GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023 & Thursday, 23rd February, 2023

<u>Time</u>

10.00 a.m.

Venue Council Hall, Administrative Block Goa University

D 3.3	Minutes of the Board of Studies in Physics meeting held on 04.11.2022.						
	The Standing Committee of the Academic Council approved the minutes of the						
	Board of Studies in Physics meeting held on 04.11.2022 with a suggestion to						
	Replace Terminology 'Learning Outcomes' with 'Course Outcomes'						
	(Action: Assistant Registrar Academic-PG)						
D 3.4	Minutes of the Board of Studies in Social Work meeting held by circulation.						
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Social Work meeting held by circulation with the following suggestions:						
	 Heading for the Courses listed under the structure to be mentioned. (Research Specific Elective Courses and General Elective Courses) Terminology 'Optional Courses' to be replaced with 'Elective Courses'. Terminology 'Recommended readings' to be replaced with 'References/Readings'. Uniform format for the References/Readings to be followed. 						
	(Action: Assistant Registrar Academic-PG)						
D 3.5	Minutes of the Board of Studies in Public Administration meeting held on						
	01.07.2022.						
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Public Administration meeting held on 01.07.2022 with the following suggestions:						
	 Data Analysis under the content of the syllabus to be added for Course code PATR-501 Qualitative and Quantitative Research Methodology. Heading for the Courses listed under the structure to be mentioned. (Research Specific Elective Courses and General Elective Courses) Course, objectives of PATR-501 - Qualitative and Quantitative Research Methodology to be checked. 						
	(Action: Assistant Registrar Academic-PG)						
	Minutes of the Doord of Studies in Mathematics meeting hold on 02.11.2022						
U 3.6	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Mathematics meeting held on 03.11.2022. The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Mathematics meeting held on 03.11.2022 with the suggest to verify the title of the Course Code MTTE- 407 as the same Course is offered UG level.						
	(Action: Assistant Registrar Academic-PG)						
D 3.7	Minutes of the Board of Studies in English meeting held on 17.10.2022.						
The Standing Committee of the Academic Council approved the mine Board of Studies in English meeting held on 17.10.2022 with the suggestions:							
	 Terminology 'Optional Courses' to be replaced with 'Elective Courses'. Terminology 'Recommended readings' to be replaced with 'References/Readings'. 						

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL AGENDA

For the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administrative Block Goa University

	<u>14.02.2023</u>
D 3.6	Minutes of the Board of Studies in Mathematics meeting held on 03.11.2022.
	Part A
	1. Recommendations regarding courses of study in the subject or group of subjects at
	the undergraduate level: Nil
	2. Recommendations regarding courses or group of subjects at postgraduate level:
	BoS discussed and finalized the syllabus of Research Specific Elective and Generic
	Elective courses for semester III and IV. List of these courses and their syllabus is
	attached as Annexure I. (Refer page No. 263)
	BoS decided to introduce more Discipline specific electives for Sem 1 and 2. The
	list of these courses and their syllabi are attached as <u>Annexure II (Refer page No.</u>
	285).
	It was noticed that the syllabus of one of the Discipline Specific Core papers,
	MTTC-406 Differential Equations, approved in earlier meeting overlapped
	significantly with the syllabus of undergraduate paper. Hence it was decided to
	modify and the syllabus to keep the overlap at a minimum. The new syllabus of
	this course is attached as <u>Annexure III (Refer page No. 292)</u> .
	 Syllabus of Research Methodology Course of PhD Mathematics was discussed and any rough and the same is attached as Any any ph((Defenders No. 202))
	and approved and the same is attached as Annexure iv (Refer page No. 293) .
	Dart B ·
	1 Scheme of the Examinations at Undergraduate Level: Nil
	2. Panel of examiners for different examinations at Undergraduate Level: Nil
	3. Scheme of the examinations at post-graduate level:
	BoS discussed the examination scheme for the Postgraduate Diploma in Applied
	Statistics (offered at Govt. College Sanquelim). It was decided to accept the request
	of the college to have a continuous evaluation with an ISA component of 40%
	weightage and SEA component of 60% weightage.
	4. Panel of examiners for different examinations at post-graduate Level: Nil
	Part C
	1. Recommendations regarding preparation and publication and selection of Anthologies in any subject or group of subjects and the names of person
	recommended for annointment to make the selection:
	recommended for appointment to make the selection.
	Part D
	1. Recommendations regarding general academic requirements in the Departments of
	University or affiliated colleges: Nil
	2. Recommendation of Academic Audit committee and status thereof: Nil
	Part E
	(I) Recommendations of text books for the course for study at the Undergraduate level:
	NII (II) Decembra detions of tout he clus for the second of the decision of the second of the second of the second
	(ii) Recommendations of text books for the courses of study at the post Graduate level:
	Part F
	Important points for consideration/approval of Academic Council:
	mper une perme for consideration, approval of Academic Council

Std. Com. X AC-5

		<u>Std. Com. X AC-5</u> 14.02.2023
	 MSc Mathematics syllabus for Semester III and IV approved by New Discipline specific elective courses to be offered in S modification of syllabus of one of the discipline specific core as approved by the BoS. Research Methodology paper for PhD Mathematics coursewo BoS. Examination pattern of Postgraduate Diploma in Applied Stathe BoS. 	y the BoS. emester I and II and courses of Semester II ork as approved by the tistics as approved by
	meeting itself. Date: 03.11.2022 Place: Goa University	, Sd/- Signature of Chairman
	 Part G: The remarks of the Dean of the Faculty. (I) The minutes are in order. (II) The minutes may be placed before the Academic Council with (III) May be recommended for approval of Academic Council. (IV) Special remarks if any: Nil 	remarks if any.
	Date: 03.11.2022 Place: Goa University	Sd/- Signature of the Dean <u>(Back to Index)</u>
D 3.7	 Minutes of the Board of Studies in English meeting held on 17.10.3 Part A. Recommendations regarding courses of study in the subject of the undergraduate level: Recommendations regarding courses of study in the subject of the postgraduate level: The BoS approved Research Specific Optional Courses Courses for Semester III & IV from the academic yet (Annexure I Refer page No. 295) The BoS also prepared Research Methodology Course English (Annexure II Refer page No.313) 	2022. or group of subjects at or group of subjects at and Generic Optional ear 2023-24 onwards e for PhD students in
	Part Bi. Scheme of Examinations at undergraduate level:NILii. Panel of examiners for different examinations at the undergradiii.Scheme of Examinations at postgraduate level:iv. Panel of examiners for different examinations at post-graduate	duate level: NIL e level: NIL
	 Part C. 1. Recommendations regarding preparation and publication of material in the subject or group of subjects and the narecommended for appointment to make the selection: NIL 	f selection of reading ames of the persons

D 3.6 Minutes of the Board of Studies in Mathematics meeting held on 03.11.2022.

Annexure I

Goa University

School of Physical and Appl Sciences, MSc Mathematics

Research specific elective and Generic elective PG courses starting from June 2022 onwards

Semester 3 and 4				
Paper Code	Paper Title			
MTTR-501	Mathematical Modelling (4 Credits)			
MTTR-502	Algebraic Topology (4 Credits)			
MTTR-503	Number Theory (4 Credits)			
MTTR-504	Lie Algebra (4 Credits)			
MTTR-505	Graphs and Networks (4 Credits)			
MTTR-506	Advanced Graph Theory (4 Credits)			
MTTR-507	Measure Theory-I (4 Credits)			
MTTR-508	Measure Theory-II (4 Credits)			
MTTR-509	Functional Analysis-II (4 Credits)			
MTTR-510	Symmetry Methods for Differential Equations (4 Credits)			

(1) Research Specific Elective Papers

(2) Generic Elective Papers

Semester 3	
Paper Code	Paper Title
MTTG-501	Basic Mathematics for Social Science (4 Credits)
MTTG-502	Operations Research (4 Credits)
MTTG-503	Mathematics for Financial Management and Insurance (4
	Credits)
MTTG-504	Mathematics for Financial Market (4 Credits)
MTTG-505	Latex for Mathematics (2 Credits)
MTTG-506	Probability and Statistics (4 Credits)

M.Sc. Mathematics Research Specific Elective Papers Syllabus (to be implemented from June 2022)

Programme: M.Sc. (Mathematics) Course Code: MTTR-501 Tittle of the Course: Mathematical Modelling Number of Credits: 4 Effective from AY:2023-24

Prerequisites: Basic knowledge of Algebra, Differential Equations, Linear Algebra, FEM				
Objective: The objectives of this course are to:				
• Enable students understand how mathematical models are formulated, solved and				
interpreted.				
Make stude	ents appreciate the power and limitations of mathematics in solv	ing practical		
real-life pro	blems.			
• Equip stud	ents with the basic mathematical modelling skills.			
Content		Hours		
Unit I	Simple situations requiring mathematical modelling, techniques of mathematical modelling, classifications, characteristics and limitations of mathematical models, some simple illustrations, mathematical modelling in population dynamics, mathematical modelling of epidemics through systems of ordinary differential equations of first order mathematical models in medicine in terms of systems of ordinary differential equations.	15		
Unit II	Mathematical modelling through difference equations, linear growth and decay models Population dynamics and genetic and their applications with examples.	30		
Unit III	Mathematical Modelling with Graph Theoretical Approach.	15		
Pedagogy	Lectures/Tutorials/Self study			
Reference Reading	 Kapur J. N. Mathematical Modelling, 2nd edition, New Age International, 2015. Meerschaert, M. M. Mathematical Modelling. Academic Press, 2013. Rutherford, A. Mathematical Modelling Techniques. Courier Corporation, 2012. Clive,L. D. Principles of Mathematical Modelling. Elsevier, 2004. Bender, E. A. An Introduction to Mathematical Modelling. Courier Corporation, 2000. 			
Learning Outcome	After Completing the course, the student is expected to learn the following:			

 Understand what a mathematical model is and explain the series of steps involved in a mathematical modeling process.
2. Use applications of mathematical modeling through difference equations.
 Understand and apply the concept of mathematical modeling through difference equations in population dynamics, genetics and probability theory.
 Apply the concept of mathematical modeling through graph theory

Programme: M. Sc. (Mathematics) Course Code: MTTR-502

Title of the Course: Algebraic Topology

Number of Credits: 4

Effective	from	AY:	2023-24

Prerequisites	Point Set Topology, Basic Group Theory	
Objective	To equip students with the skills to study Manifolds using Homotopy and to lay the foundation for a study of Homology Groups.	
Content	1. The Fundamental group Homotopy of paths, nulhomotopic, the fundamental group, covering spaces, path lifting, the fundamental group of the circle, retractions and fixed points, Brouwer fixed point theorem for the disc, Fundamental theorem of Algebra, antipode of a point in S ⁿ , Borshuk Ulam theorem, Area Bisection Theorem, Deformation Retracts and homotopy type, Homotopy equivalences and homotopy inverse, Fundamental group of S ⁿ , Fundamental groups of torus, projective plane, fundamental group of double torus is not abelian.	20 hours
	2. The Seifert-van Kampen Theorem Direct Sums of abelian groups, extension condition, free product of groups, free groups, commutator, commutator subgroup, generators, relations, presentation of groups, finitely presented groups, Seifret-van kampen theorem, fundamental group of a wedge of circles, adjoining a 2-cell, fundamental group of dunce cap.	16 hours
	 Classification of Covering Spaces Equivalence of Covering Spaces, General lifting lemma The Universal covering space, Semi-locally simply connected, Existence of Covering Spaces. 	12 hours
	4. Classification of Surfaces Polygonal Region, labeling, Fundamental Groups of Surfaces Applications to group theory	12 hours

٦

	Covering Spaces of a graph, The fundamental group of a graph.	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Topology second Edition by James Munkres, Pearson Education Algebraic Topology by Allen Hatcher, Cambridge University Press 	
Learning Outcomes	 At the end of the course students will be able to Compute the fundamental groups of manifolds using multiple approaches. Distinguish between surfaces and other manifolds using the fundamental group. Formulate and appreciate the general approach of associating commutable Algebraic structures to topological objects so as distinguish between them. 	

(Back to Index) (Back to Agenda)

Programme: M. Sc. (Mathematics)

Course Code: MTTR-503				Title	of the Cou	irse: Number	Theory
Number of Credits: 4							
Effective from AY: 2023-24 onwards							
	Prorequisites for	Some	hasic	Compley	Analysis	Flomentary	number

Prerequisites for	Some basic Complex Analysis. Elementary number theory.					
the course:	Congruences.					
Objective:	This course will serve as Prerequisites to an advanced Course in					
	Analytical Number Theory.					
Content:	1. Fundamental Theorem of Arithmetic. Divisibility.	10 hours				
	Greatest common divisor. Prime numbers. The					
	Fundamental Theorem of Arithmetic. The series of					
	reciprocals of primes. The Euclidean algorithm.					
	2. Arithmetical functions and Dirichlet multiplication.					
	Mobius function μ . Euler totient function $oldsymbol{\phi}$. Relation	12 hours				
	connecting μ and $oldsymbol{\phi}$. Product formula for $oldsymbol{\phi}$ (n). Dirichlet					
	product of arithmetical functions. Dirichlet inverse and					
	Mobius inversion formula. Mangoldt function.					
	Multiplicative functions. Liouville function. Divisor					
	functions. Generalized convolutions. Formal power					
	series. Bell series. Derivative of arithmetical functions.					
	3. Averages of arithmetical functions. Big oh notation.	12 hours				
	Euler summation formula. Some elementary asymptotic					
	formulas. Average order of d(n). Average order of $\sigma_{\alpha}(n)$.					
	Average order of $oldsymbol{\phi}$ (n). Average order of μ (n) and Λ (n).					
	4. Some elementary theorems on distribution of prime					
	numbers. Chebyshev's functions $\vartheta(x)$ and $\psi(x)$.					
	Relations connecting functions $artheta(x)$ and $\psi(x)$.					

	5. Characters of finite abelian groups. Characters of finite	
	abelian groups. The character group. The orthogonality	10 hours
	relations of characters. Dirichlet character.	
	6. Partition Theory. Partitions of numbers. Generating	
	function of p(n). Other generating functions. Theorems of	
	Euler. Theorem of Jacobi. Special cases of Jacobi's	2 hours
	identity.	
	7. Basic Cryptology. Caesar Cipher. Shift Cipher. Affine	
	cipher. Hill cipher.	
Pedagogy:	lectures/ tutorials/assignments/self-study.	
References/	1. T. M Apostol, Introduction to Analuytic Number Theory, Narosa	
<u>Readings</u>	Publishing House, 1998.	
	2. Thomas Koshy, Elementary Number Theroy with Applications,	
	Second Edition, Elsevier India	
	Pvt. Ltd., 2005 . (Chapter 9)	
	3. G.H. Hardy and E.M. Wright, Introduction to theory of	
	numbers. (Chapter XIX), Oxford University Press, sixth edition,	
	2008.	
	4. Heng Huat Chan, Analytic Number Theory for Undergraduates,	
	(Monographs in Number	
	Theory), World Scientific, 2009 .	
	5. I. Niven, H.S. Zuckerman and H.L. Montgomery, An Introduction	
	to the Theory of Numbers, 5th edition, Wiley-India.	
	6. David Burton, <i>Elementary Number Theory</i> , Sixth edition, Tata	
	McGraw-Hill Edition, 2008.	
	7. A. Baker, A concise introduction to theory of numbers,	
	Cambridge University Press, 2015.	
<u>Learning</u>	1. This course prepares the student to learn advanced number	
<u>Outcomes</u>	theory, Cryptography and Partition theory.	
	1. Taking this course students can read more advanced	
	Analytic Number Theory books.	

Programme: M. Sc. (Mathematics) Course Code: MTTR-504

Title of the Course: Lie Algebra

Effective from AY: 2023-24 onwards

Number of Credits: 4

Prerequisites for	Basic Linear Algebra, basic group theory, basic analysis.	
the course:		
Objective:	This course develops concepts in Matrix Groups and Lie algebras.	
	It helps in understanding other concepts like Manifold, Lie groups	
	etc.	
Content:	1. Matrix Groups. Matrices. Real and Complex Matrix	12 hours
	Groups. Orthogonal Groups. Topology of Matrix Groups.	
	Tangent space.	
	2. Lie algebras. Definition, Some Examples, subalgebras and	
	Ideals. Homomorphisms. Algebras. Derivations. Structure	10 hours
	Constants. Ideals and Homomorphisms. Constructions with	

	 Ideals. Quotient Algebras. Correspondence between Ideals. Low-Dimensional Lie Algebras. 2. Solvable Lie Algebras. Nilpotent Lie Algebras. Subalgebras of gl(V). Nilpotent Maps. Weights. The Invariance Lemma. An Application of the Invariance Lemma. 	8 hours
	3. Engel's and Lie's Theorems.	6 hours
	 Some Representation Theory. Modules for Lie Algebras. Submodules and Factor Modules. Irreducible and Indecomposable Modules. Homomorphisms. Schur's Lemma. Representations of sl(2,C). The Modules V_d. Classifying the Irreducible sl(2,C)-Modules. Cartan's Criteria. Testing for Solvability. The Killing Form. Testing for Semisimplicity. Derivations of Semisimple Lie Algebras. The Root Space Decomposition. Cartan Subalgebras. Definition of the Root Space. Decomposition. Cartan Subalgebras as Inner-Product Spaces. Root Systems. Bases for Root Systems. Cartan Matrices and 	8 hours 16 hours
Pedagogy:	Dynkin Didgraffis. lectures/tutorials/assignments/self-study	
References/	1. Kristopher Tapp. <i>Matrix Groups for Undergraduates</i> .	
Readings	 American Mathematical Society, 2005. Karin Erdmann and Mark J. Wildon, Introduction to Lie Algebras, Springer Undergraduate Mathematics Series, Springer-Verlag. 2006. J.E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Text in Mathematics, Springer-Verlag, 1972. N. Jacobson, Lie Algebras, Dover Publications, 1962. 	
<u>Learning</u> Outcomes	 Taking this course students get acquainted with Lie algebras and Matrix groups theory. Taking this course student can read Lie groups theory 	

Programme: M.Sc. (Mathematics)Course Code: MTTR-505Title of the Course: GRAPHS AND NETWORKSNumber of Credits: 4Effective from AY:2023-24

PrerequisitesBasic set theoryObjectiveCourse deals with the basics of graph theory, basic definition of
simple graphs, types of graphs, matrix representation of graphs,
isomorphism in graphs, Euler & Hamiltonian graphs, trees & their
properties, spanning trees, colouring of graphs, independence
number and chromatic number of simple graphs, connectivity,

	cut-set, directed graphs, shortest paths & maximal flows in a	
	network.	
Content	1. Introduction to graphs	
	Graphs, subgraphs, operations on graphs, degree	19 hours
	sequences, graphic sequences, distance in graphs, walks,	
	trails, paths, circuits, cycles, matrices and isomorphism,	
	complement of graph, bipartite graphs, distance in graphs,	
	digraphs and multidigraphs, Cut-vertices bridges and	
	blocks, classes of graphs, Petersen graphs, regular graphs,	
	Harary graphs.	
	2. Trees and connectivity	8 hours
	Elementary properties of trees, minimal spanning trees,	
	Prim's algorithm, Kruskal's algorithm, connectivity and	
	edge-connectivity, connectedness of digraphs, Prüfer	
	sequence.	
	3. Eulerian and Hamiltonian graphs	
	Eulerian graphs and digraphs, Hamiltonian graphs and	7 hours
	digraphs, Fleury's algorithm and Hierholzer's algorithm.	
	4. Planar graphs	
	Euler's formula, characterizations of planar graphs,	7 hours
	crossing number and thickness.	
	5. Graph colorings	
	Vertex colorings, edge colorings, map colourings, Five	6 hours
	Color theorem.	
	6. Matchings and domination in graphs	6 hours
	Matchings and independence in graphs, vertex cover,	
	demination number of a graph	
	7 Networks	7 hours
	Relevance of maximum flow Ford Fulkerson algorithm	
	Dijkstra's algorithm to find the shortest route	
Pedagogy	Lectures/Tutorials/Assignments/Self-study	
References/	1 D B West Introduction to Graph Theory Prentice Hall of	
Readings:	India 2006	
	2. G. Chartrand and L. Lesniak, Graphs and Digraphs.	
	Chapman & Hall/CRC. Third edition. 1996.	
	3. G. Agnarsson and R. Greenlaw. Graph Theory: Modeling.	
	Applications and algorithms, Pearson, 2011.	
	4. Gary Chartrand and Ping Zhang, Introduction to Graph	
	Theory, Tata Mc-Graw-Hill Edition, 2006.	
	5. F. Harary, Graph Theory, Narosa Publishing House, 2001.	
	6. Gary Chartrand and O.R. Oellermann, Applied Algorithmic	
	Graph Theory, McGraw-Hill Inc. 1993.	
Learning	Learner should be able to tell relevance of graphs in different	
Outcomes:	context, ranging from puzzles & games to social	
	science/engineering/computer science. Problem solving &	
	learning algorithms is also an essential part of graph theory.	

Programme: M.Sc. (Mathematics)Course Code:MTTR-506Title of the Course:ADVANCED GRAPH THEORYNumber of Credits:4Effective from AY:2023-24

Prerequisites	Basic Graph Theory	
Objective	This course will give a deeper insight into basic concepts in Graph Theory, so as to be able to embark into research in the field.	
Content	 Review of Basic Concepts: Graphs, Trees, minimal spanning trees, connectivity and edge-connectivity, Eulerian graphs, Hamiltonian graphs, Euler's formula, Planar graphs, Colourings, Matchings, Independence and Domination in a graph. Independent Sets and Cliques: Independent Sets, Cliques 	7 hours
	Ramsey Number and Turan's Theorem.	
	3. Matchings, Factors and Decompositions: Matchings & Covers, Maximum Matchings, Matchings in bipartite Graphs, Hall's Matching Condition, Min-Max Theorems, Perfect Matching, Factorizations and Decompositions.	16 hours
	4. Labelings of Graphs: Graceful Labeling, Harmonious Labeling, Bandwidth Labeling.	8 hours
	5. Colourability: Chromatic Number and Chromatic index, Brook's Theorem, Vizing's Theorem, Chromatic Polynomials.	7 hours
	6. Connectivity and Paths: <i>k</i> -Connected Graphs, <i>k</i> -Edge Connected Graphs, Menger's Theorem.	7 hours
	7. Domination in Graphs: Dominating Queens, Dominating Sets in Graphs, Applications of Dominating Sets, Bounds on the Domination Number (in terms of order, in terms of order and size).	8 hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings:	 G. Chartrand and P. Zhang, Chromatic Graph Theory, CRC Press, 2009. D. B. West, Introduction to Graph Theory, Prentice Hall of India, 2006. T.W. Haynes, S.T. Hedetniemi & P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., 1998. G. Chartrand and L. Lesniak, Graphs and Digraphs, Chapman & Hall/CRC. Third edition. 1996. 	
Learning	Learner will be well-equipped with the concepts required to	
Outcomes:	pursue research in Graph Theory.	

Programme: M.Sc. Mathematics Course Code: MTTR-507 THEORY -I Number of Credits: 04 Effective from AY:2023-24

Title of the Course: MEASURE

	023 Z4	
Preequisites:	A first course in Real Analysis	
Objectives:	This course gives a thorough introduction to the Lebess	gue theory of
	integration on $\mathbb R$ and prepares the students to uno	derstand the
	concepts of abstract measure theory, a fundamental too	l of advanced
	mathematical analysis, probability theory and application	ns.
Contents	1.Reimann-Stieltjes Integral	14 hours
	Weights and measures, The Riemann-Steilties integral,	
	Space of integrable functions, Integrators of bounded	
	variation. The Riemann integral. Shortcomings of	
	Riemann integration.	
	2.Lebesgue Measure on \mathbb{R}	10 hours
	The length function and Lebesgue outer measure.	
	Measurable sets Sigma algebra of measurable sets	
	Structure of measurable sets, non-measurable sets, idea	
	of abstract measure spaces	
	3 Measurable Eunctions	8 hours
	Measurable functions Extended real valued functions	8 110013
	and mossurability. Sequence of mossurable functions	
	and measurability, sequence of measurable functions,	
	functions	
		1Chours
	4. The Lebesgue integral	16 hours
	Lebesgue integral of simple functions, non-negative	
	functions and the general case. Chebysnev's inequality,	
	monotone convergence theorem, Fatou's Lemma,	
	Lebesgue dominated convergence theorem, Integral of	
	infinite series of functions. Lebesgue integrability of	
	Riemann integrable functions. Approximation of	
	Lebesgue integrable functions by simple functions,	
	continuous function and step functions.	
	5. The Lp spaces	12 hours
	The L_p -spaces for $1 \le p \le \infty$, and their completeness.	
	Approximation of L_p -functions by simple fuctions,	
	continuous functions, step functions	
Pedagogy	Class room lectures and tutorials, assignments and library	y reference.
References	1. Real Analysis, N L Carothers, Cambridge University Pres	ss, 2006.
	2. Lebesgue Measure and Integration, Murray R. S	piegel Ph.D.,
	Schaum's Outline Series, McGraw Hill Inc., 1990	
	3.An Introduction to Measure and Integration, Inder K F	Rana, Narosa,
	Publishing House, 2005	
	4. Real Analysis, H.L. Royden, Pearson Education India, 20	015
	5. Measure Theory and Integration, G. de Barra, New Age	International,
	Pvt.Ltd., 2013	,

Learning	At the completion of this course the student is able to understand and
outcomes	apply the concepts of
	 Lebesgue outer measure and Lebesgue measure, existence of non-measurable sets
	 Lebesgue integral as generalization of the Riemann integral and its behaviour with respect to sequence of functions Basic structure of the L_p-spaces

Programme: M.Sc. Mathematics		
Course Code: MTTR-508 Title of the Course: MEASURE THEORY-II		
Number of Credits: 04	4	
Effective from AY:202	3-24	
Prerequisites:	A first course in Real Analysis, Complex Analysis and Topology	. A course in
	Lebesgue measure and integration is desirable	
Objectives:	Inis course gives a foundation in essential abstract measure th	eory required
	In varied aspects of mathematical analysis and its diverse applica	ations
Contents	1.Abstract Measure and Integration	14 hours
	The concept of measurability, Borel sets , Measurable functions,	
	Simple functions, Elementary properties of measures,	
	Integration of positive functions, Monotone convergence	
	theorem, Fatou's lemma, Integration of Complex functions,	
	Dominated convergence Theorem, The role played by sets of	
	measure zero, completeness of measure	
	2.Positive Borel measures	14 hours
	Topological Preliminaries -Review of topological notions	
	(without proof) from the theory of locally compact Hausdorff	
	topological spaces-The Urisohn's Lemma. The Riesz	
	representation theorem for $C_c(X)$ where X is locally compact	
	Hausdorff, Regularity properties of Borel measures, the	
	Lebesgue measure on \mathbb{R}^k , Continuity properties of measurable	
	functions.	
	3. L ^p -spaces	10 hours
	Convex functions and inequalities, Jensen's inequality, The L^p -	
	spaces and their completeness, Approximation by continuous	
	functions- the density of $C_c(X)$ in $L^p(\mu)$.	
	4.Complex Measures	12 hours
	Complex measures, total variation, positive and negative	
	variation, Absolute continuity of measures, The theorem of	
	Lebesgue-Radon-Nikodym, Consequences of the Radon-	
	Nikodym theorem- the polar decomposition and the Hahn	
	decomposition.	
	5. Integration on Product spaces	10 hours

	Measurabilty on Cartesian products, product measures, The
	Fubini's theorem, Completion of product measures.
Pedagogy	Lectures/ Tutorials/Assignments/Self-study
References	1. Real and Complex Analysis, Walter Rudin, Third Edition,
	McGrow-Hill Company, 1987
	2.Measure Theory and Integration, G.de Barra, Wiley Eastern
	Limited, 1987
	3. Real Analysis, H.L. Royden, Pearson Education India, 2015
	4.An Introduction to Measure and Integration, Inder K Rana,
	Narosa Publishing House, 2013
	5.Real Analysis, Gerald B. Folland, John Wiley & Sons, 1984
Learning	After the completion of the course students will be able to understand and
Outcomes	apply the concepts in
	Abstract measure spaces, measurable sets and measurable functions
	 Integrals with respect to a measure and their behaviour w.r.t.
	sequences of functions
	• Positive Borel measures, Lebesgue measure on \mathbb{R}^k and regularity
	properties of Borel measure
	• Abstract L ^p -spaces
	Complex measures, Radon-Nikodym theorem
	 Product measure and integration on product spaces.

Programme: M.Sc. Mathematics Course Code: MTTR-509 Title of the Course: Functional Analysis-II Number of Credits: 4 Effective from AY:2023-24

Prerequisite s	A First Course in Real Analysis, Complex Analysis, Top	ology and
	Functional Analysis	
Objectives	Having done a first course in Functional Analysis this cours	e develops
	more advanced concepts in Functional Analysis which intr	oduces the
	student to some important tools for the applications of	Functional
	Analysis. Further the topics covered in the course form four	dations for
	further readings in Functional Analysis leading to research	n in diverse
	branches of Functional Analysis and Operator Theory.	
Contents	1.Weak and Weak* Topologies	10 hours
	Definitions and properties of weak topology and, weak	
	convergence, Comparison of strong and weak	
	convergences,	
	Definitions and properties of weak* topology and weak*-	
	convergence, comparison of weak and weak*	
	convergences, The Banach- Alaoglu Theorem,	
	Convergence of sequence of Operators -Uniform operator	
	convergence, strong operator convergence, weak	

	operator convergence-basic properties and the comparison of these convergences.	
		121
	2.Spectral Theory of linear operators in normed spaces	12 hours
	Spectral theory in finite dimensional normed spaces,	
	matrix operators and their spectrum, Spectral theory -	
	Basic concepts- Regular value, resolvent set, spectrum	
	and classification of spectrum.	
	Spectral properties of bounded linear operators-spectrum	
	closed, non-empty, spectral radius, resolvent equation,	
	commutativity, spectral mapping theorem for	
	polynomials, linear independence of eigen vectors, Use of	
	complex analysis in spectral theory	
	3.Compact linear operators on normed spaces	12 hours
	Compact operators- definition and basic properties such	
	as continuity, compactness criterion, operators with finite	
	dimensional domain or range, sequence of compact	
	operators compact operators and weak convergence	
	separability of the range adjoint of compact operators	
	compactness of a product of two compact operators	
	A Spectral properties of compact operators	10 hours
	Figen values countable, characteristic properties of the	10 110013
	eigen spaces leading to the direct sum representations of	
	the normed space as a sum of two closed subspaces in	
	terms of a compact anorator	
	Concreter equations involving compact linear	10 hours
	5.Operator equations involving compact linear	10 nours
	operators	
	Fredoinm type theorems, Fredoinm alternative,	
	Fredoinm alternative for integral equations	
	6. Compact self-adjoint operators on Hilbert spaces and	6 hours
	their spectrum	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References	1. Introductory Functional Analysis with Applications,	Ervin
	Kreyszig, John Wiley & Sons, 1978.	
	2. Functional Analysis (Second Edition), S.Kesavan, Hir	ndustan
	Book Agency, 2022	
	3. Functional Analysis, George Bachman and Lawrence	e Narici,
	Dover Publications, 2000.	-
	4. Functional Analysis, S.Kumaresan and D.Sukumar, N	Narosa
	Publishing House, 2020	
	5. Basic Operator Theory, Israyel Gohberg and Seymo	ur
	Goldberg, Birkhäuser, 1981.	
Learning	At the completion of this course the student understands	and will be
Outcomes	able to apply the concepts of	
	 The weak topology and weak*-topology respective 	ly on a
	normed space and its dual space and their compari	sons with
		-

 the respective norm topologies, weak and weak*- convergences of operators The Banaach-Aloglu theorm and the characterization of normed spaces Basics of spectral notions of spectral theory of operators on normed spaces Spectral properties of compact operators
 The Fredplhm alternative

Programme: M. Sc. (Mathematics) Course Code: MTTR-510 Title of the Course: Symmetry Methods for Differential Equations Number of Credits: 4 Effective from AY: 2023-24

Prerequisites	Group theory, Basics of Lie Algebra, Differential equations,	
	Partial Differential equations.	
Objective	The study of ordinary differential equations. The study of ordinary differential equations (ODEs) and partial differential equations (PDEs) is a fundamental subject area of mathematics. Differential equations (DEs) are present in almost all applications of mathematics where they provide a natural mathematical description of phenomena in the physical, natural and social sciences. Symmetry methods systematically extend well known ad-hoc techniques to construct explicit solutions for differential equations, especially for nonlinear DEs. This course is about symmetry methods (group theoretic methods) for solving DEs which is one of the most powerful methods in order	
	to determine particular solutions to DEs.	
Content	 Dimensional Analysis, Modeling, and Invariance: Introduction, Dimensional Analysis, Buckingham Pi Theorem, Application of Dimensional Analysis to DEs. Lie Groups of Transformations and Infinitesimal Transformations: Lie Group of Transformations, Infinitesimal Transformations, First Fundamental Theorem of Lie, Infinitesimal Generators, Invariant Functions, Canonical Coordinates, Invariant Surfaces, Invariant Curves, Extended Transformations 	5 Hours 10 Hours
	(Prolongations), Multi-Parameter Lie Groups of Transformations, Lie Algebras, Solvable Lie Algebras.	
	3. Ordinary Differential Equations: Invariance of an ODE, Reduction of Order Via Lie Group of Transformation and Integrating Factors, Mapping of Solutions to Other Solutions, First Order ODEs, Second and Higher Order ODEs, Invariance of ODEs Under Multi-parameter Groups, Applications to Boundary Value Problems	25 Hours

	 Partial Differential Equations: Infinitesimal Criterion for the Invariance of PDEs, Invariance of Scalar PDEs, Invariant Solutions, Mapping of Solutions, Invariance of System of PDEs, Application to Boundary Value Problems. 	20 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 George W. Bluman and Sukeyuki Kumei, Symmetries and Differential Equations, Springer-Verlag New York, Heidelberg, Berlin, 1989. G. W. Bluman and S. Anco, Symmetries and Integration Methods for Differential Equations; Springer, New York, 2002. G. W. Bluman and J. Cole, Similarity Methods for Differential Equations, Springer-Verlag New York, Heidelberg, Berlin, 1974. Peter J. Olver, Applications of Lie Groups to Differential Equations SpringerVerlag New York, Berlin, Heidelberg, Tokyo, 1979. 	
Learning	Students will be able to solve non-linear OEs and PDEs using	
Outcomes	symmetry methods.	

M.Sc. Mathematics Generic Elective Papers Syllabus (to be implemented from June 2022)

Programme: M.Sc.(Mathematics) Course Code: MTTG-501 Tittle of the Course: Basic Mathematics for Social Science Number of Credits: 4 Effective from AY:2023-24

Prerequisites: This course is not recommended for students with Mathematics at UG level				
Objective: The mai	Objective: The main objective of this course is to encourage students to develop a working			
knowledge of the ba	sic Mathematics for social science and will present some of the ideas	that form		
the foundation of q	uantitative work in the social sciences. In particular, topics from loga	arithm, set		
theory, matrix theo	bry and calculus will be discussed with emphasis on the underst	anding of		
concepts and the de	evelopment of intuition			
Content		Hours		
Unit I	Binary numbers, indices, logarithm and antilogarithm, laws and	15		
	properties of logarithms, simple applications of logarithm and			
	antilogarithm, numerical problems on averages, calendar, clock,			
	time, work and distance, mensuration, seating arrangement, sets,			
	types of sets, Venn diagram, De Morgan's laws, problem solving			
	using Venn diagram, relations and types of relations.			
Unit II	Introduction of sequences, series, AP, GP and HP, relationship	15		
	between AM, GM and HM. Permutations and combinations.			
	Functions and relations. Types of functions (Polynomial function;			

	Rational function; Logarithm function, Exponential function; Modulus function; Greatest Integer function), Graphical representation of functions.			
Unit III	Llimit and continuity, derivative as rate measure, differentiation, derivatives of implicit functions using Chain rule. Basic mathematical logic with conditional statements, tautology and contradiction.	10		
Unit IV	Random experiment, sample space, events, mutually exclusive events. Independent and dependent Events, law of total probability, Bayes' Theorem. Data on various scales (nominal, ordinal, interval and ratio scale), data representation and visualization, data interpretation (dispersion, deviation, variance, skewness and kurtosis), percentile rank and quartile rank, correlation (Pearson and Spearman method of correlation), linear regression, applications of descriptive statistics using real time data			
Pedagogy	Lectures/Tutorials/Self study			
Reference Reading	 Gill J. Essential Mathematics for Political and Social Research, Cambridge University Press, 2016. 2. Haeussler E., Paul R. and Wood R. Introductory Mathematical Analysis for Business, Economics, and the Life and Social Sciences, 15th edition. Prentice-Hall, 2015. 3. Goldstein L., Lay D., and Schneider D. Calculus and Its Applications, 14th Edition. Prentice Hall, 2014. 4. Hagle T. Basic Math for Social Scientists: Problems and Solutions, 1996. 5. Hagle T. Basic Math for Social Scientists: Concepts, 1996. 6. Kleppner D. and Ramsey N. Quick Calculus. Wiley, 1995. 7. Namboodiri K. Matrix Algebra: An Introduction. Sage Publications # 38, 1994. 			
Learning Outcome	 After Completing the course, the student is expected to learn the following: Explain the fundamental concepts of indices, logarithm and antilogarithm and their role in basic Mathematics for social science. Demonstrate accurate and efficient use of set theory and Venn diagram. Understand and use the terms: function, relation, series arithmetic, geometric progression, Permutations and Combinations. Understand the concepts and properties of limits, continuity and differentiation of a function, logical reasoning, probability and descriptive statistics 			

Programme: M.Sc. (Mathematics) Course Code: MTTG-502 Tittle of the Course: Operations Research Number of Credits: 4 Effective from AY:2023-24

Prerequisites: Not recommended for mathematics students			
Objective: This course is designed to introduce basic optimization techniques in order to			
get best results from a set of several possible solutions of different problems viz. linear			
programming prot	plems, transportation problem, assignment problem and uncor	nstrained	
and constrained p	roblems etc.		
Content		Hours	
Unit I	Linear programming: formulation and solution of linear	15	
	programming problems by graphical, simplex methods, Big-		
	M degeneracy duality in linear programming sensitivity		
	analysis		
Init II	Transportation problems: basic feasible solutions, ontimum	15	
	colution by stepping stope and modified distribution	15	
	methods unbalanced and degenerate problems		
	transhipmont problem Assignment problems; solution by		
	Hungarian method unbalanced problems case of		
	maximization travelling calorman and crow assignment		
	problems		
Linit III	Qualing theory: basic components of a qualing system	15	
	general birth death equations, steady state colution of	13	
	Markovian quaving models with single and multiple converse		
	(Na/Na/1, Na/Na/C, Na/Na/1/k, Na/Na/C/k)		
		15	
	Game theory: two persons zero sum game, game with	12	
	saddle points, rule of dominance; algebraic, graphical and		
	linear programming, concept of mixed strategy. sequencing		
	problems: processing of n jobs through 2 machines, n jobs		
	through 3 machines, 2 jobs through m machines, h jobs		
	through m machines.		
Pedagogy	Lectures/Tutorials/Self study		
Reference	1. Sharma, S. D. Operation Research, Kedar Nath Ram Nath		
Reading	Publications, 2012.		
	2. Swarup, K. and Gupta, P.K. Operations Research. S. Chand		
	publisher, 2010.		
	3. Taha, H. A. Operation Research: An Introduction.9th		
	edition, Pearson, 2010.		
	4. Gupta, P.K. and Hira, D.S. Introduction to Operations		
	Research, S. Chand & Co. 2008.		
	5. Sharma, J. K., Mathematical Model in Operation		
	Research, Tata McGraw Hill, 1989.		
	6. Hagle T. Basic Math for Social Scientists: Problems and		
	Solutions, 1996.		
Learning	After Completing the course, the student is expected to		
Outcome	learn the following:		

1.	Understand linear programming problems and to find their solutions by using different method	
2.	Find optimal solution of transportation problems and assignment problems	
3.	Understand and solve different queuing models. Find optimal solution of linear	
	programming model using Game Theory. Also learn about sequencing problems.	

Programme: M.Sc.(Mathematics) Course Code: MTTG-503 Tittle of the Course: Mathematics for Financial Management and Insurance Number of Credits: 4 Effective from AY: 2023-24

Prerequisites: Basic knowledge of, Differential Equations, Linear Algebra, Numerical Methods Objective: This course introduces the basic concepts of Financial Management such as Insurance and Measurement of returns under uncertainty situations. The philosophy of this course is that Time value of Money - Interest rate and discount rate play a fundamental role in Life Insurance Mathematics – Construction of Morality Tables. Content Hours Unit I Financial Management -overview. Nature and 15 scope of financial management. Goals and main decisions of financial management. Difference between risk, Speculation and gambling. Time value of Money - Interest rate and discount rate. Present value and future value discrete case as well as continuous compounding case. Annuities and its kinds. Unit II Meaning of return. Return as Internal Rate of 15 Return (IRR). Numerical methods like Newton Raphson method to calculate IRR. Measurement of returns under uncertainty situations. Meaning of risk. Difference between risk and uncertainty. Types of risks. Measurements of risk. Calculation of security and Portfolio Risk and Return-Markowitz Model. Sharpe Single Index ModelSystematic Risk and Unsystematic Risk. Unit III Taylor series and Bond Valuation. Calculation of 15 Duration and Convexity of bonds. Insurance Fundamentals – Insurance defined. Meaning of loss. Chances of loss, Peril, Hazard, proximate cause in insurance. Costs and benefits of insurance to the society and branches of insurance-life insurance and various types of general insurance. Insurable

	loss exposures- feature of a loss that is ideal for insurance	
Unit IV	Life Insurance Mathematics – Construction of Morality Tables. Computation of Premium of Life Insurance for a fixed duration and for the whole life. Determination of claims for General Insurance – Using Poisson Distribution and Negative Binomial Distribution –the Polya Case. Determination of the amount of Claims of General Insurance – Compound Aggregate claim model and its properties, Claims of reinsurance. Calculation of a compound claim density function F, Recursive and approximate formulae for F	15
Pedagogy	Lectures/Tutorials/Self study	
Reference Reading	 Ross, S. M. An Introduction to Mathematical Finance. Cambridge University Press, 2019. Elliott, R. J. and Kopp, P. E. Mathematics of Financial Markets. Sprigner Verlag, New York Inc, 2018. Damodaran, A. Corporate Finance - Theory and Practice. John Wiley & Sons, Inc, 2012. Hull, J. C. Options, Futures, and Other Derivatives. Prentice-Hall of India Private Ltd, 2010. Daykin, C. D., Pentikainen, T. and Pesonen, M. Practical Risk Theory for Actuaries. Chapman & Hall, 2008. Dorfman, M. S. Introduction to Risk Management and Insurance. Prentice Hall, Englwood Cliffs, New Jersey, 1999. Neftci, S. N. An Introduction to the Mathematics of Financial Derivatives. Academic Press. Inc 1991 	
Learning	After Completing the course, the student is	
Outcome	expected to learn the following:	
	 Demonstrate knowledge of the terminology related to nature, scope, goals, risks and decisions of financial management. Predict various types of returns and risks in investments and take necessary protective measures for minimizing the risk. Develop ability to understand, analyze and solve problems in bonds, finance and 	
	 measures for minimizing the risk. 3. Develop ability to understand, analyze and solve problems in bonds, finance and insurance. 	

insurance using probability distributions.	4.	Build skills for computation of premium of	
		insurance using probability distributions.	

Programme: M. Sc. (Mathematics)

Course Code: MTTG-504Title of the Course: Mathematics for Financial MarketNumber of Credits: 4

Effective from AY: 2023-24

Prerequisites	Elementary Calculus, Basic Probability Theory	
Objective	At the end of this course the student will gain knowledge of basic	
	concepts in financial mathematics	
Content	1. Introduction: A Simple Market Model	6 Hours
	Basic Notions and Assumptions, No-Arbitrage Principle, One-	
	Step Binomial Model, Risk and Return, Forward Contracts,	
	Call and Put Options, Managing Risk with Options	
	2. Risk-Free Assets	6 Hours
	Time Value of Money, Money Market	
	3. Risky Assets	6 Hours
	Dynamics of Stock Prices, Binomial Tree Model	
	4. Discrete Time Market Models	6 Hours
	Stock and Money Market Models, Extended Models	
	5. Portfolio Management	12 Hours
	Risk, Two Securities, Several Securities, Capital Asset Pricing	
	Model	
	6. Forward and Futures Contracts	6 Hours
	Forward Contracts, Futures	
	7. Options: General Properties	10 Hours
	Definitions, Put-Call Parity, Bounds on Option Prices,	
	Variables Determining Option Prices, Time Value of Options	
	8. Option Pricing	
	European Options in the Binomial Tree Model, American	8 Hours
	Options in the Binomial Tree Model, Black-Scholes Formula	
Pedagogy	Lectures/ Tutorials/Assignments/Self-Study	
References/	1. Marek Capinski and Tomasz Zastawniak. Mathematics for	
Readings	Finance. An Introduction to Financial Engineering. Springer	
	2003	
	2. Sheldon M. Ross. An Elementary Introduction to	
	Mathematical Finance, Cambridge University Press, 2011	
Learning	At the end of this course students will be able to	
Outcomes	1. Recall and explain concepts in simple market models, risk free	
	assets, risky assets, dynamics of stock prices, portfolio management,	
	forward contracts, futures contracts and options.	
	2. Prove important theorems related to topics studied.	

3. Apply knowledge gained to solve basic mathematical problems in	
finance.	

Programme: M. Sc. (Mathematics)Course Code: MTTG-505Title of the Course: Latex for MathematicsNumber of Credits: 2Effective from AY: 2023-24

Prerequisites	Basic ability to type, Comfort with mathematical symbols and notations.	
Objective	At the end of this course the student will develop the required skill set to typeset mathematical research and produce profes- sional mathematical documents with vector graphics. The student will also be able to effectively use macros in LATEX	
Content	1. LATEX Basics: A Bit of History, Basics, LATEX input files, Input File Structure, A Typical Command Line Session, Logical Structure of your Document, Packages, The Structure of Text and Language, Files you might Encounter	8 Hours
	2. Real World LATEX: Line Breaking and PageBreaking, Ready-Made Strings, Dashes and Hyphens, Slash, Ellipsis, Ligatures, Abstract, Simple Commands, The Space Between Words, Titles, Chapters, and Sections, Cross References, Footnotes, Lists, Non-Justified Text, Quotations, Code Listings, Tables, Including Graphics and Images, Floating Bodies, Big Projects	8 Hours
	3. Typesetting Mathematical Formulae: Modern Mathematics, Single Equations, Building Blocks for Mathemati- cal Formulae, Multiline Equations, Units, Matrices and the Like, Spacing in Math mode, Theorems and Proofs, Fiddling with math styles, Dots, More about Fractions	8 Hours
	4. Bibliographies: the bibliography environment, biblatex with biber Database files, Using biblatex, Controlling the bibliography, Citing commands, More about entries.	4 Hours
	5. Specialities: Indexing, Installing Extra Packages, LATEXand PDF, Creating Presentations	4 Hours
	6. Graphics in Your Document: Overview, Basic Usage, Curves and Shapes, Customizing Paths and Nodes, Coordinates, Reusing Pictures, Libraries	12 Hours
	7. Customising LATEX: New Commands, Environments and Packages, Fonts and Sizes, Custom Fonts with fontspec, Colours, Lengths and Spacing, The Layout of the Document, Fancy Headers	16 Hours

Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Tobias Oetiker, Marcin Serwin, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LATEX, 2022 George Gratzer, More Math Into LATEX, Springer, 2016 Leslie Lamport, A Documentation Preparation System LATEX User's Guide and Reference Manual, Pearson, 2006 	
Learning Outcomes	 Gain the required knowledge to type professional mathematical documents and prepare presentations. Apply graphics packages to create produce vector graphics in mathematical documents. Design customized mathematical documents to suit individual needs with effective use of Fonts, Colours etc. 	

Programme: MSc MathematicsCourse Code: MTTG-506Title of the Course: Probability and StatisticsNumber of Credits: 4Effective from AY: 2023-24

Prerequisites	Basic Mathematics	
for the		
course:		
Objective:	The aim of course is to familiarize students with the fundamental	
	concepts & techniques in Probability theory and Statistical analysis.	
Content:	1. Data Handling:	03 hours
	Tabulation and frequency distribution, relative frequency	
	distribution, cumulative frequency distribution,	
	2. Measures of central tendency & dispersion:	07 hours
	Arithmetic mean, Median, Mode for raw data, grouped data,	
	relationship between mean, median and mode, quartiles	
	deciles, percentiles. Variability, range, mean deviation,	
	coefficient of mean deviation, standard deviation, variance,	
	coefficient of variance, skewness, Karl Pearson's coefficient,	
	Bowley's coefficient.	05 hours
	3. Various Concepts in Probability Theory:	
	Sample spaces, events, permutations and combinations,	
	axioms of probability, conditional probability, independence	
	and multiplication rule, Baye's Theorem.	09 hours
	4. Discrete Distributions:	
	Random variables, discrete probability densities, cumulative	
	distribution, expectation, variance and standard deviation.	
	Binomial, Geometric and Poisson distributions.	10 hours
	5. Continuous Distributions:	
	Continuous densities, cumulative distribution and	
	distribution parameters, uniform, normal, standard normal,	

	Gamma, exponential and Chi-squared distributions. Normal	04 hours
	approximation to binomial distribution.	
	6. Descriptive Statistics and Estimation:	
	Random sampling, sample statistics, point estimation,	
	sampling distribution of a statistic, distribution of the sample	08 hours
	mean and the Central Limit Theorem.	
	7. Statistical Inference:	
	determining sample size, estimation of mean and	
	proportions, Student-t distribution, confidence interval,	08 hours
	hypothesis testing on the mean and proportion, type I, type	
	II errors, power of the test, Z-test, t-test, F-test.	
	8. Simple linear regression and correlation:	
	Linear regression analysis, model and parameter estimation	
	by least-squares method, Properties of least square	
	estimators, confidence interval estimation and hypothesis	06 hours
	testing, Pearson's correlation coefficient, covariance,	
	coefficient of determination.	
	9. Other tests:	
	ANOVA, non-parametric tests, Chi-square tests.	
Pedagogy:	Lectures/Tutorials/Assignments/Self-study	
<u>References/R</u>	1. Devore, J. L.: Probability & Statistics for Engineering and the	
<u>eadings</u>	Sciences, 8th edition, Cengage Learning, 2012.	
	2. Milton, J. S. and Arnold J. C.: Introduction to Probability and	
	Statistics: Principles and Applications for Engineering and the	
	Computing Sciences, 4th edition, Tata McGraw-Hill, 2007.	
	3. Prem S. Mann: Introductory Statistics, eighth edition, John	
	Wiley & Sons, 2012.	
	4. Joseph K. Blitzstein and Jessica Hwang: Introduction to	
	Probability, CRC Press 2014.	
	5. R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods	
	in the Physical Sciences, Wiley, 1989.	
	6. F. James, Statistical Methods in Experimental Physics, 2nd ed.,	
	World Scientific, 2006.	
	7. Probability and Statistics in Experimental Physics, Byron P. Roe,	
	2nd ed., Springer, 2001.	
	8. Fundamentals of Statistical and Thermal Physics, F. Reif,	
	McGraw Hill, Inc. 1965	
<u>Learning</u>	1. The students will get familiarized with basic properties of	
Outcomes:	random variables, probability distributions.	
	2. The students will be able to understand basic concepts in	
	Statistics, how to collect, arrange, present, summarize and	
	analyze statistical data, arrive at statistical inferences, apply	
	appropriate statistical tests and interpret its results.	

Annexure II

Goa University School of Physical and Appl Sciences, MSc Mathematics

Additional Discipline Specific elective PG courses starting from June 2022 onwards

Semester 1 and 2			
Paper Code	Paper Title		
MTTE-406	Finite Element Method (4 Credits)		
MTTE-407	Combinatorics (4 Credits)		
MTTE-408	Computational Mathematics using Python		
	(2 Credits)		
MTTE-409	Elementary Number Theory (2 Credits)		
MTTE-410	Discrete Mathematical Structures (4		
	Credits)		

Programme: M.Sc. (Mathematics) Course Code: MTTE-406 Tittle of the Course: Finite Element Methods Number of Credits: 4 Effective from AY:2023-24

Lifective from A1.2023-24				
Prerequisites: Basic knowledge of Algebra, Differential Equations, Linear Algebra				
Objective: The cours	se aims to provide the fundamental concepts of the elem	ent method		
mainly including sha	ape functions and general linear and higher order eleme	ents up to 3		
dimensions. The co	urse objective is to acquaint the students about applicat	ion of finite		
element methods fo	r solving various boundary value problems			
Content		Hours		
Unit I	General theory of finite element methods, difference	15		
	between finite element and finite difference methods,			
	review of some integral formulae, concept of			
	discretization, different coordinates, one dimensional			
	finite elements,			
Unit II	Numerical integration, construction of shape functions:	15		
	linear elements (one dimensional bar element, two			
	dimensional-triangular element)			
Unit III	Higher order elements: one dimensional quadratic	15		
	element, two dimensional triangular element,			
	rectangular element.			
Unit IV	Weighted residual and variational approaches (Galerkin	15		
	method, collocation method, Rayleigh Ritz method			
	etc.), solving one-dimensional problems. Application of			
	finite element methods for solving various boundary			
	value problems.			
Pedagogy	Lectures/Tutorials/Self study			
Reference Reading 1. Rao, S. S. The Finite Element Method in Engineering.				
	5 th edition, Butterworth-Heinemann, 2017.			

	2. Hughes, T. J. R. The Finite Element Method (Linear
	Static and Dynamic Finite Element Analysis). Courier
	Corporation, 2007.
	3. Zienkiewicz, O. C. and Taylor, R. L. The Finite Element
	Method: The Basis. Butterworth-Heinemann, 2000.
	4. Smith, G. D. Numerical solution of Partial Differential
	Equations: Finite difference methods. Oxford Applied
	Mathematics and Computing Science Series, 1985.
Learning Outcome	After Completing the course, the student is expected to
	learn the following:
	1. Understand the general theory of Finite
	Element method and its difference with finite
	difference method
	2. Use the role and significance of shape
	functions in finite element formulations and
	use of linear, quadratic, and cubic shape
	functions for interpolation
	3. Formulate some important 1, 2 and 3
	dimensional elements
	4. Apply the weighted residual and variational
	approaches in solving some boundary value
	problems
	· · ·

Programme: M. Sc. (Mathematics) Course Code: MTTE-407

Title of the Course: COMBINATORICS

Number of Credits: 4 Effective from AY: 2022-23

Prerequisites	Basics of - Set Theory , Algebra, Linear Algebra	
Objectives	Starting from the basic principles of counting, this course aims to give an introductory exposition to different aspects	
	of Combinatorics. The course will emphasize on the	
	importance of anymeration tools and toohniques in diverse	
	importance of enumeration tools and techniques in diverse	
	branches of Mathematics and applied fields.	
Content	1.Basic Counting Principles and Techniques	12
	Review of basic Counting Principles-Addition Principle,	
	Multiplication Principle, Method of two-way Counting,	
	Method of Bijections, Permutations and Combinations,	
	Circular Permutations, Counting Objects with Repetitions,	
	Binomial and Multinomial Theorems (Combinatorial Proofs),	
	Binomial and Multinomial Coefficients and Identities.	
	2. The Fundamental Counting Problem	2
	Statement of the Problem-The Sxteen Cases, Partition	
	Numbers P(n,k) and P(n), Stirling Numbers S(n,k) and s(n,k),	
	Bell numbers B(n).	
	3.Recurrence Relations and Explicit Formulas	12

	The Inclusion-Exclusion Principle, Derangements and D(n), Recurrence Relations and Explicit Formulas for P(n,k),P(n), S(n,k), s(n,k), B(n), and D(n). Idea of Generating Functions, Method of solving Linear Recurrence Relations Using Generating Functions, Generating Functions for P(n,k), P(n), S(n,k), s(n,k), B(n) and D(n). 4.Pigeonhole Principle (PHP)	6
	The Pigeonhoe Principle - its different formulations and examples, Applications of PHP to some standard Problems in Geometry, Number Theory, Graph Theory and Colouring of	
	Plane.	6
	Applications of PHP to Sequences and Partial Orders- The Erdös-Szekeres Theorem, Dilworth's Lemma, Dilworth's Theorem, Sperner's Theorem.	6
	6.Ramsey Theory	10
	Ramsey's Theorem –First version (for 2 colours), Second	
	version (for r colours), and Infinitary version, Ramsey	
	Numbers and bounds, Computations of small Ramsey	
	Numbers, Schur's Theorem, van der Waerden's Theorem	
	(Statement and Discussion).	
	7. Polya's Theory of Counting	12
	Group actions on sets, Burside's Lemma, Labelings, Cycle	
	Indexes, computation of cycle indexes of standard groups,	
Dedagagy	Polya's theorem and examples.	
Pedagogy	Lectures/ Tutorials/Assignments/Sen-study	ov 1006
References	2. Compaterial Techniques, Sharad S. Sano, Hindustan Be	ey,1990.
	2013	JOK Agency,
	3. Introducion to Combinatorics. W.D. Wallis and J.C. George.	2011.
	4. A Walk Through Combinatorics, M. Bona, World Scientific	c Publishing
	Company, 2002.	-
	5. Combinatorics, V.K. Balakrishnan, Schaum Series, McGraw-	·Hill,
Learning	Students ,on completion of this course,	
Outcomes	(i) Will be able to appreciate the importance of combinatorial	techniques
	in diverse branches of Mathematics and Applied fields.	
	(II) This course will teach the students how to understand an	id deal with
	enumerative problems and to apply combinatorial technique	es to solve a
	range of application problems in Optimization, Graph	meory and
	inetworking.	

Programme: M. Sc. (Mathematics)

Course Code: MTTE-408Title of the Course: Computational Mathematics using PythonNumber of Credits: 2Effective from AY: 2023-24

Prerequisites	This course assumes that the student has done an undergraduate	
	course of Numerical Methods and Matrix Algebra using Python	
	Programming.	
	Differential equations	
Obiective	To equip students with the skills of python programming which	
	aid the study and understanding of Mathematics.	
Content	 Introduction to Python (Review) IDLE (Installation in Windows/Linux), Python strings, Relational Operators, Logical Operators, Precedence of Operators, Variables and assignment statements, Keywords, Script mode. 	4 hours
	 Functions (Review) Built-in functions; input, eval, composition, print, type, round, min, max, pow Type conversion, Random number generation; randint Functions from math module, complete list of Built-in functions using help and dir Function Definition and call, fruitful and void functions, function help, default parameter values, keyword arguments Importing User-defined modules, Assert statement. 	6 hours
	3. Control Structures (Review) General form of <i>if</i> , <i>if-else</i> , <i>if-elif-else</i> conditional statement Nested <i>if-elif-else</i> conditional statement. For and While statements and their comparison, Nested loops, Break, Continue, Pass statements Else statement associated with a For/While statement Testing, Debugging	4 hours
	 Scope of Variables/Names Objects and Object ids, Namespaces; Global and Local variables, LEGB Rule 	2 hours
	5. Strings Slicing, membership, basic functions and methods on strings.	2 hours
	6. Mutable and Immutable Objects Lists, functions and methods on lists, List comprehension, copying lists, Sets, functions and methods on sets, Tuples, functions and methods on tuples, Dictionary, dictionary operations, functions.	8 hours
	7. Recursion Iterative Approach and recursive approach,	

	Program to find Minors and Determinant of a matrix.	4 hours
	8. Files and Exceptions	
	File handling, writing structures to a file, exceptions	
		4 hours
	9. Classes and Objects	
	Class attributes, class variables, destructor, Person, Graphs:	
	operator overloading instance method static method	8 hours
	composition and inheritance.	0 110013
	10. Graphics	
	2D graphics, mathplotlib, matplotlib installation, points,	
	lines.	1 hours
	11. Algorithms to be implemented in Python**	4 110013
	i. Expressing the elements of the Symmetric group as a	
	product of disjoint cycles.	
	ii. Characteristic Equation of a nxn matrix.	
	Synthetic Division to find rational roots of a polynomial	
	iii Bow Reduction to (Reduced)Row Echelon form	14 hours
	Generating nxn Identity Matrix	11110015
	Inverse of a matrix using row reduction	
	iv. Finding Basis for the Row Space, Column Space of a	
	matrix A and solution space of AX=B.	
	v. Single step and multi-step Methods	
	vii Kruskal's Algorithm to find minimum spanning tree	
	viii. Havel and Hakimi's Algorithm for degree sequences.	
	ix. Welsh and Powell algorithm for graph coloring	
	x. Fitting of straight line and quadratic curve to given data	
	xi. Solutions of linear Diaphontine Equations	
	**Any 7 of these algorithms should be implemented	
Pedagogy	Laboratory Sessions/Assignments/Self-study	
References/	1. Python Programming: A modular approach by Sheetal	
Readings	Taneja and Naveen Kumar, Pearson Education, 2020.	
	2 Python Programming: Beginner to Pro by Michael	
	Urban, Mike Murach Publishing, 2016.	
Learning	At the end of the course students will be able to	
Outcomes	 Create programs to implement computational 	
	mathematical algorithms.	
	Create classes of mathematical objects and be able to randomly generate instances for testing formulae	
1	i anuonny generate installes for testing formulas.	1

	•	Create simple 2D graphics in python	
--	---	-------------------------------------	--

Programme: M. Sc. (Mathematics)

Course Code: MTTE-409Title of the Course: Elementary Number TheoryNumber of Credits: 2

Effective from AY: 2023-24

Prerequisites	A basic course in Number Theory	
Objective	At the end of this course the student will gain basic knowledge of primitive roots, guadratic reciprocity and continued fractions	
Content	1. PRIMITIVE ROOTS AND INDICES: The order of an integer modulo n, Primitive Roots for Primes, Composite numbers having primitive roots, The theory of indices	4 Hours
	2. THE QUADRATIC RECIPROCITY LAW: Euler's criterion, the Legendre symbol and its properties, Quadratic reciprocity, Quadratic congruences with composite moduli	6 Hours
	3. NUMBERS OF SPECIAL FORM: Marine Mersenne, Perfect numbers, Mersenne primes and amicable numbers, Fermat numbers	4 Hours
	4. REPRESENTATION OF INTEGERS AS SUMS OF SQUARES: Sums of two squares, Sums of more than two squares	4 Hours
	5. CONTINUED FRACTIONS: Finite continued fractions, Infinite continued fractions, Farey fractions, Pell's equa-tion	12 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	1. David M. Burton, Elementary Number Theory, Mc Graw Hill, 2017	
	2. Kenneth H Rosen, Elementary Number Theory, Pearson, 2015	
Learning Outcomes	1. Be able to recollect the various definitions and theorems in Primitive Roots, Quadratic Reciprocity and Continued Fractions.	
	2. Apply the results in the course to solve problems.	

(Back to Index) (Back to Agenda)

Programme: M. Sc. (Mathematics)Course Code: MTTE-410Title of the Course: Discrete Mathematical Structures

Number of Credits: 4 Effective from AY: 2023-24

Prerequisites	Sets and functions	
Objective	To equip students with the skills and techniques of discrete structures like graphs and trees	
Content	 Recurrence relations, linear recurrence relations with constant co-efficients, homogeneous solutions, particular solutions, total solution, solution by method of generating functions. 	6 hours
	 Graphs, isomorphism, complement, multipartite, degree sequences, distance, eccentricity, centre, periphery, eulerian and hamiltonian graphs, algorithm for shortest path in a graph, planar graphs. 	20 hours
	3. Cut-vertices, bridges, blocks, non-seperable, trees, forests, $\kappa(G)$, $\kappa_1(G)$, branch, chord, fundamental cycle, fundamental edge cut, minimum spanning tree, kruskal's algorithm.	14 hours
	 Transport Networks, capacity, flow, cut, Maximum flow and finding maximum flow 	4 hours
	 Vertex and edge coloring, domination number, independent domination number 	16 hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 Elements of Discrete Mathematics, C L Liu, Tata McGraw Hill, Special Indian Edition 2008 Graphs and Digraphs, Chartrand and Lesniak, Chapman & Hall/CRC Fourth edition, 2005 	
Learning Outcomes	 At the end of the course students will be able to Solve linear recurrence relations. Apply results of graph theory to solve problems modeled using graphs Compile a logical argument to prove simple results 	
	 modeled using graphs Compile a logical argument to prove simple results involving graphs. 	

Annexure III

Goa University School of Physical and Appl Sciences, MSc Mathematics

Modified Discipline Specific Core PG course starting from June 2022 onwards **Programme: M.Sc. Mathematics**

Course Code: MTTC-406	Title of the Course: DIFFERENTIAL EQUATIONS
Number of Credits: 04	

Effective from: June, 2022.

Prerequisites	Knowledge of basic Real Analysis, Linear Algebra and Differential equations.		
Objectives	This course develops the ability to understand the qualitative theory and		
	some properties of solution of differential equations.		
Contents	1.Review of linear differential equations of the first and higher	10	
	order. Linear differential equations with constant and variable	hours	
	coefficients. Exact equations, Wronskian, Separable equations,		
	Euler's equation, reduction of order of equation, variation of		
	parameters, Abel's Formula.		
	3. Existence and uniqueness of solutions of first order differential	16	
	equation. Lipschitz condition, Picard's successive approximation	hours	
	method, Gronwall's type integral inequality. Continuation of		
	Solution and dependence on initial conditions. Non local		
	existence of solution.		
	4. Systems of Linear differential equations. Existence and	22	
	Uniqueness of solutions. Vector matrix form. Linear system with hours		
	Constant and variable coefficients. Fundamental matrix, matrix		
	exp, and repeated eigenvalue. Non homogeneous linear systems		
	and variation of parameters. Conversion of nth order equation to		
	system of first order.		
	5. Self-adjoint second order differential equation. Sturm Liouville	12	
	Problem. Greens functions. Picard's theorem. Zeros of solutions.	hours	
	Comparison Theorems. Linear oscillations.		
	Oscillations of $x''(t) + a(t)x(t) = 0$.		
Pedagogy	Lectures/ tutorials/assignments/self-study		
References	[1] .Deo S.G.; Raghvendra V.; RasmitaKar, Lakshmikantham V	/. : Text	
	book of Ordinary Differential equations, 3rd edition, Tata McGr	aw Hill,	
	New Delhi	2015.	
	[2] . E.A. Coddington; An introduction to Ordinary Diff	erential	
	Equations, Prentice Hall, India, 2003.		
	[3]. Kelly W. Patterson A.C. : Theory of Differential Equations, Sp	ringer,	
	2010		
	[4] Simmons C. E. Differential Equations with Historical Notes	Tata M	
	[4]. Simmons G.F.; Differential Equations with Historical Notes, Tata M		
Learning	Students will learn to solve system of ordinary differential equations and to		
Outcomes analyse the properties of solution.			
	(Back to Index) (Back to	Agenda)	

Annexure IV

Goa University School of Physical and Appl Sciences, PhD Mathematics

Research Methodology Paper for PhD coursework

Programme: Ph.D (Mathematics)

Course Code:

Number of Credits: 4 Effective from AY: 2022-23 Title of the Course: Research Methodology

Prerequisites M.Sc. in Mathematics for the course: Objective: The aim of course is to orient Pre-PhD students towards research by introducing them to research methodology. UNIT I: BASICS OF RESEARCH Content: History of Mathematics, Overview of scientific research, Understanding research methodology in Mathematics, Strategies for investigating problems, Tactics for solving problems, Literature survey and critical review of the topic and a problem, Selection of a 20 Hours research topic, Formulating the research problem, Studying and reviewing a paper, Designing the research, Structure and components of scientific reports - Types of reports - Technical reports and thesis – Significance – Different steps in the preparation Layout, structure and language of typical reports, Importance of effective communication. UNIT II: MATHEMATICAL SOFTWARE 15 Hours Knowledge of SageMath/Scilab/Python/R/MATLAB/Mathematica for: Plotting 2D and 3D Graphs, Programming, Handling Computational Calculus, Algebra and Linear Algebra, Solving Differential Equations. UNIT III: TYPESETTING AND PRESENTATION USING LATEX Basics – Line Breaking and Page Breaking, Ready-Made Strings, Dashes and Hyphens, Slash, Ellipsis, 20 Hours Ligatures, Abstract, Simple Commands, The Space Between Words, Titles, Chapters, and Sections, Page Customization, Page Numbering. Typesetting Mathematical Formulae – Modern Mathematics, Single Equations, Building Blocks for Mathematical Formulae, Multiline Equations, Units, Matrices and Determinants, Spacing in Math mode, Theorems and Proofs. Bibliographies – Bibliography environment, biblatex with biber Database files, Cross Referencing, Using biblatex, Controlling the bibliography, Citing commands, Generating Table of Contents.

	 Graphics – Overview, Basic Usage, Curves and Shapes, Customizing Paths and Nodes, Coordinates, Reusing Pictures, Creating Tables, Libraries. Customising LaTeX – New Commands, Environments and Packages, Fonts and Sizes, Custom Fonts with fontspec, Colours, Lengths and Spacing, The Layout of the Document, Fancy Headers. Presentation Tools and Skills – Beamer as a tool for paper and thesis presentations, Oral and poster presentations. 	
	UNIT IV: FUNDING	
	Writing a research proposal, Proposal vs Report, Funding agencies, Types of research grants.	5 Hours
<u>Pedagogy:</u>	Reading/Discussion/Assignments/Presentations	
<u>References/</u> <u>Readings</u>	 Mathematics and its History, John Stillwell, Springer, 2012. The Art and Craft of Problem Solving, Paul Zeitz, John Wiley & Sons, 2019. How to Solve It – a new aspect of mathematical method, G. Polya, Princeton University Press, 2014. C. George Thomas, "Research Methodology and Scientific Writing", Springer, 2021. Computational Mathematics with SageMath, Paul Zimmermann, Society for Industrial & Applied Mathematics, 2018. Tobias Oetiker, Marcin Serwin, Hubert Partl, Irene Hyna and Elisabeth Schlegl, Latex in 157 minutes: The Not So Short Introduction to Latex, Samurai Media Limited, 2015. 	
Learning Outcomes:	 The students will exhibit higher maturity in terms of designing and developing their research work by critically planning, executing, and defending their research. The student will learn to effectively use Mathematical software for various computations. The students will appreciate and discover more of LaTeX. The students will be made aware on writing research projects and seeking financial assistance from various avenues. 	