GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the $\mathbf{11}^{\text{th}}$ Meeting of the

X ACADEMIC COUNCIL

Day & Date

Friday, 9th December, 2022

<u>Time</u>

10.00 a.m.

Conference Hall Administrative Block Goa University

	The House authorized the Vice-Chancellor to approve the same on behalf of the Academic Council
	(Action: Assistant Registrar Academic – PG)
D 3.27	Minutes of the Board of Studies in MBA (Financial Services) meeting held on 08.08.2022.
	 The Academic Council approved the minutes of the Board of Studies in MBA (Financial Services) meeting held on 08.08.2022 with the following suggestions: 1. The entire content of the syllabus to be shown in a proper standard format having details of Number of hours, Credits, Prerequisites, Course objectives, Learning outcomes, Pedagogy, References/Readings, year of publication etc and to be listed in the alphabetical order. 2. It was suggested that the Need for the Course and Description of the Course indicated under the syllabus to be removed/deleted.
	(Action: Assistant Registrar Academic – PG)
D 3.28	 Minutes of the Board of Studies in Geography meeting held on 21.10.2022. The Academic Council approved the minutes of the Board of Studies in Geography meeting held on 21.10.2022 with the following suggestions: Prerequisites for the PG Courses to be included. Texts bold under 'Learning Outcomes' to be un-bold. New Reference books for the Course to be added/identified. Prerequisite for Research Methodology Ph.D. course work to be deleted. Research and Publication ethics Ph.D. course work was not approved, as common syllabus was already approved by Board of Studies in Interdisciplinary and Transdisciplinary studies.
	(Action: Assistant Registrar Academic – PG)
D 3.29	Minutes of the Board of Studies in Psychology held on 22 nd October & 26 th October, 2022. The Academic Council approved the minutes of the Board of Studies in Psychology held on 22 nd October & 26 th October, 2022 with the suggestion to recommend at least one additional Elective Course to be offered in Semester IV.
	The House authorized the Vice-Chancellor to approve the same on behalf of the Academic Council.
	(Action: Assistant Registrar Academic – PG)
D 3.34	 Minutes of the Board of Studies in Microbiology meeting held on 05.11.2022. The Academic Council approved the minutes of the Board of Studies in Microbiology meeting held on 05.11.2022 recommending the syllabus with the following suggestions and requested to submit the revised copy in January 2023: 1. Year of publication for the reference books to be added. 2. Number of hours for the Course to be clearly specified. 3. Question paper pattern was not approved, it was reiterated that the Question paper pattern shall be designed by the teachers teaching the Course.
	(Action: Assistant Registrar Academic – PG)

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL AGENDA

For the 11th Meeting of the

X ACADEMIC COUNCIL

Day & Date

Friday, 9th December, 2022

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administrative Block Goa University

<u>X AC- 11</u>	
09-12-2022	

	 Recommendation regarding general acad University or affiliated Colleges. 	emic requirements in the Programmes of
	DART F	
	i) Recommendation of text books for the co	urses of study at the undergraduate Level
	ii) Recommendation of text books for the co – NIL	urses of study at the post –graduate level.
	Part F.	
	Important points for consideration/approval of i. The important points/recommendations of of Academic Council (points to be highligh a) NIL b) NIL	Academic Council of BoS that require consideration/approval ited) as mentioned below
	Chairperson at the meeting itself.	hat the minutes were readout by the
	Date: 31/10/2022 Place: Goa University	Sd/- Signature of the Chairperson
	 Part G. The Remarks of the Dean of the Faculty i. The minutes are in order. ii. The minutes may be placed before the iii. May be recommended for approval of a iv. Special remarks if any. 	Academic Council with remarks if any. Academic Council.
	Date: 31/10/2022	Sd/-
	Place: Goa University	Signature of the Dean (Back to Index)
D 3.34	Minutes of the Board of Studies in Microbiolog Part A	gy meeting held on 05.11.2022.
	 Recommendations regarding courses of state the under-graduate level. Not in the 	tudy in the subject or group of subjects at agenda
	 Recommendations regarding courses of st the Post-graduate level. 	tudy in the subject or group of subjects at
	1.Course structure of M.Sc. Microbiolog per 80 credits - (<u>Annexure I</u> Refer pa	y Part 2 for Semester 3 and Semester 4 as age No. 1213)
	2. Course content of M.Sc. Microbiology per 80 credits - (<u>Annexure II</u> Refer pag	<pre>/ Part 2 for Semester 3 and Semester 4 as ge No. 1214)</pre>
	Part B	
	 (i) Scheme of examinations at under-graduat (ii) Panel of examiners for different examinat (a) Panel of Examiners for SEA papers for S <u>(Sealed Envelope)</u> 	te level. Not in the agenda ions at the under-graduate level. Semester V and VI of T.Y. B.Sc. Microbiology

- (b) Scrutiny of applications of teachers for identifying as paper setter and examiner for T.Y. B.Sc. Microbiology as per OA-11:
 - a) Applications from 5 teachers of P.E.S's.R.S.N. College of Arts, & Science, Farmagudi teaching B.Sc. were scrutinized as per OA-11. Among the 5 teachers, FOUR (4) teachers fulfil the requirements and therefore recommended by BOS as examiners for including in the panel for paper setter and examiner. Among the 5 teachers, ONE (1) teacher does not fulfil the requirement and therefore candidature was rejected by the BOS. (Sealed envelop).
 - b) Applications from 2 teachers of Government College of Arts, Science and Commerce Khandola teaching B.Sc. were scrutinized as per OA-11. Among the 2 teachers, ONE (1) teachers fulfil the requirements and therefore recommended by BOS as examiner for including in the panel for paper setter and examiner. Among the 2 teachers, ONE (1) teacher does not fulfil the requirement and therefore candidature was rejected by the BOS. (<u>Sealed envelop</u>)
- (iii) Scheme of examinations at the post-graduate level.
 - a) Question paper formats for SEA of M.Sc. Microbiology <u>Annexure III</u> (Refer page No. 1255)
- (iv) Panel of Examiners for different examinations at post-graduate level.
 - a) Panel of Examiners for SEA of Core papers (Theory) for Semester 1 M.Sc. Part1 Microbiology - (Sealed envelop)

Part C

a) Recommendations regarding preparation and publication of selection of reading material in the subject or group of subject or group of subjects and names of persons recommended for appointment to make the selection. Not in the agenda

Part D

- a) Recommendations regarding general academic requirements in the Departments of University or affiliated colleges. Not in the agenda
- b) Recommendations of the Academic Audit Committee and status thereof: Not in the agenda

Part E

- a) Recommendations of the text books for the courses of study at the undergraduate level: Not in the agenda
- b) Recommendations of text books for the courses of study at the post-graduate level: Recommended text books and reading materials are listed along with the course content of M.Sc. Microbiology Part 2 for Semester 3 and Semester 4 as per 80 credits.

Part F

Important points for consideration/approval of Academic Council:

(i) The important points/recommendations of BOS that require consideration/ approval of Academic Council (points to be highlighted) are mentioned below:

	09-12-2022
(a). Course structure of M.Sc. Microbiology Part 2 for Semest	er 3 and Semester 4
(b). Course content of M.Sc. Microbiology Part 2 for Semester	3 and Semester 4 as
(c). Panel of Examiners for SEA papers for Semester V a	nd VI of T.Y. B.Sc.
Microbiology - <u>(Sealed Envelope)</u> (d) Scruting of applications of toachors for identifying as paper	cottor and ovaminor
for T.Y. B.Sc. Microbiology as per OA-11:	setter and examiner
(d)(a) Applications from 5 teachers of P.E.S's.R.S.N. College Farmagudi teaching B.Sc. were scrutinized as per OA-11. Ar FOUR (4) teachers fulfil the requirements and therefore re as examiners for including in the panel for paper setter ar the 5 teachers, ONE (1) teacher does not fulfil the require candidature was rejected by the BOS. (Sealed envelop)	of Arts, & Science, mong the 5 teachers, commended by BOS nd examiner. Among ement and therefore
(d)(b) Applications from 2 teachers of Government College of Commerce Khandola teaching B.Sc. were scrutinized as pe2 teachers, ONE (1) teachers fulfil the requireme	of Arts, Science and r OA-11. Among the nts and therefore
recommended by BOS as examiner for including in the pa and examiner. Among the 2 teachers, ONE (1) teacher requirement and therefore candidature was rejected k envelop)	anel for paper setter does not fulfil the by the BOS (<u>Sealed</u>
(e). Question paper formats for SEA of M.Sc. Microbiology.	
(f). Panel of Examiners for SEA of Core papers (Theory) for Ser Microbiology - (Sealed envelop)	mester 1 M.Sc. Part1
(g). Recommended text books and reading materials are lis course content of M.Sc. Microbiology Part 2 for Semester per 80 credits	sted along with the 3 and Semester 4 as
(h). Syllabus of "Paper - 1 - Research Methodology" for Ph. Annexure IV (Refer page No. 1257)	D. in Microbiology -
(ii) The declaration by the Chairman, that the minutes were read out the meeting itself.	by the Chairman at
5	Sd/-
Signature Signature	of the Chairperson
Place: Microbiology Classroom 1, Science Block E, SBSB.	
Part G The remarks of the Dean of the faculty (i) The minutes are in order.	
 (ii) The minutes may be placed before the Academic Council wi (iii) May be recommended for approval of Academic Council. (iv) Special remarks if any. 	ith remarks if any.
Sd/-	
Dean, School of Biological Sciences and	Biotechnology
Date : 21/11/2022	
Place: Office of Dean. School of Biological Sciences and Biotechnolog	V

<u>X AC- 11</u>
09-12-2022

D 3.34 Minutes of the Board of Studies in Microbiology meeting held on 05.11.2022.

Annexure I

Course structure of M.Sc. Microbiology Part 2 for Semester III and Semester IV as per 80 credits M.Sc. Microbiology - Course structure

			μ τ /ς)	Contact
CODE	COURSE	Theory	Dractical	Hours
	Somostor III	meory	FIdulica	HOUIS
	Generic Elective courses (GE)			
MITG-501	Microbial Bioprospecting [T]	Л	_	60
	Nicrobial Bioprospecting [1]	4	-	60
	Constin Engineering [T]	4	-	00 4E
	Constitution Engineering [D]	5	-	45
		- ว	T	50 4E
	Food Microbiology [1]	3	-	45
MIPG-504	FOOD IVIICIODIOIOgy [P]	-	T	30
MILC FOF	Medical Microbiology and Epidemiology [1]	3	-	45
MIPG-505		-	T	30
MITG-506	Marine Microbiology [1]	3	-	45
MIPG-506	Marine Microbiology [P]	-	T	30
MITG-507	Entrepreneurship in Microbiology	4	-	60
MIPG-508	Field Trip to industries/institutions in Goa	-	1	30
MIPG-509	Field Trip to industries/institutions across India	-	1	30
MIPG-510	Field Trip to coastal ecosystems and allied	-	1	30
	industries			
MIPG-511	Internship in Industry/Institution	-	2	60
	Semester III			
	Research Specific Elective courses (RSE)			
MITR-501	Research Methodology and Advanced	4	-	60
	Biostatistics			
MITR-502	Microbial Technology [T]	3	-	45
MIPR-502	Microbial Technology [P]	-	1	30
MITR-503	Extremophilic Microorganisms [T]	3	-	45
MIPR-503	Extremophilic Microorganisms [P]	-	1	30
MITR-504	Aquatic Virology [T]	2	-	30
MITR-505	Introduction to Bioinformatics [T]	2	-	30
	Semester IV			
	Research Specific Elective courses (RSE)			
MITR-506	Marine Microbial Interactions [T]	3	-	45
MIPR-506	Marine Microbial Interactions [P]	-	1	30
MITR-507	Medical Virology [T]	3	-	45
MIPR-507	Medical Virology [P]	-	1	30
MIPD-501	Discipline Specific Dissertation	-	16	-

COURSE STRUCTURE

Under GE/RSE Optional Courses - theory course is a prerequisite for respective practical course. (Back to Index) (Back to Agenda)

<u>X AC- 11</u> 09-12-2022

Annexure II

Programme: M.Sc. (Microbiology) Course Code: MITG-501 Title of the Course: MICROBIAL BIOPROSPECTING [T] Number of Credits: 4, Theory Contact hours: 60 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students should have a basic understanding of		
	biomolecules.		
Objective:	 To describe the concept of bioprospecting and applications of microbes for obtaining various biologically significant biomolecules. To discuss the applications of biomolecules derived from microorganisms in industries and medical field. 		
Content:			
1.		(20)	
1.1	Introduction to bioprospecting & bioactive molecules from microorganisms. Characteristics of econiches to obtain microorganisms with novel properties and microorganisms producing novel bioactive molecules: geothermal springs (<i>Thermus aquaticus</i>), hydrothermal vents (<i>Pyrococcus furiosus</i>), polar regions (<i>Methanogenium frigidum / Polaromonas</i>), mining areas (ectomycorrhizae & <i>Pseudomonas</i>), desert (<i>Chroococcidiopsis / Phormidium</i>); salt pans (<i>Halobacterium salinarum</i>); acidic (<i>Acidithiobacillus ferrooxidans</i>), alkaline (<i>Bacillus alcalophilus / Nesterenconia</i>), seaweed / sponge associated microbes. Cartagena protocol, Bonn declaration on access and benefit-sharing (ABS).	12	
1.2	Culture dependent bioprospecting: enrichment procedures; plating on selective media. Function based screens (proteomics and metabolomics). High throughput screening strategy: extinction culture technique: culturomics: optical tweezers: FACS.	8	
2.		(22)	
2.1	Culture independent bioprospecting: Metagenomics (DGGE, phylochip	15	
	analysis; metagenomic library-functional screening and sequence-based screening); metatranscriptomics (ISRT-FISH; MAR-FISH);	_0	

		<u>X AC-</u> 09-12-	<u>11</u> 2022
	metaproteomics; metabolomics; microbiome; microbial genon bioprospecting / genome mining (GALAXY platform). Substrate gene expression screens (SIGEX) - catabolic gene expression Systematic evolution of ligands by exponential enrichment microarrays. Introduction to predictive functional analyses (T PICRUSt)	ne guided e induced n screens. : (SELEX); Tax4Fun2,	
2.2	Directed evolution for bioprospecting: Metabolic pathway eng Assembly of designed oligonucleotides; site directed mut Incorporation of metabolic pathway from eukaryotes and arc bacteria. Indigo production, ascorbic acid production. A synthesis through synthetic biology.	gineering; agenesis. haea into rtimisinin	7
3	Bioactive and industrially important biomolecules: en extremozymes, food additives/ quality enhancers; pigmen colorants, fabric dyes; biopolymers – biodegradable plastics: P biosurfactants and bioemulsifiers.; Pharmaceuticals- Antim therapeutics, antitumour agents, drug carriers, quorum q molecules; nutraceuticals - PUFAs, β-carotenes, anti cosmeceuticals & medicine; probiotics - probiotic bar aquaculture/human heath; microbial lectins - roles and app biofuel. Microbial natural product libraries/data bases.	zymes – hts– food HAs; EPS, hicrobials, juenching ioxidants; cteria in plications;	(18)
Pedagogy:	Lectures/tutorials/assignments		
References/ Readings	 Barcelo, D, Analysis of Marine samples in search of compounds. Comprehensive analytical chemistry. Elsevier Bhaumik, DS, & Rawat, DS, Bioactive marine natural Springer. Borkar, S, Bioprospects of coastal eubacteria. Springer Pu Bramhachari, G, Biotechnology of Microbial enzymes: Pr biocatalysts and industrial applications. Academic Press. Bull, AT, Microbial Diversity and Bioprospecting. ASM Press Colin, M, Marine microbiology: Ecology and applications science. Du, G-H, Natural small molecules drugs from plants. Spring Gupta, VK, Sharma, GD, Tuohy, MG, Gaur, R, The han Microbial bioresourses. CABI. Hernandez-Ledesma, B, & Herrero, M, Bioactive compour marine foods, plant and animal sources. Wiley Blackwell. Madigan, MT, Bender, KS, Buckley, DH, Sattley, WM, S Brock biology of microorganisms. Pearson. Medina-Framco, JL, New approaches for disco pharmacologically active natural Compounds. MDPI. Meena, SM, & Naik, MM, Advances in Biological Science I a practical approach. Elsevier 	bioactive products. blishers. oduction, ss. Garland ger. dbook of inds from stahl, DA, very of Research:	

	09-12-2022
	 Naik, MM, & Dubey, SK, Marine pollution and Microbial remediation. Springer.
	 Paterson, R & Lima, N, Bioprospecting: Success, potential and constraints. Springer.
	 Ravi, I, Baunthiyal, M, & Saxena, J, Advances in Biotechnology. Springer.
	 Reddy, SM, Charya, MAS, & Girisham, S, Microbial diversity: Exploration and bioprospecting. Scientific Publishers.
	 Suleria, HAR & Barrow, C, Bioactive compounds from plant origin: Extraction, applications and potential health benefits, CRC press
	 Thomas, TR, Kavlekar, DP, & Lokabharathi, PA, Marine drugs from sponge-microbe association: a review. Marine Drugs. 8: 1417-1468
	 Willey, JM, Sherwood, LM, & Woolverton, CJ, Prescott's Microbiology. McGrawHill Education.
Learning	To analyse and produce novel bioactive molecules from microorganisms
out comes	 To assess industrial potential of microorganisms from different econiches.
	• To design directed evolution for bioprospecting of molecules with desire properties.
	 To evaluate culture dependent and culture independent techniques for bioprospecting of microorganisms with unique properties from diverse econiches.

<u>X AC- 11</u>

Programme: M.Sc. (Microbiology) Course Code: MITG-502 Title of the Course: PHARMACEUTICAL MICROBIOLOGY [T] Number of Credits: 4, Theory Contact hours: 60 Effective from Academic Year: 2022-23

Prerequisites:	Students should have basic knowledge of industrial microbiology, fermentation technology, maintenance and identification of cultures.
Objectives:	 To understand the role and importance of microorganisms in pharmaceutical industries. To summarize the concept of aseptic handling and preparation of sterilized pharmaceuticals processing. To examine the quality maintenance and manufacturing of pharmaceutical formulations. To demonstrate microbiological standardization of pharmaceuticals.

		<u>X AC- 1</u> 09-12-20	1 <u>1</u> 022
Content:			
1.	Introduction to Pharmaceutical Microbiology		(20)
1.1	History of Pharmaceutical Microbiology: Contributions of Lou Edward Jenner, Alexander Fleming, Joseph Lister, Paul Ehrlic Waksman Milestones and developments in pharmaceutical microbiology profession of Pharmacy in India in relation to pharmacy educa	is Pasteur, ch, Selman History of ation.	
1.2	Organization structure and layout of a pharmaceutical Organizational structure and different departments in pharm industries, Location and layout of a pharmaceutical plant, Fea good layout. Good Practices: Good Manufacturing Practices (cGMP) a Microbiology Laboratory Practices in a pharmaceutical industr	Industry: maceutical atures of a and Good ry.	
1.3	Regulatory approvals for Pharmaceutical Industry Ce (Sections relevant to microbiology): Central Drugs Standard Organization (CDSCO), USFDA, MHRA (Medicines and H Products Regulatory Agency), PGA (Pharmacy Guild of Austra The pharmacy Act, Drugs and Cosmetics Act, FSSAI, The Food S Standards Act. Guidance Documents for a Pharmaceutical Industry Pharmacopoeia, British Pharmacopoeia/ European Pharmaco Pharmacopoeia, Japan Pharmacopoeia Documentation and Data Integrity: ALCOA Principle, and ALC	rtification rd Control Healthcare lia), WHO, Safety and y: Indian opoeia, US	
1.4	Biosafety Levels in Pharmaceutical Industries: Biosafety Working of biosafety cabinets, Protective clothing, Specifi BSL1, BSL-2, BSL-3, and BSL-4, Importance of biosafety in man pharmaceutical products.	cabinets, cation for ufacturing	
1.5	Discarding biohazardous waste: Methodology of Di Autoclaving and Incineration.	sinfection,	
2.	Microbiological Quality Control and Sterility Assurance		20
2.1	Concepts of Qualification, Validation & Calibration of equip instruments in microbiology laboratory. Classes and types of pharmaceutical products: Sterile and r formulations. Sampling practices: General principles, sampling of raw intermediate, finished products, primary packaging materic compressed air, and nitrogen gas.	oment and non-sterile material, ial, water,	

	<u>X AC- 1</u> 09-12-20	<u>1</u> 022
	Environmental monitoring: Utilities, settle plate technique, air sampling, surface monitoring, and monitoring of personal gear. Testing of utilities: compressed air, nitrogen.	
2.2	 Microbiological methods for pharmaceutical analysis: Media: Preparation, Growth promoting and inhibitory properties of media, Sample preparation. Enumeration: Standard plate count, Direct microscopic counts, membrane filtration technique, most probable number, turbidimetric methods, Bioburden Test. Microbiological examination of non-sterile products: Pour plate, Membrane Filtration, MPN, Tests for specific microorganisms - Total Aerobic Microbial Count (TAMC), Total Yeast and Mold Count (TYMC), Tests for <i>E. coli, Salmonella, Pseudomonas aeruginosa,</i> and <i>S. aureus</i>. Sterility Testing: Membrane Filtration and Direct Inoculation Method. Rapid Microbiological Methods: ATP bioluminescence, Impedance, and Chemiluminescence. Antimicrobial Effectiveness Testing: Bioassay 	
2.3	Advanced Identification systems of Microorganisms:Automated Microbiological Identification Systems (BBL crystalidentification system, BioMerieux Vitek, and Biolog).Culture maintenance:Basic culture and preservation methods,Lyophilization, Cryopreservation.	
2.4	Endotoxins and Pyrogens: LAL Assay. Principles of Gel Clot Method, chromogenic end-point method, Kinetic turbidimetric assay, and Kinetic chromogenic assay.	
2.5	Sterilization Methods: Pharmaceutical products, Autoclave Validation. Manufacturing of aseptically filled and terminally sterilized products. Testing of disinfectants: Surface challenge test	
3.	Drug Development	(10)
3.1	Preclinical development: Toxicity testing – acute, sub-acute and chronic toxicity	
3.2	Clinical development: Clinical trials (I, II, III and IV), Ethics in pharmaceutical industries.	
3.3	Pharmacokinetics: Absorption Distribution Metabolism Excretion (ADME) and Bioavailability studies	
3.4	Role of FDA in drug development (INDA, NDA)	

	09-12-2	JZZ
3.5	Carriers and delivery systems, targeted drug delivery, sustained release	
4.	Production and Applications of Microbially Derived Pharmaceutical Agents:	(10)
4.1	Vaccines: AIDS/ Malaria/ Covid-19	
4.2	Antimicrobial: Streptomycin (antibacterial), Atazanavir (antiviral), Artimisinin (antiprotozoal)	
4.3	Pre-biotics or Pro-biotics	
Pedagogy:	Lectures/tutorials/assignments	
References/ Readings	 Anjaneyulu Y, & Marayya R, Quality Assurance & Quality Management in Pharmaceutical Industry, Pharma Book Syndicate. Baird R.M., Hodges N.A. & Denyer S.P. Handbook of Microbiological Quality Control in Pharmaceutical and Medical Devices, Taylor and Francis Inc. D'Souza J., Killedar S.G., Biotechnology and Fermentation Process, Nirali Prakashan. Hugo W.B. & Russel A.D., Pharmaceutical Microbiology, Blackwell Scientific publications, Oxford London. Jain N.K., Pharmaceutical Product Development, CBS Publication. Kokare C. Pharmaceutical Microbiology, Nirali Prakashan. Lachman L., Lieberman H.A., Kanig J.L., The Theory and Practice of Industrial Pharmacy, Varghese Publishing House. Loftus B.T. & Nash R.A., Pharmaceutical Process Validation, Drugs and Pharmaceutical Science Series, Volume 23, Marcel Dekker Inc. Shargel L. & Andrew B.C., Applied Biopharmaceutics & Pharmacokinetics, McGraw Hill Education. 	
Learning Outcomes	 To integrate and connect the importance of microbiology in pharmaceutical To apply the knowledge of good manufacturing practices. To appraise, evaluate and implement the rules and regulations pertaining to microbiological standards in industry. To create microbially derived pharmaceutical product. 	

<u>X AC- 11</u>

Programme: M.Sc. (Microbiology) Course Code: MITG-503 Title of the Course: GENETIC ENGINEERING [T] Number of Credits: 3, Theory

Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	Knowledge of bacterial and animal genetics, basic molecular biology and	
	microbiology.	
Objective:	 Introduces the fundamental and state-of the-art tools and 	
	techniques required for molecular cloning and protein expression.	
	• Elaborates the applications of genetic engineering in agriculture,	
	therapeutics, industry and bioremediation.	
Content:		
1.	Introduction to genetic engineering and tools involved in genetic	(20)
	manipulation	
1.1	Introduction to genetic engineering	
1.2	Tools and techniques involved in genetic manipulation	
Α.	DNA modifying enzymes: restriction endonucleases, exonucleases, DNA	
	ligases (T4 DNA Ligase and <i>E. coli</i> DNA ligase), Terminal DNA transferase,	
	DNA Polymerases (Taq, Amplitaq, Vent, Exo-vent, Pfu, T4 etc), Reverse	
	transcriptase, T4 polynucleotide kinase, Alkaline phosphatase, S-1	
	Nuclease, Mung bean nuclease, RNases.	
В.	Gene cloning systems/Hosts: Gene cloning in E. coli, Bacillus subtilis,	
	Saccharomyces cerevisiae and other microbial eukaryotes	
С.	Cloning vectors: Plasmids (Col plasmid, pUC19, pBR322 and their	
	derivatives), λ phage based vectors, cosmid vectors, phasmid vectors,	
	shuttle vectors, high capacity cloning vectors (BAC and YACs).	
D.	Sequencing vectors: pUC 19 and M-13 phage vector.	
Ε.	Manipulation of gene expression in Prokaryotes; Strong and regulatable	
	promoters (lac, trp, tac, SV 40, T7, T3) for induction of gene expression;	
	Prokaryotic expression vectors – pET, pGEX-2T and others; Fusion	
	proteins; Genetic manipulation to increase recombinant protein stability	
	and secretion	
F.	Construction of recombinant DNA molecule and its transfer to	
	appropriate host (bacteria/yeast/plant cell/animal cell) using suitable	
	techniques: transformation, electroporation, transfection, gene gun.	
G.	Gene cloning strategies: Cohesive end and blunt end cloning, universal	
	TA cloning, shotgun cloning and directed cloning; genomic DNA cloning,	
	reverse-transcriptase mediated synthesis of cDNA and cDNA cloning,	
	screening of gene libraries for recombinant clones.	
Н.	Other recombinant DNA techniques: Use of radioactive and non-	
	radioactive nucleotides for DNA probe preparation and detection of	
	hybrids, gel retardation assay, restriction mapping, RFLP, PCR, real time	
	PCR, microarray, DNA sequencing using Sanger's dideoxy chain	
	termination method, capillary sequencing and next-generation	
	sequencing; chromosome walking, hybrid release and hybrid arrest	
	translation to screen clones, site directed mutagenesis.	

		<u>X AC- 1</u> 09-12-20	<u>11</u> 022
2.	Genetic Engineering in Biology, forensics and medicine		(10)
A.	Screening of genetic diseases using DNA probes (DNA diagnos	tics)	()
В.	Production of recombinant proteins and drugs (insul	in, tissue	
	plasminogen activator, erythropoietin, human growth l	normones,	
	Antibodies (including bispecific antibodies), vaccines, interfe	rons, DNA	
	vaccines: merits and demerits; Edible vaccines: merits and de	merits.	
С.	Application of recombinant DNA technology in solving parents	al disputes	
	and criminal cases (DNA fingerprinting).		
3.	Genetic Engineering in Agriculture		(05)
Α.	Development of transgenic crops resistant to insect pests, fungal and viral pathogens.	bacterial,	
В.	Strategies to develop transgenic crops and horticulture play various tools of recombinant DNA technology: Development of Golden Rice and <i>flavr savr</i> tomato.	ants using f Bt Brinjal,	
С.	Importance of Agrobacterium tumefaciens in genetic manip plants (Role of Ti plasmids), Role of Bacillus thuringiensis (Bt develop insect/pest resistant crops.	ulation of genes) to	
D.	CRISPR-Cas mediated gene editing for improvement of farm an crops	nimals and	
4.	Applications of Genetic Engineering in Industry		(05)
Α.	Genetic manipulation of microbes to over-produce industrial	y valuable	
	enzymes.		
В.	Production of recombinant pharmaceuticals, nutraceuticals	and other	
	biomolecules.		
С.	Production of fermentation products using recombinant organ	nisms.	
D.	Production of microbial SCPs.		
5.	Genetic engineering of microbes for biomonitoring, biore and biohydrometallurgy.	mediation	(05)
	Genetic manipulation of microbes to develop biosensors for r toxic organic and inorganic pollutants, bioremediation of xe toxic heavy metals and organometals, Biohydrometallurgy fo of precious metals	nonitoring enobiotics, r recovery	
Pedagogy:	Lectures/tutorials/assignments		
References/	Brown, T.A., Gene cloning and DNA Analysis: An Int	roduction,	
Readings	Blackwell Science.		
Latest editions	 Davis, L. G., Dibner, M. D. & Battey, J. F., Basic Methods in Biology, Elsevier. 	Molecular	
	• Gerhardt, P., Methods for General and Molecular Ba Elsevier.	cteriology,	
	• Glick, B.R., Pasternak, J.J. & Patten, C.L., Molecular Biote Principles and Applications of Recombinant DNA. ASM Pre-	echnology: ess.	
	 Glover, D. M., Gene cloning: The Mechanics of DNA Mai Springer-Science+Business Media, B. V. 	nipulation,	

	<u>X</u>	A	<u>C-</u>	1	1
0	9_	1	2-2	20	22

	Green, M.R. & Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, New York.	
	Grinsted, J. & Bennett, P.M., Methods in Microbiology, Vol. 21, Plasmid Technology, Academic Press.	
	Old, R.W. and Primrose, S.B., Principles of Gene Manipulation: An introduction to Genetic Engineering, University of California Press.	
	Williamson, R., Genetic Engineering, Volumes 4-7, Academic Press.	
Learning Outcomes	 Apply tools and techniques involved in molecular cloning. Formulate strategies for effective protein expression in prokaryotic hosts. Evaluate the applications of genetic engineering techniques in medical and forensic fields Appraise the potential of GMOs in industry and bioremediation. 	
(Back to Index) (Back to A		

Programme: M.Sc. (Microbiology) Course Code: MIPG-503 Title of the Course: GENETIC ENGINEERING [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	Theoretical understanding of chromosomal DNA, plasmid DNA, selection	
	media and preparatory microbiology.	
Objective:	• Hands-on experience of the workflow of a typical genetic	
	engineering experiment.	
Content:		(30)
1.	Restriction mapping of bacterial plasmid.	
2.	Assessment of DNA ligation activity of T4 DNA ligase	
3.	Preparation of competent cells and transformation of E. coli host with	
	plasmid DNA using heat shock method and electroporator; confirmation	
	of positive transformants by blue-white screening.	
4.	Demonstration of insertional inactivation of marker gene.	
Pedagogy:	Experiments in the laboratory	
References/		
Readings	As given under Theory Course MITG-503	
Learning	Apply the technique of restriction mapping;	
Outcomes	Clone a desired gene in a prokaryotic system.	
	• Interpret experimental results on the basis of gel profiles.	
	Design experiments for obtaining specific outcomes in gene cloning	
	and expression.	

Programme: M.Sc. (Microbiology) Course Code: MITG-504

<u>X AC- 11</u> 09-12-2022

Title of the Course: FOOD MICROBIOLOGY [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students know the nutritional quality of food to	
	microorganisms and presence and types of different microorganisms in	
	the food.	
Objective:	• Student will understand the beneficial and harmful association of	
	microorganisms with the food.	
	• Student will learn prospective applications of the microorganisms	
	in food industry.	
	• Student will learn the different methods of controlling the type and	
	number of microorganisms in the food as per requirement.	
	• Student will gain the knowledge about the role of food regulatory	
	bodies and measures of food safety and quality control.	
Content:		
1.	Microbial Food Spoilage and Food Preservation	(15)
Α.	Predictive food microbiology - Types of foods and their spoilage.	
В.	Factors affecting the growth and survival of microorganisms in foods:	
	Intrinsic, Extrinsic.	
С.	Preservation methods: Heat processing, low temperature storage,	
	control of water activity, irradiation, high pressure processing,	
	modified atmospheres, preservatives: chemicals, natural organic	
	molecules (nisin).	
2.	Microbiology in Food Processes	(15)
2.1	Fermented and processed foods	
Α.	Indian fermented foods.	
В.	Oriental mold modified foods.	
С.	Fermented meats and fish: - sausage, fish sauce.	
D.	Fermentations: wine, vinegar.	
2.2	Genetically engineered microorganisms in the Food Industry	
Α.	Concept, advancements, principles.	
В.	Role of genetically engineered microbes in the food industry.	
3.	Food Safety and Quality Assurance	(15)
3.1	Food borne diseases	
	Bacterial, with emphasis on emerging pathogens such as E. coli EHEC	
	O157:H7 and other strains; L. monocytogenes, H. pylori; Fungal, Algal,	
	Viral, Prions and other non-bacterial forms.	
3.2	Quality control and Validation	
Α.	Microbiological examination of foods – sampling, culturing/analysis	
	including newer methods such as PCR, magnetic separation.	
B.	Plant sanitation.	

<u>X AC- 11</u> 09-12-2022

-	
C.	Hazard Analysis and Critical Control Point (HACCP) concept.
D.	Food Safety Act and Trade Regulations.
E.	Good Manufacturing Practice (GMP) and Quality Systems.
Pedagogy:	Lectures/tutorials/assignments
References/	Adams, M. R. and Moss, M. O., Food Microbiology, New Age
Readings	International (P) Limited Publishers, New Delhi.
(Latest	Bacteriological Analytical Manual (BAM), US FDA Administration,
edition)	https://www.fda.gov/food/laboratory-methods-
	food/bacteriological-analytical-manual-bam
	• Da Silva, N., Taniwaki, M. H., Junqueira, V. C. A., Silveira, N. F. A.,
	Nascimento, M. S. do. and Gomes, R. A. R., Microbiological
	Examination Methods of Food and Water: A Laboratory Manual,
	CRC Press, Taylor & Francis Group, U.K.
	Department of Food and Public Distribution, Ministry of Consumer
	Affairs, Food & Public Distributin, GOI
	https://dfpd.gov.in/index.htm
	• Doyle, M. P. and Buchanan, R. L., Food Microbiology:
	Fundamentals and Frontiers, ASM Press.
	Food Safety and Standards Authority of India, Ministry of
	Healthand Family Welfare, GOI https://fssai.gov.in/cms/food-
	safety-and-standards-act-
	2006.php#:~:text=The%20Food%20Safety%20and%20Standards,3
	4%20OF%202006.
	• Frazier, W. C. and Westhoff, D. C., Food Microbiology, M. C. Graw-
	Hill Companies, Inc., New York.
	Harrigan, W. F., Laboratory Methods in food Microbiology, CRC
	Press, Taylor & Francis Group.
	• Jay, MJ, Loessner, M.J. & Golden, D.A., Modern Food Microbiology,
	Springer Science + Business Media Inc., NY.
	Ramesh, K. V., Food Microbiology, MJP Publishers, Chennai.
Learning	• To understand the beneficial and harmful association of
Outcomes	microorganisms with the food.
	• To appraise the prospective applications of the microorganisms in
	food industry.
	• To select the different methods of controlling the type and number
	of microorganisms in the food for its preservation.
	• To integrate the knowledge about the role of food regulatory
	bodies and measures of food safety, quality control and validation.
·	

(Back to Index) (Back to Agenda)

Programme: M.Sc. (Microbiology) Course Code: MIPG-504 Title of the Course: FOOD MICROBIOLOGY [P] Number of Credits: 1, Practical

[1224]

Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that the student should have knowledge about handling of microorganisms.	
Objective:	 Students will be assessing the microbiological quality of food. Students will learn the role of microorganisms in food fermentations. 	
Content:		(30)
1.	Determination of the D value in heat treatment of foods.	
2.	Fermentation: Production of wine, monitoring of sugar reduction and alcohol production.	
3.	Assessment of sanitary status of an eatery – Examination of microflora from table surface; utensils; drinking water.	
4.	Isolation of probiotic culture (Lactobacillus).	
Pedagogy:	Experiments in the laboratory	
References/ Readings	As given under Theory Course MITG-504	
Learning Outcomes	 To analyse food samples produced in food industry. To connect the different methods of food treatments used to control the microorganisms with food preservation. To evaluate foods in terms of microbial quality for food safety and quality control. To design the value added food products using beneficial microorganisms. 	

Programme: M.Sc. (Microbiology) Course Code: MITG-505 Title of the Course: MEDICAL MICROBIOLOGY AND EPIDEMIOLOGY [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	Knowledge of microorganisms, pathogens and various infectious diseases.	
Objective:	 To understand the mechanism of pathogenesis leading to development of disease in the host. To relate the pathogen, host and environment in terms of its varied existence and interactions, leading to various epidemiological events. 	
Content:		
1.		

	<u>X AC-</u> 09-12-2	<u>11</u> 022
1.1	Pathogenicity, virulence and virulence factor – historical perspective and	(05)
	definitions, course of infectious diseases, damage-response curve and classes of nathogen growth of nathogen in host	()
1.2	Pili, flagella, biofilm, quorum-sensing, iron scavenging, aggressins/impedins against host defence.	(03)
1.3	Host susceptibility, pre-disposing factor (nutritional, socio-economical, occupational, therapy, genetical), factors affecting immune systems; Receptors for pathogen – GalNacbeta1-4 gal moiety exposed on asialylated glycolipids, TLRs, regulation of host cell apoptosis; establishment of latent infection; TB, Streptococcal Pneumonia, Amoebic and Bacillary dysentery.	(07)
2.		(22)
2.1	Exotoxins – Type III secretion system, AB – type toxins, examples (Tetanospasmin, diphtheria toxin, pertusis toxin), bifunctional toxins, cytotoxins and cytolysins. Endotoxin – structure, biosynthesis, assay, pathophysiological effects, excessive inflammatory response, endotoxin neutralizing compound, antagonists of LPS.	(08)
2.2	Diagnostics – Sample type and handling of samples, selective enrichment, classical methods (review) of culturing and identification of pathogens, staining methods for demonstration of pathogen in situ (direct staining, fluorescent antibody staining), Applications of Molecular diagnosis and Typing: LPS (chemotyping), phage, pyocin, antimicrobial, serotyping, Restriction mapping, RELP, PEGE, PCR.	(03)
2.3	Cystic fibrosis, Spongiform encephalopathy.	(04)
3.		(/
3.1	Spatial, temporal and social distributions of communicable diseases, transmissibility of infections, cross-sectional studies, case-control studies, cohort studies, Models for Developing Epidemiological Theory, modeling tools, Rates and risks, Population dynamics, Epidemiological Statistics Relating Exposure and Disease, Simple Epidemic Processes, Vaccine effect measures, Multistage chronic diseases, Joint effects of multiple exposure variables.	(09)
3.2	Community acquired infection, infections in immuno-compromised patients, Nosocomial infections, catheter associated infections, infections in patients with debilitating diseases, neo-natal infections; Vector borne diseases – vectors for transmission of infectious diseases, epidemiological cycles of vector borne diseases, control measures.	(06)
Pedagogy:	Lectures/tutorials/assignments/Moodle/videos/web resources	
References/ Readings	 Carroll, KC, Butel, J and Morse, S. Jawetz melnick and adelbergs medical microbiology. McGraw-Hill Education. Centers for Disease Control and Prevention. Department of Health 9: 	
editions)	Human Services, USA <u>https://www.cdc.gov/</u>	

		<u>X AC- 11</u>	
		09-12-20)22
	 Chakraborty, P. and Pal, N.K., Manual of Practical Microb Parasitology. New Central Book Agency, India. Chakraborty, P. Textbook of Medical Parasitology. New Ce Agency, India Davis, B.D. et al., Microbiology. Harper and Row. Gillespie, S.H. and Hawkey, P.M., Principal and Practice Bacteriology. Wiley. National Centre for Disease Control, Ministry of Health welfare, GOI <u>https://ncdc.gov.in/</u> Online Tuberculosis Information System (OTIS) Data, C Disease Control and Prevention, Department of Health Services, USA <u>https://wonder.cdc.gov/tb.html</u> Parija, SC, Textbook of Microbiology & Immunology. Elser Sciences. Rafi, MD, Textbook of biochemistry for Medical Universities Press, India Struthers, J.K. and Westran, R.P., Clinical Bacteriology. CR Topley, W.W.C., Wilson, G.S., Parker, M.T., & Collier, L.H., Wilson's Principles of Bacteriology, Virology and Immun 	09-12-20 piology and entral Book of Clinical n & Family Centers for & Human vier Health Students, C Press. Topley and nity: v. 1-4,	022
	 World Health organization, South-East <u>https://www.who.int/southeastasia</u> 	Asia	
Learning Outcomes	 To identify the various virulence and pathogenicity microbial pathogens. To correlate the various pathological events during the p of an infectious disease. To apply the various diagnostics techniques involved in ide of pathogenic agent. To categorize the strategies/methods required to combat of pathogens under various circumstances. 	factors of progression entification the spread	

Programme: M.Sc. (Microbiology)

Course Code: MIPG-505

Title of the Course: MEDICAL MICROBIOLOGY AND EPIDEMIOLOGY [P]

Number of Credits: 1, Practical

Contact hours: 30

Effective from Academic Year: 2022-23

Prerequisites	Ability to handle microorganisms in the laboratory.	
Objective:	 Student will learn in handling, characterization and identification of pathogens. Student will able to do analysis of epidemiological data. 	
Content:		(30)
1.	Demonstration of malaria parasite in blood film.	
2.	Determination of sensitivity of bacteria to antibiotics (Disc method).	

<u>X AC- 11</u> 09-12-2022

3.	Enrichment, isolation and identification of Enteric pathogen.	
4.	Analysis of disease incidence using CDC/epidemiological data.	
Pedagogy:	Experiments in the laboratory, web resources	
References/	As given under Theory Course MITG-505	
Readings		
Learning	• To identify and distinguish between various human pathogens.	
Outcomes	• To apply the microbiology tools and techniques in specific need for clinical cases	
	chilical cases.	
	• To estimate the resistance of bacteria against commercially available antibiotics.	
	• To apply the principles of statistics in processing of epidemiological	
	data.	

Programme: M.Sc. (Microbiology) Course Code: MITG-506 Title of the Course: MARINE MICROBIOLOGY [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-23

Prerequisites	Basic understanding of the unique properties of water, features of marine			
	environments and microorganisms.			
Objective:	• Students will learn microbial diversity in context of various			
	characteristics of marine and coastal environments.			
	• Students will understand specialized tools and techniques used in			
	study of microorganisms present marine and coastal ecosystems.			
Content:				
1.		(15)		
1.1	Introduction to oceanography: the world's oceans and seas and its			
	demarcations, zonation of the water column with respect to depth and			
	light. Impact of water column zonation on biology Properties of			
	seawater physico-chemical factors in the marine environment such as			
	temperature density nutrients salinity dissolved gases			
	Ocean phonomona: wayoe tides oceanic currents. Ekman transport and			
	upwelling, its significance and impact on biology in coastal regions and			
	upweining- its significance and impact of biology in coastal regions and			
	open ocean, Coriolis effect, eddles, gyres, El Nino- Southern Oscillation			
	(ENSO), and its significance.			
1.2	Marine microbial habitats: water column, sediments, estuaries,			
	mangroves, salt marshes, beach ecosystems, coral reefs, deep sea			
	hydrothermal vents, cold seeps.			
2.	Marine Microorganisms	(15)		
2.1	Marine microbes – viruses, bacteria, fungi, phytoplankton, zooplankton:			
	their growth, physiology and contribution to ocean processes. Modes of			

	0	<u>X AC- 11</u> 9-12-2022
	microbial growth: viable but non-culturable (VBNC) microorga	nisms,
	biofilms, microbial mats, epibiosis.	
2.2	Physiology of marine microbes: metabolic diversity and energy-	
	yielding processes: Microbial carbon pump, microbial loop; marine s	snow;
	phototrophy and primary productivity, aerobic respiration, anae	erobic
	respiration (denitrification, sulphate reduction, methanogenesis);	
	nitrification, annamox, sulphur oxidation, methanotrophy; ferment	ation.
	Carbon dioxide fixation in autotrophs; the role of microorganish	ms in
	biogeochemical cycling: carbon, nitrogen, phosphorous, sulphur,	iron,
	manganese.	
2.3	Role of microbes in climate change and global warming. Microbes -	a tool
	of carbon sequestration.	
2.4	Mesocosm- quantification of global warming impact- sp	pecies
	composition and turnover, distribution of functional traits, ecol	ogical
	processes; Microcosm- Quantification of global warming on bac	terial
	metabolic rates, productivity.	
3.	Methods in marine microbiology	(15)
3.1	Sampling equipment: water samplers such as CTD rosette- I	Niskin
	sampler, sediment samplers -different types of grabs such as Van	Veen
	grabs, Shipek grabs, Eckman grab and different types of corers- F	viston
	corer, box corer, gravity corer.	
3.2	Analysis of primary productivity: the radiocarbon method; Analy	sis of
	bacterial productivity: the thymidine uptake method; Analys	is of
	bacterial productivity: the thymidine uptake method; Measureme	ent of
	respiration rates: light-dark bottle method	
3.3	Tools to study marine microbial diversity: flow cytometry (bac	teria,
	picoplankton, picoeukaryotes, viruses); molecular approaches su	ch as
	metagenomics, community fingerprinting and Fluorescence in	i situ
	hybridization (FISH), Microsensor, Biosensors.	
Pedagogy:	Lectures/tutorials/assignments	
References/	Belkin, S. and Colwell, R. R., Ocean & Health: Pathogens in the N	larine
Readings	Environment, Springer.	
	• Grasshoff, K., Ehrhardt, M. and Kremling, K., Methods of Sea	water
	Analysis, Verlag Chem., Weinheim.	
	Hunter-Cevera, J., Karl, D. and Buckley, M., Marine Mic	robial
	Diversity: the Key to Earth's Habitability, American Acader	ny of
	Microbiology.	
	Intergovernmental Oceanographic Commission (1994) Protoco	ls for
	the Joint Global Ocean Flux Study (JGOFS) Core Measurements	. DOI:
	nttps://doi.org/10.2560//OBP-1409 Intergovernm	iental
	Uceanographic Commission Manuals and Guides : 29 -JGOFS Re	eport;
	19 Mollon C. D. Milaclar, D. A. Distantist, Oscilar, J. A.	A/:lo.
	 Ivieller, C. B., wheeler, P. A., Biological Oceanography, V Blackwall Dublishers 	viley-
	Biackwell Publishers.	

<u>X AC- 11</u> 09-12-2022

	• Mitchell, R. and Kirchman, D. L., Microbial Ecology of the Oceans, Wiley- Blackwell Publishers.	
	• Munn, C., Marine Microbiology: Ecology and Applications, Garland Science, Taylor and Francis, N.Y.	
	• Nybakken, J. W. and Bertness, M. D., Marine Biology: an Ecological Approach, Benjamin Cummings, San Francisco.	
	 Parsons, T. R., Maita, Y. and Lalli, C. M., Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon Press, New York. 	
	• Strickland, J. D. H. and Parsons, T. R., A Manual of Seawater Analysis, Queen's Printer and Controller of Stationery, Ottawa.	
	 Sournia, A., UNESCO Monographs on Oceanographic Methodology, Vol. 6, Phytoplankton Manual, UNESCO Publishing, Paris. 	
	Tomas, C. R., Identifying Marine Phytoplankton, Academic Diego, CA.	Press, San
Learning Outcomes	• To integrate microbial diversity in context of various characteristics of marine and coastal environments	
	• To connect the microbes and their role in marine ar habitats.	nd coastal
	To categorize and select different methods and tools microorganisms in marine and coastal ecosystems.	to study
	 To illustrate the various biogeochemical cycles in context of microorganisms. 	

(Back to Index) (Back to Agenda)

Programme: M.Sc. (Microbiology) Course Code: MIPG-506 Title of the Course: MARINE MICROBIOLOGY [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	It is assumed that students should have a basic understanding of the unique physico-chemical characteristics of seawater and the different microbial groups in marine environments.	
Objective:	 Students will learn different methods of sampling and analysis of physico-chemical parameters of estuarine and coastal environments. Students will analyze the marine samples for isolation and enumeration of microorganisms. Students will understand the different biochemical processes in marine microorganisms. 	
Content:		(30)

09-12-2022 1. Sampling methods for collection of water and sediment samples from estuarine and coastal environments. 2. Analysis of physico-chemical parameters of seawater- Temperature, Salinity, Dissolved Oxygen, pH, Suspended matter, Nutrients; Nitrate, Nitrite, Phosphate, Silicate. Isolation and enumeration of microbes from estuarine and coastal 3. environments - Microscopic count of water column bacteria, Total count (epifluorescence method-DAPI), Bacterial respiration, community respiration and net production 4. Assessment of salt requirement of marine isolates from different ecosystems. 5. Denitrification by marine bacterial isolates. Study of biofilm formation by microorganisms. 6. Pedagogy: Experiments in the laboratory References/ As given under Theory Course MITG-505 Readings To explain sampling and analysis of physico-chemical parameters of Learning • Outcomes estuarine habitat To analyse samples from marine and coastal habitat for isolation and • enumeration. To connect microorganisms with marine and coastal habitats. ٠ To asses metabolic rates in marine bacterial isolates. •

(Back to Index) (Back to Agenda)

<u>X AC- 11</u>

Programme: M.Sc. (Microbiology)

Course Code: MITG 507

Title of the Course: ENTREPRENEURSHIP IN MICROBIOLOGY [T]

Number of Credits: 4

Contact hours: 60

Effective from Academic Year: 2022-2023

Prerequisites	Basics of microbiology, microbial physiology and industrial microbiology	
Objective:	 Students will able to recognize and acquire skills for entrepreneurship in microbiology. Students will able to discuss the possibilities of developing wealth derived from application of microbiology. Students will able to state various schemes and opportunities in taking up entrepreneurship in microbiology as career growth. 	
Content:		
1	Scope of entrepreneurship in microbiology, process of 4 entrepreneurship, type and competencies of entrepreneur, self- assessment of abilities and skills for entrepreneurship in microbiology, advantages and disadvantages of entrepreneurship in microbiology,	

	09-12	-2022
	motivational stories and sharing of experience of entrepreneurs in microbiology.	
2	Characteristics of industries based on Microbiology, Context of entrepreneurship in microbiology and comparison with entrepreneurship in other fields, Bioentrepreneurial opportunities - spotting problems and needs, online-tools for searching databases for problems and needs, opportunities for solutions using microbiology, creativity and developing innovative ideas. Identifying limitation of product, process and design in implementation. Innovative steps in developing product or process in microbiology, use of mind-maps, proof of concept, identifying market and business possibility.	7
3	Entrepreneurial planning: MSME - definition, type; Five basic forms of legal organization - sole proprietorship, partnership, joint stock companies; company - types and salient features of companies; story of start-up and company of microbiology, regulations associated for company based on microbiology, economics of microbiology based industry including taxes	6
4	Stages-Types of microbiological products/process - microorganisms as product, metabolites, proteins and small molecules from microorganisms, microorganism based processes, genetically modified microorganisms for product and process, scale-up of process, stability and shelf life, ethical issues, Technological Readiness Levels (TRL), Marketable Readiness levels (MRL) and Business Readiness Level (BRL); technology versus business model; stages and strategies for commercialization and market, role of bioincubators and Government support system, Business models - Research Intensive pharmaceutical companies (RIPCO), fully integrated drug discovery and development organization (FIDDO), No research-development only (NRDO), fully integrated pharmaceutical/ biopharmaceutical company (FIPCO/FIBCO), Fully integrated pharmaceutical network (FIPNET/VIPCO)	14
5	Intellectual Property Rights - Patents, Trademarks, Copyrights, Industrial Designs, Geographical Indications and Traditional knowledge, Integrated Circuits, Plant Varieties & Farmers Rights, Trade Secrets; Acts associated with: patents, copyrights and trademarks. Non-disclosure agreements, overview of patent registration in India, National and International IPR laws pertaining to microorganisms and product/process thereof, Budapest treaty, National and International Repositories for Microorganisms, comparison of Indian and International patent laws, Description and requirement for Indian Patent, search and filing of patent, microbiology based examples of patents (product/process/design), Role and importance of trademarks and brand name, search of trademarks, example of trademarks in Microbiology, management of innovation and IPR, IP portfolio. selling	12

<u>X AC- 11</u>

<u>X AC- 11</u>	
)-12-2022	
s in	
[,] - 5	
ing	
ital	
ent,	
cial	
for 8	
ous	
989	
Act,	
ics,	
izer	
for 4	
tal,	
and	
p in	
ts.	
ıral	
om	
39),	
bod	
om	
(X),	
rial	
om	
+2),	
.ea,	
est ct/	
and	
טווג	
urc)	
rs),	
0.0,	
2 1911 第 一 Y n p ie n 一 s di 11 / g iii — s oi ~ u n 一 tt fr 11 一 it i r o a l (一 ~ 一 o n	

	09-12-2022
	 Food Safety and Standards Authority of India, Ministry of Healthand Family Welfare, GOI https://fssai.gov.in/cms/food- safety-and-standards-act- 2006.php#:~:text=The%20Food%20Safety%20and%20Standards, 34%200F%202006.
	 Genetic Engineering Appraisal Committee, Ministry of Environment, Forest & Climate Change, GOI, https://geacindia.gov.in/acts-and-rules.aspx
	 Malik, S.S. & Shukla, S.S. Bioentrepreneurship development, Biotech Consortium India Limited, New Delhi
	 Office of the Controller General of Patents, Design & Trade Marks, Department for Promotion of Industry and Internal Trade, Ministry of Commerece & Industry, MOI https://ipindia.gov.in/
	Stanbury, PF, Whitaker, A & Hall, SJ. Principles of Fermentation Technology, Elsevier
	 United States Patent & Trademark Office, USA, https://www.uspto.gov/
	World Intellectual Property Organization, Switzerland, https://www.wipo.int/portal/en/index.html
	Various acts and rules listed in the content section.
	Biochemical Engineering and Biotechnology.
	Journal of Industrial Microbiology and Biotechnology.
Learning Outcomes	 To develop product and/or process based solution using microbiological concepts.
• • • • • • • • • • • • • • • • • • • •	 To differentiate IPR potentials of microbial process and product.
	• To connect with the funding and marketing opportunities available in bioentrepreneurship.
	To appraise the process for developing and manufacturing
	product using microorganisms or their produce.
	To formulate strategies for establishing a start-up.
	(Deals to Index) (Deals to Agondo)

<u>X AC- 11</u>

Programme: M.Sc. (Microbiology) Course Code: MIPG-508 Title of the Course: Field Trip to industries/institutions in Goa Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	The student should have knowledge of microbiology.	
Objective:	• To recognize various industries and institutions in Goa providing	
	employment in the area of Microbiology.	
	• To understand the scope of microbiology and role of microbiologists	
	in various institutions and industries in Goa.	

		<u>X AC- 1</u>	<u>l1</u>
[09-12-20	022
Content:			
1.	Visit to National Research Institutes: National Centre for Polar and		(15)
	Ocean Research [NCPOR] / Council of Scientific and Industria	Research-	
	National Institute of Oceanography [CSIR-NIO] / Indian	Council of	
	Agricultural Research – Central Coastal Agricultural Research	ch Institute	
	(ICAR - CCARI) / Indian Council of Medical Research- National Institute of		
	Malarial Research (ICMR-NIMR) / Goa Medical College / Birla	Institute of	
	Technology and Sciences (BITS) Pilani, Goa Campus / Don Bos	sco College	
	of Agriculture.		
2.	Visits to Industries: Pharmaceutical industry, Agricultural farm	ming, Food	(15)
	and Beverage industry, Waste Management Plant, CIBA		
3.	Report writing		
4.	Presentation and group discussion		
Pedagogy:	Field visits/Presentation		
References/	Reading material provided by the institutions/industries.		
Readings	Websites of the institutions/industries.		
(Latest			
version)			
Learning	• To appraise the different instruments used in indu	stries and	
Outcomes	institutions for microbiological analysis and research.		
	To connect with the recent advancements in Microbiol	logy taking	
	place in different industries and institutions.		
	• To choose between the career in industry or research in	Goa.	
	To categorize the various opportunities available in micr	obiological	
	industries in Goa.		

Programme: M.Sc. (Microbiology) Course Code: MIPG-509 Title of the Course: Field Trip to industries/institutions across India Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	The student should have knowledge of microbiology.	
Objective:	 To recognize various industries and institutions in India providing employment in the area of Microbiology. To understand the scope of microbiology and role of microbiologists in various institutions and industries in India. 	
Content:		(30)
1.	Visit to Institutes/Industries: National/State research institutes/ Universities/ Industries outside Goa will be identified and the study tour will be arranged for the students.	
2.	Report writing	
3.	Presentation and group discussion	

<u>X AC- 11</u>
09-12-2022

Pedagogy:	Field visits/Presentation	
References/	Reading material provided by the institutions/industries.	
Readings	Websites of the institutions/industries.	
(Latest		
Edition)		
Learning	• To appraise the different instruments used in industries and	
Outcomes	institutions for microbiological analysis and research.	
	• To connect with the recent advancements in Microbiology taking	
	place in different industries and institutions.	
	• To choose between the career in industry or research in India.	
	• To categorize the various opportunities available in microbiological	
	industries in India.	

Programme: M.Sc. (Microbiology) Course Code: MIPG-510 Title of the Course: Field Trip to coastal ecosystems and allied industries Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-23

Prerequisites	The student should have knowledge of microbiology.	
Objective:	• To apply various techniques and instruments used for collection of	
	samples from marine and coastal ecosystem.	
	• To understand the processing of marine and coastal samples.	
Content:		
1.	Sample collection from coastal regions:	(22)
	a) Estuarine sampling	
	Collection of samples using various water samplers and sediment grabs;	
	recording of lat-long (net GIS), temperature and salinity; samples for	
	BOD, COD; maintenance and transfer of samples.	
	Processing the samples for isolation of microorganisms	
	b) Intertidal regions	
	Sampling and culturing of microorganisms associated with marine flora	
	and fauna.	
3.	Visit to marine industries:	(08)
	Aquaculture / Marine farming / Seafood processing industry.	
4.	Report writing	
5.	Presentation and group discussion	
Pedagogy:	Field visit/Laboratory analysis/Presentation	
References/	• Munn, C., Marine Microbiology: Ecology and Applications, Garland	
Readings	Science, Taylor and Francis, N.Y.	
(Latest	• Parsons, T. R., Maita, Y. and Lalli, C. M., Manual of Chemical and	
Edition)	Biological Methods for Seawater Analysis, Pergamon Press, New	

		<u>X AC- 1</u>	.1	
		09-12-20)22	
	York.			
	• Przeslawski, R., Berents, P., Clark, M., Edgar, G., Frid, C.,	Hughes, L.,		
	& Smith, J. (2018). Marine sampling field manual for gra	& Smith, J. (2018). Marine sampling field manual for grabs and box		
	corers. Field Manuals for Marine Sampling to Monitor	corers. Field Manuals for Marine Sampling to Monitor Australian		
	Waters, 172-195.	Waters, 172-195.		
	• Strickland, J. D. H. and Parsons, T. R., A Manual of Seawate	Strickland, J. D. H. and Parsons, T. R., A Manual of Seawater Analysis,		
	Queen's Printer and Controller of Stationery, Ottawa.			
	• Suter, E. A., Scranton, M. I., Chow, S., Stinton, D., Medina	Faull, L., &		
	Taylor, G. T. (2017). Niskin bottle sample collection aliase	s microbial		
	community composition and bioge	eochemical		
	interpretation. Limnology and Oceanography, 62(2), 606-	-617.		
	Reading material provided by the industries.			
	Websites of the industries.			
Learning	• To experiment with marine and coastal samples.			
Outcomes	• To plan isolation of marine microorganisms.			
	• To analyse the marine microorganism for their	potential		
	applications.			
	• To categorize the various opportunities available	in marine		
	industries in Goa.			

Programme: M.Sc. (Microbiology) Course Code: MIPG-511 Title of the Course: Internship in Industry/Institution Number of Credits: 2, Practical Contact hours: 60 Effective from Academic Year: 2022-23

		-
Prerequisites	The student should have knowledge of microbiology.	
Objective:	• To apply the use of instruments and techniques used in industries and institutions through hands-on training.	
	 To associate with recent trends in research/economic activities in institutes/industries. 	
Content:		
1.	Training in an Institute/Industry	(60)
	The student shall be required to undertake training in Research Institute/Industry for a minimum period of 2 weeks or its equivalent and submit a certificate of attendance signed by the Training Coordinator of the respective Institute/ Industry.	
	Students may opt to undertake a summer training Course in an Institute/ Industry of their choice. A student shall be required to make the necessary inquiries to seek the possibility of doing such a training; faculty	

<u>X AC- 11</u>	
09-12-2022	

	will be assigned to assist them in their preparations. An official letter will	
	then be issued.	
2.	Report writing	
3.	Presentation and group discussion	
Pedagogy:	Hands-on-training/literature review	
References/	Reading material provided by the institution/industry	
Readings	Websites of the institutions/industries.	
(Latest		
Edition)		
Learning	• To evaluate the use of specialized instruments for application in	
Outcomes	microbiological analysis.	
	• To plan the experiments based on recent trends in microbiology.	
	• To appraise the future prospects in microbiological research and	
	industry.	
	To compile analysis reports.	
	(Back to Index) (Back to A	(genda)

Programme: M.Sc. (Microbiology) Course Code: MITR 501 Title of the Course: Research Methodology and Advanced Biostatistics Number of Credits: 4 Contact hours: 60 Effective from Academic Year: 2022-2023

Prerequisites	Student should have knowledge about microbiology and bassic biostatistics.	
Objective:	 To understand the basic concepts and methodologies involved in research. To develop the understanding of various advanced biostatistical tools involved in data analysis and interpretation. 	
Content:		
1	Introduction to research methodology	(20)
1.1	Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical, concept of applied and basic research process, criteria of good research	
1.2	Defining the problem, setting of working hypothesis, Defining the Aims and Objectives, Literature survey: sources of literature, gathering of literature, understanding the flow for literature review, identification of gap areas, Databases and Research Metrics: Indexing databases, citation databases, Web of Sciences, Scopus, Pubmed, <i>etc</i> , Impact factor of journals, Citation of bibliography, Work Plan – Time-bound Frame, GANTT chart, technical writing: Research manuscript writing, thesis writing	

	<u>X AC</u> 09-12	<u>- 11</u> -2022
1.3	Establishment of ethics in science and research: examples of unethical	
1.5	work done in past. Ethical use of animal subjects, human subjects. Stem	
	cell ethics, plant use and transgenic crops	
1.4	Plagiarism in research: Scientific misconduct. Falsification, fabrication,	
	misinterpretation of data. Anti-plagiarism tools like Ouriginal	
	iThenticate / Turnitin and other open source software tools	
1.5	Hazards: Types of Hazards: radioactive, chemical and biohazard, waste	
	management and disposal.	
	Safety in laboratory: first-aid, fire safety, biosafety in laboratory, Good	
	Laboratory Practices	
2	Advanced biostatistics	(40)
2.1	Curve fitting- fitting of a second degree parabola, power curve,	
	exponential curve	
2.2	Multiple Regression Analysis- Two-variable linear model, significance	
	test for parameter estimates, goodness of fit, three variable linear	
	model, coefficient and adjusted coefficient of multiple determination,	
	test of overall significance of regression (F test), correlation coefficient-	
	partial, zero order, first order, second order, Multiple correlation,	
	generalized linear model, matrix approach for analysis, Regression	
	analysis for qualitative variable/s and role of dummy variable	
2.3	Non-parametric tests – Concept of non-parametric test, advantages,	
	disadvantages, sign test for one sample and two samples, Wilcoxon	
	signed rank test, Median test, Run test, Mann-Whitney 'U' test, Kruskal-	
2.4	Wallis H test	
2.4	absorvations nor coll concent procedure and examples	
25	Designs of experiment. Use and reasons for Design of experiments	
2.5	definitions concepts and terminology Principles of experimental	
	designs – replication, randomization and controls. Completely	
	randomized design (CRD). Randomized complete block design (RCBD).	
	Repeated measures design (RMD) – Single factor repeated measure	
	design (SFRMD), handling of missing observations in RCBD, Latin square	
	design (LSD), 2 ² Factorial experiments, Yates' Method, Confounding in	
	factorial design, partial confounding, advantages and disadvantages	
Pedagogy:	Lectures/tutorials/assignments/self-study	
References/	Alley, M, The Craft of Scientific Writing, Springer Science and	
Readings	Business Media.	
(Latest	Biological Safety Cabinets And Other Primary Containment Devices,	
edition)	Laboratory safety manual, WHO	
	Biosafety in Microbiological and Biomedical Laboratories, U.S.	
	Department of Health and Human Services	
	Cochran, WG and Snedecor, GW Statistical Methods. Iowa State	
	University Press.	_
	Cooray P.G. Guide to Scientific and Technical Writing, Hindagala	

		09-12-2022
	• Day R.A. How to write and publish a scientific paper,	Part 274,
	Volume 994, Oryx Press.	
	Good C V, Scates, DE, Methods of Research, Appletor	n-Century-
	Crofts.	
	Haaland, P.D., 2020. Experimental design in biotechno	logy. CRC
	press.	
	 Indian Statistical Institute (<u>https://www.isical.ac.in/</u>) 	
	Kothari CR, Research Methodology Methods and Technic	ques, New
	Age International	
	Kumar, RC, Research Methodology. APH Publ Corpora	tion, New
	Delhi.	
	Mourya, DT, Yadav, PD, Majumdar, TD, Chauhan, DS ar	id Katoch,
	VM, 2014. Establishment of Biosafety Level-3 (BSL-3) la	aboratory:
	Important criteria to consider while designing, cor	istructing,
	commissioning & operating the facility in Indian setting.	The Indian
	Journal of Medical Research, 140(2), p.171.	
	• Rao, KS, Biostatistics for Health and Life sciences,	Himalaya
	Publishing House.	
	Rao, PSSS & Richard, J, An introduction to biostatistics - A r	nanual for
	students in health sciences, Prentice-Hall of India pvt.	Ltd., New
	Delhi	
Learning	To sketch the procedures and methodologies for performing a	a research
Outcomes	experiment.	
	To predict the required experimental designs.	
	To analyze the experimental data using various biostatistical to	ools.
	To create a scientific report/ manuscript/ thesis.	

X AC- 11

Programme: M.Sc. (Microbiology) Course Code: MITR 502 Title of the Course: MICROBIAL TECHNOLOGY [T] Number of Credits: 3 Contact hours: 45 Effective from Academic Year: 2022-2023

Prerequisites	Students should have basic knowledge of different techniques and	
	instruments, their principle and applications.	
Objective:	 The course develops an understanding on the potential of microorganisms in sustainable development. The course summarizes the microbial technologies for energy production. The course discuss microbial technologies in aquaciture and for human health. The course describe potential of genetically engineered 	
	microorganisms and nanobiotechnology.	

<u>X AC- 11</u> 09-12-2022

Content:		
1.	Biotechnology and prospecting with microbes.	(06)
	Advantages of using microbial technology over chemical and physical	
	technology. Increasing relevance of microbiology in all biotechnologies.	
	Ethics in the use of Genetically Engineered Microorganisms (GEMs).	
	Commercialization of Microbial Biotechnology. Introduction and	
	applications of Nanobiotechnology.	
2.	Microbial technology in agriculture	(09)
	Production of microbial biofertilizers, biopesticides, soil conditioners to	
	enhance crop yields.	
3.	Microbial technology in mining	(15)
	Bioleaching, Biomining, Microbial Enhanced Oil Recovery (MEOR),	
	Microbial technology in waste and pollution management in mining:	
	Bioconversions, Bioremediation, Bio-sedimentation, Bio-beneficiation,	
	Aquifer cleaning.	
4.	Microbial technology for energy production	(07)
	Microbial fuel cell; Biogas; Biodiesel; Microbial cell mass	
5.	Microbial technology in Human health & aquaculture	(08)
	Pigments, Nutraceuticals, Probiotics, Bio-actives, Bioplastics, Microbes as	
	bio-weapons.	
Pedagogy:	Lectures/tutorials/assignments	
References/	• Ahmad, I., Ahmad, F. and Pichtel, J. Microbes and Microbial	
Readings	Technology: Agriculture and Environmental Applications, Springer.	
(Latest	• Arora, R., Microbial Biotechnology: Energy and Environment, CABI	
edition)	Publishing.	
	• Bull, A. T., Microbial Diversity and Bioprospecting, American Society	
	for Microbiology.	
	• Peppler, H.J., Microbial Technology: Microbial Processes, Academic	
	Press.	
	• Sukla, L. B., Pradhan, N., Panda, S. and Mishra, B. K. Environmental	
	Microbial Biotechnology, Springer.	
Learning	• To understand the key potential of microorganism in environmental	
Outcomes	remediation.	
	• To appraise and evaluate the microbial products for their potential	
	application.	
	• To apply the knowledge of various microorganisms in developing	
	technology.	
	• To create a microbial technology towards achieving the sustainable	
	development goals.	

Programme: M.Sc. (Microbiology) Course Code: MIPR 502 Title of the Course: MICROBIAL TECHNOLOGY [P]

Number of Credits: 1, PRACTICAL Contact hours: 30 Effective from Academic Year: 2022-2023

Prerequisites	Students should have a basic knowledge of different techniques in	1
	instrumentation- their principle, working and applications.	
Objective:	• This course gives hands-on experience to connect microbial	
	potential with technology to produce the product.	l
Content:		(30)
1.	Determination of stability of microbial fertilizer.	
2.	Effect of microbes on sedimentation and clarification of water.	1
3.	Screening of isolates for production of (a) Pigments as bioactives and	
	(b) Probiotics: Isolation of LABs and their characterization- Morphology,	1
	lactose fermentation, Bile tolerance test.	
4.	Demonstration of Microbial Bioplastics.	
5.	Biosynthesis of nanoparticles	
Pedagogy:	Experiments in the laboratory	
References/	As given under Theory Course MITR-502	1
Readings		l
Learning	• To evaluate the procedures for formulation of biofertilizers and	1
Outcomes	probiotics.	1
	• To analyse the role of microorganisms in biremediation of	1
	contaminated water.	l
	• To understand and analyse the role of microbial synthesis of	1
	bioplastics.	1
	• To design and produce technologies for biosynthesis of	1
	nanoparticles using microorganisms.	1

Programme: M.Sc. (Microbiology) Course Code: MITR 503 Title of the Course: EXTREMOPHILIC MICROORGANISMS [T] Number of Credits: 3 Contact hours: 45 Effective from Academic Year: 2022-2023

Prerequisites	The student should have knowledge of microorganisms and their	
	diversity.	
Objective:	 To discuss about the extreme habitats, extremophilic 	
	microorganisms, their adaptations and biotechnological potentials.	
Content:		
1.		(15)
1.1	Concepts of extremophilic and polyextremophilic microorganisms	1
1.2	Extreme habitats and extreme microbial communities: deserts, ore	10
	deposits/ mining areas (Fe, Mn, Cu), Yellow stone national park, Ring of	

	<u>X AC-</u>	<u>11</u>
[U9-12-2	2022
	soons soda lake Dead Soa solar salterns polar environments	
	Astropiology (avobiology (Mars Europa and astoroids) Conventional	
	Astrobiology / exobiology (Mars, Europa and asterolos). Conventional	
	culture techniques, high throughput techniques for culturing and	
1 2	Significance of extrementiles in biogeochemical cycling industry	Λ
1.5	significance of extremopriles in biogeochemical cycling, industry,	4
2	Key melocular components, unique physiological features, adaptation	(20)
2	stratogios and onzymos of various ovtromonbilic typos:	(50)
2.1	Apparators and enzymes of various extremoprime types.	(15)
2.1	thermoscotica. Wood Lingdobl pothway: barophilos / pigzophilos	(12)
	mechanicm in baronbily. <i>Bhatahactarium</i> profundum Shawanalla	
	mechanism in barophily, <i>Photobacteriam projundam, Snewanena</i> ,	
	Relarementes / psychrophiles - (cold shock proteins and regulation)	
	8 hyperthermonhiles; heat check proteins and regulation. Aquifax	
	Tanidomonas Phodotharmus Durosossus; motallophilos Coobastar:	
	stromatolitos: microbial mat and biofilms	
2.2	Alkalinhilos / hasonhilos - Alkalimonas Nesterenconia: asidonhilos -	(15)
2.2	Dicrophilus Ferroplasma Thiobacillus ferropyidans: balophilos	(15)
	Halomonas Haloferay Dungliella saling Hortaga werneckii:	
	asmonbilos, Autojerux, Dununena Sanna, Aortaea werneckir,	
	oligotrophis Pologibastor Caulobastori vorophilos Wallomia: extreme	
	oligotiophis - Pelugibucier, cuulobucier, xerophiles - Wullennu, extreme	
	(yanobacteria (Prioriniaium, Synechococcus invidus, iniustryociadus	
	dogradars, Dsaudamange, andaliths, Chroasassidiansis, Halathasa	
Podogogy:	Locturos (tutorials / assignments	
Peuagogy. Poforoncos/	Blum B. Archaoa: Now models for prokaryotic biology. Academic	
Readings	Bluff, F., Alchaea. New models for prokaryotic biology. Academic press	
(Latost	Press. Brack T. D. Thormonphilic microorganisms and life at high	
(Latest	• Brock, T. D. Mernophilic microorganisms and me at high temperatures Springer	
Teaunigs/	Cavicchioli B Archaea: Molecular and cellular hiology ASM Press	
	 Durvasula R.V. Subba Rao, D.B. Extremonbiles from biology to 	
	 Durvasula, N.V., Subba Nao, D.D. Extremophiles from biology to biotechnology CRC Press 	
	Gerday C Glansdorff N Physiology and biochemistry of	
	evtremonbiles ASM Press	
	Horikoshi K and Grant W.D. Extremonhiles-microhial life in	
	Extreme Environments Wiley New York	
	Kannan P Ignacimuthu S Paulrai MG Ruffering canacity and	
	membrane H ⁺ conductance of protease producing facultative	
	alkalinhilic hacterium <i>Bacillus flevus</i> from mangrove soil Indian Lof	
	Biochemistry and Biophysics 16:261-265	
	Medigan MT Bender K S Buklov DH Sattlov W M & Stable	
	 Medigan, W.T., Bender, K. S., Bukley, D.H., Sattley, W. W., & Stalli, D.A. Brock biology of microorganisms. Poarson 	
	Munn C Marine microbiology Ecology and applications. Carland	
	• Wurn, C. Warne microbiology: Ecology and applications. Garland	

Χ.	AC-	11
09-3	12-2	2022

	Science, rayior and Francis Group.	
	 Rainey, F.A. and Oren, A. Extremophile microorganisms and the methods to handle them. In: Extremophiles, methods in microbiology. Elsevier. 	
	 Satyanarayana, T., Raghukumar, C., Shivaji, S. Extremophilic microbes: diversity and perspectives. Current Science, 89(1): 78-90. 	
	 Ventosa, A., Nieto, J.J. and Oren, A. Biology of moderately halophilic aerobic bacteria. Microbiology and molecular biology Reviews, 62, 504–544. 	
	• Willey, J.M., Sherwood, L.M., and Woolverton, C.J. Prescott's Microbiology. McGraw-hill education.	
Learning Outcomes	 To identify and compare different groups of extremophiles. To analyse physiological features and adaptation strategies employed by different groups of extremophiles. To develop extremophilic microbially derived product for industrial applications. To apply high throughput techniques and culture independent approach to explore extremophiles from diverse econiches and 	
	their unique properties.	

Programme: M.Sc. (Microbiology) Course Code: MIPR 503 Title of the Course: EXTREMOPHILIC MICROORGANISMS [P] Number of Credits: 1 Contact hours: 30 Effective from Academic Year: 2022-2023

Prerequisites	The student should be familiar with handling of microorganisms in the	
	laboratory.	
Objective:	• To develop skills involved in handling extremophilic	
	microorganisms.	
	• To illustrate adaptations strategies of extremophilic	
	microorganisms and their biotechnological potentials.	
Content:		(30)
1.	Isolation of halophiles, alkaliphiles, and anaerobes.	
2.	Tolerance of bacterial culture to temperature, pH and salinity.	
3.	Buffering capacity of alkaliphiles.	
4.	Study extremozymes and pigments from extremophilic microorganisms.	
Pedagogy:	Experiments in the laboratory	
References/	As given under Theory Course MITR 503	
Readings		

<u>X AC- 11</u> 09-12-2022

 Learning To identify the extremophilic microorganisms from different econiches. To select novel industrially useful biomolecules from extremophilic microorganisms. To analyse adaptation strategies of extremophiles in different physiological conditions. To produce various biomolecules from extremophiles and study their unique properties 	
---	--

Programme: M.Sc. (Microbiology) Course Code: MITR 504 Title of the Course: AQUATIC VIROLOGY [T] Number of Credits: 2 Contact hours: 30 Effective from Academic Year: 2022-2023

Prerequisites	Students should have an understanding of basic concepts in	
	microbiology and molecular biology.	
Objective:	Develops the concept of viruses as key determinants of aquatic	
	ecology. It introduces the traditional, modern and emerging	
	techniques used in the study of aquatic viruses.	
Content:		
1.	Aquatic viruses and their significance	15
	Introduction to viruses, their structure and classification	
	Abundance and distribution of virioplankton in various aquatic	
	environments	
	Diversity of aquatic viruses in terms of morphology, life cycle and host	
	range; giant viruses and virophages	
	Viruses as agents of microbial mortality; effects of viral infection on	
	microbial community composition; viruses as an active component of	
	aquatic microbial communities	
	The role of viruses in biogeochemical cycles and the aquatic food web;	
	Aquatic viruses and climate change	
	Horizontal gene transfer and evolutionary contributions of viruses.	
	Aquatic viruses pathogenic to humans and animals of economic	
	importance	
2.	Cultivation, enumeration and molecular studies of aquatic viruses	15
	Methods for isolation of aquatic viruses – concentration and	
	purification of viruses from water, cultivation and assay of microbial	
	viruses in liquid and solid media	
	Methods for enumeration and ultrastructural observation of viruses –	
	epifluorescence microscopy, transmission electron microscopy, flow	
	cytometry	

		<u>X AC</u>	<u>- 11</u>
		09-12	-2022
	Molecular techniques for detection of aquatic viruses	– PCR-	
	amplification of marker genes such as g20, psbA, polB; whole	genome	
	sequencing of cultured isolates; metagenomics of viral com	munities	
	from diverse aquatic ecosystems		
	Significance of culture-based and culture-independent met	hods for	
	studying aquatic viruses		
	Novel approaches in aquatic virus research and detection: sin	gle virus	
	genomics, viral cross-linking and solid-phase purification,	optical	
	trapping, integrated approaches		
Pedagogy:	Lectures/tutorials/assignments		
References/	• Abedon, S. (Ed.), Bacteriophage Ecology: Population	Growth,	
Readings	Evolution, and Impact of Bacterial Viruses - Advances in M	Iolecular	
(Latest	and Cellular Microbiology, Cambridge: Cambridge U	niversity	
Editions)	Press.		
	• Adriaenssens, E. M., & Cowan, D. A. (2014). Using signatu	re genes	
	as tools to assess environmental viral ecology and c	liversity.	
	Applied and Environmental Microbiology, 80(15), 4470-44	480.	
	Clokie, M.R.J., and Andrew M.K. Bateriophages Meth	ods and	
	Protocols, Volume 1: Isolation, Characterization, and Inter	ractions.	
	Springer International Publishing.		
	Hyman, P. & Abedon, S.T., Viruses of Microorganisms.	. Caister	
	Academic Press.		
	• Malmstrom, C., Environmental Virology and Virus	Ecology.	
	Elsevier Academic Press.		
	Moon, K., & Cho, J. C. (2021). Metaviromics coupled with	n phage-	
	host identification to open the viral 'black box'. Jo	urnal of	
	Microbiology, 59(3), 311-323.		
	• Weitz, J. S., & Wilhelm, S. W. (2012). Ocean viruses a	nd their	
	effects on microbial communities and biogeochemica	l cycles.	
	F1000 Biology Reports, 4:17.		
	• Wilhelm, S.W., Weinbauer, M.G., & Suttle, C.A., Manual of	Aquatic	
	Viral Ecology. American Society of Limnology and Oceand	ograpny,	
	USA.	in see in	
	• wommack, K. E., & Colwell, R. R. (2000). Viriopiankton: v	iruses in Davíaura	
	aquatic ecosystems. Microbiology and Molecular Biology I	Reviews,	
	04(1), 09-114.	ahta inta	
	 Zhang, Q. Y., Ke, F., Gui, L., & Zhao, Z. (2022). Recent Insig aquatio viruses: Emerging and recomparing nothergons. m 		
	fostures, biological offects, and neural investigative and	roachas	
	Mater Piology and Security 100062	roaches.	
	VVULEI BIOLOGY UNU SECURITY, 100062.	ucoc and	
	Lindig, K., Weinbauer, W. G., & Peduzzi, P. (2021). Aquatic Viri		
Loorning	Cumate Change. Current issues in iniciaecular Biology, 41(1), 35	1-360.	
Learning	• Summarize the roles of viruses in aquatic ecosystems.		
outcome			

	<u>X A0</u> 09-12	<u>C- 11</u> 2-2022
 Apply the traditional and modern techniques to isol characterize aquatic viruses Integrate the knowledge of viruses into an existing frame aquatic microbiology Frame relevant research objectives in the field of aquatics 	ate and ework of	
Frame relevant research objectives in the field of aquatics	virology.	
(Back to Inde	x) (Back t	o Agenda)

Programme: M.Sc. (Microbiology) Course Code: MITR 505 Title of the Course: INTRODUCTION TO BIOINFORMATICS [T] Number of Credits: 2 **Contact hours: 30** Effective from Academic Year: 2022-2023

Prerequisites	Students should have an understanding of basic concepts in molecular	
	biology.	
Objective:	Develops concepts of informatics analysis for biological data, such as	
	nucleic acid and protein sequence data	
Content:		
1.		(15)
1.1	Introduction to Bioinformatics, Sequencing and Databases	8
	Introduction to bioinformatics, the necessity for computation in	
	modern life sciences research	
	The central dogma of molecular biology (overview),	
	Types of bioinformatics databases	
	DNA sequencing, RNA sequencing; Nucleotide sequence databases –	
	GenBank, EMBL, DDBJ; Cloning vectors used in sequencing; primer	
	designing	
	Protein sequencing – Edman degradation, mass spectrometry; Protein	
	sequence databases – SwissProt, UniProt	
	Protein structural and functional databases – PDB, Pfam, GO, KEGG,	
	Subsystems	
	Molecular docking – applications and tools – Autodock, DOCK	
1.2	Sequence Alignment	7
	Rationale: why does sequence alignment matter? Evolutionary basis of	
	sequence alignment; Pairwise and multiple alignment	
	Scoring matrices – PAM, BLOSUM, optimal alignment methods, gap	
	penalties	
	Dynamic programming algorithms – Smith-Waterman, Needleman-	
	Wunsch, k-mer, k-tuple	
	FASTA; BLAST; understanding of BLAST parameters including statistical	
	scores	
2.		(15)
2.1	Multiple Sequence Alignment Methods	4

	09-12	-2022	
	Progressive methods – ClustalW, Iterative methods – MUSCLE, Short-		
	read alignment – Bowtie, Motif-based alignment – MEME		
	Use of BioEdit for nucleotide sequence editing and alignment		
2.2	Phylogenetic tree building and evaluation	5	
	Introduction to phylogeny and applications of phylogenetic analysis		
	Methods for tree building – UPGMA, NJ, MP and ML		
	Generation of phylogenetic trees in MEGA		
2.3	Principles of Whole Genome and Metagenome Analysis by	6	
	Bioinformatics		
	Quality control, reference databases – NCBI nr, Kraken		
	Assembly – reference-based, de novo		
	Annotation – taxonomic annotation, functional annotation		
	Use of Unix / Linux-based operating systems for bioinformatics analysis		
	of sequence data		
Pedagogy:	Lectures/tutorials/assignments/online hands-on		
References/	• Antao, T, Bioinformatics with Python Cookbook 2nd Edition.		
Readings	• Christensen, H, Introduction to Bioinformatics in Microbiology. Vol.		
	39.		
(Latest	Lesk, AM, Introduction to Bioinformatics. Vol. 66. Oxford University		
editions)	Press.		
	• Ramsden, J, Bioinformatics: An Introduction. Springer-Verlag		
	London.		
	• Note: Latest versions of software tools and databases should be		
	used for instruction.		
Learning	• Explain the principles behind bioinformatics tools and techniques.		
Outcomes	• Apply the principles in the analysis of biological sequence data.		
	• Compare the various methods for sequence alignment and		
	phylogenetic analysis.		
	Design an analysis pipeline for specific types of biological data.		
	(Back to Index) (Back to Agend		

<u>X AC- 11</u>

Programme: M.Sc. (Microbiology) Course Code: MITR 506 Title of the Course: MARINE MICROBIAL INTERACTIONS [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-2023

Prerequisites	Students must have a background about the basic concepts of Marine
	Microbiology, including properties of seawater, marine
	microorganisms.
Objective:	Students will learn advances in marine microbiology with special
	emphasis on the intricate associations between microorganisms
	and marine organisms, diseases of microbial origin in fish and

		09-12	-2022	
	invertebrates, and other beneficial and harmful aspe	ects like		
	bioremediation and HABs respectively.			
Content:				
1.	Symbiotic associations		(15)	
1.1	Symbiosis of microalgae with animals, Symbiosis of chemoautotrophic			
	prokaryotes with marine animals; Light organ symbiosis in	fish and		
	invertebrates; Microbial symbionts of sponges-significar	ice and		
	advantages; Symbiosis and mixotrophy in protists; M	etabolic		
	consortia and mutualism between prokaryotes.			
1.2	Ecological significance and advantages of various sy	ymbiotic		
	associations - Bacterial, Algal, Sponges, Protists, Planktons.			
	Applications of symbiotic associations.			
2.	Microbial diseases of fish and invertebrates		(15)	
	Diseases of fish, bivalve mollusks, crustaceans, corals in fresh	າ water/		
	sea water/ aqua culture:			
	Bacterial – vibriosis, pasteurellosis, furunculosis, marine, l	oacterial		
	kidney disease, mycobacteriosis, streptococcosis, black band	disease,		
	white plague, white pox, Juvenile Oyster Disease (JOD), bacte	rial shell		
	disease, Coral Bleaching and methods of restoration; Sympto	oms and		
	diagnosis; Control of the disease			
	Viral – Infectious salmon anemia (ISA) virus, viral hemorrhagic			
	septicemia virus (VHSV), lymphocystis virus, birnaviruses, viral			
	nervous necrosis.			
	Symptoms and possible diagnosis; Control of the disease			
	Protistan – Paramoeba perurans, Kudoa sp., Loma sa	Imonae,		
	Hematodinium			
	Symptoms, Diagnostic methods, Control of disease.			
	Human diseases- toxic dinoflagellates and diatoms			
	Red tides, shell fish poisoning, ciguatera fish poisoning		(4=)	
3.	Marine microbes - Beneficial and harmful aspects		(15)	
	Beneficial aspects:			
	Biodegradation and bioremediation of marine pollutants suc	in as oil,		
	persistent organics and plastics.			
	Environmental monitoring using indicator microorganisms.			
	Microbial enzymes and polymers; biomedical and health proc	lucts.		
	Harmful Algal Plaams (UABs), offast on bisto			
	Harmful Algai Blooms (HABS)- effect on blota.			
	Biodeterioration, biorouling, bio-invasion – ballast waters.	an food		
	reducte microbiol ontumos			
	Secondary products from fish wasta, application of microbial	anzum ac		
Dodogogy	Lectures (tutorials (accignments	enzymes		
Peuagogy:	Crasshoff K Ebrhardt M and Kramling K Matheda of S	oowator		
Receivers/	Grasshon, K., Ehrnarut, IVI. and Kreming, K., Wethous of S Analysis Varlag Cham. Weinheim	eawater		
Readings	Analysis, veriag chemi, weinneim.			

<u>X AC- 11</u>

<u>X AC- 11</u> 09-12-2022

	• Gatesoupe, F. J., (1999) The use of probiotics in aquaculture,	
	Aquaculture, 100. 147-105.	
	Maier, R., Pepper, I. and Gerba, C., Environmental Microbiology,	
	Academic Press.	
	Munn, C., Marine Microbiology: Ecology and Applications,	
	Garland Science, Taylor and Francis, N.Y.	
	Nybakken I W and Bertness M D. Marine Biology: an Ecological	
	Approach Benjamin Cummings San Francisco, N.V.	
	Approach, Denjamin cummings, San Hancisco, N.T.	
	• Parsons, T. R., Maita, Y. and Lalii, C. M., Manual of Chemical and	
	Biological Methods for Seawater Analysis, Pergamon Press, New	
	York.	
	Sharma, P. D., Environmental Microbiology, Alpha Science.	
	• Sindermann, C. J., Principal Diseases of Marine Fish and Shellfish:	
	Diseases of Marine Fish, Vol. 1, Gulf Professional Publishing.	
	• Strickland, J. D. H. and Parsons, T. R., A Manual of Seawater	
	Analysis, Queen's Printer and Controller of Stationery, Ottawa.	
	• Toranzo, A. E., Magarinos, B. and Romalde, J. L., (2005) A review	
	of the main bacterial fish diseases in mariculture systems,	
	Aguaculture, 246(1); 37-61.	
	Intergovernmental Oceanographic Commission (1994) Protocols	
	for the Joint Global Ocean Elux Study (IGOES) Coro	
	Mossurements DOI: https://doi.org/10.2E607/OPD.1400	
	wieasurements. DOI: <u>nttps://doi.org/10.2560//OBP-1409</u>	
	intergovernmental Oceanographic Commission Manuals and	
	Guides : 29 -JGOFS Report; 19	
Learning	Different kinds of interactions of microbes and marine organisms	
Outcomes	Ecological significance of microbial associations	
	Understanding the various microbial diseases of marine	
	organisms	
	Bioprospecting and applications of microbial associations	

(Back to Index) (Back to Agenda)

Programme: M.Sc. (Microbiology) Course Code: MIPR 506 Title of the Course: MARINE MICROBIAL INTERACTIONS [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-2023

Prerequisites	Students must have a background about the basic concepts of Marine	
	Microbiology, and the techniques involved for sampling and	
	processing of water, sediment, flora and fauna from the marine	
	environment.	

		09-12-2022
Objective:	This Course emphasizes the techniques used to study the intera	ctions
	between microorganisms and marine organisms, and also screer	ning of
	enzymes for degradation of litter.	
Content:		(30)
1.	Determining <i>E. coli</i> in shellfish –MPN/ EC-MUG medium.	
2.	Isolation of luminescent bacteria from fish/shellfish.	
3.	Assessment of the microbiological quality of marine war aquaculture:	ter in
	– potential pathogens.	
4.	Screening of enzymes involved in deterioration of wood/lit marine environments.	ter in
5.	Examine the beneficial effect of microbial association- Macro a Bacteria Isolation and identification of marine algae associated bacteria Isolation and identification of Zooplankton associated bacteria Associated bacterial efficiency for chitin degradation	algae -
Pedagogy:	Experiments in the laboratory	
References/	As given under Theory Course MITR 506	
Readings		
Learning	To isolation of marine organisms associated bacteria	
Outcomes	To analyse the bacterial diseases of fish	
	• To evaluate the marine organism associated bacter beneficial biomolecules	ia for

<u>X AC- 11</u>

Programme: M.Sc. (Microbiology) Course Code: MITR 507 Title of the Course: MEDICAL VIROLOGY [T] Number of Credits: 3, Theory Contact hours: 45 Effective from Academic Year: 2022-2023

Prerequisites	The student should have a basic understanding of viruses.	
Objective:	• Develops concepts in structure, classification, cultivation, assay,	
	pathogenesis and treatment of disease-causing viruses.	
Content:		
1.	Viral Diversity and the Study of Viruses	(15)
1.1	Viruses	
	Structure, genomic diversity, classification according to Baltimore's	
	system and the ICTV	
	Viral replication and interference	
1.2	Methods to study and detect viruses	
	Ultrastructure visualization by electron microscopy	

<u>X AC- 11</u> 09-12-2022 Cultivation in vitro, in ovo and in vivo Monitoring of clinical manifestations of *in vivo* viral inoculation: fever, neurological symptoms, pruritis Detection by cytological and histological techniques: plaque, pock, polykaryocytes, hemadsorption, cytopathogenicity, tumor formation. quantitative serological techniques: and

	hemagglutination assay, virus neutralization, ELISA, immunofluorescence, immunohistochemistry	
	Detection by nucleic acid-based techniques: PCR, RT-PCR, nucleic acid hybridization, high-throughput sequencing	
2.	Viral Diseases	(15)
	Viral agents of disease: structure, mode of replication, symptoms, pathogenesis and diagnosis Family Picornaviridae: Polio virus Family Herpesviridae: Herpes simplex virus	
	Family Coronaviridae: SARS-CoV-2	
	Family Hepadnaviridae: Hepatitis B virus	
	Family Orthomyxoviridae: Influenza A virus	
2		(15)
3.	Oncogenic and Emerging Viruses and Antiviral Combat	(13)
3.1	Family Papovaviridae – Human papillomavirus 16 and 18, cervical cancer development	
	Role of viral oncogenes in causing cancer, retroviral oncogenes such as	
	growth factors, transcription regulators and kinases	
	Role of the Human Genome Project in identification of viral oncogenes	
3.2	Emerging viral agents of disease, such as Ebola, Nipah and Zika viruses	
3.3	Virus-host interactions: Host specific and nonspecific defense mechanisms; neutralizing antibodies; the role of interferon.	
3.4	Viral vaccine development: Traditional vaccine preparations and modern molecular approaches (adenoviral vector-based vaccines, mRNA vaccines), vaccines against oncoviruses. Antiviral drugs: nucleoside analogs, entry inhibitors, viral enzyme inhibitors, immunotherapy, combination therapy	
Pedagogy:	Lectures/tutorials/assignments	
References/	• Cohen, A., <i>Medical Virology</i> , John Wiley & Sons, Incorporated.	
(Latest	Davis BD Dulbecco B Fisen HN and Ginsberg HS	
editions)	Microbiology, Harper and Row Publishers.	
	 De La Maza, L.M., Peterson, E.M., Medical Virology, Springer Science & Business Media. 	
	• Dimmock, N.J., Easton, A.L. Leppard, K.N., Introduction to Modern Virology, Blackwell Publishing Ltd.	

Detection

by

<u>X AC- 11</u> 09-12-2022

	• Evans, B., Perspectives in Medical Virology, Volume 1, Elsevier.	
	• Flint, S. J., Racaniello, V. R., Rall, G. F., Hatziioannou, T., & Skalka, A.	
	M., Principles of Virology, John Wiley & Sons.	
	Harper, D.R., Viruses: Biology, Applications, Control, Garland	
	Science	
	• Payne, S., Viruses: From Understanding to Investigation, Elsevier,	
	• Ryu, W., Molecular Virology of Human Pathogenic Viruses, Elsevier.	
	White, D.O., Fenner, F., Medical Virology, Gulf Professional	
	Publishing.	
	https://www.cdc.gov/ncird/dvd.html	
	https://www.who.int/southeastasia	
	https://viralzone.expasy.org	
Learning	• To explain morphology, mode of infection and multiplication of	
Outcomes	medically important viruses and their treatment.	
	• To apply traditional and modern techniques for the study and	
	detection of viruses	
	• To analyze the roles of viral pathogen and host in the development	
	of disease	
	To devise strategies to combat emerging viral pathogens.	
(Back to Index) (Back to Ag		

Programme: M.Sc. (Microbiology) Course Code: MIPR 507 Title of the Course: MEDICAL VIROLOGY [P] Number of Credits: 1, Practical Contact hours: 30 Effective from Academic Year: 2022-2023

Prerequisites	Students should have basic knowledge of viruses and microbiological	
	techniques.	
Objective:	Develop skills in handling, detecting and identifying viruses of	
	medical importance	
Content:		(30)
1.	Electron micrographs representative of all the Baltimore classes of	
	viruses	
2.	Real-time PCR detection of RNA viruses	
3.	Rapid antigen / antibody detection test for:	
	i) HIV (retrovirus)	
	ii) SARS-CoV-2 (coronavirus)	
	iii) Dengue (picornavirus)	
	iv) Hepatitis B (hepadnavirus)	
4.	ELISA test for detection of any one virus	
Pedagogy:	Experiments in the laboratory	

<u>X AC- 11</u>
09-12-2022

References/	As given under Theory Course MITR 507		
Readings			
Learning	 Identify viruses of medical importance based on their stru 	ctural	
Outcomes	characteristics.		
	 Distinguish between the morphologies and tropism of value 	arious	
	pathogenic viruses.		
	 Acquire skills in laboratory handling of viral material 		
	• Apply modern techniques for the detection of viruses		

Question paper formats for SEA of M.Sc. Microbiology Examination (OA-35) Semester End Assessment Effective from Academic year 2022-23

A. <u>Question Paper Format for M.Sc. Part I Microbiology SEA Theory (Core Course - Credit 3)</u>

Date: Duration: 2 Hours Total Marks: 30

Instructions:

1. Section I consists of Q1 to Q6. Answer any FOUR questions from Section I. Each question carries 2 marks.

2. Section II consists of Q7 to Q12. Answer any FOUR questions from Section II. Each question carries 2.5 marks.

3. Section III consists of Q13 to Q16. Answer any THREE questions from section III. Each question carries 4 marks.

Section I	Answer ANY FOUR (2 marks each)	(08)
Q1		
Q2		
Q3		
Q4		
Q5		
Q6		
Section II	Answer ANY FOUR (2.5 marks each)	(10)
Q7		
Q8		
Q9		
Q10		
Q11		
Q12		
Section III	Answer ANY THREE (4 marks each)	(12)
Q13		
Q14		
Q15		
Q16		

B. Question Paper Format for M.Sc. Part I Microbiology SEA Practical (Core Course - Credit 1)

Date: Duration: 2 Hours Instructions:

Total Marks: 10

Q1 Practical 1 (Marks 04)
Q2 Practical 2 (Marks 02)
Q3 Spots (Marks 02)
Q4 Journal and Viva (Marks 02)

C. Format specified in Section A above should be followed for SEA of optional theory papers having 3 credits. Format for optional theory paper having credit/s 1, 2 and 4 can be decided by the respective Teacher/s teaching the paper.

D. Format specified in Section B above should be followed for SEA of optional practical papers having 1 credit.

E. Question Paper Format for SEA Practical - Field Trip (Optional Course - Credit 1)

Date: Duration: 2 Hours Instructions:

Q1 Marks 03Q2 Spots (Marks 02)Q3 Presentation and Viva (Marks 05)

F. <u>Question Paper Format for SEA for course "Internship in Industry/Institution" (Credit: 2)</u>:

Date: Duration: 2 Hours Instructions:

Total Marks: 20

Total Marks: 10

Q1 Marks 04 Q2 Marks 04 Q3 Marks 04 Q4 Presentation and Viva (Marks 08)

(Back to Index) (Back to Agenda)

<u>X AC- 11</u> 09-12-2022

Annexure IV

Goa University School of Biological Sciences and Biotechnology

Programme: Ph.D. Microbiology Paper-I Syllabus Title of the course: Research Methodology Number of Credits: 04 **Contact Hours: 60** Effective from AY: 2022-23

Prerequisites	Provisional registration for Ph.D. in Microbiology		
Objective:	To introduce aspects of research methodology pertaining to microbiology		
	To sensitize about the hazards and norms of safety in microbiology		
	laboratory		
	To expose the students to biological data handling and statistical tools		
	used for analysis		
	To familiarize the students with various tools and techniques required in		
	conduct of microbiological research –for isolation, characterization,		
	purification, etc of microorganisms and biomolecules		
Content:			
1.	Safety in Microbiology laboratory	(4)	
	Introduction and importance of safety in laboratory, Classification and		
	types of hazards and safety measures, fire hazard and safety procedures,		
	handling of hazardous chemicals, and solvents and hazards associated		
	with instruments. First-Aid and its role in life saving during accident.		
	Classification of biohazard, biosafety levels and procedures of handling		
	biohazardous materials, Roles and types of personal safety equipment.		
2.	Data handling and statistical analysis	(8)	
	Statistical analysis of any replicative measurements, Accuracy, precision,		
	population and sample, true value, mean, standard deviation, standard		
	error, Gaussian distribution, confidence limits and its estimates,		
	Hypothesis testing (Z-test, t-test), Experimental designing (Factorial		
	Design), Chi-square, F-test, ANOVA analysis. Use of computation software		
	for statistical analysis. Mathematical modelling, Response surface		
	methodology for 2 and 3 factors, and other advance statistics.		
3.	Methods for handling microorganisms	(6)	
	Culture media and Growth system, Assay/monitoring methods for growth		
	(Absorbance/packed volume/dry and wet weight/protein/ pigment		
	content); colony forming units (cfu), plaque forming unit (pfu).		
	Maintenance of cultures and taxonomic placement including keys of		
	classification.Assay for Toxicity: LD50, MIC; Assay of Lethality: TDT, TDP,		
	D_{10} ; Assay for enzymes and other biochemical reactions, including		
	kinetics, Methods and evaluation of cell disruptions, Common reference		

	<u>X AC- 1</u>	<u>X AC- 11</u>	
	09-12-202		
	biomolecules (proteins, lipids, nucleic acids, carbohydrates), SI units,		
	Molarity, Molar, Moles, Buffers, Buffering capacity, Molecular weights,		
	Nomograms, Common detergents used in microbiology		
4	Microscopic techniques		
	Microscopy and Micrometry, Stains and staining procedures,		
	Photomicrometry, optical systems resolution, Phase Contrast microscopy,		
	fluorescence microscopy, SEM		
5	Molecular Techniques		
	Isolation, detection, characterisation of genomic and plasmid DNA.	(6)	
	Endonucleases and restriction mapping. Common vectors, protocols for		
	scoring recombinants, transformants and transconjugants. Isolation of		
	RNA and their types. Thermal denaturation curve and calculation of		
	G+C%. Use of X-gal, IPTG, PCR amplification of DNA, Nucleic acid		
	hybridization (Southern and Northern blot techniques).		
6	Microbial cells and physiology	(8)	
	Fungi, Yeast, Algae, Cyanobacteria, Viruses, Eubacteria and Archaea.		
	Biochemical activities of microorganisms-photosynthesis, respiration,		
	fermentation.		
	Energy acquisition pathways: EMP, HMP, ED, TCA		
	Physiological and Nutritional characteristics of Microbial types.		
	Genome organisation in microorganisms.	(10)	
/	Extraction, Separation and purification of biomolecules	(10)	
	Electrolyte / Solvent separation / Extractions, Centrifugation,		
	Chromatography: adsorption, ion exchange, affinity and Size exclusion,		
	Macc		
0	Mass.	(1.4)	
0	COMass AAS Elamo Destamator NMD & ESD CD ID IV/Visible	(14)	
	Eluorimetry Luminometry Padioisotopy (Counter decay safety of		
	isotopes and usage)		
Pedagogy:	Lectures/tutorials/assignments		
References/	Arora PN and Malban PK Riostatistics Himalaya Publishing House		
Readings			
(Latest	Davis, BD., Dulbecco, R. Eisen, HN & Ginsberg, HS. Microbiology, Harper		
edition)	and Row Publishers.		
	Haaland, PD, Experimental design in biotechnology, CRC press.		
	Moat, AG, Foster, JW and Spector, MP eds., Microbial Physiology. John		
	Wiley & Sons.		
	Plummer, DT, An introduction to practical biochemistry, Tata McGraw Hill		
		1	
	Prudent practices in the laboratory: handling and management of		
	chemical hazards, The National Academies Press, USA.		
	Prudent practices in the laboratory: handling and management of chemical hazards, The National Academies Press, USA. Rao, KS, Biostatistics for Health and Life Sciences. Himalaya Publishing		

		<u>X AC- 11</u>		
		09-12-2022		
	Sadasivam, S, Manickam, A, Biochemical methods. New	w Age (P)		
	International.			
	Sambrook, J, Fritsch, EF, and Maniatis, T, Molecular cloning: a laboratory			
	manual, Cold Spring Harbor Laboratory Press, New York			
	Singh, Y.K., Fundamentals of Research Methodology and Statistics, New			
	Age International Pvt. Ltd., India			
	Silverstein, RM, Bassler, GC & Morrill, TC, Spectrometric Identification of			
	Organic Compounds, John Wiley, Singapore.			
	Skoog, DA, Holler, FJ, & Crouch, SR, Principles of Instrumental Analysis,			
	Cengage Learning.			
	Voet, D, Voet, JG and Pratt, CW, Fundamentals of biochemistry: life at the			
	molecular level. John Wiley & Sons.			
	Wilson, K, & Walker J., Principles and Techniques of Practical Bi	ochemistry,		
	Cambridge University Press			
Learning	To execute safe laboratory practices in research.			
Outcomes	To apply the knowledge of research methodology to plan and	execute the		
	experiments independently.			
	To analyse the microbiological data and perform statistical an	alysis.		
	To demonstrate the use of various equipment and tech	nniques for		
	microbiological research pertaining to isolation, character	ization and		
	identification of microorganisms and their biomolecules.			