts and monitoring and its importance 	and e r rk in s urch eory ment ucts in	20 hours

15 & 22.05.2023 20 hours Useful skills to work effectively in a organization Continuous learning and improvement - An essential skill Ownership and Leadership • Analyzing one's career path and making educated judgements • Time management and multi-tasking model • Being an effective Mentee and Mentor • Being Inquisitive: Why is asking questions more difficult than giving answers? • Effective Articulation and Communication • Introducing yourself & Making Effective Presentations • Problem breakdown and resolving model Effective project Management • Mind Mapping - A powerful technique to learn • Must have tips to succeed in any career Mini-Project 12 hours Hands-on assignments / tutorials / peer-teaching / mini-project / **Pedagogy** case studies <u>References/</u> All the course material is based on real life industry practices, Readings experiences and case studies and focused on application of skills and knowledge. The course is being imparted by experienced industry professionals who are still working in the industry and leading critical functions and teams and have the pedigree of building products, managing and delivering to customers, managing teams, entrepreneurs or being part of core teams in software product or services organization. 1. Know and recall core knowledge of the syllabus. (To measure Learning (Back to Outcomes this outcome, questions may be in the form of the situations, Index) (Back simulations, case studies) to Agenda) 2. Understand core concepts. (To measure this outcome, Question and Answers, Situations analysis, case studies would be used) 3. Analyze the problem and apply the appropriate concept. (To measure this outcome, Projects and Case studies would be used) 4. Give reasoning. (To measure this outcome, Problem analysis and solving techniques would be taught and used, Question and answers and use cases would be utilized) 5. Apply core concepts to new situations. (To measure this outcome, Group projects and Case studies based homework would be used)

Std. Com.X AC-6

Annexure V

Masters in Data Science to be effective from Academic Year 2023-24

Eligibility:

Bachelor degree in Computer Science/Computer Applications/Engineering (Computer Science/Information Technology) or equivalent degree with atleast 55% marks (relaxation in minimum percentage for reserved categories shall be applicable as per existing state government rules)

OR

Bachelor degree in Mathematics/Statistics/Electronics with atleast 55% marks (relaxation in minimum percentage for reserved categories shall be applicable as per existing state government rules). Such candidates shall be provisionally admitted until successful completion of Bridge Courses as specified by the **Admission Committee for Masters in Data Science** at the time of admission.

Admission:

Procedure for admission to the Masters in Data Science will be decided by the Admission Committee for Masters in Data Science appointed by the Vice-Chancellor for the Academic Year

SEMESTER – 1					
Course Title	L	Т	Р	Credits	
Discipline Specific Core Courses(DSC	C)				
Fundamentals of Data science (Theory)	2	0	0	2	
Fundamentals of Data science (Practical)	0	0	4	2	
Machine learning (Theory)	2	0	0	2	
Machine learning (Practical)	0	0	4	2	
Mathematical Foundations for Data Science (Theory)	2	0	0	2	
Mathematical Foundations for Data Science (Practical)	0	0	4	2	
Fundamentals of Artificial Intelligence (Theory)	2	0	0	2	
Fundamentals of Artificial Intelligence (Practical)	0	0	4	2	
Total Credits for DSCC				16	
	Course Title Discipline Specific Core Courses(DSC Fundamentals of Data science (Theory) Fundamentals of Data science (Practical) Machine learning (Theory) Machine learning (Practical) Mathematical Foundations for Data Science (Theory) Mathematical Foundations for Data Science (Practical) Fundamentals of Artificial Intelligence (Theory) Fundamentals of Artificial Intelligence (Practical)	Course TitleLDiscipline Specific Core Courses(DSCC)Fundamentals of Data science (Theory)2Fundamentals of Data science (Practical)0Machine learning (Theory)2Machine learning (Practical)0Mathematical Foundations for Data2Science (Theory)2Mathematical Foundations for Data0Science (Practical)0Fundamentals of Artificial Intelligence2(Theory)1Fundamentals of Artificial Intelligence0(Practical)0	Course TitleLTDiscipline Specific Core Courses(DSCC)Fundamentals of Data science (Theory)20Fundamentals of Data science (Practical)00Machine learning (Theory)20Machine learning (Practical)00Mathematical Foundations for Data20Science (Theory)00Mathematical Foundations for Data00Science (Practical)00Fundamentals of Artificial Intelligence20(Theory)Fundamentals of Artificial Intelligence00(Practical)000Fundamentals of Artificial Intelligence00(Practical)000	Course TitleLTPDiscipline Specific Core Courses(DSCC)Fundamentals of Data science (Theory)200Fundamentals of Data science (Practical)004Machine learning (Theory)200Machine learning (Practical)004Mathematical Foundations for Data200Science (Theory)200Mathematical Foundations for Data004Science (Practical)004Fundamentals of Artificial Intelligence200Fundamentals of Artificial Intelligence004(Practical)004	

Std. Com.X AC-6 15 & 22.05.2023

Discipline Specific Elective Courses(D	SEC)			
Domain specific Predictive Analytics	2	0	4	4
Design thinking for Data-Driven App Development	2	0	4	4
Total Minimum Credits for DSEC				4
Total Minimum Credits Semester –	1			20
			-	•
	-	0	4	2
Any Community Engagement Course like - Swachh Bharat Student Internship(SBSI) or Community Engagement and Rural	0	0	4	2
	Domain specific Predictive Analytics Design thinking for Data-Driven App Development Total Minimum Credits for DSEC Total Minimum Credits Semester – Total Minimum Credits Semester – Total Minimum Credits to be encourage courses, but not considered for GPA Calcula Yoga and Meditation Any Community Engagement Course like - Swachh Bharat Student Internship(SBSI)	Design thinking for Data-Driven App 2 Development 2 Total Minimum Credits for DSEC 2 Total Minimum Credits Semester – 1 2 Total Minimum Credits Semester – 1 2 Image: Semester of the course (SEC), Students to be encouraged / mage: Student to the considered for GPA Calculation, we have been stated for GPA Calculation, we have been stated for GPA Calculation, we have been stated for GPA Calculation of the course state stated for GPA Calculation of the course state state states and the course states of the cours	Domain specific Predictive Analytics 2 0 Design thinking for Data-Driven App 2 0 Development 2 0 Total Minimum Credits for DSEC 1 1 Total Minimum Credits Semester – 1 1 1 Image: Second Secon	Domain specific Predictive Analytics 2 0 4 Design thinking for Data-Driven App 2 0 4 Development 2 0 4 Total Minimum Credits for DSEC 1 1 Total Minimum Credits Semester – 1 1 1 Decement Course(SEC), Students to be encouraged / made mandatory to considered for GPA Calculation, will appear on Grave 1 Yoga and Meditation 0 0 4 Any Community Engagement Course like 0 0 4

				SEMESTER – 2	
Credits	Р	Т	L	Course Title	Course- Code
2	0	0	2	Reinforcement learning (Theory)	DSC-508
2	4	0	0	Reinforcement learning (Practical)	DSC-509
4	0	0	4	Optimization techniques	DSC-510
2	0	0	2	MLOps (Theory)	DSC-511
2	4	0	0	MLOps (Practical)	DSC-512
2	0	0	2	Software Engineering for AI Enabled systems (Theory)	DSC-513
2	4	0	0	Software Engineering for AI Enabled systems (Practical)	DSC-514
16				Total Credits for DSCC	
		C)	s (DSE	Discipline Specific Elective Courses	
4	4	0	2	Signal processing	DSC-523
4	4	0	2	Regression Analytics and Predictive Models	DSC-524
4				Total Minimum Credits for DSEC	

	SEMESTER – 3						
Course- Code	Course Title	L	Т	Р	Credits		
	ving Research Specific Elective Courses(RSE ased on the Dissertation type to be opted b	-	-				
DSC-600	Speech Processing	2	0	4	4		
DSC-601	NLP	2	0	4	4		
DSC-601	Simulation and Modelling	2	0	4	4		
DSC-603	Deep Learning Models	2	0	4	4		
DSC-604	Data Engineering	2	0	4	4		
DSC-605	Sensors , Actuators and Signal Conditioning	2	0	4	4		
DSC-606	Cloud Computing	2	0	4	4		
DSC-607	Research Methodology	4	0	0	4		
	Total Minimum Credits for RSE	C	I		8		
	Generic Elective Courses(GEC)- total	1			1		
DSC-621	Corporate Skills	4	0	0	4		
DSC-622	Seminar Course	4	0	0	4		
	Value Added Course / Skill Enhancement Courses / Community Engagement Course / Multidisciplinary Course	2	0	4	4		
	Any one offered by Commerce Discipline for that semester can be opted	4	0	0	4		
	Any one offered by Economics Discipline for that semester can be opted	4	0	0	4		
	Any one offered by Management Studies Discipline for that semester can be opted	4	0	0	4		
	Foreign or Indian Language Course	4	0	0	4		
	Total Minimum Credits for G				12		

OR DSC-651: Research Project in Academic or Research Institutes Total Credits for Dissertation 1			
SEMESTER – 4 SEMESTER – 4 Anyone Research Specific Elective Courses(RSEC) to be opted in consultation with t Mentor based on the Dissertation type to be opted by the student for Semester 4. be completed in Semester 3 before going for Internship. DSC-608 Financial Machine Learning 2 0 4 DSC-609 Data Science for Atmospheric Science 2 0 4 0 DSC-610 Pragmatic Al 2 0 4 0 0 2 0 4 0 DSC-611 Al for Medical Specialization 2 0 4 0 0 2 0 4 0			
SEMESTER – 4 SEMESTER – 4 Anyone Research Specific Elective Courses(RSEC) to be opted in consultation with t Mentor based on the Dissertation type to be opted by the student for Semester 4. be completed in Semester 3 before going for Internship. DSC-608 Financial Machine Learning 2 0 4 DSC-609 Data Science for Atmospheric Science 2 0 4 DSC-610 Pragmatic Al 2 0 4 DSC-611 Al for Medical Specialization 2 0 4 DSC-612 Recommender Systems 2 0 4 DSC-613 Text Mining and Sentiment Analysis 2 0 4 DSC-652: Industry Internship OR Software Project Development 1 OR DSC-651: Research Project in Academic or Research Institutes 1 Total Credits for Dissertation 1	MSc in		
Mentor based on the Dissertation type to be opted by the student for Semester 4. be completed in Semester 3 before going for Internship. DSC-608 Financial Machine Learning 2 0 4 DSC-609 Data Science for Atmospheric Science 2 0 4 DSC-610 Pragmatic AI 2 0 4 DSC-611 Al for Medical Specialization 2 0 4 DSC-612 Recommender Systems 2 0 4 DSC-613 Text Mining and Sentiment Analysis 2 0 4 DSC-651: Industry Internship OR Software Project Development OR DSC-651: Research Project in Academic or Research Institutes 1			
DSC-609Data Science for Atmospheric Science204DSC-610Pragmatic Al2040DSC-611AI for Medical Specialization2040DSC-612Recommender Systems2040DSC-613Text Mining and Sentiment Analysis2040Total Minimum Credits for RSECCreeDISSertation TypeCreeCreeDSC-652:Industry Internship OR Software Project Development1OROSC-651:Research Project in Academic or Research InstitutesTotal Credits for Dissertation1	based on th	Mentor bas	
DSC-609Data Science for Atmospheric Science204DSC-610Pragmatic Al204DSC-611Al for Medical Specialization204DSC-612Recommender Systems204DSC-613Text Mining and Sentiment Analysis204Total Minimum Credits for RSECCreeDISC-652:Industry Internship OR Software Project Development1ORTotal Credits for Dissertation1Total Credits for Dissertation1	8 Financi	DSC-608	
DSC-611 AI for Medical Specialization 2 0 4 DSC-612 Recommender Systems 2 0 4 DSC-613 Text Mining and Sentiment Analysis 2 0 4 Total Minimum Credits for RSEC Cre Dissertation Type Cre DSC-652: Industry Internship OR Software Project Development 1 OR DSC-651: Research Project in Academic or Research Institutes 1 Total Credits for Dissertation 1		DSC-609	
DSC-612 Recommender Systems 2 0 4 DSC-613 Text Mining and Sentiment Analysis 2 0 4 Total Minimum Credits for RSEC Dissertation Type Creation Type DSC-652: Industry Internship OR Software Project Development 1 OR DSC-651: Research Project in Academic or Research Institutes 1 Total Credits for Dissertation	0 Pragma	DSC-610	
DSC-613 Text Mining and Sentiment Analysis 2 0 4 Total Minimum Credits for RSEC Dissertation Type Creation DSC-652: Industry Internship OR Software Project Development 1 OR DSC-651: Research Project in Academic or Research Institutes 1 Total Credits for Dissertation 1	1 Al for N	DSC-611	
Total Minimum Credits for RSEC Dissertation Type Crean DSC-652: Industry Internship OR Software Project Development 1 OR 0R DSC-651: Research Project in Academic or Research Institutes 1 Total Credits for Dissertation 1	2 Recom	DSC-612	
Dissertation Type Creation DSC-652: Industry Internship OR Software Project Development 1 OR 0 DSC-651: Research Project in Academic or Research Institutes 1 Total Credits for Dissertation 1	3 Text M	DSC-613	
DSC-652: Industry Internship OR Software Project Development 1 OR DSC-651: Research Project in Academic or Research Institutes Total Credits for Dissertation 1			
OR DSC-651: Research Project in Academic or Research Institutes Total Credits for Dissertation 1			
Total Credits for Dissertation 1	DSC-652: Industry Internship OR Software Project Development OR		
	: Researc	DSC-651:	
	Total Credits for Dissertation		
Total Minimum Credits for Semester-4 2	Tota		
Total Minimum Credits for two-year MSc in Data Science degree 8	Minimum	Total M	

Programme

(Back to Index) (Back to Agenda)

SEMESTER I

 Programme: MSc. in Data Science

 Course Code: DSC-500
 Title of the Course: Fundamentals of Data Science (Theory)

 Number of Credits:
 2(2L-0T- 0P)

 Contact hours:
 30 hours (30L-0T-0P)

 Effective from AY:
 2023-24

 Prerequisites for the course
 Statistics and probability theory and python programming

for the course		
Objectives	To get started with basics of data science and learn all aspects of data science in its entirety	

		0 <u>m.X AC-6</u> 2.05.2023
Content	Introduction: Typology of problems - Data science in a big data world: Benefits and uses of data science and big data-Facets of data-The data science process-The big data ecosystem and data science-The data science process: Overview of the data science process- Defining research goals and creating a project charter- Retrieving data-Cleansing, integrating, and transforming data- Exploratory data analysis-Build the models- Presenting findings and building applications on top of them.	4 hours
	 Mathematics for Data Science – A quick Review: Importance of linear algebra, statistics and optimization from a data science perspective; Structured thinking for solving data science problems. Linear Algebra: Matrices and their properties (determinants, traces, rank, nullity, etc.); Eigenvalues and eigenvectors; Matrix factorizations; Inner products; Distance measures; Projections; Notion of hyperplanes; half-planes. Probability, Statistics and Random Processes: Probability theory and axioms; Random variables; Probability distributions and density functions (univariate and multivariate); Expectations and moments; Covariance and correlation; Statistics and sampling distributions; Hypothesis testing of means, proportions, variances and correlations; White-noise process. Data clearing (EDA) 	6 hours
	Introduction to Data Science Methods: Linear regression as an exemplar function approximation problem; Linear classification problems-PCA	4 hours
	Handling large data on a single computer - The problems you face when handling large data-General techniques for handling large volumes of data-General programming tips for dealing with large data sets - Case study 1: Predicting malicious URLs - First steps in big data-Distributing data storage and processing with frameworks	4 hours
	Introduction to NoSQL The rise of graph databases Introducing connected data and graph databases Introducing Neo4j: a graph database	4 hours
	Data visualization to the end user	4 hours
	Data visualization options Cross filter, the JavaScript MapReduce library Creating an interactive dashboard with dc.js Dashboard development tools	4 hours
Pedagogy	Lectures/ Tutorials/Hands-on assignments/Self-study	
References /	 Practical statistics for data science by peter bruce and andrew bruce Naked statistics by charles wheelon 	
Readings	 Business data science by matt taddy 	

		15 0 22	
	4. Elements of statistical learning by Trevor Hastie, Robert	and	
	jerome		
	5. Python for data analysis		
	6. Data science and big data analytics -EMC2		
	The students will be able to		
Learning	• Enrich one's knowledge with overall basics of data scier	nce	
Outcomes	Appreciate data science with this introduction to be abl	e to get	
	started in the direction.		

(Back to Index) (Back to Agenda)

Programme: Masters in Data Science

Course code:DSC-501Title of course:Fundamentals of Data Science (Practical)Number of credits:2(0L-0T-2P)Total contact hours:60 hours (0L-0T-60P)Effective from AY:2023-24

Prerequisites	Basic programming skills, Statistics	
for the course		
Objectives	 To introduce Basic process of data science, Python and Jupyter notebooks. To understanding how to manipulate and analyse uncurated datasets To learn basic statistical analysis and machine learning methods and effectively visualize results 	
Content	Jupyter and Numpy: Jupyter notebooks are one of the most commonly used tools in data science as they allow you to combine your research notes with the code for the analysis. After getting started in Jupyter, we'll learn how to use numpy for data analysis. numpy offers many useful functions for processing data as well as data structures which are time and space efficient.	10 hours
	Pandas: Pandas, built on top of numpy, adds data frames which offer critical data analysis functionality and features.	10 hours
	Visualization: When working with large datasets, you often need to visualize your data to gain a better understanding of it. Also, when you reach conclusions about the data, you'll often wish to use visualizations to present your results.	10 hours
	Mini Project: With the tools of Jupyter notebooks, numpy, pandas, and Visualization, you're ready to do sophisticated analysis on your own. You'll pick a dataset we've worked with already and perform an analysis for this first project.	10 hours
	Machine Learning: To take your data analysis skills one step further, we'll introduce you to the basics of machine learning and how to use sci-kit learn - a powerful library for machine learning.	10 hours

		Std. Com.X AC-6
·		15 & 22.05.2023
	Working with Text and Databases: You'll find yourself often working with text data or data from databases. This week wil give you the skills to access that data. For text data, we'll also give you a preview of how to analyse text data using ideas from the field of Natural Language Processing and how to apply those ideas using the Natural Language Processing Toolkit (NLTK) library.	
	Final Project: These weeks let you showcase all your new skill in an end-to-end data analysis project. You'll pick the dataset do the data munging, ask the research questions, visualize the data, draw conclusions, and present your results.	,
Pedagogy	Tutorials/ Lab assignments/ Project work	
References/ Readings	 Practical statistics for data science by Peter bruce and andrew bruce Naked statistics by charles wheelon Business data science by matt taddy Elements of statistical learning by Trevor Hastie, Robert an jerome Python for data analysis Data science and big data analytics -EMC2 	nd
Learning	The student will be able to:	
Outcomes	 To understanding how to manipulate and analyse uncurate datasets To learn basic statistical analysis and machine learning methods and effectively visualize results 	ed

Programme: Masters in Data Science

Course Code:DSC-502Title of the Course:Machine Learning (Theory)Number of Credits:2(2L-0T-0P)Total Contact Hours:30 hours (30L-0T-0P) Effectivefrom AY:2023-242023-242023-24

Prerequisites for the course:	Familiarity with linear algebra, statistics & probability theory	
Objectives:	 This course provides students with In-depth introduction to three main areas of Machine Learning: supervised and unsupervised and reinforcement learning. This course will cover some of the main models and algorithms for regression, classification, clustering and Markov decision processes. Topics will include linear and logistic regression, regularisation, SVMs and kernel methods, ANNs, clustering, and dimensionality reduction ,sequential learning Like HMM and deep learning CNN and 	

		J & ZZ.03.20
	RNN	
Content:	1. Introduction: well posed learning problem, designing a learning system, perspectives and issues in machine learning-types of learning - supervised, unsupervised and	3 hours
	reinforcement learning 2. Concept learning: concept learning task , notation, inductive learning hypothesis, concept learning as search, version space and candidate elimination algorithm, decision tree, random forest.	3 hours
	3. Linear regression: logistic regression-Support vector machine kernel, Model selection and feature selection- Ensemble methods: Bagging, boosting, Evaluating and debugging learning algorithms.	3 hours
	4. Continuous Latent Variables: Principal Component Analysis, Maximum variance formulation, Minimum error formulation, Applications of PCA, PCA for high-dimensional data.	3 hours
	5. Neural Networks: -Feed-forward Network, Functions, perceptron, -Weight-space symmetries, Network Training, Parameter optimization, Local quadratic approximation, Use of gradient information, Gradient descent optimization, Error Backpropagation, Evaluation of error-function derivatives, Efficiency of backpropagation.	3 hours
	6. Deep learning: Deep Feedforward Networks, Gradient- Based Learning, Hidden Units, -Architecture Design, CNN and RNN (simple RNN and LSTM).	4 hours
	7. Unsupervised learning; Clustering, K-means, EM.Mixture of Gaussians.	4 hours
	8. Sequential Data: Markov Models, Hidden Markov Models, Maximum likelihood for the HMM, The forward-backward algorithm, The sum-product algorithm for the HMM, Scaling factors, -The Viterbi algorithm.	4 hours
	9. Reinforcement learning: introduction- learning task-Q learning, non-deterministic rewards and actions-temporal difference learning.	3 hours
Pedagogy:	lectures/ tutorials/assignments/self-study/lab assignment/ project work	
References/ Readings	 Main Reading:- 1. James, Gareth, et al. An introduction to statistical learning. Vol. 112. New York: springer, 2013. 2. Alpaydin, Ethem. Introduction to machine learning. MIT 	
	press, 2020.3. Hart, Peter E., David G. Stork, and Richard O. Duda. Pattern classification. Hoboken: Wiley, 2000.	
	 Flach, Peter. Machine learning: the art and science of algorithms that make sense of data. Cambridge University 	

Std. Com.X AC-6 15 & 22.05.2023

	Press, 2012.	
	5. Bishop, Christopher M. "Pattern recognition and machine	
	learning: springer New York." (2006).	
	6. Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep	
	learning. MIT press, 2016.	
	7. Mitchell, Tom, and Machine Learning McGraw-Hill.	
	"Edition." (1997).	
	8. machine learning and AI online google course by cassie	
	kozyrkov	
	By the end of the course, students will be able to:	
	Develop an appreciation for what is involved in learning	
Learning	from data.	
Outcomes	Understand a wide variety of learning algorithms.	
	Understand how to apply a variety of learning algorithms to	
	data.	
	Understand how to perform evaluation of learning	
	algorithms and model selection.	
	Have a basic understanding of deep learning.	

(Back to Index) (Back to Agenda)

Programme: Masters in Data Science Course Code: DSC-503 Number of Credits: 2(0L-0T-4P) Effective from AY: 2023-24

Title of the Course: Machine Learning Lab Total Contact Hours: 60 hours (0L-0T-60P)

Prerequisites for the course:	Machine learning theory and programming in python	
Objective:	 This course provides students with Aimed at imparting implementation of machine learning algorithms using python and its APIs 	
Content:	Suggested Lab assignments/work with respect to the following using python (scikit /keras libraries) /amazon sage maker/matlab toolbox - each assignment with duration of 4 hrs. and 8 hrs. for project work	
	1. Write a program to implement version space.	5 hours
	 Write a program to implement a decision tree for given data. 	5 hours
	 Write a program to implement linear regression for given data. 	5 hours
	4. Write a program to implement logistic regression.	5 hours
	5. Write a program to implement SVM.	5 hours
	6. Write a program to implement perceptron.	5 hours
	7. Write a program to implement a multilayer perceptron.	5 hours

Std. Com.X AC-6 15 & 22.05.2023

		15 & 22.05.202
	8. Write a program to implement RNN.	5 hours
	9. Write a program to implement CNN.	5 hours
	10. Write a program to implement HMM.	5 hours
	Capstone Mini Project work to assess the overall learning.	10 hours
Pedagogy:	Lab Assignments / Mini Project	
References/	Main Reading:-	
Readings	 James, Gareth, et al. An introduction to statistical learning Vol. 112. New York: springer, 2013. Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020. Hart, Peter E., David G. Stork, and Richard O. Duda. Patter classification. Hoboken: Wiley, 2000. Flach, Peter. Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, 2012. Bishop, Christopher M. "Pattern recognition and machine learning: springer New York." (2006). Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Dee learning. MIT press, 2016. Mitchell, Tom, and Machine Learning McGraw-Hill. "Edition." (1997). machine learning and Al online google course by cassie kozyrkov 	rn /
Learning	Students should be able to	
Outcomes	 write program in python for implementing Machine learning algorithms using different libraries like scikit learning keras and pytorch 	n,

(Back to Index) (Back to Agenda)

Programme: MSc. in Data Science

Course code: DSC-504Title of course: Mathematics foundation for Data Science (Theory)Number of credits: 2 (2L-0T-0P)Total contact hours: 30 hours (30L-0T-0P)Effective from AY: 2023-24Effective form AY: 2023-24

Prerequisites for the course	Basic mathematics	
Objectives	 To build a strong foundation in maths required for learning computer science/data science subjects. To understand fundamental concepts and tools in calculus, linear algebra etc. with emphasis on their applications to computer science in particular data science/machine learning 	
Content	Introduction Importance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision	5 hours

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	Probability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variabl Variance and Expectation, Conditional and Joint Distributions Standard Distributions (Bernoulli, Binomial, Multinomial, Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Metho confidence intervals, Hypothesis testing, p-values, A/B testing ANOVA, t-test, Linear regression, regularization	es, , ods-
	Calculus Overview of Differential and Integral Calculus, Partial Derivati Product and chain rule-Taylor's series, infinite series summation/integration concepts-Fundamental and mean valu theorems of integral calculus, evaluation of definite and improper integrals-Beta and Gamma functions, Functions of multiple variables, limit, continuity, partial derivatives-Basics of ordinary and partial differential equation Applications of Calculus	ue-
	Linear Algebra: Systems of Linear Equations-Matrices-Solving Systems of Line Equations-Vector Spaces-Linear Independence-Basis and Ran Linear Mappings Affine Spaces	
	Analytic Geometry Norms-(Inner Products-Lengths and Distances Angles and Orthogonality-Orthonormal Basis Orthogonal Complement-Inner Product of Functions-Orthogo Projections-Rotations) - Eigen value decomposition and SVD	5 hours
	Optimization Differentiation of Univariate Functions-Partial Differentiation and Gradients-Gradients of Vector-Valued Functions-Gradien of Matrices Useful Identities for ComputingGradients-Backpropagation a Automatic Differentiation-Higher-Order Derivatives- Linearization and Multivariate Taylor Series-Gradient Descent Constrained Optimization -Lagrange Multipliers-Convex Optimization,	ts nd
Pedagogy	Problem solving approach and carrying out small project worl using matlab tools	ĸ
References/ Readings	 Statistics Written, Robert S. Witte and John S. Witte Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD. Statistics for Business and Economics by- James T. McClave P. George Benson and Terry T Sincich Naked Statistics: Stripping the Dread from the Data, Charl Wheelan Introduction to Linear Algebra, Gilbert Strang 	е,

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	 Linear Algebra and Its Applications, David C. Lay No bullshit guide to Linear algebra, Ivon Savov Functions and Graphs by I M Gelfand Cartoon guide to calculus, Larry Gonick Optimization Methods in Business Analytics — edX, MIT 	
Learning	Students will be able to:	
Outcomes	 Apply the concepts of mathematics in the modelling and design of computational problems and deeper understandie of subjects like machine learning / deep learning and othe computer science subjects. 	•

Programme: MSc. in Data Science	
Course code: DSC-505	Title of course: Mathematical foundation for Data
Science (Practical)	
Number of credits: 2 (0L-0T-4P)	Total contact hours: 60 hours (0L-0T-60P)
Effective from AY: 2023-24	

Prerequisites for the course	Mathematical foundation theory and programming background	
Objectives	The lab assignment are aimed at demonstration of the following regarding statistics	
Content	Recap of following –	3 hours
	 A. NumPy is a third-party library for numerical computing, optimized for working with single- and multi-dimensional arrays. Its primary type is the array type called ndarray. This library contains many routines for statistical analysis. B. SciPy is a third-party library for scientific computing based on NumPy. It offers additional functionality compared to NumPy, including scipy.stats for statistical analysis. C. Pandas is a third-party library for numerical computing based on NumPy. It excels in handling labelled one-dimensional (1D) data with Series objects and two-dimensional (2D) data with Data Frame objects. D. Matplotlib is a third-party library for data visualization. It works well in combination with NumPy, SciPy, and Pandas. 	
	Assignment 1 - Write program to implement the EDA concepts using python libraries -Numpy,Pandas, matplotlib, seaborn,scipy, scrapy and beautiful soup, and tensor flow ,keras and pytorch etc.	3 hours
	Assignment -2 - Sampling, Variables in Statistics, Frequency Distributions. Generate frequency distribution tables, Generate grouped frequency distribution tables and -Visualizing Frequency Distributions -Generate bar plots, pie charts, and	6 hours

	15	& 22.05.202
	histograms ,Employ bar plots, pie charts and histograms.	
	Assignment-3-Comparing Frequency Distributions -grouped bar plots- step-type histogram-kernel density estimate plots- strip plots and box plots	6 hours
	Assignment-4 -Multidimensional image operations, Solving differential equations and the Fourier transform using scipy	6 hours
	Assignment-5 -Optimization algorithms using scipy.	6 hours
	Assignment -6 -Linear algebra using scipy	6 hours
	Assignment- 7-Program in python to implement the concepts such as Vector space, subspace, span, column space, row space, null space, left-null space, rank, basis, orthogonal matrix, symmetric matrix.	6 hours
	Assignment -8 – Implement Eigen value decomposition in python.	6 hours
	Assignment-9 – implement SVD using python.	6 hours
	Assignment -10 – implements some of optimization algorithm using the python library.	6 hours
Pedagogy	lab assignments /Project	
References/ Readings	 Statistics Written, Robert S. Witte and John S. Witte Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD. Statistics for Business and Economics by- James T. McClave, P. George Benson and Terry T Sincich Naked Statistics: Stripping the Dread from the Data, Charles Wheelan 	
	 Introduction to Linear Algebra, Gilbert Strang Linear Algebra and Its Applications, David C. Lay No bullshit guide to Linear algebra, Ivon Savov Functions and Graphs by I M Gelfand Cartoon guide to calculus, Larry Gonick Optimization Methods in Business Analytics — edX, MIT 	
Learning	Students will be able to:	
Outcomes	 Apply the concepts of mathematics in the modelling and design of computational problems. Deeper understanding of subjects like machine learning / 	
	deep learning and other computer science subjects. (Back to Index) (Ba	

(Back to Index) (Back to Agenda)

Programme: Masters in Data Science Course code: DSC-506 Number of credits: 2(2L-0T-0P) Effective from AY: 2023-24

Title of course: Fundamentals of AI (Theory) **Total contact hours:** 30 hours (30L-0T-0P)

Std. Com.X AC-6 15 & 22.05.2023

Prerequisites	Programming back programming and probability and statistics	
for the course	and linear algebra	
Objectives	To develop a basic understanding of	
	Problem solving	
	Knowledge representation	
	Reasoning and learning methods of AI.	
Content	Artificial Intelligence	5 hours
	Introduction -Intelligent Agents, Problem-solving Solving Problems by Searching -Search in Complex Environments - Adversarial Search and Games- Constraint Satisfaction Problems Knowledge, reasoning, and planning Knowledge Representation-First-Order Predicate Logic - Unification Forward and Backward Chaining - Resolution - Ontological Engineering Categories and Objects - Events-Mental Events and Mental Objects - Reasoning Systems for Categories - Reasoning with Default Information Uncertain knowledge and reasoning	
	Quantifying Uncertainty - Probabilistic Reasoning - Probabilistic Reasoning over Time Probabilistic Programming -Making Simple Decisions - Making Complex Decisions -Multiagent Decision Making	4 hours
	Machine Learning, Learning from Examples - Learning Probabilistic Models - Deep Learning - Reinforcement Learning Communicating, perceiving, and acting	4 hours
	Natural Language Processing - Deep Learning for Natural Language Processing - Computer Vision - Robotics.	5 hours
	Artificial Intelligence applications Language Models - Information Retrieval - Information Extraction	4 hours
	Natural Language Processing - Machine Translation - Speech Recognition	4 hours
	Robotics-Hardware and Software for Robots - Planning and Perception	4 hours
	Explainable AI - Definitions and concepts such as black-box models, transparency, interpretable machine learning and explanations Decision-making and decision support, Human- Computer Interaction (HCI) and AI Explainable AI Methods for Explainable AI Applications and examples Trust and acceptanceEvaluation methods and metrics Ethical, legal and social issues of explainable AI. Contemporary issues in AI- Philosophy, Ethics, and Safety of AI -The Future of AI	
Pedagogy	Tutorials / Hands-on-assignments / Self-study	
reuagugy	1. A Classical Approach to Artificial Intelligence, M.C. Trivedi,	

Std. Com.X AC-6 15 & 22.05.2023

Readings	 Khanna Book Publishing, 2019. Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education, 2010. Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017. Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997. Artificial Intelligence by Luger, Pearson Education, 2002. Artificial Intelligence by Padhy, Oxford Press, 2005. https://www.edx.org/course/artificial-intelligence-ai
Learning Outcomes	 8. https://www.udemy.com/course/artificial-intelligence-az/ The students will be able to: Understand the basic concepts and techniques of Artificial Intelligence. Apply AI algorithms for solving practical problems. Describe human intelligence and AI. Explain how the intelligent system works. Apply basics of Fuzzy logic and neural networks. Explain Expert System and implementation.
	(Pack to Index) (Pack to Agen

(Back to Index) (Back to Agenda)

Programme: Masters in Data Science

Course Code: DSC-507 Title of the Course: Fundamentals of Artificial Intelligence (Practical)Number of Credits: 2 (0L-0T-4P)Total Contact Hours: 60 hours (0L-0T-60P)Effective from AY: 2023-24Contact Hours: 60 hours (0L-0T-60P)

Prerequisites for the course:	Artificial Intelligence theory, probability and statistics , linear algebra and Python programming	
Objectives:	 To develop a basic understanding of Problem solving Knowledge representation Reasoning and learning methods of AI Implement AI algorithms 	
Content:	Assignment-1 -Real-world path planning for pedestrians. In the first part, students implement A* over a map that includes roads/paths as well as elevations. In the second part, students collect actual data through walking around the real world, and the cost model is then learned via regression techniques.	10 hours
	Assignment-2 -Solve maze via search -this assignment involves formulating maze-solving as a search problem, image processing (via OpenCV) as a step in maze-solving, as well as guided performance/quality analysis of representational parameters	10 hours

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	Assignment 3-Within the context of an artificial intelligence course, students are taught to identify ethical issues within technical projects and to engage in moral problem solving with regard to such issues.	10 hours
	Assignment 4-Neural network for face recognition using tensor flow -build feedforward neural networks for face recognition using TensorFlow. Students then visualize the weights of the neural networks they train. The visualization allows students to understand feedforward one-hidden laye neural networks in terms of template matching, and allows students to explore overfitting.	10 hours er
	Assignment -5 -Organic path finding -Students develop a "human-like" pathfinding technique by specializing a generic search algorithm with custom action cost and heuristic cost functions. Students apply classical search algorithms and reflect on example organic paths to achieve "human-like" pathfinding.	
	Assignment - 6 -Implement a genetic algorithm in Python to evolve strategies for Robby the Robot to collect empty soda cans that lie scattered around his rectangular grid world. An also Compare the performances of a brute-force search and search employing the Minimum Remaining Values (MRV) heuristic in solving Sudoku puzzles.	d 10 hours
Pedagogy:	lectures/practical/ tutorials/assignments/self-study	
References /Readings:	 A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna Book Publishing, 2019. Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education, 2010. Artificial Intelligence by Rich and Knight, The McGrav Hill, 2017. Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997. Artificial Intelligence by Luger, Pearson Education, 2002. Artificial Intelligence by Padhy, Oxford Press, 2005. https://www.edx.org/course/artificial-intelligence-ai https://www.udemy.com/course/artificial- intelligence-az/ 	

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
Learning	• The students need to understand and extend an	existing
Outcomes:	implementation of the back-propagation algorith	nm and
	use it to recognize static hand gestures in images	5.
	Students learn about feedforward neural networ	rks and
	the backpropagation algorithm by implementing	a
	perceptron network for AND and XOR Boolean fu	unctions
	and, given an implementation of a feedforward r	network,
	learn digit recognition using the MNIST data set.	
	• In this assignment students extend a Tic Tac Toe	program
	to Ultimate Tic Tac Toe and implement a differer	nt search
	strategy than the example code.	

Programme: Masters in Data Science

Course Code: DSC-508Title of the Course: Reinforcement Learning(Theory)Number of Credits: 2(2L-0T-0P)Contact hours: 30 hours (30L-0T-0P)Effective from AY: 2023-24Contact hours: 30 hours (30L-0T-0P)

Prerequisites	Linear algebra, multivariable calculus	
for the course	Basic machine learning knowledge	
Objectives	 To enable the student to understand The reinforcement learning paradigm Identify when an RL formulation is appropriate Understand the basic solution approaches in RL Implement and evaluate various RL algorithms. 	
Content	Review of ML fundamentals – Classification, Regression. Review of probability theory and optimization concepts.	2 hours
	RL Framework; Supervised learning vs. RL; Explore-Exploit Dilemma; Examples.	2 hours
	MAB: Definition, Uses, Algorithms, Contextual Bandits, Transition to full RL, Intro to full RL problem	2 hours
	Intro to MDPs: Definitions, Returns, Value function, Q-function.	2 hours
	Bellman Equation, DP, Value Iteration, Policy Iteration, Generalized Policy Iteration.	2 hours
	Evaluation and Control: TD learning, SARSA, Q-learning, Monte Carlo, TD Lambda, Eligibility Traces.	2 hours
	Maximization-Bias & Representations: Double Q learning, Tabular learning vs. Parameterized, Q-learning with NNs	2 hours
	Function approximation: Semi-gradient methods, SGD, DQNs, Replay Buffer.	2 hours
	Policy Gradients: Introduction, Motivation, REINFORCE, PG theorem, Introduction to AC methods	3 hours

Actor-Critic Methods, Baselines, Advantage AC, A3C Advanced Value-Based Methods: Double DQN, Prioritized Experience Replay, Dueling Architectures, Expected SARSA.	3 hours
Advanced PG/A-C methods: Deterministic PG and DDPG, Soft Actor-Critic (SAC) HRL: Introduction to hierarchies, types of optimality, SMDPs, Options, HRL algorithms POMDPS: Intro, Definitions, Belief states, Solution Methods; History-based methods, LSTMS, Q-MDPs, Direct Solutions, PSR.	4 hours
Model-Based RL: Introduction, Motivation, Connections to Planning, Types of MBRL, Benefits, RL with a Learnt Model, Dyna-style models, Latent variable models, Examples, Implicit MBRL. Case study on design of RL solution for real-world problems.	4 hours
Hands-on assignments / tutorials / peer-teaching / flip classroom/ presentations.	
 Reinforcement learning -Introduction by Richard sutton and Andrew barto, 2nd edition, MIT press. Algorithms for reinforcement learning by Csaba Szepesvari, Ronald Brachman, et al, 2010. 	Ł
Understanding the fundamentals of reinforcement learning and its role in building gaming applications and in turn helps to understand the challenges of real world problems, how RL will help them.	
	 Actor-Critic (SAC) HRL: Introduction to hierarchies, types of optimality, SMDPs, Options, HRL algorithms POMDPS: Intro, Definitions, Belief states, Solution Methods; History-based methods, LSTMS, Q-MDPs, Direct Solutions, PSR. Model-Based RL: Introduction, Motivation, Connections to Planning, Types of MBRL, Benefits, RL with a Learnt Model, Dyna-style models, Latent variable models, Examples, Implicit MBRL. Case study on design of RL solution for real-world problems. Hands-on assignments / tutorials / peer-teaching / flip classroom/ presentations. Reinforcement learning -Introduction by Richard sutton and Andrew barto, 2nd edition, MIT press. Algorithms for reinforcement learning by Csaba Szepesvari, Ronald Brachman, et al, 2010. Understanding the fundamentals of reinforcement learning and its role in building gaming applications and in turn helps to understand the challenges of real world problems, how RL will

Programme: Masters in Data Science

Course Code: DSC-509Title of the Course: Reinforcement Learning(Practical)Number of Credits: 2 (0L-0T-4P)Contact hours: 60 hours (0L-0T-60P)Effective from AY: 2023-24Contact hours: 60 hours (0L-0T-60P)

LITECTIVE ITOITIA		
Prerequisites	Linear algebra, multivariable calculus, Basic machine learning	
for the course	knowledge and programming background.	
Objectives	To understand the theory by carrying out the lab assignment based on the key ideas of reinforcement learning.	
Content	1. RL task formulation (action space, state space, environment definition)	7 hours
	 Tabular based solutions (dynamic programming, Monte Carlo, temporal-difference) 	7 hours
	3. Function approximation solutions (Deep Q-networks)	7 hours
	 Policy gradient from basic (REINFORCE) towards advanced topics (proximal policy optimization, deep deterministic policy gradient, etc.) 	7 hours
	5. Model-based reinforcement learning	7 hours

	15	\$ 22.05.2023
	6. Imitation learning (behavioral cloning, inverse RL, generative adversarial imitation learning)	7 hours
	7. Meta-learning	8 hours
	8. Multi-agent learning, partial observable environments	10 hours
Pedagogy	Lab assignments/ mini project	
References/ Readings	 Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An introduction", Second Edition, MIT Press, 2019. Li, Yuxi. "Deep reinforcement learning." arXiv preprint arXiv:1810.06339 (2018). Wiering, Marco, and Martijn Van Otterlo. "Reinforcement learning." Adaptation, learning, and optimization 12 (2012): 3. Russell, Stuart J., and Peter Norvig. "Artificial intelligence: a modern approach."Pearson Education Limited, 2016. Goodfellow, Ian, YoshuaBengio, and Aaron Courville. "Deep learning." MIT press, 2016. David Silver's course on Reinforcement Learning (link). 	
Learning	 Understanding the fundamentals of reinforcement 	
Outcomes	 Learning role in building gaming applications Understand the challenges of real world problems, how RL will help them. 	
	(Back to Index) (Bac	k to Agenda

(Back to Index) (Back to Agenda)

Programme: Masters in Data Science Course Code: DSC-510 Number of Credits: 2(2L-0T-0P) Effective from AY: 2023-24

Title of the Course: Optimization Techniques Contact Hours: 30 hours (30L-0T-0P)

Prerequisites	NIL	
for the course		
Objectives	 To familiarize the students with some basic concepts of optimization techniques and approaches. To formulate a real-world problem as a mathematical programming model. To develop the model formulation and applications are used in solving decision problems. To solve specialized linear programming problems like the transportation and assignment problems. 	
Content:	Introduction to Operations ResearchIntroduction-Mathematical models of Operation Research -Scope and applications of Operation Research - Phases ofOperation Research study - Characteristics of OperationResearch - Limitations of Operation Research.Linear Programming	4 hours 4 hours
	Introduction – Properties of Linear Programming-Basic	

		Com.X AC-6
		22.05.2023
	assumptions-Mathematical formulation of Linear Programming- Limitations or constraints-Methods for the solution of LP Problem-Graphical analysis of LP-Graphical LP Maximization problem-Graphical LP Minimization problem.	
	Linear Programming Models Simplex Method-Basics of Simplex Method - Formulating the Simplex Method-Simplex Method with two variables - Simplex Method with more than two variables - Big M Method.	4 hours
	Dual Linear Programming Introduction- Primal and Dual problem - Dual problem properties-Solution techniques of Dual problem - Dual Simplex method-Relations between direct and dual problem- Economic interpretation of Duality.	4 hours
	Transportation and Assignment ModelsIntroduction: Transportation problem - Balanced - Unbalanced -Methods of basic feasible solution Optimal solution-MODImethod. Assignment problem-Hungarian Method.	4 hours
	Network Analysis Basic concepts-Construction of Network-Rules and precautions- CPM and PERT Networks Obtaining of critical path. Probability and cost consideration. Advantages of Network.	5 hours
	Theory of Games Introduction-Terminology-Two Person Zero-Sum game-Solution of games with saddle points and without saddle points-2X2 games-dominance principle – mX2 and 2Xn games-Graphical method.	5 hours
Pedagogy:	Assignment / Quiz / invited talks on current issues/ Research and Analytical problems on various applications of the industrial issues.	
References/ Readings	 Text Book(s) HamdyTaha, Operations Research, 10th edition, Prentice Hall India, 2019. P. K. Gupta and D. S. Hira, Operations Research, S. Chand & co., 2007.2 Reference Books S.D. Sharma (2000), Operations Research, Nath& Co., Meerut. Maurice Solient, Arthur Yaspen, Lawrence Fridman, (2003), OR methods and Problems, New Age International Edition. J K Sharma (2007), Operations Research Theory & Applications, 3e, Macmillan India Ltd. P. Sankaralyer, (2008), Operations Research, Tata McGraw- Hill. A Ravindran, Don T Philips and James J Solberg, Operations Research: Principles and practice, 2nd edition, John Wiley and sons, 2007 	
Learning	Student will be able to	

Std. Com.X AC-6
15 & 22.05.2023

Outcomes	 Apply operations research techniques like linear program problem in industrial optimization problems. Solve allocation problems using various OR methods. Understand the characteristics of different types of decisi making environment and the appropriate decision making approaches and tools to be used in each type. Recognize competitive forces in the marketplace and dev appropriate reactions based on existing constraints and resources. 	ion	

Programme: Masters in Data Science Course Code: DSC-511 Number of Credits: 2(2L-0T-0P) Effective from AY: 2023-24

Title of the Course: MLOps(Theory) Contact hours: 30 hours (30L-0T-0P)

Prerequisites for the course	Familiarity with linear algebra, probability theory, machine learning , familiarity with python.	
Objectives	This course is aimed at anyone who wishes to	
	 Explore deep learning from scratch. This course offers a practical hand on exploration of deep learning, avoiding mathematical notation, preferring instead to explain quantitative concepts through programming using python API 	
Content	Introduction to MLOps Rise of the Machine Learning Engineer and MLOps-What Is MLOps?-DevOps and MLOps-An MLOps Hierarchy of Needs-Implementing DevOps-Configuring- Continuous Integration with GitHub Actions-DataOps and Data Engineering-Platform Automation-MLOps	3 hours
	MLOps Foundations-Bash and the Linux Command Line-Cloud Shell Development Environments-Bash Shell and Commands-List Files Run Commands Files and Navigation-Input/output- Configuration-Writing a Script-Cloud Computing Foundations and Building Blocks-Getting Started with Cloud Computing- minimalistic python revision-Descriptive Statistics and Normal Distributions-Optimization-Machine Learning Key Concepts- Doing Data Science-Build an MLOps Pipeline from Zero	3 hours
	MLOps for Containers and Edge Devices Containers-Container Runtime-Creating a Container Running a Container-Best Practices-Serving a Trained Model Over HTTP-Edge Devices- Coral Azure Percept-TFHub-Porting Over Non-TPU Models- Containers for Managed ML Systems-Containers in Monetizing MLOps-Build Once, Run Many MLOps Workflow	3 hours
	Continuous Delivery for Machine Learning Models-Packaging for ML Models-Infrastructure as Code for Continuous Delivery of ML Models-Using Cloud Pipelines-Controlled Rollout of Models-	3 hours

			Com.X AC-6
		15 8	22.05.2023
	Testing Techniques for Model Deployment		
	AutoML and Kaizen ML-Auto ML-MLOps Industrial Revolutio	n-	
	Kaizen Versus Kaizen ML-Feature Stores-Apple's Ecosystem-		3 hours
	Apple's AutoML: Create ML-Apple's Core ML Tools or Google		
	AutoML and Edge Computer Vision or Azure's AutoML or AW		
	AutoML-Open Source AutoML Solutions-Ludwig-FLAML-Mod Explainability	lel	
	Monitoring and Logging-Observability for Cloud MLOps-		
	Introduction to Logging-Logging in Python-Modifying Log Lev	els-	3 hours
	Logging Different Applications-Monitoring and Observability		
	Basics of Model Monitoring-Monitoring Drift with AWS		
	SageMaker-Monitoring Drift with Azure ML		
	MLOps for AWS-Introduction to AWS-Getting Started with A	WS	
	Services-MLOps on AWS-MLOps Cookbook on AWS-CLI Tools	5-	3 hours
	Flask Microservice-AWS Lambda Recipes-AWS Lambda-SAM		
	Local-AWS Lambda-SAM Containerized Deploy-Applying AW	S	
	Machine Learning to the Real World		
	Machine Learning Interoperability-Why Interoperability Is		
	Critical-ONNX: Open Neural Network Exchange-ONNX Mode	l	3 hours
	Zoo-Convert PyTorch into ONNX -Convert TensorFlow into		
	ONNX-Deploy ONNX to Azure-Apple Core ML-Edge Integration	on.	
	Building MLOps Command Line Tools and Microservices-Pyth		
	Packaging-The Requirements File-Command Line Tools-Creat	ting	3 hours
	a Dataset Linter Modularizing a Command Line Tool-		
	Microservices-Creating a Serverless Function-Authenticating		
	Cloud Functions-Building a Cloud-Based CLI-Machine Learnin	g	
	CLI Workflows		
	Machine Learning Engineering and MLOps Case StudiesUnlik	ely	3 hours
	Benefits of Ignorance in Building Machine Learning Models-		5 hours
	MLOps Projects at Sqor Sports Social Network-Mechanical Tu		
	Data Labeling-Influencer Rank-Athlete intelligence (AI produc		
	The perfect techniques versus the real world-critical challeng	ges	
	in MLops- Ethical and unintended consequences-lack of		
	operational excellences- focus on prediction accuracy vs the	gia	
	picture		
Pedagogy	Lectures/ tutorials/lab assignments/self-study		
References/	Main Reading :-		
Readings	 Practical MLops – Noah Gift and AlfredoDeza 		
	Introduction to MLOps – Noah Gift and AlfredoDeza		
Learning	Student will be able to		
Outcomes	Deploy ML models and test the same. (Back to Index)		

Programme: Masters in Data Science Course Code: DSC-512 Number of Credits: 2(0L-0T-4P) Effective from AY: 2023-24

Title of the Course: MLOps(Practical) Contact hours: 60 hours (0L-0T-60P)

Prerequisites for the course	Machine Learning and programming	
Objectives	Aimed at imparting the knowledge required to deploy ML models	
Content	 Perfect Project Structure – Cookiecutter& readme.so Speed Exploratory Data Analysis to Minutes – Pandas Profiling, SweetViz Track Data Science Projects with CI, CD, CT, CM –Data Version Control (DVC) Explainable AI / XAI – SHAP, LIME, SHAPASH Deploy ML Projects in minutes – Docker, FastAPI End to End Machine Learning – MLflow Building Production Ready ML Pipelines - Model Registry, Feature Store (Feast, ButterFlow) Big Data using Python, instead of PySpark – DASK Build a Chat bot and Deploy it (open-source) FaaS Framework implementation – Apache OpenWhisk, 	6 hours 6 hours
Pedagogy	OpenFaas Lab Assignments / mini project	
References/ Readings	 Machine Learning Engineering By AndriyBurkov Publisher : True Positive Inc. (8 September 2020) ML Ops: Operationalizing Data Science By David Sweenor, DevKannabiran, Thomas Hill, Steven Hillion, Dan Rope and Michael O'Connell-O'Reilly Building Machine Learning Pipelines By HannesHapke, Catherine Nelson Practical MLOps by Noah Gift, Alfredo Deza. O'Reilly Introducing MLOps By Mark Treveil&Dataiku Team Beginning MLOps with MLFlow: Deploy Models in AWS SageMaker, Google Cloud, and Microsoft AzureBy Sridhar Alla, SumanKalyanAdari, O'Reilly 	
Learning Outcomes	 Student should be able to Deploy ML models Test the issues related to scaling etc. 	

(Back to Index) (Back to Agenda)

Programme: Masters in Data ScienceCourse code: DSC-513 Title of course: Software Engineering for AI Enabled Systems (Theory)Number of credits: 2 (2L-0T-0P)Contact hours: 30 hours (30L-0T-0P)Effective from AY: 2023-24

Prerequisites for the course Objectives Content		15 & 22.05.2023
	Programming & Data Structures, Python	
Content	 Gain an in-depth understanding of Software Engineering including its importance. Learn Scrum, Kanban, Agile, Waterfall, Prototyping, Incremental, RAD and Spiral Software Process Models. Learn to perform systematic Software Requirement Engineering. Applying SE approach to developing AI solutions 	
	Software Engineering: Software Processes, SDLC, agile approaches to SE	5 hours
	Requirements Engineering: elicitation techniques, specification SCRUM and user stories.	on. 5 hours
	Test Driven Development: Refactoring and Unit testing	5 hours
	Use of frameworks and APIS and handling of big data	5 marks
	Configuration management, continuous integration, and automated software engineering	5 hours
	Cloud based software development, DevOps	5 hours
Pedagogy	Classroom/hands-on instructions, assignments, mini projects	;
References/ Readings	 Hands-On Software Engineering with Python: Move beyor basic programming and construct reliable and efficient software with complex code, Brian Allbee, Packt Publishin A concise Introduction to Software Engineering, Pankaj Jal 2008n- Springer. Agile Estimating and Scrum, Mike Cohn, Prentice Hall. 	g. lote-
Learning	1. Application of SE principles for AI and Data Science project	ts
Outcomes	2. How to work in self organizing teams	5

Std. Com.X AC-6

Programme: Masters in Data ScienceCourse code: DSC-514Title of course: Software Engineering for AI EnabledSystems(Practical)Number of credits: 2 (0L-0T-4P)Contact hours: 60 hours (0L-0T-60P)Effective from AY: 2023-24Contact hours: 60 hours (0L-0T-60P)

Prerequisites for the course	Programming & Data Structures, Python	
Objectives	Applying SE approach to developing AI solutions Use of modern software engineering tools and frameworks	
Content	1 Version Control Tools- Git and Github	12 hours
	2 TDD –Unit testing and refactoring with Python	12 hours

		Std. (Com.X AC-6
		15 &	22.05.2023
	3 Working with Python libraries and frameworks		12 hours
	4 Use of testing tools- selenium, Jmeter		12 hours
	5 Cloud based software development & DevOps		12 hours
Pedagogy	Lab sessions and projects		
References/ Readings	 Hands-On Software Engineering with Python: Move beyon basic programming and construct reliable and efficient software with complex code, Brian Allbee, Packt Publishir A concise Introduction to Software Engineering, Pankaj Ja 2008n- Springer. Agile Estimating and Scrum, Mike Cohn, Prentice Hall. 	ng.	
Learning	1. Application of SE principles for AI and Data Science project	cts	
Outcomes	2. How to work in self-organizing teams		
	 Use of tools and techniques for automating and managing software development 	g	

Programme: MSc in Data Science Course Code: DSC-521 Number of Credits: 4(2L-0T-4P) Effective from AY: 2023-24

Title of the Course: Domain Specific Predictive Analytics **Contact hours:** 90 hours (30L-0T-60P)

Prerequisites	Data science fundamentals and programming background	
for the course		
Objectives	 It introduces theoretical foundations Algorithms, Methodologies for analysing data in various domains such Retail, Finance, Risk and Healthcare. 	
Content for Theory	Retail Analytics Understanding Customer: Profiling and Segmentation, Modelling Churn. Modelling Lifetime Value, Modelling Risk, Market Basket Analysis.	4 hours
	Risk Analytics Risk Management and Operational Hedging: An Overview, Supply Chain Risk Management, A Bayesian Framework for Supply Chain Risk Management, Credit Scoring and Bankruptcy Prediction	4 hours
	Financial Data Analytics Financial News analytics: Framework, techniques, and metrics, News events impact market sentiment, Relating news analytics to stock returns	4 hours
	Financial Time Series Analytics Financial Time Series and Their Characteristics, Common Financial Time Series models, Autoregressive models, Markov chain models, Time series models with leading indicators, Long term forecasting	4 hours

		td. Com.X AC-6	
		22.05.2023	
	Introduction Healthcare Analytics An Introduction to Healthcare Data Analytics, Electronic Health Records, Privacy-Preserving Data Publishing Methods in Healthcare, Clinical Decision Support Systems	4 hours	
	Healthcare Data Analytics		
	Natural Language Processing and Data Mining for Clinical Text: Core NLP Components, Information Extraction and Named Entity Recognition, Social Media Analytics for Healthcare: Tracking of Infectious Disease Outbreaks, Readmission risk Prediction	4 hours	
	Genomic Data Analytics Microarray Data, Microarray Data Analysis, Genomic Data Analysis for Personalized Medicine, Patient Survival Prediction from Gene Expression Data, Genome Sequence Analysis	6 hours	
Content for Practical	 Finance: Stock Market Prediction: Develop a predictive model to forecast stock prices based on historical data, using techniques such as time series analysis and machine learning algorithms. 	6 hours	
	 b) Credit Risk Assessment: Build a model to predict the creditworthiness of individuals or businesses, incorporating relevant financial and non-financial factors to assess default probabilities. 	6 hours	
	 Fraud Detection: Create an algorithm to identify fraudulent transactions or activities in financial systems by analysing patterns, anomalies, and historical data. 	6 hours	
	 Medical Science: a) Disease Diagnosis: Develop a predictive model to diagnose diseases based on patient symptoms, medical history, and test results, using techniques like classification algorithms and medical data analysis. 	6 hours	
	 b) Patient Readmission Prediction: Build a model to predict the likelihood of a patient being readmitted to the hospital within a certain time frame, considering factors such as demographics, medical conditions, and treatment history. 	6 hours	
	c) Drug Effectiveness Prediction: Create a model to predict the effectiveness of a particular drug for a specific patient or group of patients, utilizing genetic information, clinical data, and treatment outcomes.	6 hours	

		I. Com.X AC-6
[]		& 22.05.2023
	 Genomic Science: Predictive analytics in the domain of genomics can be highly beneficial for various applications, such as disease prediction drug discovery, personalized medicine, and genetic engineering. Here are a few examples of predictive analytics techniques that can be applied in genomics a) Disease Risk Prediction: By analyzing an individual's genomic data, predictive analytics can be used to assess the risk of developing specific diseases. Machine learning algorithms car identify patterns and genetic markers associated with various diseases, allowing for early detection and preventive measures. For example, predictive models can be built to predict the risk of developing conditions like cancer, cardiovascular diseases, or genetic disorders. 	1
	b) Pharmacogenomics: Predictive analytics can aid in predicting an individual's response to specific drugs based on their genetic makeup. By analyzing genomic data along with clinica information, machine learning models can predict drug efficacy, potential side effects, and optimal dosage. This information can be used to develop personalized treatment plans and improve patient outcomes.	6 hours
	c) Genomic Variant Interpretation: Genomic variants play a crucial role in determining an individual's susceptibility to diseases. Predictive analytics can be used to interpret the functional consequences of these variants. Machine learning algorithms can predict the impact of genetic mutations on protein structure and function, helping researchers and clinicians understand the underlying mechanisms of diseases and develop targeted therapies.	6 hours
	 d) Gene Expression Analysis: Predictive analytics can analyze gene expression data to identify patterns and correlations between genes and specific traits or diseases. By using machine learning algorithms, it is possible to predict gene expression levels based on genomic features and environmental factors. This can provide valuable insights into gene regulatory networks and help in understanding disease mechanisms and identifying potential therapeutic 	6 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/ Readings	 Chris Chapman, Elea McDonnell Feit "R for Marketing Research and Analytics", Springer, 2015. Olivia Parr Rud "Data Mining Cookbook: Modeling Data for Marketing, Risk, and Customer Relationship Management", Wiley, 2001. 	

		15 & 22.05.2023
	 3. Chandan K. Reddy, Charu C. Aggarwal "Healthcare Data Analytics", CRC Press, 2015. 4. Rene Carmona "Statistical An of Financial Data in R", Springer, 2014. 5. James B. Ayers "Handbook Of Supply Chain Management" Auerbach Publications, 2006. 6. PanosKouvelis, Lingxiu Dong, OnurBoyabatli, Rong Li "The Handbook of Integrated Risk Management in Global Supply Chains", Wiley, 2012. 	
Learning Outcomes	 Students will be able to understand Retail Analytics, Risk Analytics, Financial Data Analytics, Financial Time Series Analytics, Healthcare Analytics, Healthcare Data Analytics and Genomic Data Analytics. 	

Std. Com.X AC-6

Programme: MSc in Data Science Course Code: DSC-522

Title of the Course: Design Thinking for Data-Driven App Development **Contact hours:** 60 hours (60L-0T-0P)

Number of Credits: 4(4L-0T-0P) Effective from AY: 2023-24

Prerequisites for None the course **Objectives** This course helps you learn The basics of Design Thinking in an experiential way. This course aims at an empathy-led data-driven app development approach for data scientists. The learners will launch a fully functioning app in a real app store at the end of the course. Introduction to Design Thinking – Course outline and projects, Content 15 hours Intro to the Design of Everyday Things, Intro to Design Thinking in software apps, Project management. Empathize phase (Iteration #1)-- Emotional and intellectual map of the user stories from interviews, User story creation and Customer Journey Mapping Analyse phase (Iteration #1) - Stated needs and unsaid/latent 15 hours needs, Root cause analysis, Multiple perspectives of customers and manufacturers, Frame conflicts from popular movies. Solve phase (Iteration #1)Structured and unstructured creativity, Dynamics of group thinking, Optimal conditions of creativity, Natural creativity, Concept creation via group activities, Silent brainstorming, inventive principles and concept consolidation Test phase (Iteration #1)/ Empathize phase (Iteration #2) - Basics 15 hours of prototyping, Assumptions in creation of new concepts, Features rather than ideas. Basics of Digital Marketing, User Experience Design, Website Development Analyse phase (Iteration #2) 15 hours Solve phase (Iteration #2) - Introduced problems via the solution

	15 4 2	2.05.2025
	from iteration #1, the subsequent ideation process in iteration	
	#2, apply solutioning and analysis tools in iteration #2,	
	subsequent testing and field trial skills required for iteration #3,	
	analytical tools and data oriented tools on iteration #3. Test	
	(Iteration #2) / Empathize (Iteration #3) - Basics of obtaining	
	insights from feedback from a live audience. Analyse (Iteration	
	#3). Test phase (Iteration #3) - Launch of the App.	
Pedagogy	Hands-on assignments / Tutorials / Peer-teaching / Presentations	
References/	1. Design of everyday things by Don A. Norman, 2013.	
Readings	2. This is Service Design thinking- basics, tools and cases by Marc	
	Stickdorn, 1st edition, John Wiley & Sons Inc., 2012.	
	Students will be able to:	
Learning	 Recall the basics of Design Thinking 	
Outcomes	 Apply Agile method to developing software 	
	 Design an App using the principles of Design Thinking 	
	Develop an App for Android	
	Collaborate with other developers using git version	
	control method	
	 Learn the basics of marketing and customer support 	
	through their website	

(Back to Index) (Back to Agenda)

Programme: Masters in Data Science Course Code: DSC-523 Number of Credits: 2(2L-0T-2P) Effective from AY: 2023-24

Title of the Course: Signal Processing Contact hours: 90 hours (30L-0T-60P)

Prerequisites for the course	 Linear algebra, Calculus and multivariable calculus, At least high school math on trigonometry, Complex number A little bit familiarity with programming, especially for numerical computation, such as GNU Octave. 	
Objectives	 To study various types of signals and its characteristics. To study various operations on the signals. To analyse the signals using Fourier transform and Laplace Transform. To learn the fundamentals of robotics and sensor technology. To understand the controlling applications of robotics using sensor responses. 	
Content for Theory	Module:1 Introduction to Signals Continuous-time and Discrete-time Signals: Representation of signals, Signal classification, Types of Signals, Operations on signals - Scaling, Shifting	4 hours

		Std. Com.X AC-6				
		15 & 22.05.2023				
	Module: 2 Fourier Analysis of Continuous-time Signals Introduction to Fourier series, Gibbs Phenomenon, and Continuous-time Fourier transform (CTFT), Existence, Magnitude and phase response, Parseval's theorem, Inverse Fourier transform. Relation between Laplace and Fourier transforms, Laplace Transform, Magnitude and phase respor					
	Module: 3 signal conditioning Sensing - Pre-processing – Noise reduction, enhancement of details. Signal Conversion – Sampling, Quantization, Encoding					
	Module:4 Data Acquisition and sensing in Robotics Data Acquisition: Analogy and digital data acquisition, single channel and multi-channel data acquisition Image processing in Robotics: Vision sensor, Introduction to computer vision, Point operators, Linear Filters, More neighbourhood operators, Fourier transforms, Pyramids and wavelets, Geometric transformations.	4 hours				
	Module: 5 Fundamentals of Robotics Basic components of robotic system. Basic terminology- Accuracy, Repeatability, Resolution, Degree of freedom. Mechanisms and transmissic End effectors, Grippers-different methods of gripping, Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, Cam type gripper, Magnetic grippers, Vacuum grippers, Air operated grippers; Specifications of robot.	4 hours				
	Module: 6 Drive Systems and Sensors in Robotics Drive system- hydraulic, pneumatic and electric systems. Sensors i robot – Touch sensors, Tactile sensor, Proximity and range sensors, Robotic vision sensor, Force sensor, Light sensors, a Pressure sensors.					
	Module: 7 Signal processing application in Robotics Robot applications: Application of robots in surgery, Manufacturing industries, space and underwater. Humanoid robots, Micro robots, Social issues and Future of robotics.	g 6 hours				
Content for Practical:	 To find Discrete Fourier Transform and Inverse Discre Fourier Transform of given digital signal using MATLA software. 					
	• To obtain Linear Convolution of two finite length sequences using MATLAB software.	7 hours				
	To compute auto correlation between two sequences using MATLAB software.	s 7 hours				
	• AIM: To find frequency response of a given system in differential equation form using MATLAB software.	7 hours				

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

1.	5 & 22.05.2023
• AIM: To find the FFT of a given sequence using MATLAB software.	7 hours
 Determination of Power Spectrum of a given signal using MATLAB software. 	7 hours
• To implement LP FIR filter for a given sequence using MATLAB software.	9 hours
• To implement HP FIR filter for a given sequence using MATLAB software.	9 hours
ISA/Assignments/seminar	
 Text Book(s) 1. Signals and Systems, second edition-P. Rama Krishna Rao and Shankar Prakriya- Mc-Graw Hill, 2013. 2. Groover. M.P. Industrial Robotics, technology, programming and application Mc-Graw Hill 2012. 3. S. R.Deb, "Robotics technology and flexible automation", Tata McGraw Hill publishing company limited, 1994. Reference Books 1. Signals and systems, second edition-Alan. V. Oppenheim, Alan. S. Willsk,S. Hamid Nawab, PHI learning Pvt Itd, 1997 2. Signals and systems, second edition - Simon Haykin, Barry VanVeen, Wiley, Wiley India, 2007. 3. S. K. Saha, "Introduction to Robotics", Tata McGraw-Hill Publishing Company Ltd. (2008). 4. Ramon Pallas-Areny, John G. Webster, "Sensors and Signal Conditioning", 2nd Edition, Wiley India Pvt.Ltd., India, 2012. Mode of Evaluation: Assignments / Assignments / Quiz 	
 After the completion of the course, student will be able to: 1. To differentiate continuous and discrete time signals 2. To analyse the sensor response using Fourier transform 3. To analyse the trajectory of sensor signal using Laplace transform 4. To understand the signal conditioning and acquisition mechanism 5. To learn the fundamentals and peripherals of robots 6. To explore sensor responses in controlling robots 7. To explore various real-time application of sensor signal in 	
	 AIM: To find the FFT of a given sequence using MATLAB software. Determination of Power Spectrum of a given signal using MATLAB software. To implement LP FIR filter for a given sequence using MATLAB software. To implement HP FIR filter for a given sequence using MATLAB software. ISA/Assignments/seminar Text Book(s) Signals and Systems, second edition-P. Rama Krishna Rao and Shankar Prakriya- Mc-Graw Hill, 2013. Groover. M.P. Industrial Robotics, technology, programming and application Mc-Graw Hill 2012. S. R.Deb, "Robotics technology and flexible automation", Tata McGraw Hill publishing company limited, 1994. Reference Books Signals and systems, second edition - Simon Haykin, Barry VanVeen, Wiley, Wiley India, 2007. S. K. Saha, "Introduction to Robotics", Tata McGraw-Hill Publishing Company Ltd. (2008). Ramon Pallas-Areny, John G. Webster, "Sensors and Signal Conditioning", 2nd Edition, Wiley India Pvt.Ltd., India, 2012. Mode of Evaluation: Assignments / Assignments / Quiz After the completion of the course, student will be able to: To differentiate continuous and discrete time signals To analyse the trajectory of sensor signal using Laplace transform To analyse the trajectory of sensor signal using Laplace transform To learn the fundamentals and peripherals of robots 6. To explore sensor responses in controlling robots

(Back to Index) (Back to Agenda)

Programme: Masters in Data Science

Course Code: DSC-524Title of the Course: Regression Analytics and Predictive ModelsNumber of Credits: 2 (2L-0T-2P)Contact hours: 90 hours (30L-0T-60P)Effective from AY: 2023-24Contact hours: 90 hours (30L-0T-60P)

Std. Com.X AC-6 15 & 22.05.2023

Prerequisites for the course	Probability Theory and Distributions	
Objectives	 Develop an understanding of regression analysis and model building. Provide the ability to develop relationship between variables Investigate possible diagnostics in regression techniques Formulate feasible solutions using a regression model for real-life problems. 	
Content (Theory)	Simple Regression Analysis Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results.	4 hours
	Multiple Regression Analysis Concept of Multiple regression model to describe a linear relationship, Assessing the fit of the regression line, inferences from multiple regression analysis, problem of over fitting of a model, comparing two regression model, prediction with multiple regression equation.	4 hours
	Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analysis, PRESS statistics, detection and treatment of outliers, lack of fit of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure errors from near neighbors.	4 hours
	Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods, transformations on the repressors variables, Generalized and weighted least squares, Some practical applications.	4 hours
	Multicollinearity Introduction, sources of multicollinearity, effects of multicollinearity. Multicollinearity diagnostics: examination of correlation matrix, variance Inflation factors (VIF), Eigen system analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re- specification, and ridge regression.	4 hours
	Generalized Linear Models Generalized linear model: link functions and linear predictors, parameter estimation and inference in the GLM, prediction and estimation with the GLM, Residual Analysis, and concept of over dispersion.	4 hours

		15 & 22.05.2023
Content for Practical:	Model building and Nonlinear RegressionVariable selection, model building, model misspecification.Model validation techniques: Analysis of model coefficients, and predicted values, data splitting method. Nonlinear regression model, nonlinear least squares, transformation to linear model, parameter estimation in nonlinear system, 	15 & 22.05.2023 6 hours
	7. Regression-Solved problem-2	5 hours
	8. Probable Error- Calculating correlation coefficient of POPULATION	5 hours
	9. Predictive modelling project for credit card fraud detection	5 hours
	10. Predictive modelling project for customer value prediction	5 hours
	11. Predictive modelling project for stock market forecastin	ng 5 hours
	12. Predictive modelling project for corporate bankruptcy prediction	5 hours
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/ Readings	 Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining, Introduction to Linear Regression Analysis, Third Ed., Wiley India Pvt. Ltd., 2016. Norman R. Draper, Harry Smith; Applied Regression Analysis, WILE' India Pvt. Ltd. New Delhi; Third Edition, 2015. Johnson, R A., Wichern, D. W., Applied Multivariate Statistical Analysis, Sixth Ed., PHI learning Pvt., Ltd., 2013. Iain Pardoe, Applied Regression Modeling, John Wiley and Sons, Inc, 2012. 	ł
Learning Outcomes	 At the end of the course students will be able to: Develop in-depth understanding of the linear and nonlinear regression model. Demonstrate the knowledge of regression modelling an model selection techniques. 	ıd

Std. Com.X AC-6

	Std. Com.X AC-6	-
 Examine the relationships between dependent and independent variables. Estimate the parameters and fit a model. Investigate possible diagnostics in regression modelling and analysis. Validate the model using hypothesis testing and confidence interval approach. Understand the generalizations of the linear model to binary and count data. 		<u>,</u>

Annexure VI

Masters in Artificial Intelligence to be effective from Academic Year 2023-24 Eligibility:

Bachelor degree in Computer Science/Computer Applications/Engineering (Computer Science/Information Technology) or equivalent degree with atleast 55% marks (relaxation in minimum percentage for reserved categories shall be applicable as per existing state government rules)

OR

Bachelor degree in Mathematics/Statistics/Electronics with atleast 55% marks (relaxation in minimum percentage for reserved categories shall be applicable as per existing state government rules). Such candidates shall be provisionally admitted until successful completion of Bridge Courses as specified by the Admission Committee for Masters in Artificial Intelligence at the time of admission.

Admission:

Procedure for admission to the Masters in Artificial Intelligence will be decided by the Admission Committee for Masters in Artificial Intelligence appointed by the Vice-Chancellor for the Academic Year

Masters in Artificial Intelligence Programme Specific Outcomes:

The course is aimed at imparting the following core things

1. Core programming skills and techniques, including designing and coding applications, and the important principles of code design and development.

2. Data science tools and techniques, including the principles of data science, data analysis, visualisation and interpretation, and the use of "big data".

3. Artificial intelligence tools and techniques, including problem-solving, knowledge representation, machine learning, computer vision, human-computer interactions and (mis) information diffusion.

4. Ethical computing and data science, exploring the ethical, legal, social and professional frameworks in which data scientists must operate, in business and society.

5. The application of AI and data science in research and industry

Pathway

Fundamentals (Mathematics and Problem Solving, Programming) - Core Courses (AI, Machine Learning, Deep Learning, etc.,) Specialization (Natural Language Processing, Computer Vision) Research and Dissertation (Core Research – Language Models, or Application Oriented Research or Product Based Research (MLOps, DevOps, Design Thinking, Pragmatic AI)

As per the above pathway vision, the structure for programme has been designed as follows -

Masters in Artificial Intelligence COURSE STRUCTURE to be effective from Academic Year 2023-24

	2023-24				
	SEMESTER – 1				
Course- Code	Course Title	L	Τ	P	Credits
	Discipline Specific Core Courses(DSCC)				

Std. Com.X AC-6 15 & 22.05.2023

٦

					15 & 22.05.20
CSI-500	Fundamentals of Artificial Intelligence	2	0	0	2
CSI-501	Fundamentals of Artificial Intelligence Lab	0	0	4	2
CSI-502	Algorithms and Data structures	2	0	0	2
CSI-503	Algorithms and Data structures Lab	0	0	4	2
CSI-504	Mathematical Foundations for Artificial Intelligence	2	0	0	2
CSI-505	Mathematical Foundations for Artificial Intelligence Lab	0	0	4	2
CSI-506	Data Science Fundamentals	2	0	0	2
CSI-507	Data Science Fundamentals Lab	0	0	4	2
	Total Credits for DSCC				16
	 	e to be	select	e d	
CSI-521	Natural Language Processing	2	0	4	4
CSI-522	Computer Vision	2	0	4	4
CSI-523	Robotics	2	0	4	4
CSI-524	IoT Architecture and Protocols	2	0	4	4
	Total Minimum Credits for DSEC				4
	Total Minimum Credits Semester –	1			20
	ancement Course(SEC), Students to be enc he courses, but not considered for GPA Calcul	-			• •
	Yoga and Meditation	1	1	0	2
	Any Community Engagement Course like -				
	Swachh Bharat Student Internship(SBSI)	0	0	4	2
		-	1 -	I	

Masters ir	Artificial Intelligence Programme Structure to be	e eff	ect	ive from .	Academic Yea
	2023-24				
	SEMESTER – 2				
Course-	Course Title	L	T	Ρ	Credits
Code					
CSI-508	Deep Learning	2	0	0	2
CSI-509	Deep Learning Lab	0	0	4	2
CSI-510	Big Data Frameworks	2	0	0	2
CSI-511	Big Data Frameworks Lab	0	0	4	2
CSI-512	Reinforcement Learning	2	0	0	2
CSI-513	Reinforcement Learning Lab	0	0	4	2
CSI-514	Software Engineering for AI Enabled systems	2	0	0	2
CSI-515	Software Engineering for AI Enabled systems	0	0	4	2

Г

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

	Lab				
	Total Credits for DSCC				16
	Discipline Specific Elective Courses (DSEC) – Any	one	to k	e opte	d for
CSI-525	Machine Translation	2	0	4	4
CSI-526	Mathematics for Computer Vision and Robotics	2	0	4	4
CSI-527	Soft computing	2	0	4	4
CSI-528	Regression Analytics and Predictive Models	2	0	4	4
CSI-529	Essentials of Data Analytics	2	0	4	4
	Total Minimum Credits for DSEC				4
	Total Minimum Credits Semester – 2				20

Masters in Artificial Intelligence Programme Structure to be effective from Academic Year						
		2023-24				
	SEMESTER – 3					
Course-	Course Title	L	T	Р	Credits	
Code						

Any two Research Specific Elective Courses(RSEC) to be opted in consultation with the Mentor based on the Dissertation type to be opted by the student for Semester 4.

CSI-600	Speech Processing	2	0	4	4
CSI-601	Advanced Machine Translation	2	0	4	4
CSI-602	Simulation and Modelling	2	0	4	4
CSI-603	MLOps	2	0	4	4
CSI-604	Generative Deep Learning Models	2	0	4	4
CSI-605	Data Engineering	2	0	4	4
CSI-606	Sensors , Actuators and Signal				
	Conditioning	2	0	4	4
CSI-607	Signal Processing	2	0	4	4
CSI-608	Image Processing	2	0	4	4
	Total Minimum Credits for R	SEC			8
	Generic Elective Courses(GEC) – A	ny three	e to be o	opted	
CSA-621	Corporate Skills	4	0	0	4
CSI-621	Seminar Course	4	0	0	4

Std. Com.X AC-6 15 & 22.05.2023

					15 & 22.05.
CSI-623	Research Methodology	4	0	0	4
	Value Added Course / Skill Enhancement Courses / Community Engagement Course / Multidisciplinary Course	2	0	4	4
	Any one offered by Commerce Discipline during that semester can be opted	4	0	0	4
	Any one offered by Economics Discipline during that semester can be opted	4	0	0	4
	Any one offered by Management Studies Discipline during that semester can be opted	4	0	0	4
	Foreign or Indian Language Course under AEC could be opted	4	0	0	4
	Total Minimum Credits for GE	C			12
Total Minimum Credits for Semester 3					20

Masters in Artificial Intelligence Programme Structure to be effective from Academic Year
2023-24

SEMESTER – 4

Research Specific Elective Courses(RSEC) – Any one to be opted in consultation with the Mentor based on the Dissertation type to be opted by the student for Semester 4. It could be completed in Semester 3 before going for the Dissertation.

CSI-609	Financial Machine Learning	2	0	4	4
CSI-610	AI for Atmospheric Science	2	0	4	4
CSI-611	Pragmatic AI	2	0	4	4
CSI-612	AI for Medical Specialization	2	0	4	4
CSI-613	Design thinking for AI	2	0	4	4
CSI-614	Recommender Systems	2	0	4	4
CSI-615	Text Mining and Sentiment Analysis	2	0	4	4
	·				
CSI-616	Digital Twin	2	0	4	4

Total Minimum Credits for RSOC	4
Dissertation Type	Credits

		Std. Com.X A	4C-6
		15 & 22.05.2	2023
CSI-652:	Industry Internship / Software Project Development	16	
OR			
CSI-651:	Research Project in Academic or Research Institutes		
	Total Credits for Dissertation	16	
	Total Minimum Credits for Semester-4	20	
Total N	Ainimum Credits for two-year M.Sc. in Artificial Intelligence degree Programme	80	

Semester I (Core Papers)

Programme: M.Sc. in Artificial Intelligence

Course code: CSI-500Title of course: Fundamentals of Artificial IntelligenceNumber of credits: 2(2L+0T+0P)Total contact hours: 30 hours(30L-0T-0P)Effective from AY: 2023-24Effective from AY: 2023-24

Effective from A1. 2023-		
Prerequisites for the	Programming back programming and probability	
<u>course</u>	and statistics and linear algebra	
<u>Objectives</u>	To develop a basic understanding of problem	
	solving, knowledge representation, reasoning and	
	learning methods of AI.	
<u>Content</u>	Artificial Intelligence	
	Introduction -Intelligent Agents, Problem-solving	
	Solving Problems by Searching -Search in Complex	5 hours
	Environments - Adversarial Search and Games-	
	Constraint Satisfaction Problems	
	Knowledge, reasoning, and planning	
	Knowledge Representation-First-Order Predicate	
	Logic - Unification Forward and Backward Chaining	
	- Resolution - Ontological Engineering	3 hours
	Categories and Objects - Events-Mental Events	
	and Mental Objects - Reasoning Systems for	
	Categories - Reasoning with Default Information	
	Uncertain knowledge and reasoning	
	Quantifying Uncertainty - Probabilistic Reasoning -	3 hours
	Probabilistic Reasoning over Time Probabilistic	
	Programming -Making Simple Decisions - Making	
	Complex Decisions -Multiagent Decision Making	
	Machine Learning Learning from Examples -	
	Learning Probabilistic Models - Deep Learning -	
	Reinforcement Learning Communicating,	
	perceiving, and acting	6 hours
	Natural Language Processing - Deep Learning for	
	Natural Language Processing - Computer Vision -	
	Robotics .	2 hours

		Std. Com.X AC-6
		15 & 22.05.2023
	Artificial Intelligence applications Language	
	Models - Information Retrieval - Information	
	Extraction	
	Natural Language Processing - Machine	
	Translation - Speech Recognition	
	Robotics-Hardware and Software for Robots -	
	Planning and Perception	
	Explainable AI - Definitions and concepts such as	
	black-box models, transparency, interpretable	
	machine learning and explanations Decision-	
	making and decision support, Human-Computer	7 hours
	Interaction (HCI) and AI Explainable AI	
	Methods for Explainable AI Applications and	
	examples Trust and acceptanceEvaluation	
	methods and metrics Ethical, legal and social	4 hours
	issues of explainable AI.	
	Contemporary issues in Al- Philosophy, Ethics,	
	and Safety of AI -The Future of AI	
Pedagogy	Tutorials / Hands-on-assignments / Self-study	
References/ Reading	1. A Classical Approach to Artificial Intelligence,	
	M.C. Trivedi, Khanna Book Publishing, 2019.	
	2. Artificial Intelligence: A modern approach by	
	Stuart Russel, Pearson Education, 2010.	
	3. Artificial Intelligence by Rich and Knight, The	
	McGraw Hill, 2017.	
	4. Artificial Intelligence: A new synthesis by Nils	
	and Nilson, Elsevier, 1997.	
	5. Artificial Intelligence by Luger, Pearson	
	Education, 2002.	
	6. Artificial Intelligence by Padhy, Oxford Press,	
	2005.	
	7.https://www.edx.org/course/artificial-	
	intelligence-ai	
	8.https://www.udemy.com/course/artificial-	
	intelligence-az/	
Learning Outcomes	The students will be able to:	
	1. Understand the basic concepts and techniques	
	of Artificial Intelligence.	
	2. Apply AI algorithms for solving practical	
	problems.	
	3. Describe human intelligence and AI.	
	4. Explain how the intelligent system works.	
	5. Apply basics of Fuzzy logic and neural networks.	
	6. Explain Expert System and implementation.	
		(Back to Agenda)

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-501 Title of the Course: Fundamentals of Artificial Intelligence LabNumber of Credits: 2 (0L+0T+2P)Total Contact Hours: 60 hours (0L+0T+2P)Effective from AY: 2023-24

Effective from AT: 202		
Prerequisites	Artificial Intelligence theory, probability and statistics,	
for the course:	linear algebra and Python programming	
<u>Objectives:</u>	To develop a basic understanding of problem solving, knowledge representation, reasoning and learning methods of AI and implement AI algorithms	
<u>Content:</u>	Assignment-1 -Real-world path planning for pedestrians. In the first part, students implement A* over a map that includes roads/paths as well as elevations. In the second part, students collect actual data through walking around the real world, and the cost model is then learned via regression techniques.	10 hours
	Assignment-2 -Solve maze via search -this assignment involves formulating maze-solving as a search problem, image processing (via OpenCV) as a step in maze-solving, as well as guided performance/quality analysis of representational parameters.	10 hours
	Assignment 3-Within the context of an artificial intelligence course, students are taught to identify ethical issues within technical projects and to engage in moral problem solving with regard to such issues.	10 hours
	Assignment 4-Neural network for face recognition using tensor flow -build feedforward neural networks for face recognition using TensorFlow. Students then visualize the weights of the neural networks they train. The visualization allows students to understand feedforward one-hidden layer neural networks in terms of template matching, and allows students to explore overfitting.	10 hours
	Assignment -5 -Organic path finding -Students develop a "human-like" pathfinding technique by specializing a generic search algorithm with custom action cost and heuristic cost functions. Students apply classical search algorithms and reflect on example organic paths to achieve "human-like" pathfinding.	10 hours
	Assignment - 6 -Implement a genetic algorithm in Python to evolve strategies for Robby the Robot to collect empty soda cans that lie scattered around his rectangular grid world. And also Compare the performances of a brute-	10 hours

		15 & 22.05.2023
	force search and a search employing the Minimum Remaining Values (MRV) heuristic in solving Sudoku puzzles.	
Pedagogy:	lectures/practical/ tutorials/assignments/self-study	
<u>References</u> /Readings:	 A Classical Approach to Artificial Intelligence, M.C. Trivedi, Khanna Book Publishing, 2019. Artificial Intelligence: A modern approach by Stuart Russel, Pearson Education, 2010. Artificial Intelligence by Rich and Knight, The McGraw Hill, 2017. Artificial Intelligence: A new synthesis by Nils and Nilson, Elsevier, 1997. Artificial Intelligence by Luger, Pearson Education, 2002. Artificial Intelligence by Padhy, Oxford Press, 2005. Thttps://www.edx.org/course/artificial-intelligence-ai 8.https://www.udemy.com/course/artificial-intelligence-az/ 	
Learning Outcomes:	 The students need to understand and extend an existing implementation of the back-propagation algorithm and use it to recognize static hand gestures in images. Students learn about feedforward neural networks and the backpropagation algorithm by implementing a perceptron network for AND and XOR Boolean functions and, given an implementation of a feedforward network learn digit recognition using the MNIST data set. In this assignment students extend a Tic Tac Toe program to Ultimate Tic Tac Toe and implement a different searc strategy than the example code. 	s K,

Std. Com.X AC-6

Programme: M.Sc. in Artificial IntelligenceCourse Code: CSI-502 Title of the Course: Algorithms and Data StructureNumber of Credits: 2 (2L+0T+0P)Total Contact Hours: 30 hours(30L+0T+0P)Effective from AY: 2023-24

Prerequisites	Programming in Python	
for the course:		

		l. Com.X AC-6
	-	& 22.05.2023
<u>Objectives:</u>	The aim of the course is to introduce the fundamental concept of data structures and to emphasize the importance of data structures in developing and implementing efficient algorithms. It provides an exposure to various data structures and algorithm analysis including	
	lists, stacks, queues, trees, and various sorting and searching algorithms.	
<u>Content:</u>	Introduction: Three level Approach - Application/User level, Abstract/Logical level, Physical/Implementation	3 hours 3 hours
	level; Concept of Abstract Data Types (ADTs), Data	5 hours
	Structure definition, Data type vs. data structure, Applications of data structures,	5 hours
	Algorithms analysis and its complexity, Best case, worst case , and Average case performance, time-space tradeoff	,
	Asymptotic Analysis, Big-O notation.	
	Linear Data Structures: Array and its application:	
	Polynomials, Sparse matrices, String-pattern Matching.	
	Linked Lists, Doubly linked list, Circular linked list, Stack and Queues.	
	Nonlinear Data Structures: Trees: Binary tree	
	representation, Binary Search Trees, AVL Trees, M-way Search Trees, B-trees. B tree algorithms, Heap Structures.	
	Graphs: Graph representations; Graph Traversals	2 hours
	Complexity of Searching & Sorting algorithms: Bubble sort,	
	Quick sort, Selection sort, Insertion sort, Merge sort and Heap sort. An Empirical Comparison of Sorting Algorithms,	
	Lower bounds for Sorting. Linear search, binary search.	8 hours
	Dynamic programming and Greedy algorithms: Assembly	
	line scheduling, Matrix-chain multiplication; Prim [*] s	4 hours
Pedagogy:	Algorithm, Kruskal [*] s Algorithm Practical/ tutorials/assignments/self-study	
References	1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-	
/Readings:	Freed. Fundamentals of data structures in C. WH Freeman & Co., 1992.	
	2. Benjamin Baka, Basant Agarwal, "Hands on Data	
	Structure and Algorithms with Python", Second Edition, O"Reilly, 2018	
	3. Cormen Thomas, L. Charles, R. Ronald, S. Clifford, "Introduction to Algorithms", Second Edition, EEE, PHI.	
	4. Allen, Weiss Mark. Data structures and algorithm	

	Std. Com.X AC-6 15 & 22.05.2023 analysis in C. Pearson Education India, 2011. 5. Algorithms, by Dasgupta, Papadimitriou, and
	Vazirani, McGraw-Hill.
<u>Learning</u> Outcomes:	 Upon successful completion of the course, a student will bE able to Implement common data structures such as lists, stacks, queues, graphs, and binary trees for solving programming problems. Identify and use appropriate data structures in the context of a solution to a given problem.

Programme: M.Sc. in Artificial Intelligence **Course Code:** CSI-503 **Title of the Course:** Algorithms and Data Structure Lab **Number of Credits:** 2 (0L+0T+2P) **Total Contact Hours:** 60 hours (0L+0T+2P) **Effective from AY:** 2023-24

Prerequisites for the course:	Programming in Python	
Objectives:	The aim of the course is to introduce the fundamental concept of data structures and to emphasize the importance of data structures in developing and implementing efficient algorithms. It provides an exposure to various data structures and algorithm analysis including lists, stacks, queues, trees, and various sorting and searching algorithms.	
<u>Content:</u>	Object-Oriented Design Goals, Object-Oriented Design Principles. 1. The programming assignment should introduce and enforce the concepts of encapsulation, polymorphism and Inheritance. ADT Specifications and Implementation of following basic data structures 2. Singly Linked Linear Lists	

	Std. Com.X AC-6 15 & 22.05.2023
3. Singly Linked Circular Lists	2 hours
4. Doubly Linked Linear Lists	2 hours
5. Doubly Linked circular Lists	2 hours
6. Stack using linked list	2 hours
7. Queue using linked list	2 hours
ADT Specifications and Implementation of following nor linear data structures	4 hours
8. Binary Trees	
9. Binary Search Trees	3 hours
10. AVL Trees	4 hours
11. B-Trees and its variants	3 hours
Application of stack	3 hours
12. Program to convert the given infix expression to po expression using stack	ostfix
13. Program to evaluate a postfix expression using stac	2 hours k.
14. Program to traverse a binary tree in the following v Pre-order, In-order, Post-order	3 hours way:
Applications of Binary Trees	2 hours
15. Write a program to implement Huffman encoding Binary tree.	using

		-	<u>Com.X AC-6</u> 22.05.2023
		10 00	2 hours
	16. Write a program to create a binary tree for the give infix expression.	en	
	Applications of AVL Trees		3 hours
	17. Write a program that reads a list of names and telephone number from a text file and inserts them in AVL tree. Write a function to allow the user to search t tree. Searching and sorting		
	18. Program to implement Binary search technique usi Iterative method and Recursive methods.	ing	3 hours
	19. Programs to implement following sorting algorithn Bubble sort, Selection sort, Insertion sort, Quicksort, Merge sort and Heap sort	1-	3 hours
	Implementation of Dynamic programming		4 hours
	20. Assembly line scheduling		
	21. Matrix-chain multiplication		
			3 hours
	Implementation of Greedy algorithms		3 hours
	22. Prim"s Algorithm		
	23. Kruskal"s Algorithm		
Pedagogy:	Lectures/Practical/tutorials/assignments/self-study		

		Std. Com.X AC-6
		15 & 22.05.2023
<u>References/Readi</u>	1. Horowitz, Ellis, Sartaj Sahni, and Susan Anderson-	
ngs:	Freed. Fundamentals of data structures in C. WH	
	Freeman & Co., 1992.	
	2. Benjamin Baka, Basant Agarwal, "Hands on Data	
	Structure and Algorithms with Python", Second	
	Edition, O"Reilly, 2018	
	3. Cormen Thomas, L. Charles, R. Ronald, S. Clifford,	
	"Introduction to Algorithms", Second Edition, EEE, PH	I.
	4. Allen, Weiss Mark. Data structures and algorithm	
	analysis in C. Pearson Education India, 2011.	
	5. Algorithms, by Dasgupta, Papadimitriou, and	
	Vazirani, McGraw-Hill.	
Learning	A student will be able to :	
Outcomes:		
	1. Implement common data structures such as lists,	
	stacks, queues, graphs, and binary trees for solvin	g
	programming problems.	
	2. Identify and use appropriate data structures in the	
	context of a solution to a given problem.	
L	(Back to Index) (Pool to Acondo)

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-504Title of course: Mathematics foundation for Artificial IntelligenceNumber of credits: 2 (2L-0T-0P)Total contact hours: 30 hours (30L-0T-0P)Effective from AY: 2023-24Contact hours: 30 hours (30L-0T-0P)

Effective from AY: 2023-	27 	
Prerequisites for the	Basic mathematics	
<u>course</u>		
<u>Objectives</u>	To build a strong foundation in maths required for learning computer science/data science subjects.	
	To understand fundamental concepts and tools in calculus, linear algebra etc with emphasis on their applications to computer science in particular data science/machine learning	
<u>Content</u>	Introduction Importance of mathematics and their applications for computer science/machine learning/data science/deep learning Functions, variables, equations, graphs revision	3 hours
	Probability and Statistics: Probability Rules & Axioms, Bayes' Theorem, Random Variables, Variance and Expectation, Conditional and Joint Distributions, Standard Distributions (Bernoulli, Binomial, Multinomial,	7 hours

		Std. Com.X AC-6
		15 & 22.05.2023
	Uniform and Gaussian), Moment Generating Functions, Maximum Likelihood Estimation (MLE), Prior and Posterior, Maximum a Posteriori Estimation (MAP) and Sampling Methods- confidence intervals, Hypothesis testing, p-values, A/B testing-ANOVA, t-test,Linear regression, regularization	
	Calculus Overview of Differential and Integral Calculus, Partial Derivatives Product and chain rule-Taylor's series, infinite series summation/integration concepts- Fundamental and mean value-theorems of integral calculus, evaluation of definite and improper integrals-Beta and Gamma functions, Functions of multiple variables, limit, continuity, partial derivatives-Basics of ordinary and partial differential equations -Applications of Calculus	4 hours
	Linear Algebra: Systems of Linear Equations-Matrices-Solving Systems of Linear Equations-Vector Spaces-Linear Independence-Basis and Rank-Linear Mappings Affine Spaces	2 hours
	Analytic Geometry Norms-(Inner Products-Lengths and Distances Angles and Orthogonality-Orthonormal Basis Orthogonal Complement-Inner Product of Functions-Orthogonal Projections-Rotations) - Eigen value decomposition and SVD	3 hours 6 hours
	Optimization Differentiation of Univariate Functions-Partial Differentiation and Gradients-Gradients of Vector- Valued Functions-Gradients of Matrices Useful Identities for Computing Gradients- Backpropagation and Automatic Differentiation- Higher-Order Derivatives-Linearization and Multivariate Taylor Series-Gradient Descent- Constrained Optimization -Lagrange Multipliers- Convex Optimization,	7 hours
<u>Pedagogy</u>	Problem solving approach and carrying out small	
References/ Readings	project work using matlab tools 1. Statistics Written, Robert S. Witte and John S. Witte	

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
Learning Outcomes	 Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD. Statistics for Business and Economics by- James T. McClave, P. George Benson and Terry T Sincich Naked Statistics: Stripping the Dread from the Data, Charles Wheelan Introduction to Linear Algebra, Gilbert Strang Linear Algebra and Its Applications, David C. Lay No bullshit guide to Linear algebra, Ivon Savov Functions and Graphs by I M Gelfand Cartoon guide to calculus, Larry Gonick Optimization Methods in Business Analytics – edX, MIT 	
	Apply the concepts of mathematics in the modeling and design of computational problems and deeper understanding of subjects like machine learning / deep learning and other computer science subjects.	

Programme: M.Sc. in Artificial Intelligence

Course code: CSI-505 Title of course: Mathematics Foundation for Al using MatlabNumber of credits: 2 (0L-0T-2P)Total contact hours: 60 hours (0L-0T-60P)Effective from AY: 2023-24Mathematical foundation theory and

Prerequisites for the	Mathematical foundation theory and	
<u>course</u>	programming background	
Objectives	The lab assignment are aimed at demonstration of	
	the following regarding statistics	

		Std. Com.X AC-6
<u>Content</u>	Revision of the following :NumPy is a third-party library for numericalcomputing, optimized for working with single- andmulti-dimensional arrays. Its primary type is thearray type called ndarray. This library containsmany routines for statistical analysis.SciPy is a third-party library for scientificcomputing based on NumPy. It offers additionalfunctionality compared to NumPy, includingscipy.stats for statistical analysis.Pandas is a third-party library for numericalcomputing based on NumPy. It excels in handlinglabeled one-dimensional (1D) data with Seriesobjects and two-dimensional (2D) data withDataFrame objects.Matplotlib is a third-party library for datavisualization. It works well in combination withNumPy, SciPy, and Pandas.	6 hours
	Assignment 1 - Write program to implement the following concepts using python libraries - Numpy,Pandas, matplotlib, seaborn,scipy, scrapy and beautiful soup, and tensor flow ,keras and pytorch etc	
	Assignment -2 - Sampling ,Variables in Statistics, Frequency Distributions.	6 hours
	Generate frequency distribution tables, Generate grouped frequency distribution tables and - Visualizing Frequency Distributions -Generate bar plots, pie charts, and histograms , Employ bar plots, pie charts and histograms.	6 hours
	Assignment-3-Comparing Frequency Distributions -grouped bar plots- step-type histogram-kernel density estimate plots- strip plots and box plots	6 hours
	Assignment-4 -Multidimensional image operations,Solving differential equations and the Fourier transform using scipy	6 hours
	Assignment-5 -Optimization algorithms using scipy.	6 hours
	Assignment -6 -Linear algebra using scipy	6 hours

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	Assignment- 7-Program in python to implement the concepts such as Vector space, subspace, span, coumn space, row space, null space, left-null space, rank, basis, orthogonal matrix, symmetric matrix	6 hours
	Assignment -8 – Implement Eigen value decomposition in python.	6 hours
	Assignment-9 – implement SVD using python.	6 hours
	Assignment -10 – implement some of optimization algorithm using the python library	6 hours
Pedagogy	lab assignments /Project	
<u>References/ Readings</u>	 Statistics Written, Robert S. Witte and John S. Witte Barron's AP Statistics, 8th Edition, Martin Sternstein, PhD. Statistics for Business and Economics Naked Statistics: Stripping the Dread from the Data, Charles Wheelan Introduction to Linear Algebra, Gilbert Strangsss 	
Learning Outcomes	 Apply the concepts of mathematics in the modeling and design of computational problems and deeper understanding of subjects like machine learning / deep learning and other computer science subjects. 	
L	(Back to Index)	

Programme: M.Sc. in Artificial	Intelligence	
Course Code: CSI-506	Title of the Course: Data Science Fundamentals	
Number of Credits: 2(2L+ 0P)	Contact hours: 30 hours (30L+0T+0P)	
Effective from AY: 2023-24		
<u>Prerequisites for the course</u>	Statistics and Probability theory and Python Programming	
<u>Objectives</u>	To get started with basics of Data Science and learn all aspects of Data Science in its entirety	

		om.X <u>AC-6</u> 2.05.2023
<u>Content</u>	Introduction: Typology of problems - Data science in a big data world: Benefits and uses of data science and big data-Facets of data-The data science process-The big data ecosystem and data science-The data science process: Overview of the data science process- Defining research goals and creating a project charter- Retrieving data-Cleansing, integrating, and transforming data-Exploratory data analysis-Build the models- Presenting findings and building applications on top of them.	4 hours
	Mathematics for Data science (Revision) Importance of linear algebra, statistics and optimization from a data science perspective; Structured thinking for solving data science problems. Linear Algebra: Matrices and their properties (determinants, traces, rank, nullity, etc.); Eigenvalues and eigenvectors; Matrix factorizations; Inner products; Distance measures; Projections; Notion of hyperplanes; half-planes. Probability, Statistics and Random Processes: Probability theory and axioms; Random variables; Probability distributions and density functions (univariate and multivariate); Expectations and moments; Covariance and correlation; Statistics and sampling distributions; Hypothesis testing of means, proportions, variances and correlations; Confidence (statistical) intervals; Correlation functions; White- noise process.Data clearing (EDA)	8 hours 3 hours
	Introduction to Data Science Methods: Linear regression as an exemplar function approximation problem; Linear classification problems-PCA	4 hours
	Handling large data on a single computer The problems you face when handling large data- General techniques for handling large volumes of data-General programming tips for dealing with large data sets - Case study 1: Predicting malicious URLs - First steps in big data-Distributing data storage and processing with frameworks	4 hours

Introduction to NoSQL 3 hou	
Introduction to NoSQL 3 hou	urs
The rise of graph databases	
Introducing connected data and graph databases	
Introducing Neo4j: a graph database	
Data visualization to the end user 4 hou	urs
Data visualization options	-
Crossfilter, the JavaScript MapReduce library	
Creating an interactive dashboard with dc.js	
Dashboard development tools	
dagogy Lectures/ Tutorials/Hands-on assignments/Self-study	
ferences / 1. Practical statistics for data science by peter	
bruce and andrew bruce	
adings 2. Naked statistics by charles wheelon	
3. Business data science by matt taddy	
4. Elements of statistical learning by Trevor	
Hastie, Robert and jerome	
5. Python for data analysis	
6. Data science and big data analytics -EMC2	
arning Outcomes The students will be able to enrich one's knowledge	
with overall basics of data science and appreciate	
data science with this introduction to be able to get	
started in the direction.	

Programme: M.Sc. in Artificial Intelligence

Course code: CSI-507 Title of course: Data Science Fundamentals Lab

Number of credits: 2(0L+0T+4P)Total contact hours: 60 hours(0L-0T-60P)Effective from AY: 2023-24

Prerequisites for the	Basic programming skills, Statistics	
<u>course</u>		
<u>Objectives</u>	To introduce Basic process of data science, Python and Jupyter notebooks. To understanding how to manipulate and analyze uncurated datasets To learn basic statistical analysis and machine learning methods and effectively visualize results	

	<u>Std. Com.X AC-6</u> 15 & 22.05.2023
Jupyter and Numpy: Jupyter notebooks are one of the most commonly used tools in data science as they allow you to combine your research notes with the code for the analysis. After getting started in Jupyter, we'll learn how to use numpy for data analysis. numpy offers many useful functions for processing data as well as data structures which are time and space efficient.	10 hours
Pandas: Pandas, built on top of numpy, adds data frames which offer critical data analysis functionality and features.	10 hours
Visualization: When working with large data sets you often need to visualize your data to gain a better understanding of it. Also, when you reach conclusions about the data, you'll often wish to use visualizations to present your results.	10 hours
Mini Project: With the tools of Jupyter notebooks, numpy, pandas, and Visualization, you're ready to do sophisticated analysis on your own. You'll pick a dataset we've worked with already and perform an analysis for this first project.	10 hours
Machine Learning: To take your data analysis skills one step further, we'll introduce you to the basics of machine learning and how to use sci-kit learn - a powerful library for machine learning.	10 hours
Working with Text and Databases: You'll find yourself often working with text data or data from databases. This week will give you the skills to access that data. For text data, we'll also give you a preview of how to analyze text data using ideas from the field of Natural Language Processing and how to apply those ideas using the Natural Language Processing Toolkit (NLTK) library.	5 hours
Mini-Project	5 hours
Tutorials/ Lab assignments/ Project work	
 Practical statistics for data science by Peter Bruce and Andrew Bruce Naked statistics by Charles Wheelon Business data science by Matt Taddy 	
	the most commonly used tools in data science as they allow you to combine your research notes with the code for the analysis. After getting started in Jupyter, we'll learn how to use numpy for data analysis. numpy offers many useful functions for processing data as well as data structures which are time and space efficient. Pandas: Pandas, built on top of numpy, adds data frames which offer critical data analysis functionality and features. Visualization: When working with large data sets you often need to visualize your data to gain a better understanding of it. Also, when you reach conclusions about the data, you'll often wish to use visualizations to present your results. Mini Project: With the tools of Jupyter notebooks, numpy, pandas, and Visualization, you're ready to do sophisticated analysis on your own. You'll pick a dataset we've worked with already and perform an analysis for this first project. Machine Learning: To take your data analysis skills one step further, we'll introduce you to the basics of machine learning and how to use sci-kit learn - a powerful library for machine learning. Working with Text and Databases: You'll find yourself often working with text data or data from databases. This week will give you the skills to access that data. For text data, we'll also give you a preview of how to analyze text data using ideas from the field of Natural Language Processing and how to apply those ideas using the Natural Language Processing Toolkit (NLTK) library. Mini-Project Tutorials/ Lab assignments/ Project work 1. Practical statistics for data science by Peter Bruce and Andrew Bruce 2. Naked statistics by Charles Wheelon

		Std. Com.X AC-6
		15 & 22.05.2023
	Hastie, Robert and jerome	
	5. Python for data analysis	
	6. Data science and big data analytics -EMC2	2
Learning Outcomes	• The student will be able to:	
	 To understanding how to manipulate and analyze uncurated datasets 	
	 To learn basic statistical analysis and machine learning methods and effectively visualize results 	/
	(Book to Ind	ox) (Back to Agonda)

Semester II (Core Papers)

Programme: MSc Al	
Course Code: CSI-508	Title of the Course: Deep Learning
Number of Credits: 2(2L-OT-OP)	Contact hours: 30 hours (30L-0T-0P)
Effective from AY: 2023-24	

Effective from AT: 2		1
<u>Prerequisites for</u> <u>the course</u>	Programme prerequisites	
<u>Objectives</u>	To study the basics of Neural Networks and their various variants such as the Convolutional Neural Networks and Recurrent Neural Networks, to study the different ways in which they can be used to solve problems in various domains such as Computer Vision, Speech and NLP.	
<u>Content</u>	History of Deep Learning, McCulloch Pitts Neuron, Thresholding Logic, Perceptron Learning Algorithm and Convergence	1 hours
	Multilayer Perceptrons (MLPs), Representation Power of MLPs, Sigmoid Neurons, Gradient Descent	1 hours
	Feedforward Neural Networks, Representation Power of Feedforward Neural Networks, Backpropagation	2 hours
	Gradient Descent(GD), Momentum Based GD, Nesterov Accelerated GD, Stochastic GD, Adagrad, AdaDelta,RMSProp, Adam,AdaMax,NAdam, learning rate schedulers	2 hours
	Autoencoders and relation to PCA , Regularization in autoencoders, Denoising autoencoders, Sparse autoencoders, Contractive autoencoders	2
	Bias Variance Tradeoff, L2 regularization, Early stopping, Dataset augmentation, Parameter sharing and tying, Injecting noise at input, Ensemble methods, Dropout	3 hours 3 hours
	Greedy Layer Wise Pre-training, Better activation functions,	

			m.X AC-6
	Better weight initialization methods, Batch Normalization		.05.2023
	Learning Vectorial Representations Of Words, Convolutio Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, Goog ResNet	nal	3 hours 3 hours
	Visualizing Convolutional Neural Networks, Guided Backpropagation, Deep Dream, Deep Art, Fooling Convolu Neural Networks	utional	
	Recurrent Neural Networks, Backpropagation Through Time (BPTT), Vanishing and Exploding Gradients, Truncated BP		3 hours
	Gated Recurrent Units (GRUs), Long Short Term Memory Cells, Solving the vanishing gradient problem with LSTM	(LSTM)	3 hours
	Encoder Decoder Models, Attention Mechanism, Attention images, Hierarchical Attention, Transformers.	on over	3 hours
	Loctures (Tutorials (Hands on assignments (Solf study		3 hours
<u>Pedagogy</u>	Lectures/ Tutorials/Hands-on assignments/Self-study		
<u>References/</u> <u>Readings</u>	 Ian Goodfellow and Yoshua Bengio and Aaron Co Deep Learning. An MIT Press book. 2016. Charu C. Aggarwal. Neural Networks and Deep Lea A Textbook. Springer. 2019. Dive into Deep Learning by Ashton Zang. Introduction to Deep Learning by Sandro Skansi. 		
<u>Learning</u> <u>Outcomes</u>	 A brief history of deep learning and its success stop Perceptrons, Sigmoid neurons and Multi-Layer Perceptrons (MLP) with specific emphasis on their representation power and algorithms used for trathem (such as Perceptron Learning Algorithm and Backpropagation). Gradient Descent (GD) algorithm and its variants I Momentum based GD,AdaGrad, Adam etc Princip Component Analysis and its relation to modern Autoencoders. The bias variance tradeoff and regularisation tech used in DNNs (such as L2 regularisation, noisy dat augmentation, dropout, etc). Different activation functions and weight initializa strategies Convolutional Neural Networks (CNNs) such as Ale ZFNet, VGGNet, InceptionNet and ResNet. Recurrent Neural Network (RNNs) and their variar as LSTMs and GRUs (in particular, understanding to the set of the set	r ining ike al niques a tion exNet, nts such	

		<u>m.X AC-6</u> 2.05.2023
•	vanishing/exploding gradient problem and how LS overcome the vanishing gradient problem) Applications of CNN and RNN models for various computer vision and Natural Language Processing problems.	

Programme: M.Sc. in Artificial Course Code: CSI-509 Number of Credits: 2(0L-0T-4) Effective from AY: 2023-24	Title of the Course: Deep Learning Lab	
Prerequisites for the course	Programming, Machine Learning Skills. Statistics, Calculus, Linear Algebra. Probability.	
<u>Objectives</u>	 To make students comfortable with tools and techniques required in handling large amounts of datasets. They will also uncover various deep learning methods in NLP, Neural Networks etc. 	
<u>Content</u>	Tensorflow with Python Introducing Tensorflow - Tensorflow as an Interface - Tensorflow as an environment - Tensors - Computation Graph - Installing Tensorflow - Tensorflow training - Prepare Data - Tensor types - Loss and Optimization - Running tensorflow programs. Building Neural Networks using Tensorflow Building Neural Networks using Tensorflow -	5 hours
	Tensorflow data types - CPU vs GPU vs TPU - Tensorflow methods - Introduction to Neural Networks - Neural Network Architecture - Linear Regression example revisited - The Neuron - Neural Network Layers - The MNIST Dataset - Coding MNIST NN.	5 hours
	 Deep Learning using Tensorflow Deepening the network - Images and Pixels - How humans recognise images - Convolutional Neural Networks - ConvNet Architecture - Overfitting and Regularization - Max Pooling and ReLU activations - Dropout - Strides and Zero Padding - Coding Deep ConvNets demo - Debugging Neural Networks - Visualising NN using Tensorflow - Tensorboard. Transfer Learning using Keras and TFLearn Transfer Learning Introduction - Google Inception 	5 hours
	Model - Retraining Google Inception with our own	

		d. Com.X AC-6 & 22.05.2023
	data demo - Predicting new images - Transfer Learn Summary - Extending Tensorflow - Keras - TFLearn - Keras vs TFLearn Comparison.	ing
	Suggest ideas for lab work Assignment -1 Cat vs. Dog Image Classifier Assignment -2- Covid-19 Detection in Lungs Assignment -3- Digit Recognition System Assignment - 4- Facial Recognition Application Assignment -5- Face Mask Detection Assignment -6- Cyber-Attack Prediction Assignment -7- Automated Attendance System Assignment -8 Emotion Recognition	5 hours 3 hours
	Assignment -9- Object Detection System Assignment 10 - Recommender System	3 hours
Pedagogy	Lab assignment/mini project	
<u>References/ Readings</u>	 Ian Goodfellow and Yoshua Bengio and Aard Courville. Deep Learning. An MIT Press book 2016. Charu C. Aggarwal. Neural Networks and Del Learning: A Textbook. Springer. 2019. Grokking Artificial Intelligence Algorithms by Rishal Hurbans published by Manning Publications. Deep Learning From Scratch: Building with Python from First Principles by Seth Weidma published by O'Reilley. Deep learning in Python/ Pytorch by Mannin Publications. Deep Learning with Python by francois cholle 7. Dive into Deep Learning by Ashton Zang. Introduction to Deep Learning by Sandro Skansi. 	ep , an g
Learning Outcomes	Solve problems in linear algebra, probability, optimization, and machine learning Evaluate, in the context of a case study, the advantages and	

	Std. Com.X 15 & 22.05.2	
disadvantages of deep learning neural network architectures and other approaches Implemen deep learning models in Python using the PyToro library and train them with real-world datasets Design convolution networks for handwriting an object classification from images or video Desi recurrent neural networks with attention mechanisms for natural language classification, generation, and translation Evaluate the performance of different deep learning models (e.g., with respect to the bias-variance trade-off, overfitting and underfitting, estimation of test error) Perform regularization, training optimization, and hyperparameter selection on deep models Analyze a deep learning model's hardware node and GPU scalability in preparatio for deployment.	ch - d gn ,	

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-510	Title of the Course: Big Data Frameworks
Number of Credits: 2(2L-OT-OP)	Contact hours: 30 hours (30L-0T-0P)
Effective from AY: 2023-24	

Effective from At		1
Prerequisites for the course	Probability and statistics and programming background	
<u>Objectives</u>	 To understand the need of Big Data, challenges and different analytical architectures Installation and understanding of Hadoop Architecture and its ecosystems Processing of Big Data with Advanced architectures like Spark. Describe graphs and streaming data in Spark 	
<u>Content</u>	Introduction to big data Data Storage and Analysis - Characteristics of Big Data – Big Data Analytics - Typical Analytical Architecture – Requirement for new analytical architecture – Challenges in Big Data Analytics – Need of big data frameworks	3 hrs
	Hadoop framework Hadoop – Requirement of Hadoop Framework - Design principle of Hadoop –Comparison with other system - Hadoop Components – Hadoop 1 vs Hadoop 2 – Hadoop Daemon's – HDFS Commands – Map Reduce Programming: I/O formats, Map side join, Reduce Side Join, Secondary sorting, Pipelining MapReduce jobs -	6 hrs

		<u>Std. Com.</u> 15 & 22.0	
		13 & 22.0	5.2025
	Hadoop Ecosystem		
	Introduction to Hadoop ecosystem technologies: Serializatio Co-ordination: Zookeeper, Databases: HBase, Hive, Scripting language: Pig, Streaming: Flink, Storm		3 hrs
	Spark framework		
	Introduction to GPU Computing, CUDA Programming Model API, Simple Matrix, Multiplication in CUDA, CUDA Memory N Shared Memory Matrix Multiplication, Additional CUDA API	/lodel,	4 hrs
	Data analysis with spark shell		
	Writing Spark Application - Spark Programming in Scala, Pytl Java - Application Execution	non, R,	4 hrs
	Spark SQL and Graph X		
	SQL Context – Importing and Saving data – Data frames – us GraphX overview – Creating Graph – Graph Algorithms.	ing SQL –	5hrs
	Spark streaming Overview – Errors and Recovery – Stream	ing	3 hrs
	Source – Streaming live data with spark	-	2 hr
	Recent trends in big data analytics		
<u>Pedagogy</u>	Assignment / Quiz / Project / Seminar		
<u>References/</u> <u>Readings</u>	 Mike Frampton, "Mastering Apache Spark", Packt Pu 2015. 		
	 TomWhite, "Hadoop:TheDefinitiveGuide", O'Reilly, 4th 015. 	1Edition,2	
	 NickPentreath,MachineLearningwithSpark,PacktPubl 2015. 	ishing,	
	 Mohammed Guller, Big Data Analytics with Spark, Ap 2015. 	oress,	
	 Donald Miner, Adam Shook, "Map Reduce Design Pa O'Reilly, 2012. 	ttern",	
<u>Learning</u> <u>Outcomes</u>	On completion of this course students would have a good understanding of Big Data and understand the basics of the frameworks like hadoop and spark and have a knowledge of SQL and Spark streaming.	Spark	
	(Back to Index)	(Pack to A	anda)

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-511	Title of the Course: Big Data Frameworks Lab
Number of Credits: 2(0L -0T-4	P) Contact hours: 60 hours (0L-0T-60P)
Effective from AY: 2023-24	

Effective from AY:	2023-24	
<u>Prerequisites for</u> <u>the course</u>	Should have knowledge of one Programming Language (Java preferably), Practice of SQL (queries and sub queries), exposure to Linux Environment.	
<u>Objectives</u>	Understand the Big Data Platform and its Use cases • Provide an overview of Apache Hadoop • Provide HDFS Concepts and Interfacing with HDFS • Understand Map Reduce Jobs • Provide hands on Hodoop Eco System • Apply analytics on Structured, Unstructured Data.	
<u>Content</u>	List of Experiments: 1. Implement the following Data structures in Java Linked Lists,Stacks,Queues,Set,Map	5 hrs
	 Perform setting up and Installing Hadoop in its three operating modes: Standalone, Pseudo Distributed, Fully distributed. 	5 hrs
	 3. Implement the following file management tasks in Hadoop: -Adding files and directories, Retrieving files (Deleting files Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities. 4.Run a basic Word Count Map Reduce program to understand 	5 hrs
	 Map Reduce Paradigm. 5. Write a Map Reduce program that mines weather data. Weather sensors collecting data everyhour at many locations across the globe gather a large volume of log data, which is a goodcandidate for analysis with MapReduce, since it is semi structured and record-oriented. 6. Implement Matrix Multiplication with Hadoop Map Reduce 	5 hrs
	 7. Install and Run Pig then write Pig Latin scripts to sort, group, join, project, and filter your data. 8. Install and Run Hive then use Hive to create, alter, and drop 	5 hrs
	databases, tables, views, functions, and indexes. 9. Solve some real life big data problems.	5 hrs
	 Traffic control using big data Medical insurance fraud detection 	5 hrs
	 Recommendation system Anomaly detection in cloud servers 	5 hrs
	 Tourist behavior analysis Web server log analysis 	20 hrs
<u>Pedagogy</u>	Lab assignments/mini project/ seminar	
<u>References/</u>	Text Books	

	15 & 22	2.05.2023
<u>Readings</u>	 Tom White "Hadoop: The Definitive Guide" Third Edit on, O'reily Media, 2012. Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 2015. References Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Jay Liebowitz, "Big Data and Business Analytics" Auerbach Publications, CRC press (2013) Anand Rajaraman and Jef rey David Ulman, "Mining of Massive Datasets", Cambridge University Press, 2012. Bill Franks, "Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", John Wiley & sons, 2012. Glen J. Myat, "Making Sense of Data", John Wiley & Sons, 2007 	
<u>Learning</u> Outcomes	The students will be able to: • Identify Big Data and its Business Implications. • List the components of Hadoop and Hadoop Eco- System • Access and Process Data on Distributed File System • Manage Job Execution in Hadoop Environment • Develop Big Data Solutions using Hadoop Eco System • Analyze Infosphere BigInsights Big Data Recommendations.	

Std. Com.X AC-6

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-512Title of the Course: Reinforcement LearningNumber of Credits: 2(2L-0T-0P)Contact hours:30 hours(30L-0T-0P)Effective from AY: 2023-24Contact hours:30 hours(30L-0T-0P)

Prerequisites for the course	Linear algebra, multivariable calculus Basic machine learning knowledge	
<u>Objectives</u>	To enable the student to understand the reinforcement learning paradigm, to be able to identify when an RL formulation is appropriate, to understand the basic solution approaches in RL, to implement and evaluate various RL algorithms.	

		<u>m.X AC-6</u> 2.05.2023
<u>Content</u>	Review of ML fundamentals – Classification, Regression. Review of probability theory and optimization concepts.	2 hrs
	RL Framework; Supervised learning vs. RL; Explore- Exploit Dilemma; Examples.	2 hrs 2 hrs
	MAB: Definition, Uses, Algorithms, Contextual Bandits, Transition to full RL, Intro to full RL problem	
	Intro to MDPs: Definitions , Returns, Value function, Q-function.	2 hrs 2 hrs
	Bellman Equation, DP, Value Iteration, Policy Iteration, Generalized Policy Iteration.	
	Evaluation and Control: TD learning, SARSA, Q- learning, Monte Carlo, TD Lambda, Eligibility Traces.	2 hrs
	Maximization-Bias & Representations: Double Q learning, Tabular learning vs. Parameterized, Q- learning with NNs	
	Function approximation: Semi-gradient methods, SGD, DQNs, Replay Buffer.	2 hrs
	Policy Gradients: Introduction, Motivation, REINFORCE, PG theorem, Introduction to AC methods	3 hrs
	Actor-Critic Methods, Baselines, Advantage AC, A3C Advanced Value-Based Methods: Double DQN, Prioritized Experience Replay, Dueling Architectures, Expected SARSA.	
	Advanced PG/A-C methods: Deterministic PG and DDPG, Soft Actor-Critic (SAC) HRL: Introduction to hierarchies, types of optimality, SMDPs, Options, HRL algorithms POMDPS: Intro, Definitions, Belief states, Solution Methods; History-based methods, LSTMS, Q-	3 hrs 4 hrs
	MDPs, Direct Solutions, PSR. Model-Based RL: Introduction, Motivation, Connections to Planning, Types of MBRL, Benefits, RL with a Learnt Model, Dyna-style models, Latent variable models, Examples, Implicit MBRL. Case study on design of RL solution for real-world problems.	4 hrs
<u>Pedagogy</u>	Hands-on assignments / tutorials / peer-teaching / flip	

Std. Com.X AC-6
15 & 22.05.2023

		15 & 22	2.05.2023
	classroom/ presentations.		
References/ Readings	 Reinforcement learning -Introduction b Richard sutton and Andrew barto, 2nd e MIT press. Algorithms for reinforcement learning b Szepesvari, Ronald Brachman, et al,2010 	, dition, y Csaba	
Learning Outcomes	Understanding the fundamentals of reinforcem learning and its role in building gaming applicat and in turn helps to understand the challenges world problems, how RL will help them.	ions	

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-513	Title of the Course: Reinforcement Learning Lab
Number of Credits: 2(2L)	Contact hours:60 hours
Effective from AY: 2023-24	

	23-24	
<u>Prerequisites for</u> <u>the course</u>	Linear algebra, multivariable calculus , Basic machine learning knowledge and programming background.	
<u>Objectives</u>	To understand the theory by carrying out the lab assignment based on the key ideas of reinforcement learning.	
<u>Content</u>	 RL task formulation (action space, state space, environment definition) Tabular based solutions (dynamic programming, Monte Carlo, temporal-difference) Function approximation solutions (Deep Q-networks) Deliverent form having (DSINISODOS) to enable 	7 hours 7 hours 7 hours
	 Policy gradient from basic (REINFORCE) towards advanced topics (proximal policy optimization, deep deterministic policy gradient, etc.) 	7 hours
	 Model-based reinforcement learning Imitation learning (behavioral cloning, inverse RL, 	7 hours 7 hours
	generative adversarial imitation learning) 7. Meta-learning 8. Multi-agent learning, partial observable environments	8 hours
		10 hours
<u>Pedagogy</u>	Lab assignments/ mini project	
<u>References/</u> <u>Readings</u>	 Richard S. Sutton and Andrew G. Barto, "Reinforcement learning: An introduction", Second Edition, MIT Press, 2019. Li, Yuxi. "Deep reinforcement learning." arXiv preprint arXiv:1810.06339 (2018). 	
	3. Wiering, Marco, and Martijn Van Otterlo.	

 15 & 22.05.2023

 "Reinforcement learning." Adaptation, learning, and optimization 12 (2012): 3.

 4.
 Russell, Stuart J., and Peter Norvig. "Artificial intelligence: a modern approach."Pearson Education Limited, 2016.

 5.
 Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. "Deep learning." MIT press, 2016.

 6.
 David Silver's course on Reinforcement Learning (link).

 Learning Outcomes

 Understanding the fundamentals of reinforcement learning and its role in building gaming applications and in turn helps to understand the challenges of real world problems , how RL will help them.

(Back to Index) (Back to Agenda)

Std. Com.X AC-6

Programme: M.Sc. in Artificial Intelligence

Course code:CSI-514Title of course:Software Engineering for AI Enabled systemsNumber of credits:2 (2L-0T-0P)Contact hours:30 hours (30L-0T-0P)Effective from AY:2023-24

Effective from AY: 2023-24				
Prerequisites	Programming & Data Structures, Python			
for the course				
Objectives	Gain an in-depth understanding of Software Engineering			
	including its importance.			
	Learn Scrum, Kanban, Agile, Waterfall, Prototyping,			
	Incremental, RAD and Spiral Software Process Models.			
	Learn to perform systematic Software Requirement			
	Engineering.			
	Applying SE approach to developing AI solutions			
<u>Content</u>	Software Engineering: Software Processes, SDLC , agile	5 hours		
	approaches to SE			
	Requirements Engineering: elicitation techniques,	5 hours		
	specification. SCRUM and user stories.			
	Test Driven Development: Refactoring and Unit testing			
	Use of frameworks and APIS and handling of big data	5 marks		
	Configuration management, continuous integration, and	5 hours		
	automated software engineering			
	Cloud based software development, DevOps	5 hours		
Pedagogy	Classroom/handson instructions, assignments,			
	miniprojects			
References/	1. Hands-On Software Engineering with Python: Move			
Readings	beyond basic programming and construct reliable			
	and efficient software with complex code, Brian			
	Allbee, Packt Publishing.			

		<u>Std. Com.X AC-6</u> 15 & 22.05.2023
	 A concise Introduction to Software Engineering, Pankaj Jalote-2008n- Springer. Agile Estimating and Scrum, Mike Cohn, Prentice Hall. 	
<u>Learning</u> Outcomes	 Application of SE principles for AI and Data Sceince projects How to work in self organzing teams Use of tools and techniques for automating and managing software development 	

Programme: M.Sc. in Artificial Intelligence

Course code:CSI-515Title of course:Software Engineering for AI Enabled Systems LabNumber of credits:2 (0L-0T-4P)Contact hours:60 hours (0L-0T-60P)Effective from AY:2023-24

Effective from A	. 2023-24	
Prerequisites	Programming & Data Structures, Python	
for the course		
Objectives	Applying SE approach to developing AI solutions	
	Use of modern software engineering tools and frameworks	
<u>Content</u>	1)Version Control Tools- Git and Github	12 hours
	2)TDD –Unit testing and refactoring with Python	12 hours
	3)Working with Python libraries and frameworks	12 hours
	4)Use of testing tools- selenium, Jmeter	12 hours
	5) Cloud based software development & DevOps	12 hours
<u>Pedagogy</u>	Lab sessions and projects	
<u>References/</u>	1. Hands-On Software Engineering with Python: Move	
<u>Readings</u>	beyond basic programming and construct reliable	
	and efficient software with complex code, Brian	
	Allbee, Packt Publishing.	
	2. A concise Introduction to Software Engineering,	
	Pankaj Jalote-2008n- Springer.	
	3. Agile Estimating and Scrum, Mike Cohn, Prentice	
	Hall.	
Learning	1. Application of SE principles for AI and Data Sceince	
Outcomes	projects	
	2. How to work in self organzing teams	
	3. Use of tools and techniques for automating and	
	managing software development	
		(Deals to Aroundo)

(Back to Index) (Back to Agenda)

Elective Courses

Programme: M.Sc. in Artificial Intelligence				
Course Code: CSI-521	Title of Course: Natural Language Processing			
Number of Credits: 4 (2L-0T-2P)	Contact Hours: 90 hours (30L-0T-60P)			
Effective from AY: 2023-24				

		1
Prerequisites	Fundamentals of Artificial Intelligence; Mathematical	
for the course	Foundations for Artificial Intelligence.	
	Machine Learning and Programming background. Introduction	
	to NLP (Theory), Mathematical foundations for Al.	
<u>Objectives</u>	This course will focus on understanding the essentials of	
	Natural Language Processing (NLP), areas in NLP, algorithms,	
	and NLP tasks.	
	Students who complete this course will gain a foundational	
	understanding in natural language processing methods and	
	strategies. They will also learn how to evaluate the strengths	
	and weaknesses of various NLP technologies and frameworks as	
	they gain practical experience in the NLP toolkits available.	
<u>Content</u>	Part I: Foundations of Natural Language Processing	8 hours
	Introduction	
	 Natural Language Processing - Problems and 	
	perspectives	
	 Introduction/Recall to/of probability calculus 	
	 N-grams and Language Models 	
	 Markov Models 	
	 Introduction to Machine Learning and Deep Learning 	
	 Recurrent Neural Network Language Models 	
	 The evaluation of NLP applications 	
	Corpora	
	 Corpora and their construction: representativeness 	
	 Concordances, collocations and measures of words 	
	association	
	 Methods for Text Retrieval 	
	Regular expressions	
	Part II: Natural Language Processing	16 hours
	 Computational Phonetics and Speech Processing 	
	 Speech samples: properties and acoustic 	
	measures	
	 Analysis in the frequency domain, Spectrograms 	
	 Applications in the acoustic-phonetic field. 	
	 Speech recognition with HMM and Deep Neural 	
	Networks	
	 Tokenisation and Sentence splitting 	
	Computational Morphology	
	 Morphological operations 	
	 Static lexica, Two-level morphology 	
	Computational Syntax	
	 Part-of-speech tagging 	
	 Grammars for natural language 	
	 Natural language Parsing 	
	 Supplementary worksheet: formal grammars for 	
	NL	

Std. Com.X AC-6 15 & 22.05.2023 ■ Formal languages and Natural languages. Natural language complexity ■ Phrase structure grammars, Dependency Grammars Treebanks Modern formalisms for parsing natural languages **Computational Semantics** Lexical semantics: WordNet and FrameNet • Word Sense Disambiguation • Distributional Semantics & Word-Space models Logical approaches to sentence semantics Part III: Applications and Case studies: 6 hours Solving Downstream Tasks: Document classification, Sentiment Analysis, Named Entity Recognition, Semantic **Textual Similarity** • Prompting Pre-Trained Language Models Network Embedding Sample list of Assignments and a Mini Project using all these functionalities 20 * 2 = 40hours Assignment -1 -Import nltk and download the 'stopwords' and + 20 hours 'punkt' packages. Assignment-2 - Import spacy and load the language model. (Mini Assignment -3 - How to tokenize a given text? Project) Assignment-4 - How to get the sentences of a text document? Assignment- 5-How to tokenize a text using the `transformers` package? Assignment -6 - How to tokenize text with stopwords as delimiters? Assignment- 7- How to remove stop words in a text? Assignment -8- How to add custom stop words in spaCy? Assignment- 9 - How to remove punctuations? Assignment-10 - How to perform stemming? Assignment -11 - How to lemmatize a given text? Assignment-12 - How to extract usernames from emails? Assignment -13-How to find the most common words in the text excluding stopwords Assignment -14- How to do spell correction in a given text? Assignment -15- How to tokenize tweets? Assignment -16- How to extract all the nouns in a text? Assignment -17- How to extract all the pronouns in a text? Assignment - 18 - How to find similarity between two words? Assignment -19- How to find similarity between two documents? Assignment -20 -How to find the cosine similarity of two documents?

		15 & 22.05.2023
<u>Pedagogy</u>	Hands-on assignments/tutorials / peer-teaching / pair programming/presentations / mini-project. Lectures / Practical / tutorials / assignments / self-study / min project	
<u>References/</u> <u>Readings</u>	 Allen, James, Natural Language Understanding, Second Edition, Benjamin/Cumming, 1995. Charniack, Eugene, Statistical Language Learning, MIT Press, 1993. Jurafsky, Dan and Martin, James, Speech and Language Processing, Second Edition, Prentice Hall, 2008. Manning, Christopher and Heinrich, Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999. Tamburini, F Neural Models for the Automatic Processing of Italian, Bologna: Pàtron. 2022 T. McEnery and A. Wilson. Corpus Linguistics, EUP. 200 https://corpora.ficlit.unibo.it/NLP/ <u>https://www.machinelearningplus.com/nlp/nlp- exercises/</u> Deep Learning by Goodfellow, Bengio, and Courville fr online Machine Learning — A Probabilistic Perspective by Key Murphy online Natural Language Processing by Jacob Eisenstein free online Speech and Language Processing by Dan Jurafsł and James H. Martin (3rd ed. draft) 	e D1 ree vin
<u>Learning</u> <u>Outcomes</u>	 Learners will learn about the concepts in natural language processing. Learners will have a fair idea of different areas in NLP Learners will appreciate the complexities involved in natural language processing. Through lectures and practical assignments, students will learn the necessary tricks for making their models work on practical problems. They will learn how to contribute towards the development of NLP Resources and Tools. 	

Std. Com.X AC-6

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-522 Number of Credits: 4 (2L-0T-4P) Effective from AY: 2023-24 Title of Course: Computer Vision

Contact hours: 90 hours (30L-0T-60P)

Prerequisites for	Python programming, linear algebra and calculus , array	
the course	manipulation	
Objectives	The aim of the course is to introduce the fundamental concept of computer vision and to emphasize the importance of computer vision in developing and implementing different	

		<u>Std. Com</u> 15 & 22.0	
	projects		
Theory:	Image Formation - Geometric Camera Models - Light and Shading - Color - Early Vision: Just One Image	6 h	ours
	Linear Filters - Local Image Features - Texture - Early Vision: Multiple Images - Stereopsis - Structure from Motion - Mid- Level Vision		ours
	Segmentation by Clustering - Grouping and Model Fitting- Tracking - High-Level Vision- Registration- Smooth Surfaces Their Outlines - Range Data - Learning to Classify - Classifyin Images		ours
	Detecting Objects in Images- Topics in Object Recognition Applications	6 h	ours
	Image-Based Modeling and Rendering - Looking at People- Image Search and Retrieval - Optimization Techniques	6 h	ours
Practical:	1. Open CV setup and demo on getting started up.	6	hours
	 Image representation and image manipulation using open CV 	6	hours
	3. Image storage and manipulation.	6	hours
	4. Photographs and perspective projections	6	hours
	5. Gaussian smoothings	6	hours
	6. Canny edge detection	6	hours
	7. Corner detection	6	hours
	 8. Gabor filters 9. Hough transformation for lines 	6	hours
	10. Hough transformation for circles	6	hours
		6	hours
Pedagogy:	lectures/Practical/ tutorials/assignments/self-study		
References/Re	1. Computer Vision: Algorithms And Applications by Richard		
adings:	Szeliski		
	https://www5.cs.fau.de/lectures/ss-14/computer-vision-		
	cv/mputer-vision-exercises/index.html		
	Read more at: <u>https://viso.ai/computer-vision/computer-vis</u> <u>books/</u>	<u>sion-</u>	
	2. Computer Vision: Models, Learning, and Inference		

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

	15 0	22.05.2025
	Read more at: <u>https://viso.ai/computer-vision/computer-vision-books/</u>	
	3. Modern Computer Vision with PyTorch by Yeshwanth Reddy	
	and V Kishore Ayyadevara	
	Read more at: <u>https://viso.ai/computer-vision/computer-vision-</u>	
	books/	
	4. Learning OpenCV 4 Computer Vision with Python 3	
	Read more at: https://viso.ai/computer-vision/computer-vision-	
	books/	
Learning	Student will be able to	
Outcomes:	1. Acquire and process raw image data .	
	2. Relate image data to 3D scene structures .	
	3. Know the concepts behind and how to use several model-	
	based object representations, and to	
	critically compare them.	
	4. Know many of the most popularly used current computer	
	vision techniques by carrying out suitable lab experiments listed	
	above	
	6. Undertake computer vision work in MATLAB or python	
	OpenCV	
	(Back to Index) (Back	to Agonda)

(Back to Index) (Back to Agenda)

Programme: M.Sc. in Artificial Intelligence Course Code: CSI-523 Number of Credits: 4 (2L-0T-4P) Effective from AY: 2023-24

Title of Course: Robotics Contact Hours: 90 hours (30L-0T-60P)

Prerequisites	Linear Algebra, Set Theory, Complex Analysis, Matrices	
	Linear Algebra, Set meory, complex Analysis, Matrices	
for the course		
Objectives	1. To summarize and analyze the fundamentals of robotics.	
	2. To introduce students the kinematics and dynamics of	
	robots.	
	3. To elucidate students the types of motion control.	
	4. To familiarize students with the basic techniques of	
	designing the robots.	
Theory:	Module:1 Fundamentals	5 hours
	Introduction – Components, Degrees of Freedom, Joints,	
	Coordinates, Mechanisms, Controller.	
	Module:2 Kinematics	5 hours
	Position and Orientation of Objects, Coordinate	
	Transformation, Joint Variables and Position of End	
	Effector, Inverse Kinematics Problem, Jacobian Matrix,	
	Statics and Jacobian Matrices.	
	Module:3 Dynamics	5 hours
	Lagrangian and Newton-Euler Formulations, Derivation of	
	Dynamics Equations Based on Lagrangian	

		Std. Com.X AC-6
	1	15 & 22.05.2023
	Formulation, Derivation of Dynamic Equations Based on Newton-Euler, Formulation, Use of Dynamics Equations and Computational Load, Identification of	
	Manipulator Dynamics. Module:4 Manipulability	5 hours
	Manipulability Ellipsoid and Manipulability Measure, Best Configurations of Robotic Mechanisms from Manipulability Viewpoint, Various Indices of Manipulability,	
	Dynamic Manipulability. Module:5 Position Control	5 hours
	Generating a Desired Trajectory, Linear Feedback Control, Two-Stage Control by Linearization and Servo Compensation, Design and Evaluation of Servo Compensation, Decoupling Control, Adaptive Control.	3 hours
	Module:6 Force Control Impedance Control - Passive-Impedance Method, Active- Impedance Method-One- Degree-of- Freedom Case, Active-Impedance Method-General Case.	2 hours
	Module:7 Hybrid Control Hybrid Control - Hybrid Control via Feedback Compensation, Dynamic Hybrid Control.	
Practical:	1. Assignment on introduction to Robot Configuration.	5 hours
	 Demonstration of Robot with 2 dof, 3 dof, 4 dof etc. Two assignments on programming the Robot for 	5 hours
	some simple real life applications.4. Two assignments on programming the Robot for	10 hours
	applications in Val II.	10 hours
	 Two programming exercises for robots. Two case studies of applications in industry. Exercise on robotic simulation software. 	10 hours 10 hours
	Note: Above practicals suggested considering availability of infrastructure and possible collaboration with other Engineering disciplines of Goa University)	10 hours
Pedagogy	Lectures/Practical/ Tutorials/Assignments	
References/	Text Book(s)	
Readings	1. Tsuneo Yoshikawa, "Foundations of Robotics Analysis and	
	Control", The MIT Press Cambridge, 1990. 2. Saeed B Niku, "Introduction to Robotics Analysis, Control, Applications", 3rd Edition, Wiley, 2020. Reference Books	
	1. Robert J. Schilling, "Fundamentals of Robotics, Analysis and Control", Prentice Hall India, 2003.	

		Std. Com.X AC-6
		15 & 22.05.2023
	2. John J. Craig, "Introduction to Robotics, Mechanics and	
	Control", 3rd Edition, Pearson Prentice Hall, 2005.	
Learning	After the completion of the course, student will be able to:	
<u>Outcomes</u>	1. Comprehend, classify and analyze the fundamentals of	
	robotics.	
	2. Analyze the kinematics in robots.	
	3. Gain knowledge about the dynamics of robots.	
	4. Elucidate the motion control in robotics.	

Programme: M.Sc. in Artificial Intelligence

	Course Code: CSI-524 Title of Course: IoT Architecture and Protocols				
	Number of Credits: 4 (2L-0T-4P) Contact Hours: 90 hours (30L-0T-60P)				
Effective from		· · · · · · · · · · · · · · · · · · ·			
Prerequisites	Internet Technologies, Computer Organization and				
for the course	architecture, Operating Systems.				
Objectives	To understand the fundamentals of Internet of Things and				
	the protocols and standards designed for IoT				
<u>Theory</u>	Introduction to IoT: Introduction, IoT ecosystem,	2 hours			
	Applications, Challenges.				
	Fundamentals: IoT Devices - Sensors, Actuators, and				
	gateways, Basics of the wireless sensor network.	4 hours			
	IoT Architecture & Design: oneM2M, IoTWF, Additional				
	Reference Models, Core functional stack, Data Management	4 hours			
	and compute stack.				
	Communicating smart objects: Communication criteria,				
	communication models, IoT access technologies – 3GPP				
	MTC, IEEE 802.11, IEEE 802.15, WirelessHART, ZWave,	8 hours			
	Bluetooth Low Energy, Zigbee Smart Energy, DASH7				
	IoT Network Layer: IP as IoT network layer, IPv6, 6LoWPAN,				
	6TISCH, RPL, CORPL, CARP	3 hours			
	IoT Transport and Application protocols:	3 hours			
	Transport Layer: TCP, UDP, DCCP, SCTP, TLS, DTLS				
	IoT application transport methods, HTTP, CoAP, XMPP,	3 hours			
	MQTT, AMQP, DDS				
	Security in IoT: MAC802.15.4, 6LoWPAN, RPL, Application	3 hours			
	Layer security.				
	IoT Application case study: Discuss any 3 applications of IoT				
Practical:	1. Smart Agriculture System	20 * 3 = 60			
	2. Weather Reporting System	hours			

15 & 22.05.2023 3. Home Automation System 4. Face Recognition Bot 5. Smart Garage Door 6. Smart Alarm Clock 7. Air Pollution Monitoring System 8. Smart Parking System 9. Smart Traffic Management System 10. Smart Cradle System 11. Smart Gas Leakage Detector Bot 12. Streetlight Monitoring System 13. Smart Anti-Theft System 14. Liquid Level Monitoring System 15. Night Patrol Robot 16. Health Monitoring System 17. Smart Irrigation System 18. Flood Detection System 19. Mining Worker Safety Helmet 20. Smart Energy Grid **Pedagogy** lectures/ tutorials/Hands-on assignments/self-study References/ 1. David Hanes, Gonzalo Salgueiro, Patrick Grossetete, **Readings** Robert Barton, Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017 2. Hersent, Olivier, David Boswarthick, and Omar Elloumi, The internet of things: Key applications and protocols. John Wiley & Sons, 2011. 3. Buyya, Rajkumar, and Amir Vahid Dastjerdi, eds. Internet of Things: Principles and Paradigms. Elsevier, 2016. Learning After completing the course, students will be able to: <u>Outcomes</u> 1. Understand the concepts of the IoT Architecture Reference model 2. Identify the IoT networking components and protocols.

(Back to Index) (Back to Agenda)

Std. Com.X AC-6

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-525	Title of Course: Machine Translation
Number of Credits: 4 (2L-0T-2P)	Contact hours: 90 hours (30L-0T-60P)
Effective from AY: 2023-24	

Prerequisites	Knowledge of Mathematics for Computer Science and Machine	
for the course	Learning will prove beneficial, A previous course on Artificial	
	Intelligence and Natural Language Processing will help;	
	Exposure to Linguistics is useful, though not mandatory	

Std. Com.X AC-6	
15 & 22.05.2023	

	1	15 & 22.05.2023	
Objectives:	The objective of the course is to understand and get an insight into the different approaches used for Machine Translation (MT).		
Content:	Introduction: Data-driven MT, MT Approaches, Language divergence, three major paradigms of MT, MT Evaluation,	8 hours	
	Bilingual Word Mappings: Combinatorial Argument, One-to-One Alignment, Heuristic and Iterative bases computation, Mathematics of Alignment, Expectation Maximization, IBM models of Alignment	e 4 hours	
	Phrase-Based Machine Translation (PBMT): Need, Examples, Phrase Table, Mathematics of Phrase-Based SMT, Decoding.	10 hours	
	Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua and Word Knowledge, UNL conversion, Transfer- based MT.	5 hours	
	Example-Based Machine Translation (EBMT): Essential steps of EBMT, Text similarity computation, Translation memory, Statistical Machine Translation	3 hours	
	Practical		
	Assignment 1: Data-driven MT, MT Approaches, Language divergence, three major paradigms of MT, MT Evaluation,	16 hours	
	Assignment 2: Bilingual Word Mappings: Combinatorial Argument, One-to-One Alignment, Heuristic and Iterative bases computation, Mathematics of Alignment, Expectation Maximization, IBM models of Alignment	8 hours e	
	Assignment 3: Phrase-Based Machine Translation (PBMT): Need, Examples, Phrase Table, Mathematics of Phrase-Based SMT, Decoding.	20 hours	
	Assignment 4: Rule-Based Machine Translation (RBMT): Kinds, UNL, Interlingua and Word Knowledge, UNL conversion, Transfer- based MT.	10 hours	
	Assignment 5: Example-Based Machine Translation (EBMT): Essential steps of EBMT, Text similarity computation, Translation memory, Statistical Machine Translation	6 hours	
Pedagogy:	lectures/ tutorials/assignments/self-learning/ flipped classroom	1	
References/ Readings	1. Machine Translation by Pushpak Bhattacharyya, Chapman a February 2015		
	 Machine Translation on Coursera by Prof. Alexander Waibe Niehues <u>https://www.coursera.org/learn/machinetranslatio</u> An Open Source Neural Machine Translation System <u>https://</u> Bhashini Project – <u>https://bhashini.gov.in/bhashadaan/en/l</u> 	<u>on</u> //opennmt.net/	
Learning Outcomes	After completion of this course, students will - • Understand the Machine Translation Approaches		

•	Understand the differences between Phrase-Based, R Example-Based Machine Translation	ule-Based, and
•	explain, apply, and assess evaluation methods for ma	chine translation;
•	describe and critically discuss the architecture of mac systems;	hine translation
•	build their own translation model using existing tools translation and evaluate and analyse the translation r	
•	compare different types of machine translation strate based, statistical, and neural machine translation;	gies, such as rule-
•	implement components of machine translation syster used in evaluation or pre-processing	ns or components

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-526Title of the Course:Mathematics for Computer Vision and RoboticsNumber of Credits: 4(2L+0T+4P)Contact hours:90 hours(30L-0T-60P)Effective from AY: 2023-24Contact hours:90 hours(30L-0T-60P)

Effective from A	. 2025-24	
	Linear Algebra, Probability and Statistics, Signal Processing	
<u>Prerequisites</u>		
for the course		
	To understand basic concepts of linear algebra and to illustrate its	
Objectives	power and utility through applications to computer vision.	
	To apply the concepts of vector spaces, linear transformations,	
	matrices and inner product spaces in engineering.	
	To understand the concepts of curves and surfaces and solving	
	linear programming problems that arise in engineering.	
	Vectors and Matrices Points, vectors, vector spaces(Rn only), lines	
Theory:	and planes as subspaces -Matrices and four fundamental spaces-	3 hours
	Gaussian elimination.	
	Factorization of Matrices LU factorizations-Cholesky decomposition	
	-eigenvalues and eigenvectorsSVD - Applications of the SVD	
	Solving Linear Systems and the Pseudoinverse -Principal	6 hours
	Components Analysis (PCA)	C h a sur
	Linear transformations Linear transformations(R^n only) – Basic	6 hours
	properties-invertible linear transformation - matrices of linear	
	transformations.	
	Geometry in Linear Transformation Projections, Rotations and	6 hours
	reflection and applications	o nours
	Orthogonality Dot products and inner products (R^n only) – lengths	
	and angles of vectors –orthogonal matrices- Gram Schmidt	
	.	3 hours
	orthogonalizations - QR factorization- orthogonal projections-Least	
	Square solutions	3 hours
	Differential geometry Introduction to differential geometry -	
	curves-curvature-torsion-osculating plane –surfaces	3 hours
	Linear programming Linear programming – Formulation of LPP-	
	Graphical method - Simplex method	

		-	m.X AC-6 2.05.2023
Practical:	Assignment 1- Getting to Know the Python math Module, Constants of the math Module:Pi, Tau, Euler's Number, Infin Not a Number (NaN) and Arithmetic Functions,Find Factorial Python factorial(), Find the Ceiling Value With ceil(), Find the Value With floor(), Truncate Numbers With trunc(), Find the Closeness of Numbers With Python isclose()	ity, s With	10 hours
	Assignment-2 - Power Functions, Calculate the Power of a Ne With pow(),Find the Natural Exponent With exp(),Practical E With exp(),Logarithmic Functions, Python Natural Log With log(),Understand log2() and log10(), Practical Example With I Log Assignment-3 -Other Important math Module Functions, Cal	xample Natural	10 hours
	the Greatest Common Divisor, Calculate the Sum of Iterables Calculate the Square Root, Convert Angle Values, Calculate Trigonometric Values	5,	10 hours
	Assignment -4 -New Additions to the math Module in Pythor 3.8.cmath vs math, NumPy vs math,	ו	5 hours
	Assignment -5 -Calculating combinations and permutations of factorials,Calculating the height of a pole using trigonometric functions, Calculating radioactive decay using the exponentia function, Calculating the curve of a suspension bridge using hyperbolic functions, Solving quadratic equations	C	10 hours
	Assignment - 6 -Simulating periodic functions, such as sound light waves, using trigonometric functions,	and	5 hours
	Assignment -7 -Vector algebra in python, Physical Quantities Vector and Scalars, Representation of vectors, Types of Vect Operations on Vectors, Section Formula, Concept of Euclidea Distance between two vectors,	ors,	
Pedagogy	Lectures/ Lab Assignments/ Seminar Presentations /Project	Work	10 hours
References/ Readings	 Linear Algebra, Jin Ho Kwak and Sungpyo Hong, Seco edition Springer, 2004. Mathematics for Machine Learning, Marc Peter Deise A. Aldo Faisal, Cheng Soon Ong,Cambridge University 2020. 	nd enroth,	
	 Operations Research principles and applications, G.Srinivasan, 3rd edition, PHI learning, 2017, Differential Geometry of Curves and Surfaces: Revise 	d and	

Std. Com.X AC-6

	15 & 22.05.2	2023
	Updated Second Edition, Manfredo P. do Carmo, Dover publications 2016.	
	5. Linear Algebra and Optimization with Applications to	
	Machine Learning - Volume I.	
	6. Linear Algebra for Computer Vision, Robotics, and Machine	
	Learning, Jean H. Gallier, Jocelyn Quaintance, World	
	Scientific Publishing Company, 2020.	
	7. Basics of Matrix Algebra for Statistics with R, Nick Fieller, CRC press, 2016.	
	8. Introduction to Linear Algebra, Gilbert Strang, 5th Edition,	
	Cengage Learning (2015).	
	9. Modern Mathematics And Applications In Computer	
	Graphics And Vision, Hongyu Guo, World scientific	
	publishing company,2014.	
	10. Computer Vision: A Modern Approach, Forsyth and Ponce,	
	2nd Edition Pearson 2012.	
Loorning	At the end of this course the students are expected to learn	
Learning Outcomos	1. The abstract concepts of matrices and system of linear	
<u>Outcomes</u>	equations using decomposition methods and applications in engineering	
	2. Understand the geometry behind linear transforms which is	
	used in computer graphics	
	3. Understand the concepts of orthogonality through linear	
	algebra	
	4. Understating properties curves and surfaces	
	5. Solving linear programming problems arise in engineering	
	6. Solving problems in Linear algebra, linear programming and	
	differential geometry using matplotlib or Python.	
	(Back to Index) (Back to Age	Ichne

(Back to Index) (Back to Agenda)

Programme: M.Sc. in Artificial IntelligenceCourse Code: CSI-527Title ofNumber of Credits: 4 (2L+0T+4P)Effective from AY: 2023-24

Title of the Course: Soft Computing Contact hours: 90 hours (30L-0T-60P)

<u>Prerequisites</u>	Machine Learning, Statistics	
for the course		
<u>Objectives</u>	The objective of this course is to introduce methods for handling imprecise and uncertain data using Rough sets, Neuro Fuzzy Systems and foster their abilities in designing and implementing optimal solutions for real-world and engineering problems using derivative free optimization techniques.	
<u>Content</u>	Introduction to Soft Computing Soft Computing Overview – Uncertainty in data, Hard vs Soft Computing Neural Networks	3 hours 2 hours

		-	<u>m.X AC-6</u> 2.05.2023
	Introduction, RBF Networks, Self-Organizing Map, Boltzmanr Machines, Convolutional Neural Networks.		5 hours
	Fuzzy Systems		5 hours
	Fuzzy Sets, Fuzzy Relations, and Membership functions, Prop of Membership functions, Fuzzification and Defuzzification. Fuzzy logic Fuzzy Rule based systems, Fuzzy Decision making, Fuzzy	erties	5 hours
	Classification, Fuzzy CMeans Clustering.		5 hours
	Rough Sets Rough Sets – Definition, Upper and Lower Approximations, Boundary Region, Decision Tables and Decision Algorithms. Properties of Rough Sets. Rough K-means clustering, Rough		5 hours
	Optimization Techniques Introduction, Genetic Algorithm, Memetic Algorithms, Partic Swarm Optimization, Ant Colony Optimization, Frog-Leaping.		
	Hybrid Systems GA Based Back Propagation Networks, Fuzzy Back Propagatic Networks, Evolutionary Ensembles	on	
Practical:	List of Experiments: 1. To demonstrate the working of Hebbian learning rule	1	12 * 5 =
	2. To demonstrate the working of perceptron learning r	ule	60 hours
	3. To demonstrate the working of Delta learning rule		
	4. To demonstrate the working of Widrow-Hoff learning	g rule	
	 To demonstrate the working of Radial basis function network 		
	To demonstrate the working of Learning vector quantization		
	 To demonstrate the working of Self-Organizing maps To demonstrate the working of Recurrent neural netw To demonstrate the working of Fuzzy inference system To demonstrate the working of Genetic algorithm 		
	 11. To demonstrate the working of Particle Swarm Optim 12. To demonstrate the working of Ant Colony Optimizat and TSP 		
<u>Pedagogy</u>	Lectures / Assignments / Quiz / Mini Project / Seminar Presentations		

References/ ReadingsMain ReadingsImage: state of the state			15 & 22	2.05.2023
Computing", 2nd Edition, Wiley Publications.2. Andries P. Engelbrecht, "Computational Intelligence: An Introduction", John Wiley & Sons, 2007.3. Laurene V. Fausett "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Pearson, 1993.4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition,Wiley.Learning OutcomesAfter successfully completing the course the student should be able to:1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data2. Develop computational neural network models for some simple biological systems;3. Develop fuzzy models for engineering systems, particularly for control systems;4. Apply derivative free optimization methods to solve real world problems	References/	Main Readings		
2. Andries P. Engelbrecht, "Computational Intelligence: An Introduction", John Wiley & Sons, 2007. 3. Laurene V. Fausett "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Pearson, 1993. 4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition,Wiley.Learning OutcomesAfter successfully completing the course the student should be able to: 1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems; 3. Develop fuzzy models for engineering systems, particularly for control systems; 4. Apply derivative free optimization methods to solve real world problems	Readings	1. S.N. Sivanandham and S.N.Deepa, "Principles of Soft		
Introduction", John Wiley & Sons, 2007.3. Laurene V. Fausett "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Pearson, 1993.4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition,Wiley.Learning OutcomesAfter successfully completing the course the student should be able to:1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems;3. Develop fuzzy models for engineering systems, particularly for control systems;4. Apply derivative free optimization methods to solve real world problems		Computing", 2nd Edition, Wiley Publications.		
3. Laurene V. Fausett "Fundamentals of Neural Networks: Architectures, Algorithms And Applications", Pearson, 1993. 4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition,Wiley.Learning OutcomesAfter successfully completing the course the student should be able to: 1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems; 3. Develop fuzzy models for engineering systems, particularly for control systems; 4. Apply derivative free optimization methods to solve real world problems		2. Andries P. Engelbrecht, "Computational Intelligence: An		
Architectures, Algorithms And Applications", Pearson, 1993.4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition,Wiley.Learning OutcomesAfter successfully completing the course the student should be able to: 1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems;3. Develop fuzzy models for engineering systems, particularly for control systems;4. Apply derivative free optimization methods to solve real world problems		Introduction", John Wiley & Sons, 2007.		
4. Simon Haykin "Neural Networks and Learning Machines" Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition,Wiley.Learning OutcomesAfter successfully completing the course the student should be able to: 1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems; 3. Develop fuzzy models for engineering systems, particularly for control systems;4. Apply derivative free optimization methods to solve real world problems		3. Laurene V. Fausett "Fundamentals of Neural Networks:		
Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Engineering Applications", Third Edition, Wiley.Learning OutcomesAfter successfully completing the course the student should be able to:1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data2. Develop computational neural network models for some simple biological systems;3. Develop fuzzy models for engineering systems, particularly for control systems;4. Apply derivative free optimization methods to solve real world problems		Architectures, Algorithms And Applications", Pearson, 1993.		
Learning OutcomesAfter successfully completing the course the student should be able to:1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data2. Develop computational neural network models for some simple biological systems;3. Develop fuzzy models for engineering systems, particularly for control systems;4. Apply derivative free optimization methods to solve real world problems		4. Simon Haykin "Neural Networks and Learning Machines"		
Learning After successfully completing the course the student should be able to: Outcomes 1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems; 3. Develop fuzzy models for engineering systems, particularly for control systems; 4. Apply derivative free optimization methods to solve real world problems 4.		Prentice Hall, 2008. Timothy Ross, "Fuzzy Logic with Enginee	ring	
Outcomes able to: 1. Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems; 3. Develop fuzzy models for engineering systems, particularly for control systems; 4. Apply derivative free optimization methods to solve real world problems		Applications", Third Edition, Wiley.		
 Have a general understanding of soft computing methodologies, to deal with imprecise and uncertain data Develop computational neural network models for some simple biological systems; Develop fuzzy models for engineering systems, particularly for control systems; Apply derivative free optimization methods to solve real world problems 	<u>Learning</u>	After successfully completing the course the student should	be	
 methodologies, to deal with imprecise and uncertain data 2. Develop computational neural network models for some simple biological systems; 3. Develop fuzzy models for engineering systems, particularly for control systems; 4. Apply derivative free optimization methods to solve real world problems 	Outcomes	able to:		
 Develop computational neural network models for some simple biological systems; Develop fuzzy models for engineering systems, particularly for control systems; Apply derivative free optimization methods to solve real world problems 		1. Have a general understanding of soft computing		
 simple biological systems; 3. Develop fuzzy models for engineering systems, particularly for control systems; 4. Apply derivative free optimization methods to solve real world problems 		methodologies, to deal with imprecise and uncertain	data	
 Develop fuzzy models for engineering systems, particularly for control systems; Apply derivative free optimization methods to solve real world problems 		2. Develop computational neural network models for so	ome	
for control systems; 4. Apply derivative free optimization methods to solve real world problems		simple biological systems;		
 Apply derivative free optimization methods to solve real world problems 		3. Develop fuzzy models for engineering systems, partic	cularly	
world problems		•		
			real	
5. Demonstrate some applications of computational				
		5. Demonstrate some applications of computational		
intelligence.			-	

Std. Com.X AC-6

Programme: M.Sc. in Artificial Intelligence

Course Code: CSI-528 Title of the Course: Regression Analytics and Predictive ModelsNumber of Credits: 4 (2L+0T+4P)Total Contact Hours: 90 hours(30L+0T+60P)Effective from AY: 2023-24

Prerequisites for	Probability Theory and Distributions	
the course		
<u>Objectives</u>	 Develop an understanding of regression analysis and model building. Provide the ability to develop relationship between variables Investigate possible diagnostics in regression techniques Formulate feasible solutions using a regression model for real-life problems. 	
Theory:	Simple Regression Analysis Introduction to a linear and nonlinear model. Ordinary Least Square methods. Simple linear regression model, using simple regression to describe a linear relationship. Fitting a linear trend to time series data, Validating simple regression model using t, F and p test. Developing confidence interval. Precautions in interpreting regression results. Multiple Regression Analysis Concept of Multiple regression model to describe a linear	4 hours 4hours

	<u>Std. Com.X</u> 15 & 22.05.	
relationship, Assessing the fit of the regression line, infere from multiple regression analysis, problem of overfitting of model, comparing two regression model, prediction with	nces	ours
multiple regression equation. Fitting Curves and Model Adequacy Checking Introduction, fitting curvilinear relationship, residual analys PRESS statistics, detection and treatment of outliers, lack of of the regression model, test of lack of fit, Problem of autocorrelation and heteroscedasticity. Estimation of pure	of fit 4 ho	ours
from near neighbors. Transformation techniques Introduction, variance stabilizing transformations, transformations to linearize the model, Box Cox methods,		ours
transformations on the repressors variables, Generalized a weighted least squares, Some practical applications. Multicollinearity Introduction, sources of multicollinearity, effects of		ours
multicollinearity. Multicollinearity diagnostics: examinatio correlation matrix, variance Inflation factors (VIF), Eigen sy analysis of X1X. Methods of dealing with Multicollinearity: collecting additional data, model re-specification, and ridge regression.	stem	ours
Generalized Linear Models Generalized linear model: link functions and linear predicto parameter estimation and inference in the GLM, predictio estimation with the GLM, Residual Analysis, and concept of dispersion.	n and	
Model building and Nonlinear Regression Variable selection, model building, model misspecification. Model validation techniques: Analysis of model coefficient predicted values, data splitting method. Nonlinear regress model, nonlinear least squares, transformation to linear me parameter estimation in nonlinear system, statistical infer- in nonlinear regression.	ts, and ion odel,	

Std. Com.X AC-6

	15 & 2	2.05.2023
Practical:	1. Linear Regression	12 * 5 =
	2. Minimum Least Square Method	60 hours
	3. Calculating coefficients values	
	4. Ascombe's Quartet	
	5. Regression Equations- x on y & y on x	
	6. Predicting mom's height based on daughter's height	
	7. Regression-Solved problem-2	
	8. Probable Error- Calculating correlation coefficient of	
	POPULATION	
	9. Predictive modelling project for credit card fraud	
	detection	
	10. Predictive modelling project for customer value	
	prediction	
	11. Predictive modelling project for stock market forecasting	
	12. Predictive modelling project for corporate bankruptcy	
	prediction	
Pedagogy	Lectures/ tutorials/assignments/self-study	
References/	1. Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey	
Readings	Vining, Introduction to Linear Regression Analysis, Third	
Reduings	Ed., Wiley India Pvt. Ltd., 2016. Norman R.	
	 Draper, Harry Smith; Applied Regression Analysis, WILEY 	
	India Pvt. Ltd. New Delhi; Third Edition, 2015.	
	3. Johnson, R A., Wichern, D. W., Applied Multivariate	
	Statistical Analysis, Sixth Ed., PHI learning Pvt., Ltd., 2013.	
	4. Jain Pardoe, Applied Regression Modeling, John Wiley	
	and Sons, Inc, 2012.	
Learning	At the end of the course students will be able to:	
Outcomes	 Develop in-depth understanding of the linear and 	
	nonlinear regression model.	
	 Demonstrate the knowledge of regression modeling and 	
	model selection techniques.	
	• Examine the relationships between dependent and	
	independent variables.	
	• Estimate the parameters and fit a model.	
	 Investigate possible diagnostics in regression modeling 	
	and analysis.	
	 Validate the model using hypothesis testing and 	
	confidence interval approach.	
	 Understand the generalizations of the linear model to 	
	binary and count data.	
		1

(Back to Index) (Back to Agenda)

Programme: M.Sc. in Artificial IntelligenceCourse Code: CSI-529Title of the Course: Essentials of Data AnalyticsNumber of Credits: 4(2L+0T+4P)Contact hours: 90 hours(30L-0T-60P)Effective from AY: 2023-24

Std. Com.X AC-6 15 & 22.05.2023

		13 0 22	
<u>Prerequisites for</u> <u>the course</u>	Probability and Statistics		
<u>Objectives</u>	 To understand the concepts of analytics using various r learning models. To appreciate supervised and unsupervised learn predictive analysis. To understand data analytics as the next wave for bus looking for competitive advantage. Carry out rule-based analysis of the data in line w analysis plan. Validate the results of their analysis according to st guidelines. Validate and review data accurately and identify anoma 7. To learn aspects of computational learning theory. Apply statistical models to perform Regression A Clustering and Classification. 	ing for sinesses vith the atistical slies.	

Std. Com.X AC-6 15 & 22.05.2023

1	15 & 22	2.05.2023
Theory:	Module:1 Regression Analysis Linear regression: simple linear regression - Regression Modelling - Correlation, ANOVA, Forecasting, Autocorrelation Module:2 Classification Logistic Regression, Decision Trees, Naïve Bayes-conditional probability - Random Forest - SVM Classifier Module:3 Clustering K-means, K-medoids, Hierarchical clustering Module:4 Optimization Gradient descent - Variants of gradient descent - Momentum - Adagrad - RMSprop - Adam - AMSGrad Module:5 case study -Managing Health and Safety Comply with organization's current health, safety and security policies and procedures - Report any identified breaches in health, safety, and security policies and procedures to the designated person - Identify and correct any hazards that they can deal with safely, competently and within the limits of their authority - Report any hazards that they are not competent to deal with to the relevant person in line with organizational procedures and warn other people who may be affected. Module:6- requirement analysis - Data and Information Management Establish and agree with appropriate people the data/information they need to provide, the formats in which they need to provide it, and when they need to provide it - Obtain the data/information from reliable sources - Check that the data/information is accurate, complete and up-to-date Module:7 Learning and Self Development Obtain advice and guidance from appropriate people to develop their knowledge, skills and competence - Identify accurately their current level of knowledge, skills and competence and any learning and development needs - Agree with appropriate people a plan of learning and development activities to address their learning needs	5 hours 5 hours 5 hours 5 hours
Practical:	 Web Scraping:- While you'll find no shortage of excellent (and free) public data sets on the internet, you might want to show prospective employers that you're able to find and scrape your own data as well. Plus, knowing how to scrape web data means you can find and use data sets that match your interests, regardless of whether or not they've already been compiled. If you know some Python, you can use tools like Beautiful Soup or Scrapy to crawl the web for interesting data. If you don't know how to code, don't worry. You'll also find several tools that automate the process (many offer a free trial), like Octoparse or ParseHub. 	5 * 12 = 60 hours

<u>Std. Com.X AC-6</u> 15 & 22.05.2023

c.	If you're unsure where to start, here are some
	websites with interesting data options to inspire
	your project:

- d. Reddit, Wikipedia, Job portals
- 2. Data Cleaning
 - a. A significant part of your role as a data analyst is cleaning data to make it ready to analyze. Data cleaning (also called data scrubbing) is the process of removing incorrect and duplicate data, managing any holes in the data, and making sure the formatting of data is consistent.
 - As you look for a data set to practice cleaning, look for one that includes multiple files gathered from multiple sources without much curation. Some sites where you can find "dirty" data sets to work with include:
 - c. CDC Wonder, Data.gov, World Bank, Data.world/r/datasets
- 3. Exploratory data analysis (EDA)
 - a. Data analysis is all about answering questions with data. Exploratory data analysis, or EDA for short, helps you explore what questions to ask. This could be done separate from or in conjunction with data cleaning. Either way, you'll want to accomplish the following during these early investigations.
 - b. Ask lots of questions about the data.
 - c. Discover the underlying structure of the data.
 - d. Look for trends, patterns, and anomalies in the data.
 - e. Test hypotheses and validate assumptions about the data.
 - f. Think about what problems you could potentially solve with the data.
- 4. Sentiment analysis
 - Sentiment analysis, typically performed on textual data, is a technique in natural language processing (NLP) for determining whether data is neutral, positive, or negative. It may also be used to detect a particular emotion based on a list of words and their corresponding emotions (known as a lexicon).
 - b. This type of analysis works well with public review sites and social media platforms, where people are likely to offer public opinions on various subjects.

		<u>m.X AC-6</u> 2.05.2023
	 c. To get started exploring what people feel about a certain topic, you can start with sites like: Amazon (product reviews), Rotten Tomato (movie reviews), Facebook witter, News sites 5. Data visualization a. Humans are visual creatures. This makes data visualization a powerful tool for transforming data into a compelling story to encourage action. Great visualizations are not only fun to create, they also have the power to make your portfolio look beautiful. 	
<u>Pedagogy</u>	Lectures/Assignments/Seminar Presentations/Mini-Project	
References/ Readings	 1.Cathy O'Neil and Rachel Schutt. "Doing Data Science, Straight talk from the Frontline",O'Reilly. 2014. 2.Dan Toomey, "R for Data Science", Packt Publishing, 2014. 3.Trevor Hastie, Robert Tibshirani and Jerome Friedman. "Elements of Statistical Learning",Springer , Second Edition. 2009. 4.Kevin P. Murphy. "Machine Learning: A Probabilistic Perspective", MIT Press; 1st Edition, 2012. Reference Books Glenn J. Myatt, "Making Sense of Data: A Practical Guide to Exploratory Data Analysis and Data Mining", John Wiley & Sons, Second Edition, 2014. G. K. Gupta, —Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006. Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007. Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis", Elsevier, 2007. R N Prasad, Seema Acharya, "Fundamentals of Business Analytics", Wiley; Second edition, 2016. https://www.sscnasscom.com/qualification-pack/SSC/Q2101/Mode of Evaluation: ISA/Assignment / Quiz / Project / Seminar 	
<u>Learning</u> <u>Outcomes</u>	 Identify and apply the appropriate supervised learning techniques to solve real world problems with labeled data. Choose and implement typical unsupervised algorithms for different types of applications with unlabelled data. Implement statistical analysis techniques for solving practical problems. Understand different techniques to optimize the learning algorithms. 	

Std. Com.X AC-6 15 & 22.05.2023

5. Aware of health and safety policies followed in organization, data and information management and knowledge & skill development.

(Back to Index) (Back to Agenda)