GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL AGENDA

For the 11th Meeting of the

X ACADEMIC COUNCIL

Day & Date

Friday, 9th December, 2022

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administrative Block Goa University

	Date: 19.10.2022			
	Place: Goa University			
	(Back to Index)			
D 3.20	 Minutes of the Board of Studies in Electronics meeting held on 19.10.2022. Part A Recommendations regarding courses of study in the subject or group of subjects at the undergraduate level: Nil Recommendations regarding courses or group of subjects at postgraduate level: Semester III & IV Syllabus as per NEP 2020 (Annexure I Refer page No. 777) 			
	 Part B (I) Scheme of the Examinations at Undergraduate Level:Nil (II) Panel of examiners for different examinations at Undergraduate Level:Nil (III) Scheme of the examinations at post-graduate level:As per ordinances in place. (IV) Panel of examiners for different examinations at post-graduate Level: Nil 			
	 Part C 1) Recommendations regarding preparation and publication and selection of Anthologies in any subject or group of subjects and the names of person recommended for appointment to make the selection. Nil 			
	 Part D 1) Recommendations regarding general academic requirements in the Departments of University or affiliated colleges:Nil 2) Recommendation of Academic Audit Committee and status thereof Nil 			
	 Part E Recommendations of text books for the course for study at the Undergraduate level:Nil Recommendations of text books for the courses of study at the post Graduate level: List of books required is indicated below each subject in the syllabus. 			
	 Part F Important points for consideration/approval of Academic Council (i) The Important points/recommended of BOS that require consideration/approval of Academic council (points to be highlighted) as mentioned below. Approval of M.Sc. Electronics syllabus Semester III and IV as per NEP 2020 			
	(II) The declaration by the Chairman, that the minutes were read out by the Chairman at the meeting itself.			
	Sd/-			
	Signature of Chairman			
	Date: Blaco: Goa University			
	Place. God University Part G: The remarks of the Dean of the Faculty			
	(1) The minutes are in order			
	(II) The minutes may be placed before the Academic Council with remarks if any.			

	(III) May be recommended for approval of Academic Council.		
	(IV) Special remarks if any.		
	Signature of the Dean		
	Date:		
	Place: Goa University		
	(Back to Index)		
D 3.21	Minutes of the Board of Studies in Marathi meeting held on 19 and 20.10.2022.		
	Part A.		
	the undergraduate level: NII		
	ii. Recommendations regarding courses of study in the subject or group of subjects at		
	the postgraduate level: (Annexure I Refer page No. 799)		
	1. The BoS finalized Research Specific Optional (MRTR) courses for the semester III		
	and IV.		
	Following are the courses:		
	MRTR 501		
	संशोधन पदधती व तंत्र		
	MRTR 502		
	लोकसाहित्याचे संशोधन		
	MRTR 503		
	तौलनिक साहित्याभ्यास		
	MRTR 504		
	स्त्रीवादी मराठी साहित्य : स्वरूप आणि संशोधन		
	MRTR 205		
	महानगरीय मराठी साहित्य : स्वरूप आणि संशोधन		
	MRTR 506		
	ग्रामीण मराठी साहित्य : स्वरूप आणि संशोधन		
	MRTR 507		
	मराठीतील नियतकालिके		
	MRTR 508		
	भारतीय साहित्याचा अभ्यास		
	2. BoS also finalized optional Generic Course (MRTG) for semester III and IV.		
	(<u>Annexure II.</u> Refer page No.818)		
	MRTG 501		
	मराठीतील विज्ञान साहित्य		
	MRTG 502		
	भाषांतरविदया		
	MRTG 503		
	साहित्याचा समाजशास्त्रीय अभ्यास		

D 3.20 Minutes of the Board of Studies in Electronics meeting held on 19.10.2022.

Annexure I

Semester	Course	Course Title	Theory/	Course	Contact
	Code		Lab	Credits	Hours
Semester I	Discipline S	pecific Core Courses (DSCC)			
	ELTC 401	Micro Electronics and VLSI Design	Theory	4	60
	ELTC 402	Instrumentation & Control Theory	Theory	4	60
	ELTC 403	Advanced Digital Communication	Theory	4	60
		System			
	ELPC 401	Electronics Practical I	Lab	4	120
	Discipline S	pecific Optional Courses (DSOC)			
	ELTE401	Numerical Computation and Algorithms	Theory	4	60
	ELTE402	EDA Tools	Theory	4	60
Semester II	Discipline S	pecific Core Courses (DSCC)			
	ELTC404	Embedded System Design	Theory	4	60
	ELTC 405	Real Time Operating System	Theory	4	60
	ELTC 406	Digital System Design	Theory	4	60
	ELPC402	Electronics Practical II	Lab	4	120
	Discipline S	iscipline Specific Optional Courses (DSOC)			
	ELTE 403	Internet of Things	Theory	4	60
	ELTE 404	Switching and Routing	Theory	4	60
Semester II	Research Sp	ecific Optional Courses (RSOC)			
	ELTR 501	Signals and Systems	Theory	4	60
	ELTR 502	Artificial Intelligence and Application	Theory	4	60
ELTR 503 Robotics		Theory	4	60	
	Optional Generic Course (OGC)				
ELTG 501 Laser System Engineering		Theory	4	60	
	ELTG 502	Data Science and Machine Learning	Theory	4	60
	ELTG 503	Electric Vehicle Technology	Theory	4	60
	ELTG 504	Biomedical Instrumentation	Theory	4	60
Semester	Research Sp	ecific Optional Courses (RSOC)			
IV	ELTR 504	Optical Communication Systems	Theory	4	60
	ELTR 505	Digital Image Processing	Theory	4	60
	ELTR 506	Neuromorphic Computing	Theory	4	60
	Discipline S	pecific Dissertation (DSD)			
	ELGD 501	Project		16	480

Semester III

Course Code:	ELTR 501			
Course Title: Signals and Systems				
Number of Cr	edits: 04 Total Hours: 60	Total Marks: 100		
Prerequisites	for the course			
Should have t	he basic knowledge of Integration, Differentiation, Complex	Numbers		
Objectives of	Course			
This course is	intended to:			
 To dev 	elop understanding about signals, systems and their classifi	cation.		
 To pro 	vide with necessary tools and techniques to analyse electric	cal networks and		
systen	ns to develop expertise in time-domain and frequency doma	ain approaches.		
 Also d 	iscusses different types of Filters and its design.			
Course Conte	nt			
Unit I	Signals and Signal Processing	05 Hours		
Characterizat	on and Classification of Signals, Typical Signal Processing Op	perations.		
Unit II	Discrete Time Signal and Systems	08 Hours		
Discrete-Time	Signals, Sequence Representation, Sampling Process, Sim	ple Interconnection		
Schemes, Cor	relation of Signals, Random Signal.			
Unit III	Discrete Transform	17 Hours		
Fourier series	, Continuous and Discrete-time Fourier Transform, Laplac	e Transform, Energy		
Density Spect	rum, Phase and Group Delays. Digital Processing of Contin	nuous Time Signals -		
Sampling of C	ontinuous Time Signal, Low-pass & Band-pass Signal, Anti-A	Aliasing Filter design,		
Sample-and-Hold (S/H), Analog to Digital, Digital to Analog Convertors, Effects of S/H, Short-				
Time Fourier	Transform, Wavelet Transform			
Unit IV	Digital Filter Structure	08 Hours		
Block Diagram Representation, FIR, IIR filter, Allpass Filter, Tunable IIR Digital Filter, Digital Sin-				
Cosine Gener	ator, Computational Complexity.			
Unit V	FIR Digital Filter Design	10 Hours		
Preliminary C	onsiderations, FIR Filter Design Based on Windowed Four	ier Series, Design of		
Minimum Pha	se FIR Filters.			
Unit VI	DSP Algorithm Implementation	08 Hours		
Computability Equation Describing Filter Structure, Verification, Computation of Discrete				
Fourier Transform (DFT), FFT, DFT & Inverse-DFT using MATAB, Number Representation,				
Handling Ove	rflow, Tunable Digital Filters.			
Unit VII	Application of Digital Signal Processing	04 Hours		
Dual-Tone Multi-Frequency Signal Detection, Musical Sound Processing, Signal Compression,				
Transmultiple	xers			
Case Studies				
1. Implementation of Filters – Ensemble Average filter, Exponential weighted				
ru	nning system, Median Filter.			
2. Im	plementation of aliasing effect and interpolation			
3. Im	3. Implementation of DFT and FFT algorithms			
4. De	sign Oscillator system - Lorentz and Gaussian oscillator syst	tem		
5. De	sign Transfer function and convolution			

Pedagogy

lectures/ Experiential Learning

Course Outcome Students will:

- 1. Explain classification of signals and signal processing operations.
- 2. Understand the discrete time signals and its discrete time Fourier transform representation.
- 3. Learn different structural representation of FIR and IIR digital filters.

References/Readings

- 1. Sanjit K Mitra, 'Digital Signal Processing: A computer Based Approach, 3rd Edition, Tata MacGraw-Hill, 2011
- 2. Johnny R. Johnson, Introduction To Digital Signal Processing, Prentice Hall, 1989.
- 3. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, 4th Edition, Pearson Education, 2007.
- 4. Simon Haykin, Van Veen, Signals and Systems, 2nd Edition, Wiley, 2007
- 5. Richard G. Lyons, 'Understanding Digital Signal Processing', Pearson, 2022
- 6. S. Palani, 'Signals and Systems', Springer International Publishing, 2021

Course Code: ELTR 502 Course Title: Artificial Intelligence and Applications				
Number of Cre	edits: 04	Total Hours: 60	Total Marks:	100
Prerequisites	for the course			
Should have k	nowledge of Basic ele	ectronics and program	ning.	
Objectives of	Course			
 This course is intended to: Introduce the foundation concepts in the field of artificial intelligence. Become familiar with basic principles of AI toward Problem solving Know approaches of inference, perception, Uncertain Knowledge, and Reasoning Prepares a student to take a variety of focused, advanced courses in various subfields of AI. 				
Course Content				
Unit I Introduction 08 Hours				
 History, Philosophy of AI, Definitions, Introduction to: AI System Hardware CPU, RAM, GPU, Interconnects, Storage, Network Controller; 				
		[==0]		

 AI Accelerators GPUs; System Software Operating System, Virtualization, Cloud. 					
Unit II	Jnit II Containers, IDE & Schedulers 08 Hours				
Introduction to Containers and IDE; Scheduling and Resource Management Introduction to schedulers and orchestration tools; DeepOps: Deep-dive into Kubernetes with the deployment of various AI-based services.					
Unit III	Problem-solving by search	12 Hours			
Introduction to unguided and guided search; State Space Search: Depth First Search, Breadth First Search, Depth First Iterative Deepening Heuristic Search: Best First Search, Hill Climbing, Solution Space, TSP, Escaping Local Optima, Stochastic Local Search					
Unit IV	Knowledge Representation and Reasoning	10 Hours			
Knowledge Representation (KR) Introduction, Knowledge Progression, KR model, category: typology map, type, relationship, framework, mapping, forward & backward representation, KR system requirements; KR schemes; KR issues; KR using predicate logic, KR using Rules Reasoning: Definitions Reasoning, formal logic, and informal logic, uncertainty, monotonic logic, non-monotonic Logic; Methods of reasoning and examples – deductive, inductive, abductive, analogy; Sources of uncertainty; Approaches to reasoning – symbolic, statistical and fuzzy; Symbolic Reasoning Statistical Reasoning					
Unit V	Learning System & Neural Networks	12 Hours			
Definition, learning agents, components of the learning system; Rote Learning, Learning from examples; Explanation-based learning, Clustering, Reinforcement Learning Introduction to NN, ANN, CNN, ML, Deep Learning: Model, architecture, Learning Methods					
Unit VI	Applications of AI	10 Hours			
Game playing, Computer Vision, Expert Systems, agricultural and soil management applications, Cognitive Science, Finance, meteorology, Health care.					
Case Studies:					
 Implementation of CNN for databases available in the public domain. Development of your own deep network. Image processing of the data collected using UAV/drone Solving health care/ meteorology problem using AI algorithm. 					
Pedagogy					
Lectures/Experiential Learning					

Course Outcome

Students will:

- Gain knowledge of the basic concepts of Artificial Intelligence.
- Learn Problem-solving, knowledge representation, and reasoning approaches.
- Able to deal with all the concepts and problems using NN, ANN, CNN, ML, and deep learning.
- Able to apply the knowledge and will generate automated systems (Applications) using AI.

References/Readings

- 1. Deepak Khemani, 'A First Course in Artificial Intelligence', McGraw Hill Education (India), 1st ED, 2014.
- 2. Stuart J. Russell and Peter Norvig, 'Artificial Intelligence', Pearson, 3rd ED, 2016
- 3. George F Lugar, Artificial Intelligence: Structure and strategies for complex, Problem Solving, 6th ED, 2021.
- 4. Wolfgang Ertel, Nathanael T. Black, Introduction to Artificial Intelligence Nils J Nilsson, Springer, 2018
- 5. Principles of Artificial Intelligence, Illustrated Reprint Edition, Springer Heidelberg, 2014.
- 6. Alexander Jung Machine, 'Learning: The Basics (Machine Learning: Foundations, Methodologies, and Applications)', Springer, 2022
- 7. Cherry Bhargava, Pardeep Kumar Sharma, 'Artificial Intelligence. Fundamentals and Applications', CRC Press, 2022

Course Code: ELTR 503 Course Title: Robotics				
Number of Credits: 04	Total Hours: 60	Total Marks: 100		
Prerequisites for the course				
Should have knowledge of Basic electronic	s hardware, Mathemati	cs, and programming.		
Objectives of Course				
 This course is intended to: Introduce robotics and the key elements and constituents of a robot; science and technology in robots; ROS. Understand and explain the various elements of the robotic system. Study all necessary kinematics and various analysis techniques. Understand the robot dynamics and control theory. Give exposure to futuristic robotic technologies. 				

Course Content					
Unit I	Introduction 10 Hours				
Introduction- Brie Manufacturing ind ROS	Introduction- Brief history, types, classification and usage, growth; Robot applications- Manufacturing industry, defense, rehabilitation, medical, etc.; Laws of Robotics; Introduction to ROS				
Unit II	Elements of robots 12 Hours				
Links, joints, actuators, and sensors; Position and orientation of a rigid body, Homogeneous transformations; Representation of joints, link representation using D-H parameters, Examples of D-H parameters, and link transforms; Different kinds of actuators – stepper, DC servo and brushless motors, model of a DC servo motor; Types of transmissions; Purpose of sensors, internal and external sensors, common sensors – encoders, tachometers, strain gauge-based force-torgue sensors, provimity, and distance measuring sensors, and vision sensors					
Unit III	Kinematics	07 Hours			
Direct and Inverse Kinematics; Kinematics of serial robots: Direct and inverse kinematics problems, Inverse kinematics of constrained and redundant robots, Tractrix-based approach for fixed and free robots and multi- body systems; Kinematics of parallel robots: direct and inverse kinematics problems, Mobility, Stewart-Gough platform. Degrees-of- freedom of parallel mechanisms and manipulators. Active and passive joints					
Unit IV	Velocity and static analysis	05 Hours			
Linear and angular velocity of links, Manipulator Jacobians for serial and parallel manipulators; Statics of serial and parallel manipulators, Statics and force transformation matrix of a GoughStewart platform, Singularity and Statics analysis.					
Unit V Robot Dynamics & Controls 10 Hours					
Robot dynamics equation; General procedure for dynamics equation forming and introduction to control; Actuator dynamics and PD, PID control for robots; Trajectory tracking control; Lyapunovs theorems; Neural network control design					
Unit VI	Robotics Applications	09 Hours			
Introduction, development, and working of: UAV, Drone, Humanoid Robots & Underwater robot					
Unit VII	Futuristic robots	07 Hours			
Introductions to MEMS (micro-electro-mechanical systems),					

Introduction to Cognitive Robotics and Human-Robot Interaction, Robots in Space & Defense applications

Case Studies:

- 1. Development of obstacle avoidance and line follower robot.
- 2. Implementation of ROS.
- 3. Simulation of robotic trajectories.
- 4. Drone-based image analysis.

Pedagogy

Lectures/Experiential Learning

Course Outcome

Students will:

- Gain knowledge of the basic concepts in robotics, ROS, key elements, and constituents of the robotic system.
- Learn the kinematics of serial and parallel robots and will be able to perform various analyses.
- Understand the various robotic dynamics and control designs.
- Able to understand and develop robotic systems.
- Have an update on the latest robotic research & technologies.

References/Readings

- 1. Ghosal, A., 'Robotics: Fundamental Concepts and Analysis', Oxford University Press, 9th reprint, 2013
- 2. Robert J Schilling, 'Fundamentals of Robotics', Prentice Hall India, 1st ED, 2003
- 3. John J Craig, 'Introduction to Robotics', Prentice Hall International, 3rd ED, 2005
- 4. Jitendra R. Raol, Ramakalyan Ayyagari, 'Control Systems: Classical, Modern, and AI-Based Approaches', CRC Press, 1st ED, 2019
- 5. Gao, Yang, 'Space Robotics and Autonomous Systems', Institution of Engineering & Technology, 2021
- Lentin Joseph, Aleena Johny, 'Robot Operating System (ROS) for Absolute Beginners', 2nd ED, 2022

Course Code: ELTG 501 Course Title: Laser System Engineering				
Number o	f Credits: 04	Total Hours: 60	Total M	arks: 100
Prerequis	ites for the course			
Graduate	level knowledge in Electronics	/Physics		
Objective	s of Course			
 This course is intended to: Teach the difference between ordinary light and light emitted by a laser device. Introduce the method used for excitation of laser devices. Explain the theory behind generation of stimulated emissions. Cover various application of lasers in medical, civil and defense areas. 				
Course Co	ntent			
Unit I	Optical Resonators			12 Hours
Energies i Stability C	n resonator, Febry-Perot Etalo riteria , Resonance Frequency	on , Febry-Perot Etalon as (of Optical Resonator,Unsta	Optical Spect ble Resonato	rum Analyzer, Mode or
Unit II	Interaction of Radiation with Atomic System		10 Hours	
Spontaneous transmission between Atomic layer, Homogenous and In-Homogeneous broadening, Line shape functions, Stimulated transmission, Absorption and amplification, gain saturation in Homogenous media.				
Unit III	Theory of Laser Oscillator 10 Hours		10 Hours	
Febry Perot Laser , Three and Four Level Laser , Power in Laser Oscillator, Optimum Light coupling , Multimode Laser Oscillator and Mode Locking Methods of Mode locking , Pulse length Measurements , Q-Switching , methods of Q-Switching .				
Unit IV	Laser Systems			8 Hours
Pumping and laser Efficiency, Ruby Laser, Flash Pumping ,Nd-YAG Laser , Nd Glass Laser , Threshold for CW and Pulse operation , HeNe Laser , CO2 Laser , Ar-Ion Laser , Excimer Laser , Dye Laser.				
Unit V	Non –Linear Optics			6 Hours
Origins of Non-Linear Polarization, relation between induced Polarization				
Unit VI	Interaction of Light and Sou	und		7 Hours
	1			1

Scattering of Light by Sound, RamanNath and Bragg diffraction , Diffraction of light by Sound , Intensity modulation.

Unit VII	Applications of Lasers	7 Hours		
Lidar, Laser cutting and welding, lunar laser ranging, Optical Network, optical tweezers, microscopy, Laser Leveling, Surface Defects scanning, bar code scanner				
	Case Studies			

- 1. Understanding the diffraction of Laser Light using grating
- 2. Comparison of resolving power of Prism and Grating.
- 3. Focusing of Laser Light.
- 4. Collimation of Laser Light.

Pedagogy

lectures/ tutorials/assignments/presentation

Course Outcome

The student will,

- have sufficient knowledge of lasers for applications involving medical treatment as well as defence needs.
- have a full knowledge of classification of lasers and its usage.
- Have working knowledge to handle high power industrial lasers.

References/Readings

- 1. A. Yariv, "Optical Electronics", 4th Edition by, HRW publication, 1991.
- 2. A. Ghatak and K. Tyagarajan, "Optical Electronics", by Cambridge University Press, 1989.
- 3. William T. Silfvast, "Laser fundamentals", 2nd Edition, Cambridge University Press, 2008
- 4. K.Thyagarajan, and Ajoy Ghatak, Lasers: Fundamentals and Applications (Graduate Texts in Physics), Springer publication, 2012.
- 5. L. Tarasov, "Laser Physics and application", Mir Publication, 1987

Course Code: ELTG 502					
Course Title: Data Science and Machine Learning					
Number of Credits: 04Total Hours: 60Total Marks: 100					
Prerequisites for the course					
Should have the basic knowledge of linear algebra and Python programming language.					
Objectives of Course					
This course is intended to:					

Introduce the mathematical foundations required for Data Science and Machine learning.				
Intro	 Introduce the statistical and probabilistic concepts. 			
• Learn	 Learn the data analysis and processing. 			
To stu	idy different machine learning and deep learning technique	25.		
Course Cont	ent			
Unit I	Introduction	05 Hours		
Introduction	to Data Science, Data Science Process, Fundamentals of lin	ear algebra		
Unit II	Foundations of Data Science	08 Hours		
Python for D	ata Science- Programming basics, libraries – Numpy, SciP	y, Scikit-Learn, Tensor flow,		
Keras, Py-to	urch, Pandas, Matplotlib, Seaborn. Statistical concepts –	Descriptive and Inferential		
Statistics, Pro	bbability	1		
Unit III	Data Visualization, Exploration and Manipulation	12 Hours		
Types of Dat	a, Visualization, Exploratory Data Analysis, Data Cleansing,	Data Manipulation, Feature		
Extraction ar	d Feature Selection	1		
Unit IV	Regression and Classification	10 Hours		
Linear Regre	ssion, Logistic Regression, Multivariate Regression, Suppor	t Vector Machine, Decision		
Tree, Randor	n Forest, Naive Bayes, Regularization, Goodness of fit			
Unit V	Machine Learning	15 Hours		
Machine Lea	rning Process Flow, Overfitting and under fitting, Bias-V	ariance, Types of machine		
learning, Din	nensionality Reduction-Principal Component Analysis, K-Ne	earest Neighbor, Clustering-		
K-means				
Unit VI	Deep Learning	10 Hours		
Neural Netw	orks, Convolutional Neural Networks, Transfer Learning	g, Reinforcement learning,		
Recurrent Ne	eural Networks			
case studies				
1. In	plement data cleansing and manipulation operations			
2. In	nplement Support Vector Machine algorithm for multiclass	classification		
3. In	nplement clustering algorithm			
4. D	emonstrate the overfitting and under fitting conditions			
5. Fa	ace recognition using deep convolutional neural network an	nd using transfer learning.		
Pedagogy				
lectures/ Exp	eriential Learning			
Course Outc	ome			
The Students	will:			
1. Understa	nd the fundamental concepts of data science and machine I	earning.		
2. Perform data processing technique using python.				
3. Explain ar	ind implement the machine learning methods.			
References/	Readings			
1. Trevor Ha	astie. Robert Tibshirani. Jerome Friedman. 'The Elements of	Statistical Learning - Data		
Mining, Inference, and Prediction'. Springer New York. 2013				
2. Joel Grus, 'Data Science from Scratch - First Principles with Python'. 2nd Edition. O'Reilly Media.				
2019.				
3. Cathy O'Neil and Rachel Schutt, 'Doing Data Science - Straight Talk From The Frontline'.				
O'Reilly	2013.	· · · · · · · · · · · · · · · · · · ·		

- 4. Laura Igual, Santi Seguí, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí, Lluís Garrido, 'Introduction to Data Science - A Python Approach to Concepts, Techniques and Applications', Springer International Publishing, 2017
- 5. Samir Madhavan, 'Mastering Python for Data Science', Packt Publishing, 2015
- 6. Ian Goodfellow, Yoshua Bengio, Aaron Courville, 'Deep Learning', MIT Press, 2016
- 7. Zhi-Hua Zhou, 'Machine Learning', Springer Nature Singapore, 2021

Course Code: El	LTG 503		
Course Title: Electric Vehicle Technology			
Number of Credi	its: 04 Total Hours: 60 Total Mai	[.] ks: 100	
Prerequisites for	the course		
Should have grad	duate level knowledge in Basic Electrical and Electronics		
Objectives of Co	urse		
This course is inte	ended to:		
 Introduce 	to Hybrid & Electric Vehicle		
 Cover varie 	ous types of Electric Drives and energy		
 Modelling 	and Characteristics of EV/HEV Powertrains Components		
 Matlab Sin 	nulink modeling of Electric Vehicle		
Course Content			
Unit I	Introduction to Hybrid Electric Vehicle	5 Hours	
Review of Conve	entional Vehicle, Introduction to Hybrid Electric Vehicles, Type	es of EVs, Hybrid	
Electric Drive-tra	in, Tractive effort in normal driving		
Unit II	Electric Drives	10 Hours	
Energy consumpt	tion Concept of Hybrid Electric Drive Trains, Architecture of Hyb	rid Electric Drive	
Trains, Series Hy	brid Electric Drive Trains, Parallel hybrid electric drive trains, Ele	ectric Propulsion	
unit, Configurati	on and control of DC Motor drives, BLDC, Induction Motor dr	ives, Permanent	
Magnet Motor d	rives, switched reluctance motor		
Unit III	Energy Storage	8 Hours	
Introduction to	Energy Storage Requirements in Hybrid and Electric Vehicles	- Battery based	
energy storage a	ind its analysis, Fuel Cell based energy storage and its analysis,	Hybridization of	
different energy	storage devices. Sizing the drive system, Design of Hybrid Elec	ctric Vehicle and	
Plug-in Electric V	ehicle		
Unit IV	Energy Management System	8 Hours	
Energy Manager	ment Strategies, Automotive networking and communication	on, EV charging	
standards, V2G, 0	G2V, V2B, V2H		
Unit V	Mobility and Connectors	8 Hours	
Connected Mobility and Autonomous Mobility- case study Emobility Indian Roadmap Perspective.			
Policy: EVs in infrastructure system, integration of EVs in smart grid, social dimensions of EVs.			
Connectors- Types of EV charging connector, North American EV Plug Standards, DC Fast Charge			
EV Plug Standard	s in North America, CCS (Combined Charging System), CHAdeMO,	, Tesla, European	
EV Plug Standards			

Unit VI	Modelling of Vehicle Performance Parameter	7 Hours	
Modelling Vehi	cle Acceleration - Acceleration performance parameters, modeling	g the acceleration	
of an electric scooter, modeling the acceleration of a small car.			
Unit VII	Modelling of Battery Electric Vehicles	7 Hours	
Electric Vehicl	e Modelling - Tractive Effort, Rolling resistance force, Aerody	namic drag, Hill	
climbing force,	Acceleration force, Total tractive effort, Modelling Electric Vehicl	le Range - Driving	
cycles, Range r	nodelling of battery electric vehicles, Constant velocity range	modelling, Range	
modelling of fu	el cell vehicles, Range modelling of hybrid electric vehicles	<u></u>	
	Drivetrain Characteristics	7 Hours	
Modelling and Characteristics, Transmission a Modelling and Longitudinal Dy Braking Modell	Modelling and Characteristics of EV/HEV Powertrains Components- ICE Performance Characteristics, Electric Motor Performance Characteristics - Battery Performance Characteristics- Transmission and Drivetrain Characteristics-Regenerative Braking Characteristics-Driving Cycles Modelling and Analysis of Electric and Hybrid Electric Vehicles Propulsion and Braking - Longitudinal Dynamics Equation of Motion - Vehicle Propulsion Modelling and Analysis - Vehicle		
Case studies			
1. Explore Elect	ric Powertrain Architectures		
2.Tune Regene	rative Braking Algorithms		
3.Modify Suspe	nsion Design		
4.Optimize Veh	icle-Level Performance		
5.Model Inverte	ers, Traction Motors, and Develop Motor Control Software		
6. Model Batter	ies and Develop Battery management System(BMS)		
Pedagogy	•		
Lectures/Exper	iential Learning		
Course Outcom			
Students will,			
To under	stand about basics of hybrid electric vehicle		
To under	stand about drives and control.		
Select b	Select battery, battery indication system for EV applications		
Design b	hattery charger for an EV		
Modellin	g of Electric Vehicle in MATLAB		
References/Re	adings		
1. Emadi, A	. (Ed.), Miller, J., Ehsani, M., Boca Raton, "Vehicular Electric Powe	er Systems" CRC	
Press, 20	03		
2. Husain, I	. Boca Raton , "Electric and Hybrid Vehicles" , CRC Press, 2010.		
3. Larminie	, James, and John Lowry, "Electric Vehicle Technology Explained"	John Wiley and	
Sons, 20	12		
4. Tariq Mu and Chal	neer and Irene IllescasGarcía, ,"The automobile, In Electric Vehic lenges" Elsevier 2017	les: Prospects	
5 Shaldon	S Williamson "Energy Management Strategies for Electric and D	ug-in Hybrid	
	S. williamson, Energy Management Strategies for Lieutituditu Fi	ug in nyonu	

Electric Vehicles", Springer, 2013

- Amir Khajepour, Saber Fallah and Avesta Goodarzi, "Electric and Hybrid Vehicles Technologies, Modelling and Control: A Mechatronic Approach" John Wiley & Sons Ltd, 2014.
- 7. Antoni Szumanowski, "Hybrid Electric Power Train Engineering and Technology: Modelling, Control, and Simulation" IGI Global, 2013.

Course Code: ELTG 504 Course Title: Biomedical Instrumentation				
Numbe	Number of Credits: 04 Total Hours: 60 Total Marks: 100			
Prereq	uisites for the course			
Gradua	ate level knowledge in analog ar	nd digital electronics.		
Object	ives of Course			
 This course is intended to: • Introduce fundamentals of biomedical instrumentation and measurements Introduce concepts of biotelemetry and Non-invasive diagnostic imaging Cover Noise reduction technique in electronics systems 				
Course	Content			
Unit I	Introduction to biomedical ins	trumentation		10 Hours
Components of Man-Measurement system, Physiological system of body, problems encountered in measuring a living System, Basic transducer principle, Source of Bioelectric Potential, Skin contact Impedance, Electrodes: ECG, EEG, EMG, Microelectrodes.				
Unit II	Noise reduction technique in e	lectronics systems		10 Hours
Introdu Source	uction, cabling, grounding, baland , Active device Noise, and Electro	cing and filtering, shieldir ostatic discharge.	ng, contact prot	ection, Intrinsic Noise
Unit III	Cardiovascular measurements.			8 Hours
Heart and cardiovascular system, characteristics of blood flow, Electrocardiography, measurement for Blood Pressure, ,photoplethysmography,FunctionalNIR for brain oxygenation.				
Unit IV	Non-invasive diagnostic imagin	g		8 Hours
X-Ray, CT, MRI, fMRI, PET and SPECT, ULTRASOUND, Optical Tomography				
Unit V	Biotelemetry			10 Hours
Introduction to Biotelemetry, Physiological parameters Adaptable to Biotelemetry, The components of Biotelemetry System, Implantable Units, and Applications of telemetry in-Patient care.				

<u>X AC- 11</u> 09-12-2022

Unit VI	Instrumentation for clinical laboratory	6 Hours		
The Blo	ood, Test for Blood cells, chemical Tests, Automation of chemical Test			
Unit VII	Applications in biomedical field	8 Hours		
Weara biome	Wearable devices: activity trackers, hearing aid, Electromyogram band. Laser applications in biomedical fields: Ophthalmology, dermatology, urology, Photoacoustic Tomography.			
Case S	tudies			
 EC Sig Sig Im 	 ECG wave analysis using simulator Signal condition for EMG Signal condition for photoplethysmography Implementation of noise reduction techniques 			
Pedago	ogy			
lecture	s/ Experiential Learning			
Course	Outcome			
 The student will, Understand Fundamentals of medical instrumentation, Bioelectric potential, electrodes Understand concepts of biotelemetry Understand application of laser in biomedical field Implement Noise reduction technique in electronics systems 				
Refere	nces/Readings			
1. N 2. R 3. H 4.	Leslie Cromwell, Fred J. Weibell, and Erich A. Pfeiffer, "Biomedical Measurements" Prentice Hall India, 2011. S.S. Khandpur, "Handbook of Biomedical instrumentation", Tata Mc GRAN Menry W. Ott, "Noise reduction Technique in Electronic systems", Wiley & Paul Suetens, "Fundamentals Of Medical Imaging", 3 rd Edition, Cambri	instrumentation and W Hill, 2014. & sons, 1998. dge University Press,		

2017.

SEMESTER IV

Course	Code: ELTR 504
Course	Fitle: Optical Communication Systems

Number of Credits: 04

Total Hours: 60

Total Marks: 100

Prerequisites for the course

Should have knowledge of Electro statics and electromagnetics. Also, a basic understanding of analog and digital communication is preferable.

Objectives of Course

This course is intended to:

- Highlight the importance of optical communication over existing copper cable and microwave communication.
- Elaborate on electromagnetic spectrum usage for various applications, from telephone to satellite communication.
- Create a strong theoretical base to understand the difference between the ray theory and wave theory approach for the passage of signals in optical fibers.
- Discuss the estimation of Noise in optical detection in detail.
- Emphasizes the industrial needs in cabling technique and type of cable used.
- Discuss different techniques of optical fiber manufacturing and their characteristic

Course Content

Unit I	Light Propagation in Optical Fiber	14 Hours

Introduction & Evolution of Fiber optics system;

Geometric picture, Pulse spread due to material dispersion, loss mechanism, Theory of Optical waveguides, methods of waveguides analyses, modes in steps and graded index fiber, new types of optical fibers

Unit II	Fiber Optics Technology	08 Hours
Fiber materials & fiber fabrication, cable design, coupling, splicing and connectors, splicing methods, connectors, fiber measurements. Signal Degradation: Attenuation, Losses, Distortion, Pulse broadening.		
Unit III	Optical Sources & Power Launching	08 Hours
LED and LDs, development of Laser diodes structures, transmitter circuits, Coupling efficiency of the source to fiber. Source to fiber power launching, fiber joints, splicing.		

Unit IV	Optical detectors	09 Hours
---------	-------------------	----------

Photoconductive n junction & its l Photodiode: Gee Avalanche diode Noise in detecto	e detector: biasing circuit, Commercial photoconductor, Hetero Equivalent circuit. ometry of p-i-n, Frequency Response of Photodiodes/N ratio, Sc e: Construction, S/R ratio, minimum detection of power. ors	odyne Detection, p-
Unit V	Receiver sensitivity and BER	05 Hours
Receiver design	& configuration, Receiver operations, Error sources, Receiver n	oise
Unit VI	Communication System design	08 Hours
System requirer codes),	nent, System design, Link analyses, Power budgeting, Line cod	ling (NRZ, RZ, Block
Unit VII	Advance System	08 Hours
TDM, Undersea OAE techniques	fiber optics communication system, fibers in a telephone netwo , LAN topologies & fail safe fiber optics nodes.	ork, WDM, DWDM,
Case Studies		
 To comp Launchin Computi Analysing 	ute Numerical aperture of a fiber. Ig light in single mode fiber. ng losses in fiber link. g fiber networks.	
Pedagogy		
Lectures/Experie	ential Learning	
Course Outcom	e	
Students will: Have sor Able to c Able to n Develop discussed	ne knowledge of designing a point-to-point optical link for a giv hoose the right type of components for designing an optical ne nonitor signal losses during signal transmission skills to join telecom industries, as many aspects of a pra d during the course of study.	ven situation etwork. ctical situation are
References/Rea	dings	
 Gerd Kei A. Selvar A. Yariv, P. Chakra Reinhold Govind P 	ser , 'Optical Fiber Communication', MGH, 5 th ED, 2017 ajan and et al, 'Optical Fiber Communication', TMH, 1 st ED, 200 'Optical Electronics', HRW publication, 4 th ED, 1991 abarti, ' Optical fiber Communication' MGH, 2015 Noé, 'Essentials of Modern Optical Fiber Communication', Spri Agrawal, 'Fiber-Optic Communication Systems', Wiley, 5 th ED,	2 inger, 2 nd ED, 2016 , 2021
	[/93]	

Course Code	ELTR 505		
Course Title: Digital Image Processing			
Number of C	redits: 04 Total Hours: 60	Total Marks: 100	
Prerequisites	for the course		
Concepts of [Digital Signal Processing		
Objectives of	Course		
 Learn 	fundamentals of digital image processing.		
 To stu 	dy image processing techniques such as image enhancement	t, reconstruction,	
segme	entation, morphing and representation		
Course Conte	nt		
Unit I	Introduction	10 Hours	
Digital image	fundamentals, Sampling and quantization, Pixel relationship	, Imaging geometry, Image	
transforms			
Unit II	Image Enhancement	10 Hours	
Spatial doma	n- Gray level transformations, Histogram processing, Smooth	ning and sharpening Spatial	
filtering. Free	uency domain- Fourier Transform, Smoothing and sharpen	ing, Highpass and lowpass	
filters			
Unit III	Image Restoration and Segmentation	10 Hours	
Image Restor	ation - Degradation/Restoration process, Noise model, Rest	toration approach, Inverse	
filtering, Wei	ner filtering. Segmentation - Detection of discontinuities, E	dge linking and boundary	
detection, Re	gion based segmentation		
Unit IV	Color Depth and Image Processing Across Spectrum	10 Hours	
Color Image	Processing - Color models, Color transformations, Sm	oothing and sharpening,	
Segmentation	n. Depth Imaging processing – RGBD image processing, fillir	ng holes. Image Processing	
across spectr	a- Multi-spectral imaging, Hyperspectral Imaging, Image feat	ure extraction, fusion.	
Unit V	Morphological Image Processing and Image Compression	10 Hours	
Morphologica	al Image Processing – Dilation and Erosion, Hit or Miss	transform, Morphological	
algorithms. Ir	nage Compression – Lossy and Lossless compression, Image	compression standards.	
Unit VI	Object Representation, Description and Recognition	10 Hours	
Representation	on, Boundary descriptors, Regional descriptor, Patterns and F	Pattern classes, Matching	
Case studies			
1. In	nage enhancement in spatial and frequency domain		
2. In	plementing degradation and restoration of image		
3. In	nplement feature extraction algorithms		
4. O	bject detection from the image		
5. Sj	patio-spectral image fusion		
Pedagogy			
Lectures/ Exp	eriential Learning		
Course Outco	me		

<u>X AC- 11</u> 09-12-2022

The	Students will:			
1. I	Know and understand the fundamentals of digital image processing.			
2. (Operate on images using the techniques of smoothing, sharpening and enhancement.			
3. I	Explain the concept of image restoration, segmentation and Morphological image processing			
ä	algorithms.			
4. I	xplain object representation along with the pattern matching.			
Ref	erences/Readings			
1.	Rafael C Gonzalez and Richard E Woods, 'Digital Image Processing', 4th Editic	on, Pearson, 2018		
2.	Anil K Jain, 'Fundamentals of Digital Image Processing', Prentice Hall India Lea Limited, 1994	arning Private		
3.	William K Pratt, 'Digital Image Processing', 4th Edition, A Wiley-Interscience I	Publication, 2006		
4.	Edward R. Dougherty, 'Digital Image Processing Methods', CRC Press, 2020			
5.	Kumar Navulur, 'Multispectral Image Analysis Using the Object-Oriented Para 2020	adigm', CRC Press,		
6.	Paul L. Rosin, Yu-Kun Lai, Ling Shao, Yonghuai Liu, 'RGB-D Image Analysis and Springer International Publishing, 2020	Processing',		
7.	D. Sundararajan, 'Digital Image Processing - A Signal Processing and Algorithr	mic Approach',		
	Springer Nature Singapore, 2017			
Cou Cou	rse Code: ELTR 506 rse Title: Neuromorphic Computing			
Nur	ber of Credits: 04 Total Hours: 60 Total Ma	urks: 100		
Pre	equisites for the course			
Gra pro	duate level knowledge in analog and digital electronics. Preferable to gramming.	have exposure to		
Obj	ectives of Course			
 This course is intended to: Introduce Neuromorphic computing and spiking neural networks (SNN). Introduce operational principles and learning models for Artificial Neural Networks and Spiking Neural Networks Cover various Neuromorphic computing architectures 				
Course Content				
Uni	I Introduction	7 Hours		
Basics of brain-inspired computing and history of neural computing, Comparison of neuromorphic and conventional computing, Basics of linear algebra and probability theory needed for modelling of neural networks.				
Uni II	Shallow neural networks	17 Hours		

Deep learning techniques using convolutional neural networks(AlexNet, VGG, Inception Net, GoogLeNet, and ResNet), Python programming preliminaries and Software development tools for Deep Neural Net (DNN), Shallow neural networks - Perceptron, Hopfield network, Boltzmann machine, Recurrent neural network, and Kohonen's self-organizing map Unit **Operational principles and learning models 17 Hours** Ш Operational principles and learning models for Artificial Neural Networks and Spiking Neural Networks(SNN) such as spike timing dependent plasticity (STDP), Q-learning, actor-critic reinforcement learning, supervised learning, and back-propagation algorithms. Unit Neuromorphic computing architectures 11 Hours IV Neuromorphic computing architectures- Loihi, TrueNorth, Neurogrid, Brainchip and SpiNNaker, Commercial hardware acceleration platforms such as NVDIA's graphics processing unit (GPU), Google's tensor processing unit (TPU), and Intel's vision processing unit (VPU) and FPGA accelerators. Unit Applications and Emerging technologies 8 Hours ν Application-specific VLSI chips capable of STDP learning, actor/critic reinforcement learning, and Qlearning, Emerging technologies in neuromorphic circuits such as memristors, spin transfer torque devices, and photonic devices. **Case Studies** 1. Setup of python environment for implementation of Spiking neural network(SNN) 2. Implementation of SNN for Image classification 3. Implementation of SNN for pattern recognition. 4. Handwritten digit recognition Using STDP Pedagogy lectures/ Experiential Learning **Course Outcome**

Students will,

- Apply concepts of neuromorphic computing in research as well as industry in various applications such as computer vision, speech processing, pattern recognition etc.
- The student will be able to The students can also pursue research in development of neruromorphic hardware.

References/Readings

- 1. Nan Zheng and Pinaki Mazumder, "Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design", John Wiley & Sons, USA, 2019.
- 2. Aaron C. Courville, Ian Goodfellow, and Yoshua Bengio, "Deep Learning", MIT Press, 2015.
- 3. Pinaki Mazumder, Yalcin Yilmaz, Idongesit Ebong, "Neuromorphic Circuits for Nanoscale Devices", River Publishing, 2019.

(Back to Index) (Back to Agenda)

Course Code: ELGD 501 Course Title: Project

Number of Credits: 16

Total Hours: 480

Total Marks: 400

Prerequisites for the course

Understanding of Electronics in the area such as Embedded programming, Machine learning, Signals & System, IoT, Robotics.

Objectives of Course

This course is intended to:

- Course train students to develops conceptual design and implementation.
- Hands on experience in H/W and S/W integration.
- Train students to plan and execute the projects and tasks.
- Train students to work in groups
- Hands on exposure to work of Technology development

Methodology

The Project course will commence at beginning of the Ist /IIIrd semester.

If student wishes to take up project in industry/Academic institution/organization, such projects can be taken over six-month period in such case the student has to complete 4(four) credit RSOC course prior to IInd /IVth semester. Such student will have to associated with the mentor from industry/Academic institution/organization who will liaison with local supervisor from parent institution.

This course is basically to apply the knowledge they have acquired during the course of study and apply them for designing a gadget/interface/module required for an electronic industry/Research & Academic Institutions.

The progress of the project is monitored by the local supervisor/guide/discipline members over the period of a month for the I st /III rd semester and fortnightly for II^{nd} /IVth semester for internal

evaluation. There will be final evaluation of the projects. The scheme of evaluation will be decided by the school discipline members.

Pedagogy

Presentation /Experiential Learning/Practical implementation

Course Outcome

Students will:

- The student will be exposed to the different kinds of working environments in electronic industries.
- Should able to understand product development cycle, team work, research survey, technical writing.