GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the 9th Special Meeting of the

X ACADEMIC COUNCIL

Day & Date

Saturday, 30th July, 2022

<u>Time</u>

10.00 a.m.

Council Hall Goa University

	2. The Course Codes for the PG programmes to be revised/changed. The Controller
	of Examination was requested to draw up a uniform pattern to be made
	applicable across all disciplines in consultation with a few Deans and the
	Chairpersons of the Boards of Studies.
	3. The Chairperson, Board of Studies was requested to rework on the following
	Elective Courses giving more details:
	a) MMO-22-213 'Field Trip/Study Tour – Practical'
	b) MMO-22-213 filed filp/study four – Fractical
	b) MMO-22-214 Internship
	(Action: Assistant Registrar Academic – PG)
D 3.2	
D 3.2	Minutes of the Board of Studies in Marine Science meeting held on 28.04.2022.
	The Academic Council approved the minutes of the Board of Studies in Marine Science
	meeting held on 28.04.2022 with the following suggestions:
	1. The month and year mentioned in the heading of the Syllabus document to be
	corrected from September 2022 to August 2022.
	2. The Course Codes for the PG programmes to be revised/changed.
	3. Total Number of Credits indicated as a footnote to the Programme Structure to be
	deleted.
	(Action: Assistant Registrar Academic – PG)
D 3.3	Minutes of the Board of Studies in Earth Science (Applied Geology) meeting held on
	29.04.2022.
	The Academic Council approved the minutes of the Board of Studies in Earth Science
	(Applied Geology) meeting held on 29.04.2022 with the following suggestions:
	1. The number of hours to be assigned to each module in Courses.
	2. Theory component of one credit to be included for the Practical Courses.
	3. Course GLC-22-107 Geological Field Mapping to be offered as a new Theory
	Course.
	4. Course Code: GLC-22-207 Geological Field Training to be included as a part of the
	Dissertation.
	(Action: Assistant Registrar Academic – PG)
D 3.4	Minutes of the Board of Studies in Mathematics meeting held on 22.04.2022.
	The Academic Council approved the minutes of the Board of Studies in Mathematics
	meeting held on 22.04.2022 with the following suggestions:
	1. The Course Codes for the PG programmes to be revised/changed.
	2. The word 'Optional Courses' to be replaced with 'Elective Courses'.
	3. The Chairperson, Board of Studies was requested to resubmit the syllabus
	incorporating the suggestions.
	The Vice-Chancellor was authorized to approve the same on behalf of the Academic
	Council.
	The proposed syllabus for Semester III and Semester IV was deferred.
	(Action: Assistant Registrar Academic – PG)

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL UPDATED AGENDA

For the 9th Special Meeting of the

X ACADEMIC COUNCIL

Day & Date

30th July, 2022

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administration Block

	2. Members of the BOS deliberated on the above matter syllabus with some minor corrections.	and approved the
	Part B	
	i) Scheme of examinations at the under-graduate level.NIL	
	ii) Panel of examiners for different examinations at the under – gra	aduate level.NIL
	iii) Scheme of examinations at the post-graduate level. NIL	
	iv) Panels of Examiners for different examinations at post-graduate	e level.NIL
	Part C	
	 Recommendations regarding preparation and publication of s material in any subject or group of subject or group of subj persons recommended for appointment to make the selection. 	-
	Part D	
	 Recommendations regarding general academic requirements in University or affiliated Colleges. NIL 	the Department of
	Part E	
	i) Recommendations of text books for the courses of study at t Level.NIL	he under-graduate
	ii) Recommendations of text books for the courses of study at Post	t-graduate level NIL
	Part F	
	 The declaration by the Chairman, that the minutes were read o at the meeting itself. 	ut by the Chairman
	The Chairman read out the minutes of the meeting to all the member	s.
	S	d/-
	Date: 28.04.2022 Signature of	f the Chairman
	Place: Goa University	
	Part G: The remark of the Dean of Faculty	
	1) The minutes are in order.	
	 2) The minutes may be placed before the Academic Council with re 3) Approved syllabus at BOS held on 20.04.2018. 	emark, if any.
	Sd,	/-
	Date: 28/04/2022 Signature of	f the Dean
	Place: Goa University Dean S	EOAS
		(Back to Index)
D 3.3	Minutes of the Board of Studies in Earth Science (Applied Geology 29.04.2022.) meeting held on
	Part A.	
	i. Recommendations regarding courses of study in the subject or g the undergraduate level: Nil	group of subjects at
	ii. Recommendations regarding courses of study in the subject or g	group of subjects at
	the postgraduate level:	

Nil

The Board approved M.Sc. (Applied Geology) program structure and the syllabus of Semester I and II.

Part B

- i. Scheme of Examinations at undergraduate level: ----
- ii. Panel of examiners for different examinations at the undergraduate level: ---- Nil
- iii. Scheme of Examinations at postgraduate level: ----- Nil
- iv. Panel of examiners for different examinations at post-graduate level: ---- Nil

Part C

i. Recommendations regarding preparation and publication of selection of reading material in the subject or group of subjects and the names of the persons recommended for appointment to make the selection: ---- Nil

Part D

- i. Recommendations regarding general academic requirements in the Departments of University or affiliated colleges: ----- Nil
- ii. Recommendations of the Academic Audit Committee and status there of: ----- Nil

Part E

- i. Recommendations of the text books for the course of study at undergraduate level: —----- Nil
- ii. Recommendations of the text books for the course of study at post graduate level: (<u>Annexure I</u> refer page no. 92)

Part F.

Important points for consideration/approval of Academic Council

- The important points/recommendations of BoS that require consideration/approval of Academic Council (points to be highlighted) as mentioned below Approval of M.Sc. (Applied Geology) program structure and the syllabus of Semester I and II.
- ii The declaration by the chairman that the minutes were read out by the Chairman at the meeting itself.

Date:29.04.2022 Place: Taleigao Plateau Sd/-Signature of the Chairman

Part G.

Date:29.04.2022

Place: Taleigao Plateau

The Remarks of the Dean of the Faculty

- i) The minutes are in order
- ii) The minutes may be placed before the Academic Council with remarks if any.
- iii) May be recommended for approval of Academic Council.
- iv) Special remarks if any.

Sd/-Signature of the Dean

D 3.3 Minutes of the Board of Studies in Earth Science (Applied Geology) meeting held on 29.04.2022.

Annexure I

Semester I				
Course Code	Course Title	L-T-P	Credits	Page
		(Hours/week)	(s)	Number
GLC-22-101	Principles of Mineralogy and	3-0-0	3	2-3
	Geochemistry			
GLC-22-102	Practical of Principles of	0-0-2	1	4
	Mineralogy and			
	Geochemistry			
GLC-22-103	Structural Geology and	3-0-0	3	5-6
	Geotectonics			
GLC-22-104	Practical of Structural	0-0-2	1	7
	Geology			
GLC-22-105	Igneous Petrology	3-0-0	3	8-9
GLC-22-106	Practical of Igneous	0-0-2	1	10
	Petrology			
GLC-22-107	Geological Field Mapping	4	4	11
GLO- 22-108	Groundwater Geology	3-0-0	3	12-13
GLO-22-109		0-0-2	1	14
	Practical of Groundwater			
	Geology (GLO- 22-108)			
GLO -22-110	Marine Geology	3-0-0	3	15-16
GLO-22-111	Practical of Marine Geology	0-0-2	1	17
	(GLO -22-110)			

M.Sc. in Applied Geology Program Structure and Syllabus (With effect from academic year 2022-2023)

Title of the Course: Principles of Mineralogy and Geochemistry

Course Code: GLC-22-101 Total Contact Hours: 45 Number of Credits: 03 Effective from AY: 2022-23

Prerequisites for the	Degree of Bachelor of Science in Geology from any UGC recognized University		
for the course:	or an equivalent examination.		
Objective:	This course addresses the concepts of crystal chemistry, mineralogy, geochemistry and isotope geology. Further it also provides an insight on the origin of the earth, distribution of elements, evolution of mineral and also to understand geological processes that are necessarily inaccessible to observe directly.		
Content:	Module 1: Crystal chemistry:Ionic radii, co-ordination of ions, Pauling's Rules, different types of chemical bonding, crystal growth, crystal defects, external and internal symmetry, XRD: powder and single crystal diffraction. Twinning, Polymorphism and 		

			<u>C- 9 (Special)</u> 0.07.2022
	component eutectic systems, incongruent melting, solid so system, exsolution.		
	Module 2: Mineralogy: Mineral evolution, Biological-mineral interactions, Medical mineralogy. Composition, struct Chemistry and paragenesis of the mineral groups: Construct Pyroxene, Amphibole, Mica, Feldspar, Garnet, Sulphide, Sul Carbonate and Oxides. Optical mineralogy: Study of isotropianisotropic minerals under convergent light. Working principic XRD, ICPMS, Spectroscopy, SEM, X-ray tomography.	ucture, Divine, phate, pic and	15 hours
	Module 3: Geochemistry: Introduction and scope of geochemical classification of elements, distribution and beh of major, trace elements and REE in igneous, sedimental metamorphic processes and products. Introduction to is geochemistry: Elements of nuclear systematics, introduct isotopes and their properties. Introduction to Meteorites, composition, classification and mineral constituents of mete	aviour ry and sotope ion to origin,	15 hours
Pedagogy:	Lectures/ tutorials/assignments/field study/discussion		
References/R eadings	 Deer, W. A., Howie, R. A., and Zussman, J. (199 <i>introduction to the rock-forming minerals.</i> 2nd ed. H Essex, England. New York, NY. Longman Scientific and Tec Klein, C., Hurlbut, C. S., and Dana, J. D. (1999). <i>Man</i> <i>mineralogy: (after James D. Dana)</i>. New York: J. Wiley. Winchell, A. N. (1991). <i>Elements of optical mineralog</i> <i>introduction to microscopic petrography</i>. New York. Wile Nesse W. (2012). <i>Introduction to Optical Mineralogy</i>. Oxford University Press Kerr, P. F. (1977). <i>Optical mineralogy</i>. New York. McGra Book Co. Mason B., and Moore C.B. (1982). <i>Principles of geocher</i> 4th ed. Chichester John Wiley Krauskopf, K. B., and Bird, D. K. (1995). <i>Introductin</i> <i>geochemistry</i>. New York. McGraw-Hill Klein, C., and Dutrow, B. (2007). <i>Manual of mineral science</i> York. John Wiley and sons Itd Mason, B., and Moore, C. B. (1982). <i>Principles of geocher</i> New York. Wiley. Walther, J. V. (2009). <i>Essentials of geochemistry</i>. Sudbury, Jones and Bartlett Publishers. White, W. M. (2014). <i>Isotope Geochemistry</i>. Hoboken. W Faure, G. (1986). <i>Principles of isotope geology</i>. <i>Second e</i> John Wiley and Sons Inc., New York, NY Dyar, M. D., and Gunter, M. E. (2008). <i>Mineralogy and</i> <i>mineralogy</i>. Chantilly. Mineralogical Society of America. 	larlow, hnical. <i>Jual of</i> <i>gy: An</i> <i>y.</i> <i>4th ed.</i> <i>aw-Hill</i> <i>mistry.</i> <i>ion to</i> <i>e. New</i> <i>mistry.</i> <i>,</i> Mass. <i>iley.</i> <i>dition.</i>	

Llearning	Provide a comprehensive understanding about the origin of earth as a whole with detail emphasis on elemental distribution, mantle	
outcomes	processes and mineral evolution.	

Title of the Course:Practical of Principles of Mineralogy and GeochemistryCourse Code:GLC-22-102Number of Credits: 1Total Contact Hours:30Effective from AY: 2022-23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized U	Jniversity or
for the course:	an equivalent examination.	
Objective:	This course deals with the megascopic and petrographic ident minerals. And thereafter also deals with the use of (Spectrophotometer, flame photometer) for analyses of differen constituents in water/soil/rocks.	instruments
Content:	Observing and recording properties of representative minerals in hand specimens. Observation and recording of optical properties of rock forming minerals. Determination of different chemical constituents in water/soil/rock using flame photometer and spectrophotometer. Reading of plots/graphs. Numerical problems on partition coefficient, calculation of isotope ratios.	30 hours
Pedagogy:	Megascopic and microscopic identification of minerals/Demonstrations/Laboratory experiments/Plotting and Interpretations.	
References/Re adings	 Mackenzie, W. S. (2015). Atlas of the rock-forming minerals in thin section. Routledge. Barker, A. J. (2017). A key for identification of rock-forming minerals in thin section Deer, W. A., Howie, R. A., and Zussman, J. (1992). An introduction to the rock-forming minerals. 2nd ed. Harlow, Essex, England. New York, NY. Longman Scientific and Technical. Khandpur, R. S. (2006). Handbook of analytical instruments. New York, N.Y. McGraw-Hill Education LL 	
Learning outcomes	Technique to identify minerals using physical and optical properties and also to develop analytical skills to determine the concentrations of various chemical parameters in water/soil/rock.	

(Back to Index) (Back to Agenda)

Title of the Course: Structural Geology and GeotectonicsCourse Code:GLC-22-103Total Contact Hours:45

Number of Credits: 03 Effective from: 2022–23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized University or
for the course:	an equivalent examination.

		022
	tual understanding of deformation processes and me n the Earth's lithosphere and their effects at differe	
	croscopic. Students will also be introduced to plate	
_	esses in the context of major tectonic features pl	
different tectonic en		esent in
	tion to Deformation and Rock Mechanics	15
	prmation, Strain in 1D, 2D and 3D, strain ellipsoid, Pure	hours
	shear, progressive deformation, strain analysis.	
	ss, deviatoric and mean stress, Mohr Circle diagram.	
	scous and plastic deformation, rheologic stratification	
	. Deformation microstructures and mechanisms,	
	ecrystallization. Fractures: brittle deformation	
mechanisms, failure	and fracture criteria, types of fractures and joints.	
Module 2: Fault and	d Fold Mechanics	
Faults: Characterist	cs of faults and fault planes, movement mechanisms,	
role of fluids, brit	tle versus ductile faults, mylonites, shear sense	
	zone kinematics. Folds: Mechanisms of folding,	
	f folding, Ramsay's classification of folds, superposed	
-	and recognition. Cleavage and foliations. Linear	
	eir interpretation. An overview of structures in	
contractional and ex	xtensional regimes with field examples.	
Module 3: Geotecto		
	pts of Geotectonics, Isostasy and geoid. Continental	
	spreading, paleomagnetism and Plate tectonics.	
	les. Volcanic and seismic belts of the Earth. Major	
	intraplate settings and at convergent, divergent and	
transform plate ma	rgins.	hours
	assignments/ self-study	,
	B.A. and Marshak, S. (2004). Earth structure: an introd	duction
•	blogy and tectonics, W.W. Norton and Company Ltd. Reynolds, S.J. (1996). <i>Structural Geology of rocks and</i>	rogions
John Wiley and		regions,
-)). <i>Structural Geology</i> , Cambridge University Press.	
	3). Structural Geology: Fundamentals, and modern	
	Pergamon Press.	
•	Trouw, R.A.J. (2005). <i>Microtectonics</i> . Springer, Berlin	
	d Fletcher, R.C. (2005). Fundamentals of structural ge	
Cambridge Univ		<i></i>
-	Huber, M.I. (1983). Techniques of Modern Structural	
-	und II, Academic Press.	
) 67). Folding and Fracturing of Rocks, McGraw-Hill Bo	ok
Company, New		
	Noores, E.M. (2007). Structural Geology. Freeman.	
10. Means, W. D., a	nd Williams, P. F. (1976). An outline of structural geol	ogy.
John Wiley.		

	11. Condie, K. C. (2013). Plate tectonics and crustal evolution. Elsevier.			
	12. Windley, B.F. (1996). The evolving continents. Oceanographic Literature			
	Review, 8(43), 785.			
	13. Turcotte, D.L., and Schubert, G. (2002). <i>Geodynamics</i> . Cambridge University			
	Press.			
Learning	Students will acquire a comprehensive understanding of how rocks deform at			
outcomes	different scales through brittle and ductile deformation and the tectonic processes			
	responsible for the formation of the different tectonic features present within the			
	Earth's lithosphere.			

Title of the Course: Practical of Structural Geology Course Code: GLC-22-104 Total Contact Hours: 30

Number of Credits: 01 Effective from: 2022–23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized Univ	versity or an
for the	equivalent examination.	
course:		
Objective:	This course deals with solving geologic maps, structural problems and	description
objective:	of structural data in rocks.	
	Completion of outcrops.	
	Preparation and interpretation of geological maps and sections	
	Structural problems concerning economic deposits	
Content:	Recording and plotting of the field data, stereographic projections.	20.11
	Petro-fabric analysis and study of deformed structures in hand	30 Hours
	specimens.	
	Strain estimation from the data already collected from the field. Study and interpretation of structures from photographs and satellite	
	imagery.	
	Demonstrations /Laboratory observations / Plotting and	
Pedagogy:	Interpretations	
	1. Rowland, S.M., Duebendorfer, E. and Schiefelbein, I.M. (2007). Strue	ctural
	analysis and synthesis: a laboratory course in structural geology, Bla	ckwell Pub.
References/	2. Davis, G.H. and Reynolds, S.J. (1996). Structural Geology of rocks and	d regions,
Readings	John Wiley and Sons.	
	Marshak, S., and Mitra, G. (1988). Basic methods of Structural geolog	gy. Prentice
	Hall.	
Learning	The students will be familiar with the common ways to measure and	
outcomes	represent data from structurally deformed rocks and to solve	
	structural maps and problems related to economic geology.	

Title of the Course: Igneous Petrology Course Code: GLC-22-105 Total Contact Hours: 45

Number of Credits: 3 Effective from AY: 2022-23

		30.07.2022
Prerequisites	Degree of Bachelor of Science in Geology from any UGC recog	nized University
for the course:	or an equivalent examination.	
Objective:	The main objective of this course is to get students acquainted with a wide range of igneous rocks and their corresponding geological settings.	
Content:	 Module 1: Introduction to Magmas and Magmatic Processes Process of formation and description of Textures and Structure of volcanic and plutonic rocks; Classification of igneous rock modal, chemical, quasi-chemical-schemes: their merits a demerits. Working principles of XRF, EPMA. Module 2: Composition of the mantle; Enriched- and Depleter mantle and their characteristics; Magma generation: He source and the factors responsible to bring about meltir Fractional melting, Batch melting and Zone melting; Magma Evolution; Magmatic differentiation: crystal fractionatic gravitational differentiation, flowage differentiation, filt pressing, liquid immiscibility; Magmatic assimilation, Magr Mixing and contamination. Module 3: Magma Associations in relation to Plate Tectonic continental flood basalts such as the Deccan Traps, Parana Karoo; Mid Ocean Ridge Basalts, Ocean Island basal Continental as well as ocean Arc magmatism; Alpine ty intrusions and Ophiolites; Alkaline rocks- Nephelinites an Ijolites, Lamprophyres and Lamproites, Carbonatites an Kimberlites; Granites and Granitic rocks, I-type, S-type, A-ty and M-type granites, anatexis and Granitization; Anorthosite Continental Layered Intrusions: Mineralogical and Petrologic characteristics with special reference to the Bushve Skaergaard, Stillwater Complexes. 	es; 15 hours res ks: nd ed- eat 15 hours ng, tic on, ter ma cs: as, ts, 15 hours pe nd nd pe es. cal
Pedagogy:	Lectures/ tutorials/ assignments/ self-study	
References/ Readings	 Barker, F. (Ed.). (2013). <i>Trondhjemites, dacites, and related rocks</i>. Elsevier Best and Christainsen (2002). <i>Igneous Petrology Daly: Petrology of Igneous Rocks</i>. Dawson, J. B. (2012). <i>Kimberlites and their xenoliths</i> (Vol. 15). Springer Science and Business Media. Middlemost, E. A. (1986). <i>Magmas and magmatic rocks: an introduction to igneous petrology</i>. Moorhouse, W. W. (1959). <i>The study of rocks in thin sections: by WW Moorhouse</i>. Harper. Wager, L. R., and Brown, G. M. (1967). <i>Layered igneous rocks</i>. WH Freeman. Philpotts, A. R., and Ague, J. J. (2022). <i>Principles of igneous and metamorphic petrology</i>. Cambridge University Press. Rock, N. M. (2013). <i>Lamprophyres</i>. Springer Science and Business Media. Wilson, M. (Ed.). (1989). <i>Igneous petrogenesis</i>. Dordrecht: Springer Netherlands. Williams, T., and Turner, F. J. Gilbert (1954): <i>Petrography</i>. 	

	 Winter, J. D. (2013). Principles of igneous and metamorphic petrology. Pearson education. Woolley, A. R. (2019, September). Alkaline Rocks and Carbonatites of the World, Part 4: Antarctica, Asia and Europe (excluding the former USSR), Australasia and Oceanic Islands. Geological Society of London.
Learning outcomes	The students will develop skills, to identifying a wide range of igneous rocks, processes of formation and their corresponding geological settings.

(Back to Index) (Back to Agenda)

Title of the Course: Practical of Igneous Petrology Course Code: GLC-22-106 Total Contact Hours: 30

Number of Credits: 1 Effective from AY: 2022-23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized	University	
for the course:	or an equivalent examination.		
Objective:	The main objective of this course is to get students acquai identification of rocks in hand specimens and petrographic thin sections are speciment of the section of the se		
Content:	Study of the textures and structures and identification of rocks in hand specimens. Characterization of the following suites of rocks from micro- sections: ultramafic rocks, mafic igneous rocks, intermediate rocks, granitic rocks and alkaline igneous rocks. CIPW normative calculations of minerals based on available compositional data using excel sheet. Applications of trace elements in igneous petrology, such as spider diagrams, REE distribution patterns and implications in deducing origin, source and evolution of magma, and tectonic diagrams- trace element ratio plots.	30 hours	
Pedagogy:	It is a practical component and entire course is taught in the laboratory.		
References/ Readings	 Howie, R. A., Zussman, J., and Deer, W. (1992). An introduction to the rock- forming minerals (p. 696). London, UK. Longman. Nesse, W. D. (2012). Introduction to mineralogy (No. 549 NES). Phillips, W. R., and Griffen, D. T. (1981). Optical mineralogy: The nonopaque minerals. Turner, F. J., and Howel. and Gilbert William (Charles M.). (1965). Petrography; an Introduction to the Study of Rocks in Thin Section. Vakils, Feffer and Simons. Hutchinson, C.S. (1974). Laboratory handbook of petrographic techniques. New York. 		
Learning outcomes	The students will develop skills, to identifying minerals and other phases, to understand their geologic occurrence of the rocks and to infer the processes of formation and environmental conditions from the mineral assemblage, texture, and tectonic setting.		

Title of the Course: Geological Field Mapping Course Code: GLC-22-107 Total Contact Hours: 60

Number of Credits: 4 Effective from AY: 2022-23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized L	Jniversity	
for the course:	or an equivalent examination.		
Objective:	The main objective of this course is to give students the hands on ex- in the field to understand the lithology structure and their Stratigraphy besides getting a thorough knowledge of field mapping	plates in	
Pedagogy:	Lectures and on-field Training.		
References/ Readings	 Geology of Gujarat, Mehr S.S., Geological Society of India, 1991. Geology of Karnataka, Radharishnan B.P. and Vaidhyanad Geological Society of India. 1977. Geology of Rajasthan, S. Sinha Roy. Geological Society of India.194. Geology of Rajasthan (North-West India-Precambriam to Recent and S.R. Jakhar. Scientific Publishers, 2012. Geology of Andhra Pradesh. P.K. Raman and V. N. Murty, G Society of India. 2012. Field Guide Book of Geology of Kutch (Kachchh) Basin, Gujarat, In 7. Geology and Mineral Resources of Goa. A.G. Dessai Geology of Maharashtra Second Edition. G.G. Deshpande and Pi Geological Society of India. 2012. 	991.) A.B Roy eological dia.	
Content:	The students will be taught the techniques of geological mapping, field data collection: recording the attitude of beds, foliation, lineation, joints and their analysis. Use of GPS, DGPS, GNSS for spatial data collection. Sampling of rocks, preparation of geological field report. The record of data will be maintained in a field-diary. This work will be carried out under the supervision of teachers who will accompany the students during the course of the field- traverse. There will be a viva-voce examination based on the field report.	60 hours	
Learning outcomes	The students will be able to identify the rocks their structures, and prepare geological map and write a detail technical report of the area.		

(Back to Index) (Back to Agenda)

Title of the Course: Groundwater Geology Course Code: GLO- 22-108 Total Contact Hours: 45

Number of Credits: 03 Effective from AY: 2022-23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized University
for the course:	or an equivalent examination.
Objective:	To understand occurrence and circulation of groundwater To study the functioning, methods and problems related to Groundwater.

30.07.2022 Module 1: Introduction: Genetic classification of water, global distribution of water. Hydrologic cycle: Precipitation, runoff, infiltration and evapotranspiration. Historical developments in science of 15 hours hydrogeology. Vertical distribution of sub surface water, classification of aquifers and confining layers, hydraulic properties of aquifers, water table fluctuations. Concepts of drainage and groundwater basins. Water table and piezometric surface. Module 2: Well Hydraulics and well designs: Theory of groundwater flow, Darcy's law, its validity and 15 hours applications, determination of permeability in laboratory and in field. Types of wells, drilling methods, construction, design, development and maintenance of wells. Specific capacity and its Content: determination steady and unsteady and radial flow conditions. Pumping tests-methods, data analysis and interpretations. Rainwater Harvesting and conservation. Module 3: Groundwater Chemistry, Contamination and occurrence: Groundwater Chemistry: Groundwater guality-physical, chemical, 15 hours biological properties of water quality criteria for different uses, graphical presentation of water guality data. Groundwater contamination. Problems of arsenic and fluoride in India. Saline water intrusion and Sub-marine Groundwater Discharge (SGD) in coastal aquifers and its modelling. Classification of rocks with respect to their water bearing characteristics, aquifer modelling and groundwater provinces of India. Groundwater exploration techniques. Pedagogy: Lectures / Assignments / Seminars/ Self-study 1. Mays, L. W., and Todd, D. K. (2005). *Groundwater Hydrology*. John Wily and Sons, Inc., Arizona State University, Third addition. 2. Fetter, C. W. (2018). Applied hydrogeology. Waveland Press. References/ 3. Hiscock, K. M., and Bense, V. F. (2021). Hydrogeology: principles and Readings practice. John Wiley and Sons. 4. Raghunath, H. M., and Raghunath, H. M. (2007). Ground water. New Age International (P) Limited Publishers. 5. Davis, S. N., and De Wiest, R. J. (1966). *Hydrogeology* New York: Wiley. The main outcome of the course is to understand and develop information with respect to occurrence and circulation of Learning groundwater in nature and find ways for sustainable use of the outcomes same

X AC- 9 (Special)

Title of the Course:	Practical of Groundwater Geology (GLO- 22-108)		
Course Code: GLO-2	2-109	Number of Credits: 01	
Total Contact Hours:	30	Effective from AY: 2022-23	

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized University		
for the course:	or an equivalent examination.		
Objective:	To make use principles of groundwater movement and well hydraul problems related to groundwater flow and hydraulic parameters	ics to solve	
Content:	Exercises on Groundwater flownet construction and interpretations of equipotential line and groundwater flow direction, interaction between various surface water, movement of contaminants related to groundwater flow. Problem related to aquifer parameters such as hydraulic conductivity, transmissivity and specific yield. Analysis of aquifer test data; Theis method, Jacob-cooper method and chows method. Problem solving on groundwater recharge and groundwater volume. Problems related to wells under various aquifer conditions. Graphical plotting and interpretation of chemical quality data of waters: Hill piper diagram, Schoeller diagram,	30 hours	
Pedagogy:	Lectures / Self-study		
References/ Readings	 Mays, L. W., and Todd, D. K. (2005). <i>Groundwater Hydrology</i>. John Wily and Sons, Inc., Arizona State University, Third addition. Raghunath, H. M., and Raghunath, H. M. (2007). <i>Ground water</i>. New Age International (P) Limited Publishers. Fetter, C. W. (2018). <i>Applied hydrogeology</i>. Waveland Press. 		
Learning outcomes	The main outcome of the course is to understand movement of groundwater and solve problems related to aquifer parameters and groundwater contamination.		

Title of the Course: Marine Geology Course Code: GLO -22-110 Total Contact Hours: 45

Number of Credits: 3 Effective from AY: 2022-23

Prerequisites for the course:	Degree of Bachelor of Science in Geology from any UGC recognized University or an equivalent examination.		
Objective:	To provide a conceptual understanding of marine processes, landforms, marine minerals, methods of geo-physical surveys for sea- bed mapping and coastal zone management.		
Content:	Module I Introduction and scope of marine geology, coastal zone and coastline classifications, beach and beach landforms, oceanic profile and landform features, morphologic and tectonic domain of the ocean floor, origin of oceanic crust, marine sediment and classification, ocean tectonics. Coastal surveys including beach profiling, Exclusive Economic Zone, concept and causes of sea level changes and measurements, Holocene sea level curves and future projections, Introduction to paleo-beaches and paleo-	15 hours	

		X AC- 9 (Special) 30.07.2022
	oceanography, coastal geomorphology and coast tectonic framework of India. Module II Classification of marine mineral deposits, origin a depositional system of marine resources, beach place shelf deposits, phosphorites, gas hydrates, hydrocarb deposits, sulphate deposits, hydro-thermal deposit polymetallic nodules, reserves and economics of marine resources with special reference to India. Introduction to marine geophysics, methods of geophysi surveys for seabed mapping and mineral exploration Introduction to marine geochemistry, laboratory method for sample analyses; Introduction to isotope geology a geochronology.	and ers, pon its, 15 ine hours ical on; pds
	Module III Coastal zone management, coastal erosion and protecti measures, coastal natural disasters and management, s water intrusion and submarine ground water dischar marine spatial planning, coastal zone regulation and ac the law of the seas.	salt ge,
Pedagogy:	Lectures/ tutorials/assignments/field study/discussion	
References/Readings	 Shepard, Submarine Geology, Third Edition. Kuenen, P. Marine Geology, 2008, John Wiley. Cuchlaine A.M.King, Introduction to Marine Geology and Geomorphology M.J.Keen, Introduction to Marine Geology, Elsevier. James Kennet, Marine Geology, 1982, Prentice Hall Chester and Jickells, 2012, Marine Geochemistry, Wiley Roy-Barman and Jeandel, 2016, Marine Geochemist Oxford University Press. Jones, Marine Geophysics, 1999, John Wiley and Sor Inc 	try, ns
Learning outcomes	At the end of the course the students will be able to explat the coastal processes and landforms, processes of mine formation, identify the minerals and propose vario coastal zone management remedial measures.	eral

Title of the Course: Practical of Marine Geology (GLO-22-110)Course Code:GLO -22-111NumberTotal Contact Hours:45Effective

Number of Credits: 1 Effective from AY: 2022-23

Prerequisites for the course:	Degree of Bachelor of Science in Geology from any UGC recognized University or an equivalent examination.		
Objective:	To provide a conceptual understanding of identification of marine minerals and preparing profiles of beaches, coastal landforms and ocean features.		
Content:	Study of marine minerals in hand specimen and under microscopy, identification of micro fossils, granolometric 30 analysis, beach profile mapping and beach survey, hours preparation of coastal geomorphology map from satellite images, understanding the maps relating to of ocean morphometry, resources and tectonics.		
Pedagogy:	Lectures/ tutorials/assignments/field study/discussion		
References/Readings	 Michael J. Kennish Practical Handbook of Marine Science, Fourth Edition, CRC Press. Mackenzie, W. S. (2015). Atlas of the rock-forming minerals in thin section. Routledge. 		
Learning outcomes	The students will be able to identify the marine minerals, micro-fossils and prepare profiles of beaches, coastal landforms and ocean features.		

M.Sc. in Applied Geology Program structure and syllabus (with effect from Academic year 2022-2023)

Semester II					
Course Code	Course Title	L-T-P (Hours/week	Credits (s)	Page Number	
GLC-22-201	Sedimentology	3-0-0	3	19-20	
GLC-22-202	Practical of Sedimentology	0-0-2	1	21-22	
GLC-22-203	Metamorphic Petrology	3-0-0	3	23-24	
GLC-22-204	Practical of Metamorphic Petrology	0-0-2	1	25	
GLC-22-205	Principles and Stratigraphy and Indian Geology	3-0-0	3	26-27	
GLC-22-206	Practical of Principles and Stratigraphy and Indian Geology	0-0-2	1	28	
GLC-22-207	Geological Field Training	4	4	29	

				<u>X AC- 9 (Spe</u> 30.07.20	
GLO-22-208	Exploration Geophysics	3-0-0	3	30-31	
GLO-22-209	Practical of Exploration Geophysics (GLO-22-208)	0-0-2	1	32	
GLO -22-210	Economic Geology	3-0-0	3	33-34	
GLO-22-211	Practical of Economic Geology (GLO -22-210)	0-0-2	1	35	

Title of the Course: Sedimentology

Course Code: GLC-22-201

Total Contact Hours: 45

Number of Credits: 03 Effective from AY: 2022-23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized U	niversity or	
for the course:	an equivalent examination.		
Objective:	To understand the different processes operating in sediment transportation and deposition. To impart a detailed knowledge of different types of sedimentary r origin and applications. To understand different types of depositional environments.		
	Module 1: Sedimentary processes Introduction to sedimentology, distribution of sedimentary rocks in time and space and their applications. Weathering: Types and their products, soils and paleosols. Transportation and Deposition: Fundamentals of fluid flow, particle transport by fluid and by sediment gravity flows.	15 hours	
Content:	Textures and structures of sedimentary rocks, their origin. Module 2: Sedimentary rocks Petrography, classification and provenance of: Terrigenous/clastic sedimentary rocks: Conglomerates, sandstones and mud rocks. Carbonate rocks: Limestones and dolomites. Evaporites, silicious, phosphatic, iron and manganese-rich sedimentary rocks. Module 3: Depositional environments	15 hours	
	Introduction and classification of: Terrestrial environment: fluvial system, eolian desert system, lacustrine system and glacial system. Marine environment: Deltaic system, beach and barriers island system, estuarine system, lagoonal system, tidal flat system; shelf and deep water environment.	15 hours	
Pedagogy:	Lectures, Case studies, Discussions and Assignments.		
References/ Readings	 Pettijohn, F. J. (1975). Sedimentary rocks (Vol. 3, p. 628). New Yo and Row. Collinson, J. (2006). Sedimentary structures. Dunedin Academic Press. 	·	

	 Nichols, G. (2009). Sedimentology and stratigraphy. John Wiley and Sons. Prothero, D.R. and Schwab, F. (2013). Sedimentary Geology: An Introduction to Sedimentary Rocks and Stratigraphy. W.H. Freeman, 3rd Edition. Selley, R. C. (2000). Applied sedimentology. Elsevier.2nd Edition. Tucker, M. E. (2001). Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley and Sons. 3rd Edition. Boggs, S. (2006). Principles of sedimentology and stratigraphy. Pearson Prentice Hall. 4th Edition. Boggs Jr, S., and Boggs, S. (2009). Petrology of sedimentary rocks. Cambridge university press. 2nd Edition. Greensmith, J. T. (1978). Petrology of the sedimentary rocks. Textbook of petrology Vol. 2. 	
Learning outcomes	In this course a student will learn about: The concepts of sediment formation, and various processes involved in transportation and deposition. Thorough knowledge on textures and structures exhibited by sedimentary rocks. Detail understanding of the sedimentary rocks. Infer various depositional environments and origin of diverse rock types.	

Title of the Course: Practical of Sedimentology Course Code: GLC-22-202

Total Contact Hours: 30

Number of Credits: 01 Effective from AY: 2022-23

Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized University		
for the course:	or an equivalent examination.		
Objective:	To assess the grain size and grain size parameters by different methods. To identify and characterize sedimentary rocks at mega and microscopic scales. To study sedimentary textures, structures, and paleocurrent methods for environmental reconstructions.		
Content:	Granulometric analysis: Textural analyses of sediments, plotting of grain size data and statistical analyses and interpretation. Palaeocurrent analysis: Exercises using sets of directional data to understand spatial variation in vectorial data. Study of hand specimens: Megascopic identification of sedimentary rocks, observation of texture, structure and diagenetic changes; inferences on depositional environment. Study of thin sections: Microscopic identification of sedimentary rocks, observation of texture, minerology and diagenetic changes. Heavy mineral analysis.	30 hours	
Pedagogy:	Lectures, problem solving, hands on experience in megascopic and microscopic identification of rocks and discussions.		

(Back to Index) (Back to Agenda)

Title of the Course: Metamorphic Petrology Course Code: GLC-22-203 Total Contact Hours: 45

Number of Credits: 03 Effective from: 2022–23

Prerequisites for the course:	Degree of Bachelor of Science in Geology from any UGC recognized University or an equivalent examination.		
Objective:	To provide a conceptual understanding of metamorphism, and metamorphic rocks encompassing the chemical and physical transformations that take place in response to changing pressure, temperature, and chemical environments, including different petrogenetic processes involving mineral reactions and equilibrium thermodynamics.		
Content:	Module 1: Introduction, Types, Facies and Textures of metamorphic rocks Definitions, factors and conditions of metamorphism; pressure and temperature limits of metamorphism; Types of metamorphism - orogenic metamorphism, ocean-floor metamorphism, regional metamorphism, contact metamorphism, cataclastic metamorphism, hydrothermal metamorphism, other types of small-scale metamorphism. Facies and facies series; Zones of Metamorphism; Concept and origin of isograds; General characteristics of contact and regional metamorphic rocks; Classification and types of textures; Interpretation of porphyroblast–inclusion relations.	15 hours	

		<u>X AC- 9 (Special)</u> 30.07.2022	
	Module 2: Introduction to Elementary Thermodynamics		
	Mineral Science		
	Concept of equilibrium in metamorphic systems; Gibbs pha Mineralogical Phase Rule and their application in simple a systems. First law of thermodynamics, second law of therm definition of entropy, third law of thermodynamics, ther equations, free energy of formation of minerals at any temp pressure, free energy surface in G–T–P–X space, free energy non-ideal solutions, the regular solution model, equilibrium a reaction and its relation with Gibbs free energy; Intro geothermobarometry.	nd complex odynamics- modynamic erature and of ideal and constant of	15 hours
	Module 3: Metamorphic Reactions, Chemographic Proje Progressive metamorphism in pelitic, carbonate and mafic Different types of metamorphic reactions, reactions among components, reactions involving volatiles as reacting species pressure, temperature and chemical compositions on the m reactions, time scale of metamorphism; ACF, AKF and AFN Progressive metamorphism in pelitic, carbonate and m Metamorphism in the context of plate tectonics	rocks solid-phase , controls of etamorphic A diagrams;	15 hours
Pedagogy	Lectures/ tutorials/ assignments/ self-study		
References/	1. Winter, J. D. (2010). An Introduction to Igneous and Meter	amorphic Petr	ology
Readings	 (2nd Edition), Pearson Education, Inc. Philpotts, A., and Ague, J. (2009). <i>Principles of Igneous and Metamorphic Petrology</i> (2nd ed.). Cambridge: Cambridge University Press. doi:10.1017/CB09780511813429. Bucher, K., and Grapes, R. (2011). <i>Petrogenesis of Metamorphic Rocks</i> (8th Edition), Springer. Best, M. (2002). <i>Igneous and metamorphic petrology</i> (2nd Edition). Blackwell Science Ltd. Frost, R., and Frost, C., (2014). <i>Essentials of Igneous and Metamorphic Petrology</i>. Cambridge University Press, New York. Vernon, R., (2018). <i>A Practical guide to Rock Microstructure</i> (2nd Ed.), Cambridge University Press, <u>https://doi.org/10.1017/9781108654609</u>. Winkler, H.G.F., (1979). <i>Metamorphic petrogenesis</i> (5th Ed.). Springer-Verlag, New York. Spear, F., (1993). <i>Metamorphic Phase Equilibria and Pressure-Temperature-</i> 		Verlag,
Learning outcomes	<i>Time paths</i> . Mineralogical Society of America, Washingto Students will acquire a comprehensive understanding of m thermodynamic principles related to metamorphic petro number of orogenic events in time and space, especial temperature conditions during orogenesis.	etamorphism logy, applica	ble to a

Title of the Course: Practical of Metamorphic Petrology Course Code: GLC-22-204 Total Contact Hours: 30

Number of Credits: 01 Effective from: 2022–23

			50.07.2022
Prerequisites	Degree of Bachelor of Science in Geology from any UGC recog	nized	University or
for the	an equivalent examination.		
course:			
	The main objective of this course is to get students acquainted		
Objective:	of metamorphic rocks in hand specimens and petrographic t	thin se	ction and to
	identify fabric forming processes.		
	Identification of typical metamorphic minerals in hand spec	imen	
	and thin section.		
	Description, identification and classification of commonly occu	ırring	30 hours
Content:	metamorphic rocks in hand specimen and thin section.		
content.	Description of fabrics and textures of common metamorphic	rocks	
	in hand specimen and thin section.		
	It is a practical component and entire course is taught ir	n the	
Pedagogy:	laboratory.		
	1. Yardley, B. W., MacKenzie, W. S., and Guilford, C. (1997). A	tlas of	
	metamorphic rocks and their textures. Longman.		
	2. Vernon, R. H. (2018). A practical guide to rock microstructu	re. Cai	mbridge
	University Press.		_
References/	3. Dana, E. S., and Ford, W. E. (1952). Dana's textbook of mine	eralogy	v. Wiley
Readings	Easstern Limited		
	4. Winter, J. D. (2010). An Introduction to Igneous and Metan	norphic	: Petrology
	(2nd Edition), Pearson Education, Inc.		
	5. Phillips W. R. and Griffen, D.T. (1981). Optical Mineralogy: The Non-opaque		
	Minerals. W. H. Freeman and Co., Ltd. New York.		
	The students will develop skills to identify metamorphic min	erals	
Learning	and rocks, to understand their geologic occurrence and to infe	er the	
outcomes	processes of formation and environmental conditions from	n the	
	mineral assemblage, texture, and tectonic setting.		

Title of the Course:Principles and Stratigraphy and Indian GeologyCourse Code:GLC-22-205Number of Credits:03Total Contact Hours:45Effective from AY:2022-23

Prerequisites				
	the an equivalent examination.			
course:				
Objective: To understand the stratigraphic principles by which standards in stratigraphic developed. To understand deposition and emplacement of different stratigraphic lndia and its evolution through time.				

		30	.07.2022
	Module 1: Introduction:		
	Stratigraphic principles and their applications. Evolution	ion of	
	Stratigraphic column. Stratigraphic (Lithostrat		15 hours
	Chronostratigraphic and Biostratigraphic) nomenclature an		10 110 410
	inter-relationships. Palaeomagnetism and time correlation. Co		
	of Magnetostratigraphy, Seismic stratigraphy, Chemostrati	igraphy	
	and Event stratigraphy.		
	Module 2: Stratigraphy of India:		15 hours
Content:	Cratons and mobile belts, Archaean-Proterozoic boundary. Im		
content.	Proterozoic basins of India. Precambrian/Cambrian bo	undary,	
	Palaeozoic rocks in Himalayas. Mesozoic of Peninsular and	d extra	15 hours
	peninsular India. K-T boundary. Paleocene Eocene Thermal N	Лахіта	
	(PETM), Cenozoic successions, Quaternary and Ho	olocene	
	stratigraphy.		
	Module 3: Important Stratigraphic Units of India: Stratigra	aphy of	
	Gondwana Supergroup with special emphasis on fossils, clima		
	economic important minerals. Deccan Volcanic Provin		
		-	
	distribution and lithological characteristics. Siwalik: Classif	-	
	significant vertebrate fauna and its basin evolution. Geology c	n Goa.	
Pedagogy:	Lectures / Assignments / Seminars/ Self-study		
	1. Ramakrishnan, M., and Vaidyanadhan, R. (2010). Geology	of India (vol. 1 and
	2). GSI Publications, 2(1).		
	2. Naqvi, S. M., and Rogers, J. J. W. (1987). Precambrian geology of India. Oxford		
	University Press, USA.		
	3. Krumbein, W. C. (2013). Stratigraphy and sedimente	ation. a	earpeman
References/	company.		·
Readings	4. Prothero, D. R., and Schwab, F. (2004). Sedimentary geolog	v. Macn	nillan
	5. Boggs, S. (2012). Principles of sedimentology and stratigraphy.		
	6. Fetter, C. W. (2018). Applied hydrogeology. Waveland Pres	• •	
	Salvador, A. (Ed.). (1994). International stratigraphic gu		guido to
			-
	stratigraphic classification, terminology, and procedure (No	5. 30). (Geological
	Society of America		
Learning	The main outcome of the course is to provide a d		
outcomes	understanding of stratigraphic principles, units and its correla	ation. It	
I JULUUIILJ	also gives knowledge of various stratigraphic units of India.		

X AC- 9 (Special)

Title of the Course:Practical of Principles and Stratigraphy and Indian GeologyCourse Code:GLC-22-206Number of Credits:Total Contact Hours:30Effective from AY:

Prerequisites for the	Degree of Bachelor of Science in Geology from any UGC recognized University or an equivalent examination.
course:	
Objective:	To make use of stratigraphic principles in correlation with different stratigraphic units and to understand the location and distribution of different stratigraphic units in India.

			<u>C- 9 (Special)</u> 80.07.2022
	Study of rocks in hand specimens from Indian stratigraphorizons and type localities.	phic	30 hours
Content:	Exercises on stratigraphic classification and correlat Preparation of stratigraphic range charts.		
	Study of geological map of India and identification of ma stratigraphic units. Locating/drawing of stratigraphic units outline map of Goa and India.		
Pedagogy:	Lectures / Seminars/ Self-study		
References/R eadings	 Krishnan, M. S. (1982) <i>Geology of India and Burma</i>, CBS Publishers, Delhi Doyle, P. and Bennett, M. R. (1996) <i>Unlocking the Stratigraphic Record</i>. John Wiley Ramakrishnan, M. and Vaidyanadhan, R. (2008) <i>Geology of India</i> Volumes 1 and 2, Geological Society of India, Bangalore. 		
Learning outcomes	The main outcome of the course is to use the stratigraphy principles in practical problems related to stratigraphy. It also g knowledge with respect of distribution and location of variastratigraphic units of India.	gives	

Title of the Course: Geological Field Training Course Code: GLC-22-207 **Total Contact Hours:** 60

Number of Credits: 4 Effective from AY: 2022-23

Prerequisites	Degree of Bachelor of Science in Geology from any LIGC recognized University		
-	Degree of Bachelor of Science in Geology from any UGC recognized University		
for the course:	or an equivalent examination.		
Objective:	The main objective of this course is to give students the hands on experience in the field to understand the lithology structure and their plates in Stratigraphy besides getting a thorough knowledge of field mapping.		
Pedagogy:	Lectures and on-field observation/ Training.		
References/ Readings	 Geology of Gujarat, Mehr S.S., Geological Society of India, 1991. Geology of Karnataka, Radharishnan B.P. and Vaidhyanadhan R., Geological Society of India. 1977. Geology of Rajasthan, S. Sinha Roy. Geological Society of India.1991. Geology of Rajasthan (North-West India-Precambriam to Recent) A.B Roy and S.R. Jakhar. Scientific Publishers, 2012. Geology of Andhra Pradesh. P.K. Raman and V. N. Murty, Geological Society of India. 2012. Field Guide Book of Geology of Kutch (Kachchh) Basin, Gujarat, India. Geology and Mineral Resources of Goa. A.G. Dessai Geology of Maharashtra Second Edition. G.G. Deshpande and Pitale. U. L. Geological Society of India. 2012. 		
Content:	Visit to important mines/mineral deposits; Visit to Industry/Professional Organizations/National Institutes which may include short term in-house training at respective labs. The		

		001	07.2022
	training program will be carried out under the supervi- teachers. Students are expected to learn the technique methodologies applied on site in the professional organ and also to gain knowledge related to instrumentation. S are expected to write a detailed report on their visit and for by a viva-voce examination based on the field report.	ies and izations tudents	
Learning outcomes	The students will be able to understand the working of the drilling sites, and various organization and prepare geologi and write a detail technical report of the area.		

Title of the Course: Exploration Geophysics

Course Code: GLO-22-208 Total Contact Hours: 45

Number of Credits: 3 Effective from AY: 2022-23

- · ·		
Prerequisites	Degree of Bachelor of Science in Geology from any UGC recognized University	
for the course:	or an equivalent examination.	
Objective:	The main objective of this course is to get students acquai	inted with
	applications of geophysics in geology.	
Content:	Module 1: Introduction to exploration geophysics: Introduction to electro- magnetic spectrum, usefulness of various methods, Electrical methods: instrumentation, field procedure and interpretation using electrical methods. Electrical profiling and sounding using Wenner and Schlumberger configurations. Principles and fundamental procedures of data collection and interpretation. Module 2: Seismic Methods: Principles, instrumentation, survey procedures and interpretation using seismic methods. Correction applied to seismic data. Geophysical well logging: Introduction well logging methods, porosity logs, well log interpretation. Latest methods	15 hours 15 hours
Pedagogy:	It is a theory component and entire course is taught in the class and various case studies for the application of different geophysical methods are discussed.	

References/Re adings	 Kearey, P., Brooks, M., and Hill, I. (2002). An introduction exploration (Vol. 4). John Wiley and Sons. Telford, W. M., Geldart, L. P., and Sheriff, R. E. (1990). Ap Cambridge university press. William, L. (1997). Fundamentals of geophysics. Sharma, P. V. (1985). Geophysical methods in geology. Dobrin, M. B., and Savit, C. H. (1960). Introduction to geophy prospecting (Vol. 4). New York: McGraw-Hill. 	oplied geophysics.
Learning outcomes	Upon completion of this course the student will learn to app the application of geophysics for understanding the p conditions of the Earth.	

(Back to Index) (Back to Agenda)

Title of the Course: Practical of Exploration Geophysics (GLO-22-208)Course Code:GLO-22-209Number of Credits: 1Total Contact Hours:30Effective from AY: 2022-23

Prerequisites for the course:	Degree of Bachelor of Science in Geology from any UGC recognized or an equivalent examination.	University	
Objective:	The main objective of this course is to get students acquainted with various method of Geophysical-exploration and interpretation of the results.		
Content:	Exploration Geophysics Field survey using resistivity methods. Interpretation of resistivity data using master curves matching and digital techniques; Interpretation of seismic refraction and reflection data; Field survey using magnetometers and data interpretation; Interpretation of well logs. GPR applications and interpretations.	30 hours	
Pedagogy:	It is a practical component. Case studies are discussed.		
References /Readings			
Learning outcomes	Upon completion of this course the student will learn to interpret the geophysical data so as to understand the subsurface geology.		

Title of the Course: Economic Geology Course Code: GLO -22-210

Total Contact Hours: 45

Number of Credits: 3 Effective from AY: 2022-23

	50.	07.2022
Prerequisites for the	Degree of Bachelor of Science in Geology from any UGC	recognized
course:	University or an equivalent examination.	
	To provide a conceptual understanding of economic minerals	s, processes
Objective:	involving formation of economic mineral, economic imp	ortance of
-	economic minerals	
	Module 1: Introduction	15 hours
	Introduction: scope of economic geology Mineral economics.	
	Ore, tenor, gangue, resource, reserves Texture and structures	
	of ore deposits. Classification of ore deposits.	15 hours
	Module 2: Ore bearing fluids: type, nature, chemistry Physico-	
	chemical controls of ore deposition Wall-rock alteration.	
	Controls of ore localization. Distribution of ore deposits in	15 hours
Content:	relation to plate tectonic settings. Magmatic and	
content.	hydrothermal deposits.	
	Module 3: Ore Deposits of India (Banded Iron Formations;	
	Iron ore deposits; Manganese ore deposits; Polymetallic ore	
	deposits: copper, lead, zinc; Chromite deposits; Laterite and	
	Bauxite deposits: distribution in India and genesis; Asbestos	
	deposits of India; Barite deposits; Gold in India; Diamond	
	deposits. Offshore and deep sea deposits. Mineral deposits of	
	Goa.	
Pedagogy:	Lectures/ tutorials/assignments/field study/discussion	
	1. Gilbert and Parks: Geology of Ore Deposits	
	 Parks and McDiarmid: Ore Deposits 	
	3. Bateman, A. M. : Economic Mineral Deposits	
	 4. Hutchson: Economic Mineral Deposits 	
	5. Atkinson: Economic Ore Deposits	
	6. Smirnov: Economic Ore Deposits	
	 Jensen, M. L. and Bateman, A. M.,: Economic Mineral 	
	Deposits	
	8. Brown and Dey: The minerals and nuclear fuels of the	
	Indian Subcontinent	
References/Readings	9. Burma Roy, B.C., : Indian Mineral Resources: Industries	
	and Economics	
	10. Deb: Industrial Minerals and Rocks of India	
	11. Gokhale and Rao: Ore Deposits of India	
	12. Wadia, D. N.,:Mineral wealth of India	
	13. Krishnaswami: Indiaand#39;s Mineral Resources	
	14. Arndt N. andamp; Ganino C.: Metals andamp; Society.	
	Springer.	
	15. Taylor R.: Ore Textures. Springer.	
	16. Metals and Society: An Introduction to Economic	
	Geology. Springer.	
	The students will get comprehensive knowledge of economic	
Learning outcomes	deposits.	
		I

Title of the Course:Practical of Economic Geology (GLO-22-210)Course Code:GLO-22-211Number of Credits:01Total Contact Hours:30Effective from AY:2022-23

Prerequisites for the	Degree of Bachelor of Science in geology of any UGC recognized University or		
course:	an examination of any other University recognized as equivalent.		
Objective:	To provide a conceptual understanding of economic minerals, processes involving formation of economic mineral, economic importance of economic minerals		
Content:	Study of representative ores, and industrial minerals in hand specimens. Preparation of charts showing the distribution of ore minerals in India. Mineralogical and textural studies of common ore minerals in incident light.	30 hours	
Pedagogy:	Lectures/field study/mine visits/discussion		
References/Readings	 Gilbert and Parks. <i>Geology of Ore Deposits</i> Parks and McDiarmid. <i>Ore Deposits</i> Bateman, A. M.,<i>Economic Mineral Deposits</i> Hutchson. <i>Economic Mineral Deposits</i> Atkinson. <i>Economic Ore Deposits</i> Smirnov. <i>Economic Ore Deposits</i> Smirnov. <i>Economic Ore Deposits</i> Jensen, M. L. and Bateman, A. M., <i>Economic Mineral Deposits</i> 		
Learning outcomes	The students will get comprehensive knowledge of economic deposits and distribution of ores minerals in India.		

(Back to Index) (Back to Agenda)