GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023 & Thursday, 23rd February, 2023

<u>Time</u>

10.00 a.m.

Venue Council Hall, Administrative Block Goa University

	the University as Dean, Shenoi Goembab School of languages & Literature during his tenure.
	(Action: Assistant Registrar Academic-PG)
D 3.17	Minutes of the Board of Studies in Sanskrit meeting held on 28.10.2022.
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Sanskrit meeting held on 28.10.2022 with the following suggestions:
	 Number of hours for Course Code SATE -401, Discipline Specific Elective Course to be verified. Titles of the Courses to be written in Devanagari and English language
	(Action: Assistant Registrar Academic-PG)
D 3.18	Minutes of the Board of Studies in Marine Microbiology meeting held on
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Marine Microbiology meeting held on 21.10.2022 with the following suggestions:
	 Tutorials/Lectures (L-T-P) mentioned under Structure to be deleted. Prerequisite for the courses to be specified. Prerequisite to be changed of the Course MMTE 501 Phytoplankton Ecology and Genomics. Terminology Textbook/References to be changed to References/Readings.
	(Action: Assistant Registrar Academic-PG)
D 3 19	Minutes of the Board of Studies in Marine Science meeting held on 27 10 2022
0.13	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Marine Science meeting held on 27.10.2022 with the following suggestions:
	 Tutorials/Lectures (L-T-P) mentioned under Structure to be deleted. Wherever only one module exists under content, heading 'Module I' to be deleted.
	 Titles and the syllabus of the Courses to be verified. Duthen to be synlared under Course Code MSTE F01
	 Python to be explored under Course Code MSTE 501. The content of the Course Code MSTE – 530 to be revised.
	 6. MSTE – 525 Advanced Research Analysis Course, from Pedagogy Terminology 'faculty' to be deleted.
	(Action: Assistant Registrar Academic-PG)
D 3.20	Minutes of the Board of Studies in Earth Science meeting held on 29.10.2022.
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Earth Science meeting held on 29.10.2022 with the following suggestions:
	 Tutorials/Lectures (L-T-P) mentioned under Structure to be deleted. AGPE -508 Practical of Petroliferous Basins of India Programme to be conducted

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL AGENDA

For the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administrative Block Goa University

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

	Discipline Specific Optional Courses	
	1)SATE-401 – Darsana Sastra	
	2)SATE – 402- Vedanta Darsana	
	SEMESTER – II	
	Discipline Specific Core Courses	
	1)SATC –405 –Sanskrit Vyakarana	
	2)SATC -406- Paraskaragrhyasutra and A	rthasatra
	3)SATC-407 – Sahitya: Natyastra and Dhy	'anyaloka
	4)SATC-408- Survey of Indian Astrology	
	Discipline Specific Optional Courses 1)SATC-403 – Tarka evam Jnana Mimans 2)SATE-404 – Buddha Darsana	a
	Date: 15.11.2022	Sd/-
	Place: School of Sanskrit, PhilosophySStudies, Goa University	gnature of the Chairman of BOS and Indic
	Part G: Remark of the Dean of faculty: The minutes are in order: Recommended for approval of Acader	nic Council
	Date: 15.11.2022	Sd/-
	Place: School of Sanskrit, Philosophy and	Signature of the Dean,
	Indic Studies, Goa University	(Back to Index)
D 3.18	Minutes of the Board of Studies in Marine M	icrobiology meeting held on 21.10.2022.
0 3.10	Part A	
	i. Recommendations regarding courses of	study in the subject or group of subjects at
	ii Recommendations regarding courses of	study in the subject or group of subjects at
	the postgraduate level:	
	1.BOS members met on 21.10.2022 at 1 for discussion	1030 hrs and took up the following agenda
	a Approval of M Sc syllabus (Semeste	er III and IV) as per OA35 (Annexure Refer
	page No. 679)	
	b. Approval of Ph.D. syllabus of Re (Annexure II Refer page No. 711)	search Methodology course (04 credits)
	2. Members of the BOS deliberated of	on the above matter and approved the
	following:	
	 (a) The program structure and syllabus and IV) was deliberated and few incorporated and the same was app 	in M.Sc. Marine Microbiology (Semester III suggestions made by the Experts were proved.

(b) The syllabus for the Research Methodology course (04 credits) for Ph.D. in Marine Microbiology was placed and approved.

Part B

- i. Scheme of Examinations at undergraduate level: Nil
- ii. Panel of examiners for different examinations at the undergraduate level: Nil
- iii. Scheme of Examinations at postgraduate level: Nil
- iv. Panel of examiners for different examinations at post-graduate level: Nil

Part C

1. Recommendations regarding preparation and publication of selection of reading material in the subject or group of subjects and the names of the persons recommended for appointment to make the selection: Nil

Part D

- i) Recommendations regarding general academic requirements in the Departments of University or affiliated colleges: Nil
- ii) Recommendations of the Academic Audit Committee and status thereof: Nil

Part E

- i) Recommendations of the text books for the course of study at undergraduate level: Nil
- ii) Recommendations of the text books for the course of study at post graduate level: Nil

Part F

Important points for consideration/approval of Academic Council

- i. The important points/recommendations of BoS that require consideration/approval of Academic Council (points to be highlighted) as mentioned below
 - (a) The program structure and syllabus in M.Sc. Marine Microbiology (Semester III and IV) was deliberated and few suggestions made by the Experts were incorporated and the same was approved. This syllabus of M.Sc. Marine Microbiology (Semester III and IV) was revamped with introduction of ten new courses (22%) in view of the implementation of NEP guidelines by the University.
 - (b) The syllabus of Research Methodology paper (04 credits) for Ph. D. in Marine Microbiology was placed and the suggestions made by the Experts were incorporated and approved.
 - ii. The declaration by the Chairperson that the minutes were readout by the Chairperson at the meeting itself.

Date: 21.10.2022

Place: Goa University Campus

Sd/-Signature of the Chairperson

Part G. The Remarks of the Dean of the Faculty

- i. The minutes are in order.
- ii. The minutes may be placed before the Academic Council with remarks if any.
- iii. May be recommended for approval of Academic Council.

		14.02.2023
	iv. Special remarks if any.	
		Sd/-
		Signature of the Dean
	Date: 21.10.2022	
	Place: Goa University Campus	
		(Back to Index)
D 3.19	Minutes of the Board of Studies in Marine Science meeting held o	n 27.10.2022.
	Part A	
	i. Recommendations regarding courses of study in the subject of	or group of subjects at
	the undergraduate level:	
	ii. Recommendations regarding courses of study in the subject of	or group of subjects at
	the postgraduate level:	
	1. BOS members met on 27.10.2022 (Thursday) in School	of Earth, Ocean and
	Atmospheric Sciences at 1030 hrs in room number CF	20 and discussed the
	a Approval of M Sc. syllabus (Semester III and IV) as per OA	35
	h Approval of Ph D syllabus of Research Methodology cour	ss. se (04 credits)
	c Any other Business with the permission of the Chair	50 (04 creatis).
	e. Any other business with the permission of the endit.	
	2. Members of the BOS deliberated on the above matte	er and approved the
	following:	
	(a) The syllabus of M.Sc. Marine Sciences (Semes	ster III and IV) was
	deliberated and few suggestions made by the Experts.	The suggestions were
	incorporated and the same was approved attached as A	nnexure I (Refer page
	No. 713).	
	(b) The syllabus of Research methodology paper (04 credi	ts) for Ph. D. in Marine
	Sciences was discussed and approved attached as Annex	<mark>cure II</mark> (Refer page No.
	746)	
	Part B	
	i. Scheme of Examinations at undergraduate level: Nil	
	ii. Panel of examiners for different examinations at the undergra	iduate level: Nil
	iii. Scheme of Examinations at postgraduate level: Nil	
	iv. Panel of examiners for different examinations at post-graduat	te level: Nil
	Part C	
	1 Recommendations regarding proparation and publication of	f selection of roading
	1. Recommendations regarding preparation and publication of subjects and the pre-	mos of the norsons
	recommended for appointment to make the selection: Nil	anies of the persons
	recommended for appointment to make the selection. Mil	
	Part D	
	i) Recommendations regarding general academic requirements	in the Departments of
	University or affiliated colleges: Nil	
	ii) Recommendations of the Academic Audit Committee and stat	tus thereof: Nil
	Part E	

Std. Com. X AC-5

D 3.18 Minutes of the Board of Studies in Marine Microbiology meeting held on 21.10.2022.

Annexure I

Goa University P.O. Goa University, Taleigao Plateau, Goa 403 206, India

Syllabus of M.Sc. (Marine Microbiology) Programme (2022-23)

The School of Earth, Ocean and Atmospheric Sciences (SEOAS) offers a two-year full time M.Sc. Marine Microbiology program. This Program was initiated in June 2012, under the award of UGC sponsored 'Innovative Programme for teaching and research in interdisciplinary and emerging areas'.

The Program is meant for students to pursue higher studies in Marine Microbiology. Being a University in coastal state of India, Goa University provides a strategic advantage in learning microbiology of marine and coastal ecosystems. It serves to impart advanced training to students in the field of Marine Microbiology with focus on marine microbial diversity, bioprospecting and applications of marine microbes in the production of various biologically significant metabolites; and in bioremediation of polluted environments.

Students undergo hands-on training with state-of-the art technologies and are trained so as to develop an aptitude for independent research. The Program equips students for higher research leading to the Ph.D. degree in India or in International Universities overseas, or for employment in Research Institutes, in teaching, and in Industry, the students finding speedy employment.

Eligibility: B. Sc. Microbiology, B.Sc. Biotechnology

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

M.Sc. Marine Microbiology Structure and Syllabus (Semesters III and IV)

141.5	in marine microbiology structure and synabus (semester)		
Code	Title of paper	L-T-P hrs/week	Credits
Semester III - E	lective Papers		•
Research Speci	fic Elective Courses		
MMTE-501	Phytoplankton Ecology and Genomics	3-0-0	3
MMPE-502	Phytoplankton Ecology Practical	0-0-2	1
MMTE-503	Marine Microbial Prospecting and Technology	3-0-0	3
MMPE-504	Marine Microbial Prospecting and Technology Practical	0-0-2	1
MMTE-505	Microbial Growth and Enzyme Kinetics	3-0-0	3
MMPE-506	Microbial Growth and Enzyme Kinetics Practical	0-0-2	1
MMTE-507	Genetic Engineering	3-0-0	3
MMPE-508	Genetic Engineering Practical	0-0-2	1
			Total = 8
Generic Specifi	c Elective Courses		
MMTE-509	Archaea	3-0-0	3
MMPE-510	Archaea Practical	0-0-2	1
MMTE-511	Ecology and Applications of Marine Fungi	3-0-0	3
MMPE-512	Ecology and Applications of Marine Fungi Practical	0-0-2	1
MMTE-513	Marine Pollution and Monitoring	3-0-0	3
MMPE-514	Marine Pollution and Monitoring Practical	0-0-2	1
MMTE-515	Marine Environment and Public Health	3-0-0	3
MMPE-516	Marine Environment and Public Health Practical	0-0-2	1
MMTE-517	Polar Microbiology	3-0-0	3
MMTE-518	Deep Sea Microbiology	3-0-0	3
MMTE-519	Marine Microbial Toxins	1-0-0	1
MMPE-520	Scientific Writing Skills Practical	0-0-2	1
			Total = 12
Semester IV - E	lective Papers		
Research Speci	fic Elective Courses		1
MMTE-521	Ocean Observations and Techniques	3-0-0	3
MMPE-522	Ocean Observations and Techniques Practical	0-0-2	1
MMTE-523	Microbial Remediation in Marine Ecosystems	2-0-0	2
MMPE-524	Microbial Remediation in Marine Ecosystems Practical	0-0-2	1
MMTE-525	Bioinformatics in Marine Microbiology	2-0-0	2
MMPE-526	Bioinformatics in Marine Microbiology Practical	0-0-2	1
MMTE-527	Nanotechnology	2-0-0	2
MMPE-528	Nanotechnology Practical	0-0-2	1
MMTE-529	Blue Economy	1-0-0	1
MMTE-530	Probiotics and Prebiotics in Aquaculture	1-0-0	1
MMTE-531	Marine Drug Development and Metabolism	1-0-0	1
MMDE-532	Discipline Specific Dissertation	0-0-4	16
			Total = 20

Course Code: MMTE-501

Title of the Course: Phytoplankton Ecology and Genomics

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Courses	5.
Objective:	The students will learn the biology of marine photosynthetic phyto	plankton,
	identifying and classifying phytoplankton from marine and estuarine hab	itats and
	recognizing its role in ocean biogeochemical cycles.	
Content:	Module I	15 hrs.
	Introduction to phytoplankton, evolution through geological time scale.	
	Phytoplankton classification and diversity – major organelles and	
	structural variations, morphological adaptations, division of	
	phytoplankton based on size. Phytoplankton groups like diatoms,	
	dinoflagellates, coccolithophores, microflagellates. Cyanobacteria,	
	Chlorophytes, Heterokontophytes (emphasis on diatoms),	
	Prymnesiophytes, Dinophytes, Cryptophytes, Raphidophytes,	
	Rhodophytes. Phytopiankton distribution and its diversity indices.	
	Phytoplankton biomass estimation, primary productivity. Phytoplankton	
	enumeration techniques – FlowCAIVI and how cytometry.	
	Module II	
	Biogeographic zones of distribution Phytoplankton nutrition nutrient	
	requirements (N. P. Si), physiology and ecological significance.	15 hrs.
	Photoautotrophic production, adaptations to physico-chemical and	20 110
	biological factors. Grazing defences (morphology, chemical defences, life	
	cycle strategies, escape response). Marine food webs. Role in	
	biogeochemical cycles. Biological pump, microbial loop. Phytoplankton	
	and zooplankton interactions, phytoplankton-bacteria interactions.	
	Module III	
	Phytoplankton and environmental genomics. Genetic diversity and	
	manipulation, barcoding and its applications. Applications of	
	phytoplankton in CO ₂ sequestration, DMS production, biofuels and other	15 hrs.
	commercial products, as live feed in aquaculture, secondary metabolites.	
	Harmful algal blooms and toxin production, characterisation and causes	
	of bloom formation, red tides, prevention and control. HNLC areas and	
	iron fertilization.	
Pedagogy:	Lectures/tutorials/assignments/self-study.	
References/	1. Faikowski, P. G., & Knoll, A. G. (Eds.) (2007). Evolution of primary	
readings:	producers in the sea. (First Edition), Amsterdam: Elsevier Academic	
	riess. 2 Kumar S.V. Misquitta R.W. Reddy V.S. Rao R. L. & Raiam M.V.	
	(2004) Genetic transformation of the green alga <i>Chlamudomonas</i>	
	reinhardtii by Aarobacterium tumefaciens Plant Science 166(2) 721_	
	738. doi:10.1016/i.plantsci.2003.11.012	
	3. Lewin, R.A. (1962), Physiology and biochemistry of alage (First	
	Edition), Academic Press.	

		<u>Std. Com. X</u>	<u>AC-5</u>
		14.02.202	25
	4. Margalef, R. (1978). Life-forms of phytoplankton	as survival	
	alternatives in an unstable environment. <i>Oceanologica</i> 439–509.	Acta, 1(4),	
	5. Parsons, T. R., Takahashi, M., & Hargrave, B. (1977)	. Biological	
	oceanography processes. (Second Edition), Oxford: Pergar	non Press.	
	6. Phillips, J. D. H. (1980). Quantitative aquatic biological	l indicators.	
	(Second Edition), Applied Science Publishers.		
	7. Raymont, J. E. G. (1983). Plankton and productivity in the	oceans. Vol.	
	1 and 2. (Second Edition). Toronto: Pergamon Press.		
Learning	The students will learn about the diversity and ge	enomics of	
Outcome:	phytoplankton, their role in ecosystem functioning and	commercial	
	product synthesis; and the role of phytoplankton in regula	ting climate	
	change.		
-		A 4- A - A	

Course Code: MMPE-502

Title of the Course: Phytoplankton Ecology Practical

Number of Credits: 01

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Course	s.
Objective:	To acquaint students about phytoplankton sampling and isolation. The co	ourse will
	enable the students to identify phytoplankton.	
Content:	Module I	30 hrs.
	1. Sampling and collection of phytoplankton (6 hrs, Ref. 1).	
	2. Estimation of phytoplankton biomass (6 hrs, Ref. 1).	
	3. Identification of phytoplankton (6 hrs, Ref. 2,3).	
	4. Culturing of phytoplankton (f/2, K medium) (6 hrs, Ref. 1).	
	5. The extinction-dilution method (6 hrs, Ref. 4).	
Pedagogy:	On-site sampling and laboratory experiments.	
Reading/	1. Sournia, A. (1978). UNESCO Monographs on oceanographic	
References:	methodology, Vol. 6, Phytoplankton manual, UNESCO Publishing.	
	2. Tomas, C.R. (1996). Identifying marine diatoms and dinoflagellates.	
	Academic Press.	
	3. Tomas, C.R. (1997). <i>Identifying marine phytoplankton</i> . Academic	
	Press.	
	4. Throndsen, J. (1978). The dilution-culture method. In: Sournia, A. (Ed.).	
	UNESCO Monographs on oceanographic methodology. Vol. 6,	
	Phytoplankton manual. Paris: UNESCO Publishing.	
Learning	The students will be able to independently conduct sampling, isolation	
Outcome:	and identification of marine phytoplankton.	

Course Code: MMTE-503

Title of the Course: Marine Microbial Prospecting and Technology

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Courses.
----------------	--

Objective:	The course explores marine microbes as a potential source for isolation compounds and the regulatory frameworks for their usage.	of novel
Content:	Module I Bioprospecting: Concept of exploiting marine microbial resources. Microbes: free-living and associated with marine invertebrates, macroalgae, phytoplankton. Diversity of bio-active metabolites. Collection, sampling and analytical techniques for natural product isolation. Sampling and search strategies for novel targets under: enzymes, therapeutics, antimicrobials and biofuels. Legal framework for collection and conservation of marine niches and microbes. Convention on Biological Diversity, Rio (1992/1994). Bioethics and Biosafety. Quarantine regulations. Biopiracy. Cartegena & Montreal Protocols. FAO International Treaty (2001-2004), Bonn Declaration on Access and Benefit- Sharing.	15 hrs.
	Module II Conventional and high throughput screening strategy. Conventional: Plating, enrichment, extinction culturing, micro manipulations, optical tweezers, microautoradiography. Novel: Proteomics and metabolomics, genomics; Substrate-Induced Gene Expression Screens (SIGEX), catabolic gene expression screens, metagenomics, microarrays, combinatory chemistry, combinatory biosynthesis and biochemistry assays. Databases, natural product libraries.	15 hrs.
	Module III Deposition of microbes and biomolecules. Culture collection/ repository, deposition of sequences of nucleic acids, proteins and structures of biomolecules. Geo-indicators. Commercial development of marine natural products like chitosan, algal products, SCPs, β -carotene and vitamins. Case studies on marine products and process development using microbes: archaea, cyanobacteria and proteobacteria.	15 hrs.
Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies.	
References/ Readings:	 Borkar, S. (2015). Bioprospects of coastal Eubacteria. Springer Publishers. Bull, A. T. (2003). Microbial diversity and bioprospecting. ASM Press. Goldman, E., & Green, L. H. (2019). Practical handbook of microbiology. (Fourth Edition), CRC Press. Kennish, M. J. (2019). Practical handbook of estuarine and marine pollution. CRC Press. Kennish, M. J. (2022). Practical Handbook of Marine Science. (Fourth Edition), CRC Press. Reddy, S. M., Charya, M. A. S., & Girisham, S. (2012). Microbial diversity: Exploration and bioprospecting. Scientific Publishers. 	

	7. Thomas, T. R., Kavlekar, D. P., & Lokabharathi, P. A. (2010). Marine drugs from sponge-microbe association: a review. <i>Marine Drugs</i> , 8, 1417-1468.	
Learning Outcomes:	 The analytical methods for natural product isolation and their applications. Knowledge on the regulatory frameworks for their usage. 	

Course Code: MMPE-504 Title of the Course: Marine Microbial Prospecting and Technology Practical Number of Credits: 01

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Co	urses.
Objective:	The course develops the techniques involved in processing of marine s for bioprospecting.	amples
Content:	Module I	30 hrs.
	1. Sampling, isolation and screening for marine microbes from marine	
	waters/sediments, marine organisms (bivalves/ seaweeds/ squid) for	
	the following natural products:	
	1.1 Pigments (6 hrs, Ref. 1).	
	1.2 Siderophores (6 hrs, Ref. 1).	
	1.3 Antimicrobials (8 hrs, Ref. 2-3).	
	1.4 Plant growth hormones (10 hrs, Ref. 4).	
Pedagogy:	Experiments in the laboratory.	
References/	1. Naik, M., & Dubey, S. K. (2017). Marine pollution and microbial	
Readings:	remediation, Springer Publications.	
	2. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in	
	vitro evaluating antimicrobial activity: A review. Journal of	
	Pharmaceutical Analysis, 6(2), 71-79.	
	3. Schmidt, T. M. (2019). Encyclopedia of microbiology. Academic	
	Press.	
	4. Patel, D., Patel, A., Vora, D., Menon, S., Vadakan, S., Acharya, D., &	
	Goswami, D. (2018). A resourceful methodology to profile indolic	
	auxins produced by rhizo-fungi using spectrophotometry and	
	HPTLC. <i>3 Biotech,</i> 8(10), 1-13.	
Learning	Skills in sampling, isolation of marine microorganisms, designing and	
Outcome:	conducting experiments for bioprospecting purposes.	

Course Code: MMTE-505

Title of the Course: Microbial Growth and Enzyme Kinetics

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Courses.
Objective:	Development of concepts in microbial enzymology and the microbial processes used in industries to produce microbial products.

		<u>Std. Com. 2</u> 14.02.2	<u>X AC-5</u> 023
Content:	Module I Microbial growth kinetics. Batch kinetics: Monod's model (single substrate), devia Monod's model, dual substrates, multiple substrates, substrat product synthesis (primary and secondary metabolite), toxid death constant. Fed-batch kinetics: fixed volume, variable volume and cyclid applications and examples. Continuous cultivation system: relationship between specific (μ) and dilution rate, comparison between various cultivation	tions from e inhibition, c inhibition, c fed-batch, growth rate systems.	15 hrs.
	Module II Enzyme kinetics: Michaelis - Menten Equation, Line-Weaver E one substrate reactions, significance of V_{max} and K_m . Enzyme turnover: K_s and K_d , its measurement and s mechanism of enzyme degradation and reversible and inhibition: competitive, uncompetitive and non-competitive.	Burk plot for Significance, irreversible	15 hrs.
	Module III Enzyme catalysis mechanisms, identification of functional gro affecting catalytic efficiency, proximity and orientation effec- regulation: control of activity, availability of substrate and enhancer molecules, change in the covalent structure of enzy Regulatory enzymes: Allosteric (aspartate transcarbam covalently modulated enzymes (glycogen phosphorylase, synthetase); Mechanism of action and their significance in r Zymogens and isozymes. Multienzyme systems: disassocia (catabolic enzymes), multienzyme complex (pyruvate dehy membrane-bound system (electron carrying enzymes).	ups, factors cts. Enzyme inhibitor or me. ylase) and glutamine netabolism. ted system drogenase);	15 hrs.
Pedagogy:	Lectures/ tutorials/ assignments/ self-study.		
References/ Readings:	 Stanbury, P. F., Whitaker, A., & Hall, S. J. (2005). <i>F</i> fermentation technology. (Third Edition), Butterworth- Publishers. Flickinger, M. C., & Drew S. W. (2002). The encyclopedia of technology: Fermentation, biocatalysis and bioseparation New Jersey: John Wiley Publishers. Atkinson, B., & Mavituna, F. (1992). Biochemical engin biotechnology handbook. (Second Edition), Stockton Press Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2008). <i>F</i> biochemistry. (Fifth Edition), New York: Worth Publishers. Dixon, M., & Webb, E. C. (2014). Enzymes. (Second Edition Frice N. C., & Stevens, L. (2009). Fundamentals of enzymod Edition), Oxford University Press. 	Principles of Heinemann f bioprocess , Vols. 1 - 5, neering and A. Principles of a) Elsevier. Dogy. (Third	
Learning Outcome:	1. An understanding of microbial growth and enzyme different substrates, and their industrial applications.	kinetics on	

Number of Credi	ts: 01	
Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Course	S.
Objective:	To understand microbial growth and enzyme kinetics.	
Content:	 Module I 1. Growth kinetics – bacterium/yeast and determination of μmax, Ks, Yx/s, m (15 hrs, Ref. 1-4). 2. Enzyme kinetics - Purification of enzyme: salting out, dialysis, gel filtration, assay of enzyme activity, rate of reaction, determination of specific activity, Km, Vmax (15 hrs, Ref. 1-2, 5-6). 	30 hrs.
Pedagogy:	Laboratory experiments/ tutorials.	
References/ Readings:	 Hegyi, G., Kardos, J., Kovács, M., Málnási-Csizmadia, A., Nyitray, L., Pál, G., Radnai, L., Reményi, A., & Venekei, I. (2013). Introduction to practical biochemistry. E-book. <u>www.renderx.com</u> Plummer, M. U., & Plummer, D. T. (2008). An introduction to practical biochemistry. (Third Edition), New Delhi: Tata Mc Graw Hill Publishing Company. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2005). Principles of fermentation technology. (Third Edition). Butterworth-Heinemann Publishers. Flickinger, M. C., & Drew, S. W. (2002). The encyclopedia of bioprocess technology: Fermentation, biocatalysis and bioseparation. Vols. 1 - 5, New Jersey: John Wiley Publishers. Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2008). Principles of biochemistry. (Fifth Edition), New York: Worth Publishers. Dixon, M., & Webb, E. C. (2014). Enzymes. (Second Edition), Elsevier. 	
Learning Outcome:	Students gain knowledge on conducting experiments on microbial growth kinetics and enzyme purification.	

Course Code: MMPE-506 Title of the Course: Microbial Growth and Enzyme Kinetics Practical Number of Credits: 01

(Back to Index) (Back to Agenda)

Course Code: MMTE-507

Title of the Course: Genetic Engineering Number of credits: 03

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Course	s.
Objective:	This course aims to introduce the tools and techniques in molecular cloning, DNA	
	editing and protein expression in wide variety of hosts and their applications in	
	genetic engineering.	
Content:	Module I	15 hrs.
	Introduction to genetic engineering.	

	Std	. Com.)	(AC-5
	Tools and techniques involved in genetic manipulation – I: rest endonucleases, exonucleases, DNA ligases, terminal DNA transf DNA polymerases, reverse transcriptase, T4 polynucleotide ki alkaline phosphatase, S-1 nuclease, mung bean nuclease, RNases cloning systems/Hosts: Gene cloning in <i>E. coli</i> and other organism as <i>Bacillus subtilis, Saccharomyces cerevisiae</i> . Retroviruses retroposons.	riction ferase, nases, . Gene s such s and	15 hrs.
	Module II Tools and techniques involved in genetic manipulation – II: Expr vectors – Prokaryotic (pET, pGEX-2T). Characteristics of expr vectors – strong bacterial and viral promoters (lac, trp, tac, SV 40, for induction of gene expression. Cloning vectors – plasmid (pUC1 322), λ phage-based vectors (M-13, 2µ plasmid), cosmid vectors, ph vectors, shuttle vectors, high capacity cloning vectors (BAC and YA plasmid. Construction of cDNA, cloning, its expression and technic transformation, electroporation, transfection, gene gun. recombinant DNA techniques – use of radioactive and non- radio nucleotides for DNA probe preparation and detection of hy restriction mapping, RFLP, PCR, RT-PCR, Real time PCR. Microarray sequencing methods. Chromosome walking. CRISPR-Cas.	ession ression (7, T3) 9, pBR hasmid (Cs), Ti ques – Other pactive ybrids, y. DNA	15 hrs.
	Module III Application of genetic engineering in diagnostics, agriculture, mer pharmaceuticals, industries and allied areas. Genetically mo foods/crops, recombinant drugs, vaccines, interferons and horn Recombinant proteins and drugs, enzymes, biomolecules fermentation products, bioremediation and biomonitoring (biose of toxic environmental pollutants. Ethics in genetic engineering.	dicine, odified nones. and ensors)	
Pedagogy:	Lectures/tutorials/assignments/self-study.		
References/ Readings:	 Old, R. W., & Primrose, S. B. (1980). Principles of gene manipu An introduction to genetic engineering. University of California Glick, B. R., Pasternak, J. J., & Patten, C. L. (1994). Mol biotechnology: Principles and applications of recombinant DNA Press. Brown, T. A. (2010). Gene cloning & DNA analysis. Wiley-Blackv (Glover, D. M. (1984). Gene cloning: The mechanics of manipulation. Springer-Science+Business Media. Green, M. R., & Sambrook, J. (2001). Molecular cloning: A labo manual. New York: Cold Spring Harbor Laboratory. 	lation: Press. lecular A. ASM vell. ^F DNA pratory	
	b. Davis, L. G., Dibner, M. D., & Battey, J. F. (1986). Basic meth molecular biology Elsevier	oas in	
Learning	Understanding of tools and techniques involved in gene clonin	g and	
Outcome:	expression.	J	

Course Code: MMPE-508

Title of the Course: Genetic Engineering Practical Number of Credits: 01

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Part I Course	es.
Objective:	To have a hand on experience on plasmid DNA isolation, restriction mapping,	
	ligation and transformation.	
Content:	Module I	30 hrs.
	1. Plasmid extraction (6 hrs, Ref. 1).	
	2. Restriction mapping of bacterial plasmid (6 hrs, Ref. 1).	
	3. Assessment of DNA ligation activity of T4 DNA ligase (6 hrs, Ref. 1).	
	4. Preparation of competent cells and transformation of <i>E. coli</i> host with	
	plasmid DNA using heat shock method/electroporator (6 hrs, Ref. 2).	
	5. Screening of positive transformants (6 hrs, Ref. 2).	
Pedagogy:	Experiments in the laboratory.	
References/	1. Green, M. R., & Sambrook, J. (2001). <i>Molecular cloning: A laboratory</i>	
Readings:	manual. New York: Cold Spring Harbor Laboratory.	
	2. Davis, L. G., Dibner, M. D., & Battey, J. F. (1986). Basic methods in	
	molecular biology. Elsevier.	
Learning	A practical understanding of the working of DNA modifying enzymes and	
Outcome:	hands-on experience with transformation experiments.	

(Back to Index) (Back to Agenda)

Course Code: MMTE-509 Title of the Course: Archaea Number of Credits: 03

Number of creat		
Prerequisites:	Students should have undergone Part I Courses in their respective post- disciplines.	graduate
Objective:	This course develops concept of three domains of life, ecology, phy	ysiology,
-	diversity, cell structure, metabolism, energetics and genetics of archaea	а.
Content:	Module I	15 hrs.
	Carl Woese's three domain classification of life, classification of archaea. Cellular organization of archaea. Ecology, physiology and diversity of Archaea. Nutrition, growth and growth kinetics and physiological versatility. Stress response of methanogenic, halophilic, thermophilic, thermoacidophilic, barophilic, alkaliphilic and psychrophilic archaea. Methanotrophs, methylotrophs. Global econiches: deep sea, hydrothermal vents, Dead Sea, solar salterns, geothermal vents, solfataras, Antarctica, soda lake. Study of archaeal diversity. Unculturable archaeal studies by metagenomics. Archaeal culture retrieval methods. Novel samplers. Preservation and maintenance of archaeal cultures. Significance of Archaea: biogeochemical cvcling, biotechnology.	15 hrs.
	Module II Metabolism and energetics of Archaea: modified anabolic pathways of carbohydrates and lipids, methanogenesis and acetoclastic reactions. Modified central metabolic pathways – EMP, ED, incomplete TCA, reverse Kreb cycle, carbon dioxide reduction pathways – reductive acetyl-CoA pathway, 3-hydroxypropionate pathway.	15 hrs.

	14.02.20	<u>23</u>
	Chemolithoautotrophy. Bioenergetics – ATP synthesis (i) respiration-	
	driven; (ii) light-driven, involving bacteriorhodopsin; and (iii) chloride-	
	driven, involving halorhodopsin.	
	Module III	
	Genome of Archaea: size of genome, G + C content, associated	
	proteins, archaeal histories and nucleosomes, introns in archaea.	
	Archaeal RNA polymerases, reverse DNA gyrase. Plasmids,	
	transposons -IS elements. Modifications in tRNA and rRNA structure	
	Novel 75 rRNA DNA replication transcription and translation in	
	archaoa. Gono organization in Archaoa: (i) his operan: (ii) heb operan:	
	and (iii) mer operen	
Dedaaaa	and (iii) mer operon.	
Pedagogy:	Lectures/tutorials/assignments/self-study.	
References/	1. Woese, C. R., & Fox, G. E. (1977). Phylogenetic structure of the	
Readings:	prokaryotic domain: the primary kingdoms. Proceedings of the	
	National Academy of Sciences USA. 74, 5088–5090.	
	2. Cavicchioli, R. (2007). Archaea: Molecular and cellular biology.	
	ASM Press.	
	3. Garrett, R. A., & Hans-Peter, K. (2007). Archaea: Evolution,	
	physiology and molecular biology. John Wiley and Sons.	
	4. Munn, C. (2004). Marine microbiology: Ecology and applications.	
	Garland Science. Taylor and Francis Group.	
	5. Boone, D. R. & Castenholz, R. W. (1984). <i>Bergev's manual of</i>	
	systematic hacteriology Vol I The Archaea and the deenly	
	branching and phototrophic bacteria Springer	
	6 Corcolli A & Lobasso S (2006) Characterization of Linids of	
	U. Corceni, A., & Lobasso, S. (2000). Characterization of Lipius of	
	Taiupilliu Aruided. Weurous III Willowiology. 55, 585-015.	
	7. Rothe, O., & Thomm, IVI. (2000). A simplified method for the	
	cultivation of extreme anaeropic archaea based on the use of	
	sodium suffice as reducing agent. <i>Extremophiles</i> . 4, 247-252.	
Learning	Understanding the third domain of life – Archaea, its ecology,	
Outcome:	physiology, biochemistry, genetics and applications.	

Std. Com. X AC-5

Course Code: MMPE-510

Title of the Course: Archaea Practical

Prerequisites:	Students should have undergone Part I Courses in their respective post-	graduate
	disciplines.	
Objective:	This course focuses on sampling, isolation and identification techniques of	archaea
	from different econiches and the study of archaeal pigments.	
Content:	Module I	30 hrs.
	1. Isolation and culturing of archaea (6 hrs, Ref. 1).	
	2. Identification of archaeal isolates (6 hrs, Ref. 2).	
	3. Biochemical tests for archaea (6 hrs, Ref. 2).	
	4. Extraction of archaeal pigment and characterization using UV-Vis	
	spectroscopy (6 hrs, Ref. 2).	

Std. Com. X AC-5 14.02.2023

	5. Screening for archaeal enzymes (6 hrs, Ref. 3).	
Pedagogy:	Experiments in the laboratory.	
References/	1. Rothe, O., & Thomm, M. (2000). A simplified method for th	e cultivation
Readings:	 of extreme anaerobic archaea based on the use of sodiu reducing agent. <i>Extremophiles</i>. 4, 247-252. 2. Boone, D. R., & Castenholz, R. W. (1984). <i>Bergey's manual c bacteriology. Vol. I, The Archaea and the deeply brophototrophic bacteria</i>. Springer. 3. Kumar, S., Karan, R., Kapoor, S., et al. (2012). Screening and halophilic bacteria producing industrially important enzyme for the sector of the sector. 	im sulfite as of systematic unching and d isolation of ues. Brazilian
	<i>Journal of Microbiology</i> . 43(4),1595-603. doi: 10.3 838220120004000044.	1590/51517-
Learning	1. Sampling of archaea from different econiches.	
Outcomes:	2. The isolation, culturing and identification of archaea.	
	3. Bioprospecting of bioactive molecules from archaea.	

Course Code: MMTE-511

Title of the Course: Ecology and Applications of Marine Fungi

Prerequisites:	Students should have undergone Part I Courses in their respective post- disciplines.	-graduate
Objective:	This course deals with detailed classification and identification of fun- ecology in marine and extreme habitats, fungal genetics and applications enzymes and various primary and secondary metabolites.	gi, fungal of fungal
Content:	 Module I Fungal diversity and distribution: Phylogeny and detailed classification of fungi. Econiches of marine fungi – polyhaline coastal environments (salt marshes, mangroves, estuaries, oceans); hypersaline environment (solar salterns, Salt Lake, Dead Sea); deep sea (hydrothermal vents). Extremophilic fungi – halophiles, xerophiles, oligotrophs, barophiles, psychrophiles, thermophiles. Techniques to study marine and extremophilic fungi – sample collection and isolation procedures, identification – morphotyping, secondary metabolites, molecular finger printing, FAME, karyotyping, gene sequencing. Module II Physiology and genetics: Growth cycle and development. Fungal 	15 hrs. 15 hrs.
	hormones (attractants), morphogenesis and differentiation. Secondary metabolites – pigments, mycotoxins. Fungal genetics – c ross over and tetrad analysis, gene conversion, mating type switching. Deuteromycotina – parasexuality, cytoplasmic inheritance. Fungal associations – symbionts, saprophytes and parasites on higher forms of marine life. Module III	

	<u>14.02.2</u>	023
	Threats and applications: Mycoses – diseases of fish, bivalves and corals. Bioprospecting and bioremediation – industrially important enzymes, secondary metabolites, nutraceuticals, antimicrobials, antitumour agents, pigments. Biodegradation and bioremediation.	15 hrs.
Pedagogy:	Lectures/ tutorials/ assignments/ self-study.	
References/ Readings:	 Alexopoulus, C. J., Mims, C. W., & Blackwell, M. (2017). Introductory mycology. (Fourth Edition), New Delhi: John Wiley & Sons. Mehrotra, R. S., & Aneja K. R., (1990). An Introduction to Mycology. New Delhi: Wiley Eastern Limited. Deacon, J. W. (1984). Introduction to modern mycology. Oxford Blackwell Scientific Publications. Moore, D. (2011). 21st Century guidebook to fungi. New York: Cambridge University Press. Moore, D., & Frazer, L. A. N. (2002). Essential fungal genetics. New York: Springer Publishers. Onions, A. H. S., Allsop, D., & Eggins H. O. W., (1981). Smith's introduction to industrial mycology. London: Edward Arnold Publishers. Domsch, K. H., Gams, W., & Anderson, T-H., (2007). Compendium of soil fungi. (Second Edition), Eching, IHW-Verlag. Borse, B. D., Bhat, J. D., Borse, K. N., Tuwar, N. S., & Pawar, N. S. (2012). Marine fungi of India (Monograph), Panaji: Broadway Publishing House. Raghukumar, C. (2012). Biology of marine fungi. Springer Publishers, Berlin Heidelberg. Raghukumar, S. (2017). Fungi in coastal and oceanic marine ecosystems. Switzerland: Springer Publishers. doi: 10.1007/978-3- 319-54304-8. Borkovich, K. A., & Ebbole, D. J., (2010). Cellular and molecular biology of filamentous fungi. Washington DC: ASM Press. 	
Learning Outcome:	The students will be able to apply the knowledge in fungal taxonomy, bioremediation and bioprospecting of secondary metabolites and industrially important fungal enzymes.	

Std. Com. X AC-5

Course Code: MMPE-512

Title of the Course: Ecology and Applications of Marine Fungi Practical Number of Credits: 01

Prerequisites:	Students should have undergone Part I Courses in their respective post- disciplines.	graduate
Objective:	The course deals with sampling techniques for marine samples, and isola identification of marine fungi.	ation and
Content:	 Module I 1. Study of fungal cultures: colony and morphological characteristics (6 hrs, Ref. 1-3). 	30 hrs.

<u>Std. Com. X AC-5</u> 14.02.2023

	 Isolation and identification of fungi from marine ecosystem (16 hrs, Ref. 1-3). Biosorption experiment using marine fungal isolates (8 hrs, Ref. 4-5).
Pedagogy:	Laboratory experiments/ tutorials.
References/ Readings:	 Alexopoulus, C. J., Mims, C. W., & Blackwell, M. (2017). Introductory mycology. (Fourth Edition), New Delhi: John Wiley & Sons. Mehrotra, R. S., & Aneja K. R., (1990). An Introduction to Mycology. New Delhi: Wiley Eastern Limited. Borse, B. D., Bhat, J. D., Borse, K. N., Tuwar, N. S., & Pawar, N. S. (2012). Marine fungi of India (Monograph), Panaji: Broadway Publishing House. Dusengemungu, L., Kasali, G., Gwanama, C., & Ouma, K. O. (2020). Recent advances in biosorption of copper and cobalt by filamentous fungi, Frontiers in Microbiology, 11, 582016. Lotlikar, N. P., Damare, S. R., Meena, R. M., Linsy, P., & Mascarenhas, B. (2018). Potential of marine-derived fungi to remove hexavalent chromium pollutant from culture broth. Indian Journal of Microbiology, 58(2), 182-192.
Learning Outcome:	Apply the knowledge in fungal taxonomy, bioremediation and bioprospecting.

Course Code: MMTE-513

Title of the Course: Marine Pollution and Monitoring

Number	of Cre	dits:	03
--------	--------	-------	----

Prerequisites:	Students should have undergone Part I Courses in their respective post	-graduate
	disciplines.	
Objective:	Introduce the students to various marine pollutants, their impact of	on marine
	ecosystems and humans.	
Content:	Module I	15 hrs.
	Marine environment, pollutants, toxicity, point and non-point sources	
	of pollution. Oil spills, tarballs, polyaromatic hydrocarbons, domestic	
	sewage, agricultural waste, industrial discharge, thermal power plant	
	discharge, pesticides, persistent organic pollutants, pharmaceuticals,	
	personal care products, antibiotics, metals, metalloids, organo metals,	
	radioactive waste. Deep-sea mining, marine debris – sources,	
	constituents, derelict fishing gear, plastics/ microplastics, garbage	
	patches in the oceans.	
	Module II	
	Eutrophication, biofouling and bioinvasion, biocorrosion.	15 hrs.
	Bioaccumulation and biomagnification. Impact of pollutants on	
	estuarine, mangroves, coastal and open ocean, coral reefs,	
	phytoplankton, zooplankton, fish, shellfish. Effect of marine pollutants	
	on productivity and humans: harmful algal blooms, Minamata and itai	
	itai diseases.	

	<u>Std.</u>	Com. X AC-5
	14	1.02.2023
	Module III Ocean health index, biomonitoring and bioremediation, genomics marine monitoring, biosensors, biotracers. Remote sensing in pollutio monitoring, marine pollution monitoring programs, marine environmental impact assessment.	in 15 hrs. on ne
Pedagogy:	Lectures/tutorials/assignments/case studies.	
References/ Readings:	 Satyanarayana, T., Johri, B., & Anil, T. (2012). Microorganisms environmental management. Germany: Springer Dordrecht. Judith, S.W. (2015). Marine pollution: What everyone needs know. USA: Oxford University Press. King, R. B., Sheldon, J. K., & Long, G. M. (2019). Practice environmental bioremediation: The field guide. Florida: Cl Press. Kennish, M. J. (1997). Practical handbook of estuarine an marine pollution. CRC Press, Boca Raton. Naik, M., & Dubey, S. K. (2017). Marine pollution and microbi remediation. India: Springer Publications. Prince, R. C., & Atlas, R. M. (2016). Bioremediation of Marine O Spills. In: Steffan, R. (Eds.). Consequences of microbi interactions with hydrocarbons, oils and lipids: biodegradatic and bioremediation. Handbook of hydrocarbon and lip microbiology, Springer, Cham. 	in to cal RC nd ial Dil ial on id
Learning Outcomes:	 Provides knowledge on how marine pollutants can affe marine organisms and humans. Understanding of how marine pollution can be monitored usin different tools and techniques. 	rg

Course Code: MMPE-514

Title of the Course: Marine Pollution and Monitoring Practical

Prerequisites:	Students should have undergone Part I Courses in their respective post-graduate		
	disciplines.		
Objective:	Estimate the impact of pollutants from the marine microbes' environme	ent	
Content:	Module I 30 hrs.		
	1. Impact of lead/arsenic on marine microbes (6 hrs, Ref. 1).		
	2. Impact of naphthalene/anthracene on marine microbes (6 hrs,		
	Ref. 1).		
	3. Determination of biochemical oxygen demand (6 hrs, Ref. 2).		
	4. Determination of chemical oxygen demand (6 hrs, Ref. 3).		
	5. Size classification of marine debris/plastic (6 hrs, Ref. 4).		
Pedogogy:	Laboratory experiments/ Field trips.		

	Std. Com. X AC-5
	14.02.2023
References/	1. Cappuccino, J. G., & Sherman, N. (1998). <i>Microbiology: A</i>
Readings:	laboratory manual. California: Benjamin/Cummings Science Publishing.
	 Martin, D. F. (1972). Marine chemistry (01). London: Academic Press.
	 Rice, E. W., & Bridgewater, L. (2012). Standard methods for the examination of water and wastewater analysis (Second Edition), Washington DC: American Public Health Association.
	 Kroon, F. J., Motti, C. E., Jensen, L. H., & Berry, K. L. (2018). Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. <i>Science Reports</i>, 8(1), 1-15.
Learning	Hands-on training to understand the impact of pollutants on marine
Outcome:	microorganisms.

Course Code: MMTE-515 Title of the Course: Marine Environment and Public Health Number of Credits: 03

Prerequisites:	Students should have undergone Part I Courses in their respective post-graduate disciplines.		
Objective:	This course deals with the effects of marine pollution and climate change health, the challenges for monitoring and control of pollution, long-tern in public health management; advances in disease control in t environment.	e on human n strategies he marine	
Content:	Module I Environmental variables related to marine, coastal and aquatic ecosystems. Water quality and sediment characteristics. Climate change and impact on human health – migration of <i>Vibrio</i> , flooding of coastlines, influence of El Nino Southern Oscillation on cholera outbreaks. Disaster management. Understanding marine ecosystem and human health with DPSIR model. Overview of marine and coastal pollution and its effects on aquaculture systems and fisheries. Challenges for monitoring and control of pollution and overfishing. Standards for various types of water.	15 hrs.	
	Biological indicators and indices of water quality. Microbial indicator systems – Fecal Indicator Bacteria, <i>Clostridium, Cryptosporidium,</i> <i>adenoviruses, Bacteroides,</i> coliphages. Sanitation in aquaculture systems. Human pathogens: its distribution, diseases transmitted through marine and coastal water, <i>Vibrio,</i> wound sepsis, entero-viruses. Disease monitoring and surveillance. Algal blooms: their effect on fish production and human health, microbial toxins, mechanical, chemical and biological control of algal blooms.	15 hrs.	

		<u>Std. Cor</u> 14.02	<u>n. X AC-5</u> 2.2023
	Module III Bioinvasion, transport of pathogens through ballast water - monitoring, rules and regulations. Quarantine, certification an risk analysis. Application of health management protoc biosecurity principles in aquaculture. Long-term strategies management. Advances in disease control and management. F of SPF/SPR. Biosecurity in aquaculture.	- impact, nd import cols and in health Principles	15 hrs.
Pedagogy:	Lectures/tutorials/assignments/self-study/case studies.		
References/ Readings:	 Hester, R. E., & Harrison, R. M. (2011). Marine pollution and health, Vol. 33, Issues in environmental science and tea Royal Society of Chemistry. Belkin, S., & Colwell, R. R. (2005). Oceans and health: Path marine environment. Springer Publishers. Noga, E. J. (2010). Fish disease: Diagnosis and treatment. Edition). Wiley-Blackwell Publishers. Rheinheimer, G. (1985). Aquatic microbiology. (Third Editi Wiley Publishers. Clark, R. B., Frid, C., & Attrill, M. (2001). Marine pollution University Press. Wedemeyer, G. A., Meyer, F. P., & Smith, L. (1976). Enviro stress and fish diseases. New Jersey: TFH Publications. Buller, N. B., & Plumb, J. A. (2004). Bacteria from fish a aquatic animals: A practical identification manual. CABI Publication 	nd human chnology. hogens in . (Second on). John n. Oxford onmental und other ublishing.	
Learning Outcomes:	 Understanding the impact of marine pollutants and climat on marine biota and humans. Application of long-term strategies in public health manager understanding the advances in disease control in the environment. 	e change ment and e marine	

Course Code: MMPE-516

Title of the Course: Marine Environment and Public Health Practical

Prerequisites:	Students should have undergone Part I Courses in their respective post-graduate		
Objective:	This course focuses on protocols/ strategies for characterization of pathogenic organisms from the marine environment and for determining the efficacy of sanitizers used in aquaculture.		
Content:	sanitizers used in aquaculture.30 hrs.Module I30 hrs.1. Detection of different indicator and pathogenic organisms from marine environments such as <i>S. aureus, E. coli, V. cholerae,</i> <i>Salmonella, Shigella</i> by conventional and rapid methods (12 hrs, Ref. 1-3).30 hrs.2. Characterization of pathogenic isolates - determination of salinity30 hrs.		

		Std. Com. X AC-5	
		<u>14.02.2023</u>	
	3. Testing the efficacy of aquaculture sanitizer (phenol) (08 hr	s, Ref. 7).	
Pedagogy:	Experiments in the laboratory.		
References/ Readings:	 Griffin, D. W., Lipp, E. K., McLaughlin, M. R., & Rose, J. B. (2001). Marine recreation and public health microbiology: Quest for the ideal indicator: This article addresses the historic, recent, and future directions in microbiological water quality indicator research. <i>BioScience</i>, 51(10), 817-825. <i>Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. Geneva: World Health Organization.</i> (2022). Licence: CC BY-NC-SA 3.0 IGO. Liu, C., Shi, C., Li, M., Wang, M., Ma, C., & Wang, Z. (2019). Rapid and simple detection of viable foodborne pathogen Staphylococcus gureus. Frontiers in Chemistry, 7, 124 		
	 Ventosa, A., Nieto, J. J., & Oren, A. (1998). Biology of monophilic aerobic bacteria. <i>Microbiology and Molecular Reviews</i>, 62(2), 504-544. Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for evaluating antimicrobial activity: A review. <i>Jou Pharmaceutical Analysis</i>, 6(2), 71-79. Schmidt, T. M. (2019). Encyclopedia of microbiology. Edition), Academic Press. Rideal, S., & Ainslie Walker, J. T. (1903). Standardist disinfectants. <i>Journal of the Sanitary Institute</i>, 24(3), 424-4 	oderately r <i>Biology</i> or in vitro <i>rnal of</i> (Fourth sation of 41.	
Learning Outcomes:	 Students will learn to quantify and characterize bacterial particular and compare against relevant standard guidelines. They will be familiarized with effective strategies for manuaculture systems. 	athogens onitoring	

Course Code: MMTE-517 Title of the Course: Polar Microbiology Number of Credits: 03

Prerequisites:	Students should have undergone Part I Courses in their respective post-graduate disciplines.		
Objective:	This course highlights the unique characteristics of polar environments (the Arctic, Antarctic and the Southern Ocean), with emphasis on their microbial ecology, diversity, community interactions, and response to climate change.		
Content:	Module I Polar environments (Arctic, Antarctica, Southern Ocean), polar econiches (atmosphere, dry valleys, ornithogenic soils, permafrost, cryoconites, sea ice, glaciers, lakes). Microbial ecology. Strategies to isolate and characterize polar microorganisms. Biotechnological importance of polar microorganisms: psychroenzymes, anti-freeze proteins, novel antibiotics and other bioactive compounds.	15 hrs.	

		<u>Std. Cor</u> 14.02	<u>n. X AC-5</u> 2.2023
	Module II Microbial diversity and factors influencing microorganisms environments: archaea – <i>Thaumarchaeota;</i> bacteria – <i>G</i> <i>psychrophila, Pseudoalteromonas haloplanktis, Mari</i> <i>primoryensis;</i> cyanobacteria – <i>Oscillatoria;</i> fungi and <i>Glaciozyma psychrophila,</i> and diatoms – <i>Fragilariopsis G</i> cellular, structural and physiological characteristics, co interactions and food webs, biogeochemical cycling. Viruses ecosystems.	in polar Glaciecola nomonas yeast — cylindrus; mmunity s in polar	15 hrs.
	Module III The polar environment as a vulnerable ecosystem. In anthropogenic pollutants and climate change on communities. Effects of greenhouse gases, ozone depletio warming and ocean acidification on polar ecosystems. M glaciers, intrusion of Atlantic waters into the Arctic reg introduction, transport and fate of pollutants in polar enviro oil spills, microplastics, heavy metals, Persistent Organic P (POPs) xenobiotic compounds, acid rain, radioactive isotope of iron fertilization on productivity and carbon export in to Nutrient-Low-Chlorophyll (HNLC) regions of the Southern O its impact on the Antarctic region.	npact of microbial n, global elting of tion. The pollutants s. Effects the High- cean and	15 hrs.
Pedagogy:	Lectures/tutorials/assignments/self-study/case studies.		
References/ Readings:	 Bathmann, U. (2005). Ecological and biogeochemical resonant construction of the construction	ponse of on global logy: The ntial of s. C. (2006). Reports, on polar cology of 162, 346- Life in a ems in a	
Learning Outcomes:	 The uniqueness of the polar environment. To understand the sensitivity of polar environments to change and pollutants. 	o climate	

Course Code: MMTE-518 Title of the Course: Deep Sea Microbiology Number of Credits: 03

Prerequisites:	Students should have undergone Part I Courses in their respective post-graduate disciplines.	
Objective:	This course focuses on concepts in microbiology and ecology of the vario in deep marine environment.	ous habitats
Content:	Module I The deep-sea environment. Basic and in-depth conceptualization of deep marine subsurface. Types of deep-sea habitats and resident microbiota, dark ocean biosphere/aphotic pelagic ocean habitats, trenches, ridges, habitats beneath the ocean water column, such as marine sediments, oceanic crust, abyssopelagic/abyssal, hadal plains, deep permafrost sediments. Antarctic Ocean and Southern Ocean deep environments. Marine deposits (sapropels, nodules).	15 hrs.
	Sampling equipment: deep sea sampling equipment, submersibles, remotely operated underwater vehicles. Techniques for collecting water and sediment samples, corers: gravity, piston and multiple corers (MUC), giant box corer (GBC); drilling techniques, MEBO sea floor drill rig. Culturing of deep sea microbes (piezophilic/ barophilic microorganisms). Introduction to anaerobic and pressure culture chambers/systems, techniques for isolation and culturing of deep sea microorganisms under <i>in situ</i> and simulated deep sea conditions.	15 hrs.
	Module III Hydrothermal vents, metals at hydrothermal vents, food webs, chemosynthesis, microbial communities. Diversity of higher organisms including the tube worm <i>Riftia pachyptila</i> , sponges, corals. Cold seeps. Nutrient cycling.	15 hrs.
Pedagogy:	Lectures/tutorials/assignments.	
References/ Readings:	 Munn, C. (2011). Marine microbiology: Ecology and applications. (Second Edition), New York: Garland Science, Taylor and Francis Group. Jorgensen, B. B., & Boetius, A. (2007). Feast and famine: microbial life in the deep sea bed. Nature Reviews Microbiology. 5, 770-781. Nakagawa, S., & Takai, K., (2008). Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbial Ecology. 68, 1-84. Karl, D. M. (1995). The microbiology of deep-sea hydrothermal vents. New York: CRC Press. 	

		<u>Std. Com. X AC-5</u> <u>14.02.2023</u>
	 Sharma, R. (2017). Deep-sea mining resource potential, a and environmental considerations. Switzerland: International Publishing. Kallmeyer, J., & Wagner, D. (2012). Microbial life of t biosphere. De Gruyter. eISBN: 9783110300130. Orcutt, B. N., Sylvan, J. B., Knab, N. J., Edwards, K. J. Microbial ecology of the dark ocean above, at, and be seafloor. Microbiology and Molecular Biology Reviews, 75, 78. Seibold, E., & Berger, W. (2017). The sea floor : An introduce marine geology. (Fourth Edition), Switzerland: International Publishing. 	technical Springer <i>he deep</i> . (2011). elow the 361-422. <i>uction to</i> Springer
Learning Outcome:	The students will be able to understand the deep sea environ sampling techniques and their microbial life.	onments,

Course Code: MMTE-519 Title of the Course: Marine Microbial Toxins Number of Credits: 01

Prerequisites:	Students should have undergone Part I Courses in their respective post-graduate disciplines.	
Objective:	This course helps students to understand the production, fate and c aspects of marine microbial biotoxins.	commercial
Content:	Module I Marine microbial toxins: cholera toxin, botulinum toxin, saxitoxins, okadaic acid, dinophysistoxins, pectenotoxins, yessotoxin, brevetoxin, karlotoxins, ciguatoxins, domoic acid, azaspiracids, spirolides; structural diversity, biosynthetic pathways, biological functions, mechanisms of action, ecological role, biomagnification and biotransformation across trophic levels. Factors affecting toxin production. Syndromes caused by microbial toxins. Analytical methods for the detection of microbial toxins: bioassays, Liquid Chromatography – Mass Spectrometry, High Performance Liquid Chromatography (HPLC). Toxins in pharmacology.	15 hrs.
Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies.	
References/ Readings:	 Waters, A. L., Hill, R. T., Place, A. R., & Hamann, M. T. (2010). The expanding role of marine microbes in pharmaceutical development. <i>Current Opinion in Biotechnology</i>, 21(6), 780-786. Santi Delia, A., Caruso, G., Melcarne, L., Caruso, G., Parisi, S., & Laganà, P. (2015). Biological toxins from marine and freshwater microalgae. In: <i>Microbial toxins and related contamination in the food industry</i>. Springer, Cham. Lelong, A., Hegaret, H., Soudant, P., & Bates, S. S. (2012). <i>Pseudonitzschia</i> (Bacillariophyceae) species, domoic acid and amnesic 	

		<u>Std. Com. X AC-5</u> <u>14.02.2023</u>
	 shellfish poisoning: revisiting previous paradigms. <i>Ph</i>, 51(2), 168-216. 4. McCallum, M. E., & Balskus, E. P. (2019). Enzymes that marine toxins. <i>Nature</i>, 570, 315-316. 5. Stonik, V. A., & Stonik, I. V. (2016). Toxins produced by microorganisms: A short review. In: Gopalakrishnakone, (Eds.). <i>Marine and Freshwater Toxins, Toxinolog</i>, 10.1007/978-94-007-6419-4_2. 	<i>ycologia,</i> detoxify y marine P. et al. gy. DOI
Learning Outcome:	The students will get an insight into the mechanisms, fate, a methods and commercial aspects associated with marine r toxins.	analytical microbial

Course Code: MMPE-520

Title of the Course: Scientific Writing Skills Practical

Prerequisites:	Students should have undergone Part I Courses in their respective post-graduate	
	disciplines.	
Objective:	To give a hands-on experience in various writing skill required for disserta	ation thesis
	preparation and presentation.	
Content:	Module I	30 hrs.
	1. Tabular and graphical representation of data (8 hrs, Ref. 1,2).	
	2. Paper and book publication (5 hrs, Ref. 1,2).	
	3. Proposal writing (5 hrs, Ref. 3).	
	4. Writing dissertation thesis (5 hrs, Ref. 4-5).	
	5. Poster and power point presentation (5 hrs, Ref. 6).	
	6. Check for plagiarism (2 hrs, Ref. 7).	
Pedagogy:	Projects and assignments in the laboratory.	
References/	1. <u>https://www.youtube.com/watch?v=JVaKq-oJnFs</u>	
Readings:	2. https://www.embibe.com/exams/basic-graphical-representation/	
	3. https://slite.com/learn/how-to-write-project-proposal	
	4. Felix, M.S., & Smith, I. (2019). A practical guide to dissertation and	
	thesis writing. Cambridge Scholars Publishing.	
	5. https://www.prospects.ac.uk/applying-for-university/university-	
	life/7-steps-to-writing-a-dissertation	
	<u>https://support.microsoft.com/en-us/office/create-a-</u>	
	presentation-in-powerpoint-422250f8-5721-4cea-92cc-	
	<u>202fa7b89617.</u>	
	7. <u>URKUND Plagiarism handbook – A guide for both teachers and</u>	
	students. https://www.urkund.com/ resources/knowledge-hub/	
	<u>plagiarism-handbook/.</u>	
Learning	A practical experience of thesis and proposal writing along with	
Outcome:	learning the different methods of data representation and	
	presentation skills.	

Course Code: MMTE-521

Title of the Course: Ocean Observations and Techniques

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester III Courses.		
Objective:	Introduce the students to analytical techniques and instrumentations used for		
	oceanographic and remote sensing studies.		
Content:	Module 1 Indian oceanographic research vessels and their facilities. Platform and Instruments: gliders, Argo, floats, acoustic doppler current profiler, current meters, radar, seawater samplers, Conductivity-Temperature- Depth (CTD), XBT plankton net, grab and corer, echosounder, SONAR, underwater robots and vehicles.	15 hrs.	
	Module II Confocal laser scanning microscopy for study of biofilms. Changes in redox potentials. Carbon measurement methods: CHNS elemental analyzer, total inorganic carbon by a coulometer, dissolved organic carbon using high-temperature combustion method, sediment traps (moored arrays/drifting traps). ²³⁴ Thorium as a tracer for POC export estimates, respiration measurements of plankton, fluorometric assessment of enzymatic activity using 4-Methylumbelliferyl (MUF) substrate. Genomic and metagenomics approaches.	15 hrs.	
	Module III Marine bio-optics, electromagnetic radiation, Photosynthetically Active Radiation (PAR), optical properties of seawater, ocean color, Chromophoric Dissolved Organic Matter (CDOM), polar-orbiting and geosynchronous satellites, satellites and sensors. Applications of remote sensing and societal benefits: primary productivity, sea surface temperature, salinity, wind speed and direction, ocean currents, ocean-atmosphere heat exchange, bloom dynamics, assessment of carbon reservoirs and fluxes, potential fishing zones. Pelagic and migratory fish. Species conservation.	15 hrs.	
Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies.		
References/ Readings:	 Andreas, S., & Brassington, G. B. (2011). Operational oceanography in the 21st century. Germany: Springer. Jeffrey, S. W., & Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures. In: <i>Phytoplankton pigments in oceanography</i>. Paris: UNESCO Publishing. Martin, S. (2004). An introduction to ocean remote sensing. UK: Cambridge University Press. Venkatesan, R., Tandon, A., D'Asaro, E.A., & Atmanand, M. A. (2018). Observing the oceans in real time. USA: Springer. Munn, C. (2011). Marine microbiology: Ecology & applications. New York: Taylor Francis Group. 		
Learning	Understanding the ocean processes using different instruments and		
Outcome:	techniques.		

Course Code: MMPE-522

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester I	Students should have undergone M.Sc. Marine Microbiology Semester III Courses.		
Objective:	Enable the students to identify microbes and understand their role in the marine			
	environment.			
Content:	Module I	30 hrs.		
	1. Estimation of primary productivity using light and dark methods			
	(8 hrs, Ref. 1).			
	2. Use of fluorochromes for enumeration of bacteria from the			
	marine environment using epifluorescence microscopy (8 hrs,			
	Ref. 2).			
	3. Enumeration of live and dead marine microbes using			
	microscopy (8 hrs, Ref. 2).			
	4. Microscopic observation of cell organelles using fluorochromes			
	(6 hrs, Ref. 2).			
Pedagogy:	Laboratory experiments/ Field trips.			
References/	1. Selvaraj, G. S. D. (2005). Estimation of primary productivity			
Readings:	(modified light and dark bottle oxygen method). In: Mangrove			
	ecosystems: A manual for the assessment of biodiversity. 83,			
	CMFRI Special Publication.			
	2. Cappuccino, J. G., & Sherman, N. (1998). Microbiology: A			
	laboratory manual. California: Benjamin/Cummings Science			
	Publishing.			
Learning	Knowledge on how to study microbes in the ocean using different			
Outcome:	techniques.			

Title of the Course: Ocean Observations and Techniques Practical

Course Code: MMTE-523

Title of the Course: Microbial Remediation in Marine Ecosystems

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester III Courses.		
Objective:	This course focuses on the use of using marine microorganism remediation of diverse pollutants.	ms as a tool for	
Content:	Module I Concept of bioremediation, various strategies (bio- augmentation, bio-stimulation, co-metabolism, use of microbial consortia and genetically-modified microorganisms). Bioremediation of metals mediated by marine microbes: heavy metal resistant bacteria/fungi/archaea. Metal resistance mechanisms (efflux mechanism, intracellular bioaccumulation, extracellular sequestration and surface biosorption, bioprecipitation, biotransformation and redox reaction, volatilization).	15 hrs.	

	5	<u>Std. Com. X AC-5</u> <u>14.02.2023</u>
	Bioremediation of hydrocarbons in marine environments: oil spills/ tar ball management. Biodegradation – reactions, enzymes and pathways. Biosurfactants. Module II Biodegradation of Complex Polysaccharides (CPs) by marine microorganisms: algal waste, CP-degrading enzymes – agarase, alginate lyase, carragenase, cellulase, and their role in degradation. Biodegradation of seafood waste by microorganisms: seafood waste, calcium carbonate-solubilizing bacteria, phosphate- solubilizing bacteria; the role of chitinase and protease enzymes, use of microbial consortia, application of seafood waste for ethanol production. Bioremediation of xenobiotics and pollutants in hypersaline environments using Sulfate-Reducing Bacteria (SRB) and archaea: pollutants in hypersaline environments – metals, xenobiotics, remediation strategies involving SRB, application in remediation of industrial effluents.	15 hrs.
Pedagogy:	Lectures/tutorials/assignments.	
References/ Readings:	 Satyanarayana, T., Johri, B., & Anil, T. (2012). <i>Microorganisms in environmental management.</i> Springer Publishers. Prince, R. C., & Atlas, R. M. (2017). Bioremediation of marine oil spills. In: <i>Handbook of hydrocarbon and lipid microbiology.</i> Springer Publishers. Judith, S.W. (2015). <i>Marine pollution: What everyone needs to know.</i> Oxford University Press. Munn, C. B. (2020). <i>Marine microbiology: Ecology and applications.</i> (Third Edition), New York: Garland Science, Taylor and Francis Group. King, R. B., Sheldon, J. K., & Long, G. M. (1997). <i>Practical environmental bioremediation: the field guide,</i> Lewis Publishers. Kennish, M. J. (1996). <i>Practical handbook of estuarine and marine pollution.</i> CRC Press, Francis and Taylor. Naik, M., & Dubey, S. K. (2017). <i>Marine pollution and microbial remediation.</i> Springer Publications. Meena, S. N., & Naik, M. M. (2019). <i>Advances in biological sciences research.</i> Elsevier Publications. 	
Learning Outcome:	Application of marine microorganisms towards pollution abatement.	Back to Agonda)

Course Code: MMPE-524

Title of the Course: Microbial Remediation in Marine Ecosystems Practical

Number of Credits: 01

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester II	l Courses.
Objective:	This course focuses on application of marine microorganisms in	pollution
	abatement.	
Content:	Module I	30 hrs.
	1. Use of hydrocarbon-degrading marine bacteria to test degradation	
	of sodium benzoate (8 hrs, Ref 1-2).	
	2. Isolation of biosurfactant-producing microorganisms (8 hrs, Ref.	
	2).	
	3. Isolation of selenite/tellurite resistant marine-derived bacteria for	
	application in bioremediation (6 hrs, Ref. 2).	
	4. Use of bacterial/fungal isolates for decolourization of dyes (8 hrs,	
	Ref. 3).	
Pedagogy:	Experiments in the laboratory.	
References/	1. Zaveri, P., Iyer, A. R., Patel, R., & Munshi, N. S. (2021). Uncovering	
Readings:	competitive and restorative effects of macro-and micronutrients	
	on sodium benzoate biodegradation. Frontiers in Microbiology,	
	12, 634753.	
	2. Naik, M., & Dubey, S. K. (2017). Marine pollution and microbial	
	remediation. Springer Publications.	
	3. Rani, B., Kumar, V., Singh, J., Bisht, S., Teotia, P., Sharma, S., &	
	Kela, R. (2014). Bioremediation of dyes by fungi isolated from	
	contaminated dye effluent sites for bio-usability. Brazilian Journal	
	of Microbiology, 45, 1055-1063.	
Learning	Students will learn to apply different bioremediation approaches using	
Outcome:	marine microorganisms to deal with pollutants and xenobiotics.	

Course Code: MMTE-525

Title of the Course: Bioinformatics in Marine Microbiology

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester II	ll Courses.
Objective:	To understand the basics of bioinformatics and learn to analyse phylogeny and metagenomics data for diversity studies.	
Content:	Module I Introduction to microbiome research. Data mining – DNA sequence assembly and annotation of genes. Types of User Interface (CUI, GUI). Biological Databases and search tools. Sequence alignment: Pairwise, Multiple. Similarity and homology of sequences. Orthologs, paralogs, analogs. Sequence alignment tools. Similarity and distance, similarity scores, weight matrices, Heuristic method, Hidden Markov Models. Gene annotation, phylogenetics: gene phylogeny versus species phylogeny. Sequence-based classification and identification, Operational Taxonomic Units, rooted and unrooted trees. Approaches	15 hrs.

		<u>Std. Com</u> <u>14.02</u>	<u>. X AC-5</u> .2023
	in phylogenetic analysis – phenetic, cladistic, evolutionary sapproach. Methods in tree construction – distance-based (UPGMA, NJ, ME), character-based methods (MP, ML). Module II Metagenomics: 16S rRNA amplicon sequencing for metage targeted metagenomics pipelines to analyse the raw data a from next generation platforms. Quality check and fil sequences, pairing of reads, grouping of reads into OTU Amplicon Sequence Variants (ASVs). Databases for t identification. Alignment of OTUs, α -(within group) and β (between groups) comparison. Full Shotgun DNA metagenom nultiplexing of raw reads, quality check, conversion to FAST files, QIIME/QIIME2, clustering into OTUs, assigning taxonom clusters, Prokka, metAMOS. Introduction to predictive analyses and tools for visualization.	systematic methods nomics or generated ltering of Js or/and taxonomic 3-diversity mics – de- TQ format my to the functional	15 hrs.
Pedagogy:	Lectures/ tutorials/ assignments/ interactive learning.		
References/ Readings:	 Lesk, A. M. (2005). Introduction to bioinformatics. University Press. Jean-Michel, C. (2005). Bioinformatics: a beginner's gu Wiley Dreamtech. Shanmughavel, P. (2005). Principles of bioinformatic Pointer Publishers. Jeremy, J. R., (2004). Bioinformatics: an introduction Springer Publishers. Rastogi, C. (2004). Bioinformatics: concepts, skills & app New Delhi: CBS Publishers. Mount, D. (2000). Bioinformatics: sequence and genome New York: Cold Spring Harbor Laboratory Press. Baxevanis, A. (2001). Bioinformatics: a practical guid analysis of genes and proteins. New York: John Wiley & S Srinivas, V.R. (2005). Bioinformatics: a modern appro Delhi: Prentice Hall of India. Ignacimuthu, S. (2008). Basic bioinformatics. New Dell Publishing House. Khan, I.A. (2005). Elementary bioinformatics. Hyderabad Book Syndicate. 	s. Oxford <i>ide</i> . India: cs. Jaipur: on. India: <i>plications.</i> <i>e analysis.</i> <i>de to the</i> Sons. <i>bach.</i> New hi: Narosa d: Pharma	
Learning Outcomes:	 Students will be able to use bioinformatics tools in resea Apply the knowledge for phylogenetic and metagenomi studying microbial diversity. 	irch. cs work in	
	(Back to Index	<u>k) (Back to</u>	Agenda)

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester III Courses.	
Objective:	To understand database search, sequence-based identification and pl tree construction for evolutionary studies.	nylogenetic
Content:	 Module I 1. NCBI search tool, nBLAST (2 hrs, Ref. 1-6). 2. Downloading type sequences, creating FASTA files for alignment, sequence alignment (2 hrs, Ref. 1-6). 3. Construction of phylogenetic trees (4 hrs, Ref. 1-6). 4. Introduction to Galaxy workflow (10 hrs, Ref. 7-10). 5. QIIME2 workflow (12 hrs, Ref. 7-10). 	30 hrs.
References/ Readings:	 Lesk, A. M. (2005). Introduction to bioinformatics. Oxford University Press. Jean-Michel, C. (2005). Bioinformatics: a beginner's guide. India: Wiley Dreamtech. Jeremy, J. R., (2004). Bioinformatics: an introduction. India: Springer Publishers. Mount, D. (2000). Bioinformatics: sequence and genome analysis. New York: Cold Spring Harbor Laboratory Press. Baxevanis, A. (2001). Bioinformatics: a practical guide to the analysis of genes and proteins. New York: John Wiley & Sons. Ignacimuthu, S. (2008). Basic bioinformatics. New Delhi: Narosa Publishing House. Greenwald, W. W., Klitgord, N., Seguritan, V., Yooseph, S., Venter, J. C., Gamer, C., Nelson, K.E., & Li, W. (2017). Utilization of defined microbial communities enables effective evaluation of meta- genomic assemblies. BMC Genomics, 18, 296. Sczyrba, A. et al. (2017). Critical assessment of metagenomic software. Nature Methods, 14(11), 1063-1073. Vollmers, J., Wiegand, S., & Kaaster, A-K. (2017). Comparing and evaluating metagenome assembly tools from a microbiologist's perspective – not only size matters! PloS One, 12 (1), e0169662. Hiltemann, S. D., Boers, S. A., van der Spek, P. J., Jansen, R., Hays, J. P., & Stubbs, A. P. (2019). Galaxy mothur toolset (GmT): a user- friendly application for 16S rRNA gene sequencing analysis using mothur. GigaScience, 8, 1-5. 	
Learning Outcome:	Students will be able to gain working knowledge of computational tools and methods for phylogenetic and metagenomics work in studying microbial diversity.	

Title of the Course: Nanotechnology Number of Credits: 02

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester II	l Courses.
Objective:	To impart the knowledge of nanotechnology and the synthesis of nanoparticles from	
	marine microorganisms.	
Content:	Module I	15 hrs.
	Introduction to nanotechnology; overview of development of	
	nanotechnology. Types of nanoparticles; natural and incidental	
	nanoparticles. Cellular nanostructures: nanopores, biomolecular	
	motors. Bio-inspired nanostructures: thin films, colloidal	
	nanostructures, nanovesicles, nanospheres, nanocapsules. Properties	
	and characterization. Nanomaterials in biotechnology – nanoparticles,	
	quantum dots, nanotubes, nanowires. Applications of nanoparticles in	
	drug delivery, bio-imaging and diagnosis. Concept: cantilevers as nano-	
	biosensors for cancer screening.	
	Module II	
	Microbial synthesis of nanomaterials, methodology, mechanism and	
	applications of nanomaterials synthesis mediated by bacteria, fungi and	
	veast. Advantages of microbial/biogenic nanomaterials synthesis	15 hrs.
	methods. Antimicrobial activities/mechanisms of nanomaterials;	
	concept of MIC, MBC. Toxicity studies.	
Pedagogy:	Lectures/tutorials/assignments.	
References/	1. Poole, C. P. Jr., & Qwens, F. J. (2003). Introduction to	
Readings:	nanotechnology. Wiley.	
	2. Ehud, G. (2007). Plenty of room for biology at the bottom: An	
	introduction to bionanotechnology. Imperial College Press.	
	3. Bharat, B. (2007). Springer handbook of nanotechnology. Springer	
	Verlag.	
	5. Challa, S., Kumar, S. R., & Carola, J. H. (2006). Nanofabrication	
	towards biomedical application: Techniques, tools, application and	
	6 Malsch NH (2005) Riomedical nanotechnology Taylor and Francis	
	CRC Press	
	7. Greco, R. S., Prinz, F. B., & Smith, R. L. (2004). Nanoscale technology	
	in biological systems. CRC Press.	
	8. Tibbals, H. F. (2010). <i>Medical nanotechnology and nanomedicine</i> .	
	CRC Press.	
Learning	Students will learn the fundamentals of nanotechnology, the	
Outcome:	nanoparticle production potential of marine microorganisms and the	
	application of the nanoparticles.	

(Back to Index) (Back to Agenda)

Course Code: MMPE-528

Title of the Course: Nanotechnology Practical

Number of Credits: 01

Prerequisites: Students should have undergone M.Sc. Marine Microbiology Semester III Courses.

Std. Com. X AC-5 14.02.2023

-		
Objective:	To impart the practical knowledge of nanoparticle synthesis from	m marine
	microorganisms.	
Content:	Module I	30 hrs.
Content:	 Isolation and enrichment of metal-tolerant microorganisms (4 hrs, Ref. 1-4). Preparation of metal nanoparticles using marine bacteria/fungi/plankton (14 hrs, Ref. 2-5). Characterisation of metal nanoparticles using spectroscopy (6 hrs, Ref. 2-5). Biological activity of nanoparticles – antimicrobial assay (6 hrs, Ref. 6). 	30 ms.
Pedagogy:	Practicals in the laboratory.	
References/ Readings:	 Naik, M., & Dubey, S. K. (2017). Marine pollution and microbial remediation. Springer Publications. Poole, C. P. Jr., & Qwens, F. J. (2003). Introduction to nanotechnology. Wiley. Kulkarni, S. K. (2015). Nanotechnology: principles and practices. (Third Edition), Springer. https://doi.org/10.1007/978-3-319-09171-6. Niemeyer, C. M. & Mirkin, C. A. (2004). Nanobiotechnology: Concepts, applications and perspectives. Wiley VCH. Vo-Dinh, T. (Ed.) (2017). Nanotechnology in biology and medicine: Methods, devices and applications. (Second Edition). CRC Press. https://doi.org/10.4324/9781315374581. Bhagwat, S. S., Kulkarni, A. S., & Parulekar-Berde, C. (2015). Evaluation of antimicrobial activity of silver nanoparticles biosynthesized from Penicillium spp. World Journal of Pharmaceutical Research. 4 (12), 1256-1265. 	
Learning	Students will learn the synthesis and characterization of nanoparticles	
Outcome	from marine microorganisms	
Guttome.		

Course Code: MMTE-529 Title of the Course: Blue Economy Number of Credits: 01

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester	III Courses.
Objective:	To create awareness of global and national stand on blue economy, its and ecological significance.	s economic
Content:	Module I Introduction to blue economy: Rio +20 summit, definition, importance and implications. Framework for sustainable development. International legal framework for fisheries. Small Islands Development States (SIDS). Climate change impact. Indian Ocean Rim Association (IORA) Blue carbon hub (mangroves, tidal marshes, sea grasses). Blue economy: issues and opportunities. Indian's blue economy policy	15 hrs.

	<u>Si</u>	<u>itd. Com. X AC-5</u> 14.02.2023
	framework. National Fisheries Development Board (NFDB) sch and blue revolution. Potential of blue economy in Indian Ocear production, deep sea minerals and trade benefits.	nemes n: fish
Pedagogy:	Lectures/ tutorials/ assignments/ self-study.	
References/ Readings:	 Morgan, P. J., Huang, M. C., Voyer, M., Benzaken, D., & Wata A. (2022). Blue economy and blue finance toward sustai development and ocean governance. ISBN 978-4-89974-2 <u>https://doi.org/10.56506/HDLZ1912.</u> Blue economy policy <u>https://incois.gov.in/documents/Blue Economy policy.pdf</u> Diez, S. M., Patil, P. G., Morton, J., Rodriguez, D. J., Vanzell Robin, D., Maes, T., & Corbin, C. (2019). Marine pollution i Caribbean: Not a minute to waste. Washington DC: World Group. http://documents.worldbank.org/curated/en/482391554225 20/pdf/Marine-Pollution-in-the-Caribbean-Not-a-Minute-to- Waste.pdf NFDB Schemes & blue revolution – Inland fisheries sche National Fisheries Development Board. <u>http://nfdb.gov.in.</u> 	inabe, inable 252-4. - la, A., in the Bank 51857 emes.
Learning Outcome:	Students will gain knowledge and understanding of blue econom its significance.	iy and

Course Code: MMTE-530

Title of the Course: Probiotics and Prebiotics in Aquaculture

Number of Credits: 01	
-----------------------	--

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester III Courses.		
Objective:	This course will introduce the concept of probiotics and prebiotics in aquaculture.		
Content:	Module I Introduction to probiotics and prebiotics. Role in fish culture – growth and health. Source and types of probiotics and prebiotics, their characteristics, administration, mechanisms of action, and beneficial applications in aquaculture.	15 hrs.	
Pedagogy:	Lectures/tutorials/assignments/self-study.		
References/ Readings:	 Subedi, B., & Shreshta, A. (2020). Probiotics in aquacuture. International Journal of Forest, Animal and Fisheries Research. 4, 52- 60. Austin, B., & Sharifuzzaman, S. M. (Editors.) (2022). Probiotics in aquacuture. (First Edition), Springer. Hasan, K. N., & Banerjee, G. (2020). Recent studies on probiotics as beneficial mediator in aquaculture: a review. The Journal of Basic and Applied Zoology. 81, 53. Sugula, T. (2020). Role of probiotics in aquaculture. International Journal of Current Microbiology and Applied Science. 9(10), 143- 149. 		

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

Learning	Students will be acquainted with the different probiotics and their
Outcome:	importance in aquaculture.

Course Code: MMTE-531 Title of the Course: Marine Drug Development and Metabolism Number of Credits: 01

Prerequisites:	Students should have undergone M.Sc. Marine Microbiology Semester III Courses.		
Objective:	To introduce the concepts of clinical research for drug developr administration and metabolism.	nent, drug	
Content:	Module I Marine drug discovery and development. Comprehensive Marine Natural Product Database (CMNPD). docking studies. Preclinical and clinical research. FDA review. FDA post-market safety monitoring. Marine pharmacology: antibacterial, antiviral, anti-inflammatory, antiparasitic, neuroprotective, anticancer, analgesic, antimicrobial, anti-malarial and nutraceutical. Marine drugs in clinical phase trials. Approved drugs of marine origin (Cytarabine, Vidarabine). Routes of drug administration. Biotransformation and metabolism. Factors affecting biotransformation.	15 hrs.	
Pedagogy:	Lectures/ tutorials/ assignments/ students' seminars/ interactive learning.		
References/ Readings:	 Lyu, C., Chen, T., Qiang, B., Liu, N., Wang, H., Zhang, L., & Liu Z. (2021). CMNPD: a comprehensive marine natural products database towards facilitating drug discovery from the ocean. <i>Nucleic Acids Research</i>. 49, D509-D515. doi: 10.1093/nar/gkaa763. Paradkar, A. R., & Bakliwal, S. R. (2006). <i>Biopharmaceutics and pharmacokinetics</i>. Pune: Nirali Prakashan. Shargel, L., & Yu, A. B. C. (2015). <i>Applied biopharmaceutics & pharmacokinetics</i>. (Seventh Edition), New Delhi: Tata Mc Graw Hill Publishing Company. Brahmankar, D. M., & Jaiswal, S. B. (2015). <i>Biopharmaceutics and pharmacokinetics – a treatise</i>. (Third Edition), Delhi: Vallabh Prakashan. Schoenwald, R.D. (2009). <i>Pharmacokinetics in drug discovery and development</i>. CRC Press. Boca Raton. Chakraborty, C., & Bhattacharyya, A. (2004). <i>Pharmacogenomics An approach to new drug development</i>. Delhi: Biotech Books. Lodola, A., & Stadler, J. (2011). <i>Pharmaceutical toxicology in practice: a guide for non-clinical development</i>. New Jersey: John Wiley & Sons. 		

	 Differding, E. (2017). The drug discovery and development industry in India – two decades of proprietary small-molecule R&D. ChemMedChem Reviews. 12, 786-818. doi:10.1002/cmdc.201700043. 	
Learning Outcome:	Understanding of drug discovery, development and metabolism.	

Annexure II

Course Code: MMRM-XXX Title of the Course: Research Methodology – Marine Microbiology (Ph.D.) Number of Credits: 04

Prerequisites:	Provisional Ph.D. registration in Marine Microbiology.	
Objective:	To provide knowledge on basic and advanced methods to conduct researce area of marine microbiology.	h in the
Content:	Module I Selection of research topic. Literature survey. Research methods in marine microbiology. Procedures and protocols followed in collection of water, sediment and other types of samples for analysis. Pre-treatment and preservation methods. On-board/on-site measurement of parameters. Module II	15 hrs.
	Experimentation in the laboratory. Experimental design. Pilot studies. Good Microbiological Practices (GMP). Techniques for isolation and culturing of microorganisms. Knowledge of instruments used in marine microbiology. Errors in analytical measurements, accuracy, precision and validation of analytical data. Calibration of instruments. Reference standard materials. Documentation and record keeping.	15 hrs.
	Module III Statistical tools and softwares used in data processing. Presentation and manuscript writing skills. Different types of manuscripts: short communication, research articles, review articles. Citation of references. Reference managers like ENDNOTE and MENDELEY. Standard reference citation styles. Plagiarism check softwares.	15 hrs.
	Module IV Safety practices in the laboratory. Biosafety levels and practices. Handling of hazardous chemicals and gases. Disposal of chemical and biological waste. Fire safety protocols and first aid measures.	15 hrs.

Std. Com. X AC-5 14.02.2023

Pedagogy:	Lectures/tutorials/assignments/self-study/case-studies.		
References/ Readings:	 Grinnel, F. (1992). <i>The scientific attitude</i>. New York: The Guilfo Marsh, B. (2003). <i>The Chicago guide to communicating</i> Chicago: University of Chicago Press. Grasshoff. K., Ehrhardt, M., & Kremling, K. (Eds.). (1983). <i>Me</i> <i>seawater analysis</i>. (Second Edition), Verlag Chemie. Sokal, R. R., & Rohlf, F. J. (1981). <i>Biometry</i>. San Francisco: Fre Company. Morrison, D. F. (1990). <i>Multivariate statistical methods</i>. Si 	ord Press. science. ethods of eeman & ingapore:	
Learning Outcome:	The students will be able to employ various methods and techr independently address research problems in the area of microbiology.	niques to ^E marine	

(Back to Index) (Back to Agenda)