GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the 9th Special Meeting of the

X ACADEMIC COUNCIL

Day & Date

Saturday, 30th July, 2022

<u>Time</u>

10.00 a.m.

Council Hall Goa University

D 3.5	Minutes of the Board of Studies in Environmental Science meeting held on 20.04.2022.
	The Academic Council approved the minutes of the Board of Studies in Environmental
	Science meeting held on 20.04.2022 with the following suggestions:
	1. The month and year mentioned in the heading of the Syllabus document to be
	corrected from September 2022 to August 2022.
	2. The Course Codes for the PG programmes to be revised/changed.
	(Action: Assistant Registrar Academic – PG)
D 3.6	Minutes of the Board of Studies in Sociology meeting held on 26.04.2022.
	The Academic Council approved the minutes of the Board of Studies in Sociology meeting
	held on 26.04.2022 with the following suggestions:
	1. The Course Codes for the PG programmes to be revised/changed.
	2. The column indicating Lecture Hours per week in programme structure to be
	removed/deleted.
	(Action: Assistant Registrar Academic – PG)
D 3.7	Minutes of the Board of Studies in Public Administration meeting held on 01.07.2022.
	The Academic Council approved the minutes of the Board of Studies in Public
	Administration meeting held on 01.07.2022 with the following suggestions:
	1. The duration for the internship to be specified.
	The Course Codes for the PG programmes to be revised/changed.
	3. Number of hours for the Course PARSOC5 Community Engagement and Rural
	Development to be corrected.
	4. The proposed syllabus/structure for Semester III and Semester IV was deferred.
	(Action: Assistant Registrar Academic – PG)
D 3.8	Minutes of the Board of Studies in Physics meeting held on 24.03.2022.
	The Academic Council approved the minutes of the Board of Studies in Physics meeting
	held on 24.03.2022 with the suggestion to revise/change the Course Codes for the PG
	Programme.
	The discussion on the proposed syllabus/structure for Semester III and Semester IV was
	deferred.
	(Action: Assistant Registrar Academic – PG)
D 3.9	Minutes of the Board of Studies in History meeting held on 25.04.2022.
	The House did not consider the minutes of the Board of Studies in History as the Board
	had not recommended the syllabus for Semester II. The Chairperson expressed his
	displeasure on behalf of the House about the fact that in spite of the official intimation
	given almost four months in advance, the said Chairperson did not take up the matter in
	Board of Studies. The Chairperson, Board of Studies, was advised to hold a meeting of
	the Board of Studies and submit the Syllabus for Semesters I and II on an urgent basis.
	The Vice-Chancellor was authorized to approve the Syllabus on behalf of the Academic
	Council.
	(Action: Assistant Registrar Academic – PG)
D 3.10	Minutes of the Board of Studies in Biochemistry meeting held on 22.04.2022.
	The Academic Council approved the minutes of the Board of Studies in Biochemistry

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL UPDATED AGENDA

For the 9th Special Meeting of the

X ACADEMIC COUNCIL

Day & Date

30th July, 2022

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administration Block

			<u>X AC- 9 (Special)</u> 30.07.2022		
D 3.8	Minut Part A	es of the Board of Studies in Physics meeting held on	24.03.2022.		
	i)	Recommendations regarding courses of study in the at the undergraduate level: - NIL	subject or group of sul	ojects	
	ii)	Recommendations regarding courses or group of sub BOS discussed the new 80 credit course structure sug			
	 BoS discussed and recommend the following: 1. The eight discipline specific core courses were identified in line with CSIR NI Syllabus and keeping in mind the 3+2 and 4+1 course structures (UG+PG) suggester under NEP 2020. 2. Discipline specific optional courses were also identified. Here, Comput Programing Practical Courses offered in three programming languages and stude will have a free choice of the programming language, subject to availability of the teacher. 				
				udent	
		The courses belonging to three specializations, Solid Physics and Biophysics are designated as Research Sp Under generic optionals, courses like Statistical N	ecific Optional courses. Nethods and Error and	alysis,	
		Documentation using LaTeX, etc. have been suggest students of other disciplines.			
	5.	The Board also discussed and finalized the syllabus fo first two semesters. The same is attached at <u>Annexur</u>		in the	
	Part B i)	: Scheme of the Examinations at Undergraduate Level:	- NIL		
	ii) iii) iv)	Panel of examiners for different examinations at Under Scheme of the examinations at post-graduate level: - Panel of examiners for different examinations at post	NIL		
	Part C i)	Recommendations regarding preparation and pu Anthologies in any subject or group of subjects recommended for appointment to make the selection	and the names of p		
	Part D i)		ements in the Denartme	nts of	
	 i) Recommendations regarding general academic requirements in the Departm University or affiliated colleges: - NIL ii) Recommendation of Academic Audit committee and status thereof : - NIL 				
	Part E				
	i)	Recommendations of text books for the course for level:NIL	study at the Undergrad	duate	
	ii)	Recommendations of text books for the courses of level:NIL	study at the post Grad	duate	
	Part F	hant uninte fou consideration (commune) of Academic (
	Impor	tant points for consideration/approval of Academic C	ouncii:		

			X AC- 9 (Special) 30.07.2022
		Physics course structure in line wi ter I and II.	th NEP 2020 and syllabi of courses offered in
		eclaration by the Chairman, that the ng itself.	minutes were read out by the Chairman at the
		24.03.2022 Goa University	Sd/- Signature of Chairman
	Part G i) ii) iii) iv)	: The remarks of the Dean of the Sc The minutes are in order. The minutes may be placed before May be recommended for approva Special remarks if any: Nil	the Academic Council with remarks if any.
		24-03-2022 Goa University	Sd/- Signature of the Dean <u>(Back to Index)</u>
D 3.9	Part A i.	Recommendations regarding cours the undergraduate level: NIL. Recommendations regarding cours	es of study in the subject or group of subjects at es of study in the subject or group of subjects at ded the courses mentioned in <u>Annexure I</u> (refer
	iii.	Scheme of Examinations at underg Panel of examiners for different ex Scheme of Examinations at postgra Panel of examiners for different ex Recommendations regarding prep	aminations at the undergraduate level: NIL duate level: NIL aminations at post-graduate level: NIL aration and publication of selection of reading of subjects and the names of the persons
		Recommendations regarding gener of University or affiliated colleges:	al academic requirements in the Departments NIL : Audit Committee and status thereof: NIL
	Part E i.	Recommendations of the text book NIL.	s for the course of study at undergraduate level:

D 3.8 Minutes of the Board of Studies in Physics meeting held on 24.03.2022.

Annexure I

M.Sc. Physics Syllabus from Academic year 2022-23

The new structure consists of four categories of courses:

- (a) Discipline Specific Core Courses Total Credits 32
- (b) Discipline Specific Optional Courses Total Credits 8
- (c) Research Specific Optional Courses Total Credits 12
- (d) Generic Optional Courses Total Credits 12 (These courses are open to all)

In addition to these four categories, we have introduced fifth category of courses – Bridge Courses with an objective to help the non-Physics graduates seeking admission to M.Sc. Physics as well as slow learners. Bridge courses will be available as an online resource and could be taken any time before or during their MSc programme or as advised by the teachers. Further, to help Physics students without adequate background in Biology, a bridge course "Introduction to Biology and Biophysics" is also introduced.

The course codes are used in tables below are as follows:

PHB – Bridge Courses

PHDC – Discipline Specific Core Courses

PHDO – Discipline Specific Optional Courses

PHSO/PHBO/PHCO – Research Specific Optional Courses in three specializations – Solid State Physics, Biophysics and Computational Physics respectively.

PHGO – Generic Optional Courses

Code	Title	Credits	Hours
PHB100	Bridge Course in Mathematical Methods	2	30
PHB101	Bridge Course in Thermal Physics	2	30
PHB102	Bridge Course in Optics	2	30
PHB103	Bridge Course in Quantum Mechanics	2	30
PHB104	Bridge Course in Electrostatics and Magnetostatics	2	30
PHB200	Introduction to Biology and Biophysics	3	45
	Semester I		
PHDC101	Mathematical Methods of Physics	4	60
PHDC102	Classical Mechanics	4	60
PHDC103	Electromagnetic Theory	4	60
PHDC104	Electronics	4	60
PHDO101	Electronics Practical	2	60
PHDO102	Computer Programming in Fortran Practical*	2	60
PHDO103	Computer Programming in C Practical*	2	60
PHDO104	Computer Programming in Python Practical*	2	60
*Any one o	ourse		
	Semester II		
PHDC105	Quantum Mechanics	4	60
PHDC106	Statistical Mechanics	4	60
PHDC107	Nuclear and Elementary Particle Physics	4	60
PHDC108	Atomic Physics	4	60
PHDO105	General Physics Practical	4	120

	Semester III				
PHSO201	Solid State	Advanced	Molecular	4	60
PHCO201	Physics I	Quantum	Biophysics		
PHBO201		Mechanics			
PHSO202	Solid State	Advanced	Methods of	4	60
PHCO202	Physics II	Statistical	Biophysics		
PHBO202		Mechanics			
PHGO201	Solid State	Numerical	Biophysics Practical	4	120
PHGO211	Physics Practical	Techniques			
PHGO221		Practical			
PHGO2XX	Generic Optional Courses (to be chosen for Optional Set I or			8	120
	from any other disciplines or from SWAYAM)				
	Semester IV				
PHSO3xx	Courses worth 4 credits to be chosen from Optional Set II or			4	60
PHCO3xx	from SWAYAM in consultation with Dissertation Guide				
PHBO3xx					
PHD400		Dissertation		16	

Suggested Optional Courses

Suggested Optional Courses	1		
Optional Set I – Generic Optional	Credit	Optional Set II – Research Optional	Credit
	S		S
Solid State Physics Practical	4	X-ray and Nuclear Spectroscopy	2
Numerical Techniques Practical	4	Optical Spectroscopy	2
Biophysics Practical	4	Superconductivity and Superfluidity	2
Neutron Physics	2	Magnetism in Condensed Matter Physics	2
Advanced Optics	2		2
Physics of Phase transitions and	2	Introduction to Crystallography and	
Critical Phenomena		X-ray Diffraction	
Solid State and Biomaterials	2	Particle Physics	2
Physics of Energy Materials	2	Numerical methods and Fortran	2
		parallel programming using open mp	
Physics of Quantum Materials	2		
Physics of Ferroic Materials	2		
Nanoscience and Technology	2		
Documentation using Latex	2		
Statistical Methods and Error Analysis	2		
Laser Physics and Applications	2		

(Back to Index) (Back to Agenda)

The syllabi of the courses in first two semesters and the bridge courses are given below.

Programme: M. Sc. (Physics) Course Code: PHB-100

Title of the Course: Bridge Course in Mathematical Methods Number of Credits: 2

Prerequisites for	NIL	
thecourse:		
<u>Objectives:</u>	This course develops problem solving capabilities of students. It also helps to revise and understand the concepts based on Integration, differentiation and such other basic topics of mathematics, which are useful in solving problems based on Physics.	
Content:	1. Preliminary Calculus	10 hours
	Differentiation from first principles; products; the chain rule; quotients; implicit differentiation; logarithmic differentiation; Leibnitz' theorem; special points of a function; theorems of differentiation, Integration from first principles; the inverse of differentiation; integration by inspection; sinusoidal functions; logarithmic integration; integration using partial fractions; substitution method; integration by parts; reduction formulae; infinite improper integrals; plane polar	
	 coordinates; integral inequalities; applications of integration 2. Partial Differentiation Definition of partial derivative; the total differential and total derivative; Exact and inexact differentials; Useful theorems of partial differentiation; the chain rule; Change of variables; Taylor's theorem for many variable functions; 	5 hours
	Stationary values of many variable functions; Stationary variables under constraints; Thermodynamic relations; Differentiation of integrals 3. Series and Limits	5 hours
	Series; Summation of series (arithmetic, geometric); convergence of infinite series; Operations with series; Power series; Taylor series; Evaluation of limits. 4. Vector Algebra	5 hours
	Scalars and vectors; Addition and subtraction of vectors; Multiplication by a scalar; Basis vectors and components; Magnitude of a vector; Multiplication of vectors; Equation of lines and planes; Using vectors to find distances; Reciprocal vectors. 5. Ordinary differential equations Linear equations with constant coefficients; Linear equations with variable coefficients; General ordinary differential equations.	5 hours
Pedagogy:	Online lectures along with assignments	
References/Readings	1. K.F. Riley, M.P. Hobson and S.J. Bence, Mathematical Methods for Physics and engineering, Cambridge	

		X AC- 9 (Special)
		30.07.2022
	University Press, Cambridge UK (Reprint 2002).	
	2. George B. Arfken and Hans J. Weber, Mathematic	al
	methods for Physicists, 7/e Elsevier Inc., 2012.	
	3. Mathematics text books of XI and XII Science pres	cribed
	by NTSE/CBSE/Goa Board.	
Learning Outcomes	1. Conceptual understanding of the meaning of	the
	differentiation, partial differentiation, integra	tion,
	ODE (Ordinary differential equations) and	its
	application to solve the problems based on physic	cs.
	2. Understand the vector algebra, series and	its
	application in solving the problems in physics and	day
	to day life.	

Programme: M. Sc. (Physics) Course Code: PHB101 Number of Credits: 2 Effective from AY: 2022-2023

Title of the Course: Bridge Course in Thermal Physics

Prerequisites	B. Sc. Levels courses on mechanics and mathematics	
for the Course:		
Objectives:	This course aims to introduce basic concepts of thermodynamics, laws of thermodynamics, entropy its applications.	
Content:	 Zeroth and First Law of Thermodynamics: Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between C_P and C_V, Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Co- efficient. 	6 hours 8 hours
	 Second Law of Thermodynamics: Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work. Heat Engines. Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin-Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second 	
	 Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale. 3. Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. The entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Entropy of the Universe. Entropy Changes in Reversible and Irreversible 	6 hours

Processes. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. The unattainability of Absolute Zero. 5hours 4. Thermodynamic Potentials: Extensive and Intensive Thermodynamic Variables. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties, and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, ClausiusClapeyron Equation and Ehrenfest equations. 5 hours 5. Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) ClausiusClapeyron equation, (2) Values of Cp-Cv, (3) TdSEquations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process Pedagogy: Online lectures and assignments References/Rea dings 1. Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill 2. A Treatise on Heat, MeghnadSaha, and B.N.Srivastava, 1958, Indian Press 3. 3. Thermodynamics, Sinetic Theory & Statistical Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa. 6. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press 8.			X AC- 9 (Special) 30.07.2022
4. Thermodynamic Potentials: Extensive and Intensive Thermodynamic Variables. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties, and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, ClausiusClapeyron Equation and Ehrenfest equations. 5 hours 5. Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) ClausiusClapeyron equation, (2) Values of Cp-Cv, (3) TdSEquations, (4) Joule-Kelvin coefficient for Ideal and Van der Waal Gases, (5) Energy equations, (6) Change of Temperature during Adiabatic Process Pedagogy: Online lectures and assignments References/Rea dings 1. Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill. 2. A Treatise on Heat, MeghnadSaha, and B.N.Srivastava, 1958, Indian Press 3. Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill 4. Modern Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa. 6. Concepts of thermodynamics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press Learning Outcomes • Basic concepts of thermodynamics • Basic concepts of thermodynamics		Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics. The unattainability of Absolute	5hours
Pedagogy:Online lectures and assignmentsReferences/Rea dings1.Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.2.A Treatise on Heat, MeghnadSaha, and B.N.Srivastava, 1958, Indian Press3.Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill4.Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.5.Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.6.Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning Outcomes•9.Basic concepts of thermodynamics ••Understand the properties of pure substances		 Thermodynamic Potentials: Extensive and Intensive Thermodynamic Variables. Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Properties, and Applications. Surface Films and Variation of Surface Tension with Temperature. Magnetic Work, Cooling due to adiabatic demagnetization, First and second order Phase Transitions with examples, ClausiusClapeyron Equation and Ehrenfest equations. Maxwell's Thermodynamic Relations: Derivations and applications of Maxwell's Relations, Maxwell's Relations:(1) ClausiusClapeyron equation, (2) Values of Cp-Cv, (3) TdSEquations, (4) Joule-Kelvin coefficient for 	5 hours
References/Rea dings1.Heat and Thermodynamics, M.W. Zemansky, Richard Dittman, 1981, McGraw-Hill.2.A Treatise on Heat, MeghnadSaha, and B.N.Srivastava, 1958, Indian Press3.Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill4.Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.5.Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.6.Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning Outcomes•9.Basic concepts of thermodynamics • Understand the properties of pure substances	Podagogy:		
dingsDittman, 1981, McGraw-Hill.2.A Treatise on Heat, MeghnadSaha, and B.N.Srivastava, 1958, Indian Press3.Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill4.Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.5.Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.6.Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning Outcomes• Basic concepts of thermodynamics			
 A Treatise on Heat, MeghnadSaha, and B.N.Srivastava, 1958, Indian Press Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer. Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press Basic concepts of thermodynamics Understand the properties of pure substances 			
 3. Thermal Physics, S. Garg, R. Bansal and Ghosh, 2nd Edition, 1993, Tata McGraw-Hill 4. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer. 5. Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa. 6. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University Press Learning Basic concepts of thermodynamics Understand the properties of pure substances 		2. A Treatise on Heat, MeghnadSaha, and B.N.Srivastava,	
Edition, 1993, Tata McGraw-Hill4. Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer.5. Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.6. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning Outcomes• Basic concepts of thermodynamics • Understand the properties of pure substances			
S. Helrich, 2009, Springer.5. Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.6. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning Outcomes• Basic concepts of thermodynamics • Understand the properties of pure substances			
5. Thermodynamics, Kinetic Theory & Statistical Thermodynamics, Sears & Salinger. 1988, Narosa.6. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning Outcomes• Basic concepts of thermodynamics • Understand the properties of pure substances			
Thermodynamics, Sears & Salinger. 1988, Narosa.6. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning OutcomesBasic concepts of thermodynamics • Understand the properties of pure substances			
6. Concepts in Thermal Physics, S.J. Blundell and K.M. Blundell, 2nd Ed., 2012, Oxford University PressLearning Outcomes• Basic concepts of thermodynamics • Understand the properties of pure substances			
• Understand the properties of pure substances		6. Concepts in Thermal Physics, S.J. Blundell and K.M.	
	Learning	Basic concepts of thermodynamics	
. Companying and provide the first and second large of	Outcomes		
		• Formulate and apply the first and second laws of	
thermodynamics			
Concepts of entropy and the third law of thermodynamics.			
 Understand thermodynamic potentials and their relations. 		, ,	

Programme: M. Sc. (Physics) Course Code: PHB102 Number of Credits: 2 Effective from AY: 2022-2023

Title of the Course: Bridge Course in Optics

Prerequisites	B. Sc. Levels courses on mechanics and mathematics	
for the Course:		

		30.07.2022
Objectives:	This course aims to understand the various concepts of	
	geometric and wave optics	
Content:	 geometric and wave optics 1. Geometric Optics Brief history, Propagation of light, Scattering, Reflection and Refraction of light, Fermat's principle, Ray equations, Refraction and reflection by spherical surfaces, Paraxial optics, lenses, mirrors, prisms, optical systems, Total internal reflection, thick lenses, Aberrations. Introduction to eyepieces, Ramsden and Huygens eyepieces. 2. Wave Optics Simple harmonic motion, vibrations, origin of refractive index, sinusoidal waves, one-dimensional wave equation, transverse and longitudinal vibrations, Huygen's principle, plane waves, spherical and cylindrical waves. 3. Interference Superposition of Waves, Division of wavefront& division of amplitude, Formation of colors in thin film- reflected system, transmitted system, wedge shaped film, Newton's Rings and its application to determine refractive index of liquid (Normal Incidence only), Interferometry: Michelson interferometer-its principle, working and its application to determine wavelengths, Coherence. 4. Diffraction Fraunhofer diffraction, Single slit and Double slit patterns, Limit of resolution, Diffraction grating, Fresnel diffraction, zone-plates, Diffraction by circular discs and apertures, Holography. 	6 hours 6 hours 6 hours 6 hours 6 hours
Pedagogy:	 5. Polarization of light Nature of polarized light, Dichroism, Birefringence, Scattering and Polarization, Polarization by reflection, Brewster angle, Circular polarizers, Wave plates. Online lectures and assignments 	
References/Rea	1. Optics, AjoyGhatak, 7 th Edition, Tata-McGraw-Hill (2020).	
dings	2. Optics, Eugene Hecht, Pearson, 5 th Edition, (2019).	
	3. A Textbook of Optics, 25 th edition, Brij Lal, M N Avadhanulu& N Subrahmanyam, S. Chand & Company	
	(2012).	
	4. Fundamental of Optics, F.A. Jenkins and H.E. White, Tata	
	McGraw-Hill (1981).	
Learning	Students will develop a conceptual understanding of	
Outcomes	Geometrical and Wave optics	

Programme: M. Sc. (Physics) Course Code: PHB103 Number of Credits: 2

Title of the Course: Bridge Course in Quantum Mechanics

Prerequisites for the Course:	B. Sc. Levels courses on mechanics and mathematics	
Objectives:	This course aims to understand the various phenomena of early quantum physics and develop the essential ideas of the old quantum theory.	
Content:	 THERMAL RADIATION AND PLANCK'S POSTULATE Thermal Radiation, Classical Theory of Cavity Radiation, Planck's Theory of Cavity Radiation, Planck's Postulate and Its Implications. 	3 hours
	2. PHOTONS—PARTICLE-LIKE PROPERTIES OF RADIATION Introduction, The Photoelectric Effect, Einstein's Quantum Theory of the Photoelectric Effect, The Compton Effect, The Dual Nature of Electromagnetic Radiation.	2 hours
	 DE BROGLIE'S POSTULATE—WAVE-LIKE PROPERTIES OF PARTICLES Matter Waves, The Wave-Particle Duality, The Uncertainty Principle, Properties of Matter Waves, Some Consequences of the Uncertainty Principle, The 	2 hours
	 Philosophy of Quantum Theory 4. BOHR'S MODEL OF THE ATOM Thomson's Model, Rutherford's Model, The Stability of the Nuclear Atom, Atomic Spectra, Bohr's Postulates, Bohr's 	3hours
	 Model, Atomic Energy States. 5. SCHROEDINGER'S THEORY OF QUANTUM MECHANICS Introduction, Plausibility Argument Leading to Schrödinger's Equation, Born's Interpretation of Wave Functions, Expectation Values, the time-independent Schrödinger Equation, Required Properties of Eigen 	5 hours
	 functions, Energy Quantization in the Schrodinger Theory. 6. SOLUTIONS OF TIME-INDEPENDENT SCHROEDINGER EQUATIONS Introduction, The Zero Potential, The Step Potential (Energy Less Than Step Height), The Step Potential (Energy Greater Than Step Height), The Barrier Potential, Examples of Barrier Penetration by Particles, The Square Well Potential, The Infinite Square Well Potential, The Simple Harmonic Oscillator Potential 	15hours
Pedagogy:	Online lectures along with assignments	
References/Rea dings	 Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, by Robert Eisberg and Robert Resnick, John Wiley & Sons (2006) Quantum Mechanics, Theory and Applications by Ghatak 	
	and Lokanathan, Mc Millan (2004). 3. A Textbook of Quantum Mechanics, P. M. Mathews, and K. Venkatesan, 2nd Ed., 2010, McGraw Hill	

		50.07.2022	-
	4. Quantum Mechanics, Leonard I. Schiff, 3rd Edn. 2010, Tat	ta	
	McGraw Hill.		
Learning	Concept of the wave-particle duality of radiation an	nd	
Outcomes	particles		
	 Understanding of energy quantization 		
	 understanding of wave mechanics in one dimension 		
	describe the structure of the hydrogen atom and show a	an	
	understanding of quantization of angular momentum		

Programme: M. Sc. (Physics) Course Code: PHB104 Magnetostatics Number of Credits: 2

Title of the Course: Bridge Course in Electrostatics and

Effective from AY: 2022-2023

B. Sc. Levels courses on mechanics, mathematics, and vector	
algebra	
This course is aimed at revising the electrostatics and	
magnetostatics	
1. Electrostatics	15 hours
Coulomb's law, Electric field and potential, Gauss's law,	
Application of Gauss's law, the electric field in various	
circumstances, Electrostatic energy, dielectrics.	
2. Magnetostatics	15 hours
Electric current, the magnetic field, the magnetic force of a	
current, Ampere's law, magnetic field of a straight wire and of	
a solenoid, atomic currents, the relativity of magnetic and	
electric fields, the magnetic field in various situations, the	
vector potential, induced currents, the Maxwell equations.	
Lectures/tutorials/assignments. Sessions shall be interactive	
in nature to enable peer group learning	
1. The Feynman lectures on Physics, Vol-2, Pearson (2013)	
2. University Physics with modern Physics, Young and	
Freedman, Pearson (2016)	
3. Concepts of Physics, vol-2, H. C. Verma, BharatiBhawan	
Publishers & Distributors (2019).	
Students will develop a conceptual understanding of	
Electrostatics and Magnetostatics and their applications.	
	 B. Sc. Levels courses on mechanics, mathematics, and vector algebra This course is aimed at revising the electrostatics and magnetostatics 1. Electrostatics Coulomb's law, Electric field and potential, Gauss's law, Application of Gauss's law, the electric field in various circumstances, Electrostatic energy, dielectrics. 2. Magnetostatics Electric current, the magnetic field, the magnetic force of a current, Ampere's law, magnetic field of a straight wire and of a solenoid, atomic currents, the relativity of magnetic and electric fields, the magnetic field in various situations, the vector potential, induced currents, the Maxwell equations. Lectures/tutorials/assignments. Sessions shall be interactive in nature to enable peer group learning 1. The Feynman lectures on Physics, Vol-2, Pearson (2013) 2. University Physics with modern Physics, Young and Freedman, Pearson (2016) 3. Concepts of Physics, vol-2, H. C. Verma, BharatiBhawan Publishers & Distributors (2019).

(Back to Index) (Back to Agenda)

Programme: M.Sc (Physics)(Biophysics) Course Code: PHB-200 Title of the

de: PHB-200	Title of the Course: Introduction to Biology and Biophysics
	Number of Credits: 4

Effective from AY: 2022	Number of Creatts: 4	
Prerequisites for the	Understanding of basic concepts in biology, chemistry and	
<u>course:</u>	physics	
<u>Objective:</u>	This is a bridge course for the students for introducing them	
	to the concepts in biology and biophysics.	
Content:	Introduction to Biology	5 hours
	Origin and evolution of life, prokaryotic cells,	
	photosynthesis, eukaryotic cells, elementary building	
	blocks of life	15 hours
	Biochemistry I	
	Chemical components of the cell, energy, catalysis and	
	biosynthesis, cellular membranes, transport across	
	membranes, energy generation in cells, cytoskeletons, cell	15 hours
	division,	
	Biochemistry II	
	Proteins-structure and function, DNA, RNA and	10 hours
	chromosomes, Genes, genetics, carbohydrates, lipids and	
	enzymes	
	Biophysics	
	Biological motion, free energy transduction,	
	chemochemical machines, pumps and motors as	
	chemochemcial machines, flux force dependence,	
	molecular motors, mechanochemistry of molecular	
	motors, biomolecular forces, biomechanics of muscle	
	contraction and cardiovascular system.	
<u>Pedagogy:</u>	Online Lectures/Assignments/Self Study	
	Interactive sessions will be conducted to enable peer group	
	learning.	
<u>References/Readings</u>	1. The Cell: A Molecular Approach, Geoffrey M. Cooper	
	and Robert E. Hausman, Seventh Edition, Oxford	
	University Press (2018).	
	2. Essential Cell Biology, Bruce Alberts, Dennis Bray,	
	Karen Hopkin, Alexander D. Johnson, Julian Lewis,	
	Martin Raff, Keith Roberts, and Peter Walter, Fourth	
	Edition Garland Science (2013).	
	3. Molecular Biology, David Clark Nanette Pazdernik	
	Michelle McGehee, Third Edition, Elsevier (2019).	
	4. Introduction to Molecular Biophysics, Jack A Tuszynski	
	and Michal Kurzynski, First Edition, CRC Press, (2003).	
	 Biophysics: An Introduction, Rodney Cotterill, Wiley (2002). 	
	6. Applied Biophysics, A Molecular Approach for Physical	
	Scientist, Thomas A Weigh, First Edition, Wiley, (2007).	

	7. Mole	ecular & Cellular Biophysics, Mayer & Jackso	on,	
	Cam	bridge Press (2006).		
Learning Outcomes:	1. The s	students will be familiarized with the basic		
	conc	epts of molecular biophysics		
	2. The s	students will have gained sufficient knowledge i	n	
	the s	tructure and functioning of molecular processes	s	
	3. The s	tudents will be exposed to the recent		
	deve	lopments in biomechanics and molecular motio	n.	

Programme: M.Sc. (Physics) Course Code: PHDC – 101

Title of the Course: Mathematical Physics Number of Credits: 4

Drevenuisites for	Chauld have studied the sources in Dhusies at graduation	
Prerequisites for	Should have studied the courses in Physics at graduation level.	
thecourse:	level.	
Objective:	Students will get exposed to necessary mathematical	
	skills that are essential to understand different	
	phenomena in physics. The course also helps students to	
	understand the theoretical background of other core	
	courses in physics.	
Content:	1. Ordinary Differential Equations	14 hours
	Second order homogeneous and inhomogeneous	
	equation, Wronskian, General Solutions, Ordinary and	
	Singular points, Series Solutions. Polynomial solutions,	
	Legendre's equation, Bessel's equation, Gamma function	
	2. Functions of Complex Variable	15 hours
	Limits, Continuity, Analyticity of Functions of a Complex	
	Variable, Taylor and Laurent Series, Isolated and Essential	
	Singularities, Branch Cuts, Cauchy Formula, Contour	
	Integration, Application of Residue Theorem.	
	3. Linear Vector Spaces	9 hours
	Linear Operators, Matrices, Coordinate Transformations,	
	Eigenvalue Problems, Diagonalization of Matrices, Infinite	
	Dimensional Spaces, Elements of Group Theory.	
	4. Integral Transforms	12 hours
	Fourier Series, Fourier Transforms, Laplace Transforms,	
	Applications of Integral Transforms.	
	5. Boundary Value and Initial Value Problems	10 hours
	Vibrating String in one Dimension, Heat Conduction, and	
	Wave Equation.	
	Lectures/ tutorials or a combination of these. Sessions	
Pedagogy:	shall be interactive in nature to enable peer group	
	learning.	
References/Readings	1. George B. Arfken and Hans J. Weber, Mathematical	
	methods for Physicists, 7/e Elsevier Inc., 2012.	
	2. K.F. Riley, M.P. Hobson and S.J. Bence, Mathematical	

	X AC- 9 (Special)
	30.07.2022
	Methods for Physics and engineering, Cambridge
	University Press, Cambridge UK (Reprint 2002)
	3. J. Mathew and R. L. Walker, Mathematical Methods
	for Physics, Benjamin Publishers (1973).
	4. James W. Brown and R. V. Churchill Complex Variables
	and Applications, 6th Edition (international), McGraw - Hill (1996).
	5. L. A. Pipes, Applied Mathematics for Engineers and
	Physicists, 3rd Edition, McGraw-Hill (1971).
	6. W. W. Bell, Special Functions for Scientists and
	Engineers,
	D. Van Nostrand Company Ltd (2004).
	7. Charlie Harper, Introduction to Mathematical Physics, PHI.
	8. Murray R. Spiegel, Theory and problems in Complex
	Variables by (Schaum' series) (2009).
	9. Murray R. Spiegel, Theory and problems of advanced
	Mathematics for Engineers and Scientists by
	(Schaum's series) (1980).
Learning Outcomes	1. Develop sufficient mathematical skills and apply
	them in other courses of physics.
	2. Develop understanding of the mathematical
	background of various concepts in physics.

Programme: M. Sc. (Physics) Course Code: PHDC-102

Title of the Course: Classical Mechanics Number of Credits: 4

Effective from AY: 2022-23				
Prerequisites for	Should have studied basic courses in mechanics in B.Sc.			
thecourse:	and Mathematics.			
<u>Objective:</u>	This course is aimed at understanding intermediate to advanced classical mechanics and to build the necessary framework for other topics that requires classical mechanics such as quantum mechanics, statistical mechanics and electromagnetism.			
Content:	1. Newton's Laws of Motion	6 hours		
	Mechanics of a single particle, Mechanics of a system particles, Constraints and their classification, Principle of virtual work, D'Alembert's principle.			
	2. Lagrangian Formulation Degrees of Freedom, Generalized Coordinates, Calculus of variations, Hamilton's principle, Euler-Lagrange's equations of motion, Application to non-holonomic systems, Advantages of a variational principle formulation, Conservation theorems and symmetry	10 hours		
	properties.	8 hours		

			AC- 9 (Special))
			30.07.2022	
	3. Rigid Body Dynamics			
	Eulerian angles, Inertia tensor, Angular momentur	n of		
	rigid body. Free motion of rigid body, Motior	n of	10 hours	
	symmetric top.			
	4. Hamilton's equation of motion			
	Legendre transformation and the Hamilton equation	ons of		
	motion, cyclic coordinates and conservation theory	rems,		
	Routh's procedure and oscillation about steady mo	otion,		
	Derivation of Hamilton's equations from a variation	tional	8 hours	
	principle, Principle of least action.			
	5. Canonical Transformations			
	Equations of canonical transformations, Example			
	canonical transformations, Poisson brackets and			
	canonical invariants, Equations of motion, Infinite			
	canonical transformation theorems in Poisson br			
	formulation, Angular momentum, Poisson bra	ckets	6 hours	
	relations, Lagrange brackets.			
	6. Hamilton - Jacobi Theory			
	H-J equation for Hamilton's principal function, Harr			
	oscillator problems, H -J equation for characte	eristic	7 hours	
	function, Action angle, Kepler's problem.			
	7. Two-body Central Force Problem			
	Equations of motion and first integrals, Classificati			
	orbits, virial theorem, Differential equation and integ	rable	5 hours	
	power law potentials, Kepler's problem.			
	8. Small Oscillations			
	Simple Harmonic Oscillations, Damped Oscilla			
	Forced Oscillations without and with damping, Con	upled		
	Oscillations.			
Pedagogy:	Lectures/ tutorials/ assignments. Sessions shal	l be		
	interactive in nature to enable peer group learning.			
References/Readings	1. H. Goldstein, Classical Mechanics; McMillan,			
	Bombay.1998.			
	2. N. C. Rana, and P. S. Joag; Classical Mechanics,			
	Tata Mcgraw-Hill;1991. 3. J. C. Upadhyaya, Classical Mechanics, Himalaya,			
	Publishing House, Mumbai;1991.			
	4. P. V. Panat; Classical Mechanics; Alpha			
	Science International Ltd; 2004.			
	5. M. G. Calkin, Lagrangian and Hamiltonian			
	Mechanics, World Scientific, 1996.			
Learning Outcomes	1. Study basic principles of classical mechanics.			
	2. Apply different techniques to solve mech	nanical		
	problems.	amear		
L	(Back to Index)	(D]		

Programme: M. Sc. (Physics) Course Code: PHDC-103

Title of the Course: Electromagnetic Theory Number of Credits: 4

Droroquisitos		
Prerequisites for	Should have studied electrostatics and magnetostatics at	
thecourse:	the graduation level.	
Objective:	The aim of this course is to develop understanding of time	
	varying scalar and vector electromagnetic fields and	
	relativity.	
	To inculcate fundamental concepts related to	
	electromagnetic waves, their transmission via wave	
	guides, radiation and plasma.	
<u>Content:</u>	1. Maxwells Equations:	10 hours
	Displacement current, Maxwell's equations, Vector	
	and Scalar potentials, Gauge transformation, Lorentz	
	and Coulomb gauge, Poynting's theorem, Conservation	
	of energy and momentum for charged particles and	
	fields.	9 hours
	2. Electromagnetic Waves	
	Plane electromagnetic waves and their propagation in	
	non- conducting and conducting media, Frequency	
	dispersion in conductors	10 hours
	3. Electromagnetic Radiation	
	Retarded Potentials, Fields and radiation by localized	
	dipole, LienerdWeichert potentials, Power radiated by	
	an accelerated charge.	9 hours
	4. Physics of Plasmas	
	Electrical neutrality in a plasma, Particle orbits and drift	
	motion in a plasma, Magnetic mirrors, The hydro-	
	magnetic equations, The pinch effect, Plasma	
	oscillations and wave motion, Reflection from a plasma	10 hours
	(ionosphere).	
	5. Wave Guides	
	Propagation of Waves between conduction planes,	
	Wave guides in arbitrary cross-section, Wave -guides in	
	Rectangular Cross-section, Coaxial Wave guide,	12 hours
	Resonant Cavities, Dielectric wave guides.	
	6. Relativistic Electrodynamics	
	Lorentz transformation as four dimensional orthogonal	
	transformation, Lorentz matrix, four vectors in	
	mechanics and electrodynamics, Lorentz covariance of	
	Maxwell equations, field tensor, transformation of	
	fields, field due to a point charge in uniform motion.	
Pedagogy:	Lectures/ tutorials/ assignments. Sessions shall be	
	interactive in nature to enable peer group learning.	

		50.07.2022
References/Readings	Text Books / References:	
	1. J. B. Marion, Classical Electromagnetic	
	Radiation, Academic Press, New York (1980).	
	2. J. R. Reitz and F. J. Milford, Foundations of	
	Electromagnetic theory, Addison – Welsey, Readin (1960).	Ig
	3. B. B. Laud, Electromagneties, Wiley Eastern Ltd., New Delhi (1983).	
	 S. P. Puri, Classical Electrodynamics, Tata McGraw- FEII Publishing Co. Ltd. New Delhi (1997). 	-
	5. David J. Griffiths, Introduction to Electrodynamics, Prentice - Hall of India Pvt. Ltd., New Delhi (1995).	
	 J. D. Jackson, Classical Electrodynamics, Wiley, Nev York (1995). 	
	 W. H. Panofsky and M. Philips, Classical Electricity and Magnetism, Addison-Wesley Publication, 1962 	
Learning Outcomes	1. Apply Maxwell's equations and their application	ו to
	time-harmonic fields, boundary conditions, wa	ave
	equations, and Poynting's power-balance theore	em.
	2. Describe the properties of plane waves	in
	unbounded space, and understand such conce	pts
	as wavelength, phase velocity, and attenuation.	,

Programme: M. Sc. (Physics)

Course Code: PHDC-104

Title of the Course: Electronics Number of Credits: 4

Prerequisites for the	Should have studied the Electronics courses in Physics at	
<u>course:</u>	graduation level.	
Objective:	The aim of the course is to introduce students to wide	
	range of electronic circuits and their applications in Physics	
	such as OP-AMPs. They also get basic understanding of	
	opto-electronic devices, modulation, signals,	
	microprocessor and memories.	
<u>Content:</u>	1. OP-AMP Applications	15 hours
	OP-AMPS with negative feedback, Voltage controlled	
	voltage source (VCVS), Current controlled voltage	
	source (ICVS), Voltage controlled current source (VCIS),	
	Current controlled current source (ICIS), Inverting and	
	noninverting amplifier circuits, Open-loop frequency	
	and phase response, Closed-loop frequency response,	
	Differential amplifier, Instrumentation amplifier, DC	
	and AC amplifiers, Summing, scaling and averaging	
	amplifier, Voltage to current converter, Current to	
	voltage converter.	15 hours
	2. Opto-electronic devices	

		<u>X</u>	AC- 9 (Special)
			30.07.2022
	 Radiative and non-radiative transitions, Characteris of LED, Photoconductor, Photo diode, Photo transis Photo detector, Solar cell, Semiconductor laser; Op fiber, Optical fiber waveguides, Fundamentals optical communication Communication Electronics Analog and digital signals, Modulation, Types modulation, Basic principles of amplitude, freque and phase modulation, Simple circuits for amplit modulation and demodulation, Digital modulation	stor, itical of of ency tude	15 hours
	 demodulation, Microwave Oscillators, Caresonators, Standing wave detector. 4. Digital Electronics Types of signals, Digital signal processing (DSP) ba A/D and D/A conversion methods, DSP applicati Introduction to Microprocessors, Elements of 8 Microprocessors (INTEL 8085); Memory and stor RAM, ROM, PROM and EPROM, Flash memo Magnetic and optical storage. 	ons; 8-bit age,	15 hours
Pedagogy:	Lectures/tutorials/assignments. Sessions shall interactive in nature to enable peer group learning.	be	
References/Reading <u>S</u>	 Millman, J. and Halkias, C. C., Integrated Electron Analog and Digital Circuits and Systems, McGraw – Book Co. Tokyo (1997) Boylestad, R. L. and Nashelsky L., Electronic Device Circuit Theory, XI Edn. Prentice-Hall of India (2015) Floyd, T. L., Electronic Devices, V Edn. Pear Education Asia (2001). Gayakwad, R, A., Op-Amps and Linear Integra Circuits, IV Edn. Prentice-Hall of India (2002). Chen, Chin-Lin, Elements of Optoelectronics and F Optics, McGraw-Hill Book Co. New Delhi (2014). Kennedy, G., Electronics Communication Systems Edn, Tata McGraw-Hill Book Co. New Delhi (2003). Shrader, R., Electronic Communication, Gler Division of MacMillan (1993). Kasap, S. O., Optoelectronics and Photonics: Princi and Practices, Dorling Kindersley India (2009) Floyd, T. L., Digital Fundamentals, VII Edn. Pear Education (2002). Smith, S. W., Digital Signal Processing, Elsevier In (2006). 	- Hill es & rson ated fiber s, IV ncoe iples rson	
Learning Outcomes:	 Understanding the principles and circuits in electronics and use them in various applications Students acquire knowledge about working principles of opto-electronic devices and communication electronics. 	s.	

X AC- 9 (Special)
30.07.2022

3. Students get exposure to microprocessor and
memory devices.

Programme: M. Sc. (Physics) Course Code: PHDO-101

Title of the Course: Electronics Practical Number of Credits: 2

Prerequisites for	Nil	
thecourse:		
Objective:	This course provides laboratory training in designing, and	
	constructing electronics circuits commonly used in a	
	Physics laboratory.	
<u>Content:</u>	 Experiments are to be performed on following topics (minimum 8) with emphasis on designing and constructing the circuit on a bread board. 1. Operational Amplifier parameters 2. Design and Construction of Wien Bridge Oscillator 3. Design and Construction of phase shift oscillator 4. Design and Construction of AstableMultivibrator 5. Design and Construction of MonostableMultivibrator 6. Schmitt Trigger circuit and its use as a zero crossing detector and squaring circuit 7. Voltage Regulator 8. Constant Current Source 9. Design and Construction of DC differential amplifier using op-amps 10. Design and construction of Negative nonlinear resistor 12. J. K. flip-flop counter: Scale of 16 and 10 using IC 	60hours
	13. Adder and Subtractor Circuits	
Pedagogy:	Laboratory Experiments	
References/Readings	 J. Millman and C. C. Halkias, Integrated Electronics: Analog and Digital Circuits and Systems, Mc Graw Hill International Student Ed. (1972). LM317 – 3 Terminal Adjustable Voltage regulator datasheet Rev. X, Texas Instruments Wikibooks – Negative resistance, Negative differential resistance. https://en.wikibooks.org/wiki/Circuit_Idea D. P. Leach, A. P. Malvino and G. Saha, Digital Principles and Applications, Tata Mc Graw Hill 7e (2011). 	

Learning Outcome	1.	The student should be able to prepare for labor	atory	
		work, by reading from books / laboratory mar	nual /	
		datasheet.		
	2.	Should be able to design and construct elect	ronic	
		circuits by identifying and fetching diffe	erent	
		components.		
	3.	Should be able to record observations from diff	erent	
		measuring instruments and record them neatly.		
	4.	Plot graphs and analyze the results.		
	5.	Demonstrate the ability to maintain a labor	atory	
		notebook.		
	6.	Prepare lab reports in standard scientific format.		

Programme: M. Sc. (Physics) Course Code: PHDO-102

Title of the Course: Computer Programming in Fortran 95 Number of Credits: 2

Prerequisites for	Nil	
thecourse:		
Objective:	This course develops concepts of computer programming in general and introduces programming language FORTRAN 95.	
Content:	1. Fundamentals of Computer Programing	15 hours
	Programming Languages, Fortran Evolution, Character Set, Intrinsic Types, Numeric Storage, Literal Constants, Names, Significance of Blanks, Implicit Typing, Numeric and Logical Type Declarations, Character Declarations, Initialisation, Constants (Parameters), Comments, Continuation lines, Expressions, Assignment, Intrinsic Numeric Operations, Relational and Intrinsic Logical Operators, Intrinsic Character Operations, Operator Precedence, Mixed Type Numeric Expressions, Mixed Type Assignment, Integer Division, Formatting input and output, WRITE Statement, READ Statement, Prompting for Input, Reading and writing to a file, How to Write a Computer Program, Statement Ordering, Compiling and Running the Program, Practical Exercise	
	1	15 hours
	2. Logical Operations and Control Constructs Relational Operators, Intrinsic Logical Operations, Operator Precedence, Control Flow, IF Statement, IF THEN ELSE Construct, IF THEN ELSEIF Construct, Nested and Named IF Constructs, SELECT CASE Construct, The DO construct, Conditional Exit Loop, Conditional Cycle Loops, Named and Nested Loops, Indexed DO Loops, Practical Exercise 2	15 hours

			-	<u>C-9 (Special)</u>
			3	30.07.2022
		Arrays Declarations, Array Element Ordering, Array Sec Array Conformance, Array Syntax, Whole Expressions, WHERE statement and construct, CC SUM, MOD, MINVAL, MAXVAL, MINLOC and MA functions, Array I/O, The TRANSPOSE Int Function, Array Constructors, The RESHAPE Int Function, Named Array Constants, Allocatable A Deallocating Arrays, Vector and Matrix Multiplica Practical Exercise 3. Procedures Program Units, Introduction to Procedures, Int Function Summary, Numeric Intrinsic Func Summary, Character Intrinsic Function Summary, Program Syntax, Functions, Subroutine and Func Practical Exercise 4	Array DUNT, XLOC crinsic crinsic rrays, ation, crinsic crinsic crinsic nction Main	15 hours
Pedagogy:	Lec	ctures/ Laboratory work/self-study		
References/Readings		V. Rajaraman, Computer Programming in FORTRA 90 and 95, Prentice-Hall of India, New Delhi 1999 Martin Counihan, Fortran 95, UCL Press Limited University College London (1996). Stephen Chapman, Fortran 95/2003: for Scientist and Engineers, McGraw-Hill (2007).).	
Learning Outcomes		Understand programming in general; Understand FORTRAN programming language; Understanding how to write and run simple programs. Understanding how to do plotting, regression and and error analysis	alysis	

Programme: M. Sc. (Physics) Course Code: PHDO-103

Title of the Course: Computer programming with C Number of Credits: 2

Prerequisites for	Nil	
thecourse:		
Objective:	This course develops concepts of computer programming	
	in general and introduces programming language C.	

		<u>X AC- 9 (Special)</u> 30.07.2022
<u>Content:</u>	 Introductory Concepts Introduction to computers, Introduction to Linux Linux basics, Introduction to C, writing a C Prog Compiling and Executing the Program, Diagnostics, Some simple C Programs, Desig Program Characteristics. 	gram, Error
	 C Fundamentals The C character set, Identifiers and Keywords, Datypes, Constants, variable and Arrays, Declaratio Expressions, Statements, Symbolic Constants 	ata
	 Operators and Expressions Arithmetic Operators, Unary Operators, Relation: Logical Operators, Assignment Operators, th Conditional Operators, Library Functions. 	al
	 Data Input and Output Preliminaries, Single character input and out entering Input data, writing output data, Oper and closing data file, format statements. 	put,
	5. Control Statements	ooping break, 8 hours
	 Functions Defining functions, accessing functions, Passing arguments to a function. Practical Exercise Arrays 	8 hours
	Defining an array, processing an array, passing a to functions, multidimensional arrays. Prac Exercise	-
<u>Pedagogy</u> :	Lectures/ Laboratory work/self-study	
References/Readings	 Byron Gottfried, Programming with C, Tata McG Hill (1996). 	Graw-
Learning Outcomes	 Understand programming in general; Understand C programming language; Understanding howto write and run simple programs. Understanding how to do plotting, regression analysis and error analysis 	

Programme: M. Sc. (Physics))
Course Code: PHDO-104	

Title of the Course: Computer programming with Python Number of Credits: 2

Prerequisites	for	Nil	
thecourse:			

	30.07.2022
This course develops concepts of computer programming	
in general and introduces programming language Python.	
 Fundamentals of Python: Introduction to programming in Python, installation and writing, and running Python programs on Window and Linux 	8 hours s
 Handling data: Data types and variables, user input and output, mathematical operators 	8 hours
3. Decision making and looping: Logical expressions and operators, conditional operators, lists, for loop, while loop	12 hours
 Arrays and Functions: Lists, tuples, sets, special arrays, writing and calling user-defined functions, 	12 hours
5. Data plotting and fitting: scattered plots, bar plots, histograms, reading data and plotting, linear or quadratic least square fitting	10 hours d
 Error analyses: Propagation of errors, significant figures, Gaussian distribution, mean, median, standard deviation, variance, weighted average. 	10 hours
Lectures/ Laboratory work/self-study	
 "Python Cookbook: Recipes for Mastering Python 3" by by David Beazley and Brian K. Jone, O'Reilly Media (2013) "Python: The Complete Reference" by Martin C 	
Brown, McGraw Hill (2018)	
 Understand Python programming language; Understanding howto write and run simple programs. 	
and error analysis	
	 in general and introduces programming language Python. Fundamentals of Python: Introduction to programming in Python, installation and writing, and running Python programs on Window and Linux Handling data: Data types and variables, user input and output, mathematical operators Decision making and looping: Logical expressions and operators, conditional operators, lists, for loop, while loop Arrays and Functions: Lists, tuples, sets, special arrays, writing and calling user-defined functions, Data plotting and fitting: scattered plots, bar plots, histograms, reading data and plotting, linear or quadratic least square fitting Error analyses: Propagation of errors, significant figures, Gaussian distribution, mean, median, standard deviation, variance, weighted average. Lectures/ Laboratory work/self-study "Python Cookbook: Recipes for Mastering Python 3" by by David Beazley and Brian K. Jone, O'Reilly Media (2013) "Python: The Complete Reference" by Martin C. Brown, McGraw Hill (2018) Understand programming in general Understand programming in general Understanding howto write and run simple programs. Understanding howt odo plotting, regression analysis

Programme: M. Sc. (Physics) Course Code: PHGC-105 Number of Credits: 4 Effective from AV: 2022-23

Title of the Course: Quantum Mechanics

ffective from AY: 202	22-23	
<u>Prerequisites</u> f	or Studied Physics, including an introductory course on	
thecourse:	Quantum Mechanics at graduate level	
Objective:	 To develop basic formalisms of non-relativistic Quantum Mechanics. To illustrate the concepts for analyzation of simple quantum mechanical systems 	
<u>Content:</u>	 1. Schrodinger's Equation and Hermitian operators (a) Time-dependent Schrodinger equation, continuity equation, expectation values, Ehrenfest's theorems, time-independent Schrodinger equation and stationary states. (b) Hermitian operators, eigenvalues and eigenstates of Hermitian operators, momentum eigenfunctions, orthogonality and completeness of wave functions, 	8 hours
	 Computability and compatibility of observables, parity operation. 2. The Schrodinger equation in three dimensions Separation of the Schrodinger equation in Cartesian coordinates, Central potential, separation of the 	12 hours
	 Schrodinger equation in spherical polar coordinates, The free particle, The three-dimensional square well potential, The hydrogen atom, The three-dimensional isotropic oscillator. 3. Vector space formulation of quantum mechanics 	
	Dirac Notation, representation of states and observables, bra and ket vectors, linear operators, relation with wave mechanics, algebra of Hermitian operators, matrix representation, unitary operators, Schrodinger and Heisenberg representations, linear harmonic oscillator problem by operator method.	10 hours
	 Angular Momentum theory Angular Rotations in Classical and Quantum Mechanics, Rotational Symmetry and conservation of angular momentum, Treatment of general angular momentum by operator method, eigenvalues and eigenvectors, Eigen values and eigenfunctions of L² and Lz operators, ladder 	
	 operators L⁺ and L⁻, spin angular momentum, algebra of Pauli matrices, Pauli representation of angular momentum operators. Addition of two angular momenta, spin-orbit interaction, Clebsch Gordon coefficients. 5. Approximation methods for stationary problems Time-independent perturbation theory for a non- 	8 hours
	degenerate energy level, Time-independent perturbation theory for a degenerate energy level, The variational	7 hours

<u></u>		1
	method, The WKB approximation.	
	6. Approximation methods for time-dependent problems	
	Time-dependent perturbation theory, General features,	
	Time-independent perturbation, periodic perturbation,	10 hours
	The adiabatic approximation, The sudden approximation	
	7. Quantum Collision Theory	
	Scattering experiments and cross-sections, potential	
	scattering and general features, the method of partial	
	waves, Application of the partial-wave method, the	
	integral equation of potential scattering, The Born	
	approximation, Collision between identical particles,	
	Collision involving composite systems.	
Dodogogy		
Pedagogy:	lectures/ tutorials/ assignments. Sessions shall be	
	interactive in nature to enable peer group learning.	
References/Readings	Text Books / References	
	1. A. K. Ghatak and S. Lokanathan, Quantum	
	Mechanics: Theory and Applications, Springer (2004)	
	2. P. M. Mathew and K. Venkatesan, A Text Book of	
	Quantum Mechanics, 2/e, Tata McGraw Hill (2017)	
	3. L. I. Schiff and JayendraBandhyopadhyay, Quantum	
	Mechanics, 4/e, McGraw-Hill (2017).	
	4. V. K. Thankappan, New Age International Publishers	
	(2012)).	
	5. V. Devanathan, Quantum Mechanics, 2/e Narosa	
	Publishing House (2015).	
	6. David J. Griffiths, Introduction to Quantum	
	Mechanics 2/e, Cambridge India, (2016).	
	7. J. J. Sakurai Modern Quantum mechanics, Addition-	
	Wesley Publishing Company, (1994).	
	8. R. Eisberg and R. Resnick, Quantum Physics of atoms,	
	molecules, solids, nuclear and particles, 2/e, John	
	Wiley and Sons, (1985).	
	9. W. Greiner, Introductory Quantum mechanics,	
	Springer Publication, (2001).	
	10. R. L. Liboff, Introductory Quantum Mechanics, 4e,	
	Pearson Education Ltd (2003).	
	11. NouredineZettili, Quantum Mechanics: Concepts	
	and Applications 2/e, Wiley India (2016)	
Learning Outcomes	1. Students will be able to solve wave equations for	
	simple three dimensional system	
	2. Students will have the knowledge and skills to	
	describe the structure of the hydrogen atom and	
	show an understanding of quantisation of angular	
	momentum and spin as well as the rules for	
	quantisation and addition of these.	
	3. Students will learn the concepts of approximation	
L	e. etadente fini learri the concepts of approximation	

	methods for solving Schrodinger equations	
4.	Students will gain the knowledge about	
	fundamental scattering of quantum particles.	

Programme: M. Sc. (Physics) Course Code: PHDC-106 Number of Credits: 4 Effective from AY: 2022-23

Title of the Course: Statistical Mechanics

Prerequisites for thecourse:	Should have studied Physics or Mathematics at graduation level. It is assumed that students have a basic working knowledge of classical and quantum mechanics, including Hamiltonian formulation and density matrices.	
Objective:	This course develops concepts in classical laws of thermodynamics and their application, postulates of statistical mechanics, statistical interpretation of thermodynamics, microcanonical, canonical and grant canonical ensembles; the methods of statistical mechanics are used to develop the statistics for Bose-Einstein, Fermi- Dirac and photon gases.	

Content:	1. Kinetic Theory and Equilibrium state of Dilute Gas	12 hours
	Formulation of problem, binary collisions, Boltzmann	
	transport equation, Boltzmann's H theorem, Maxwell-	
	Boltzmann distribution, Method of the most probable	
	distribution, analysis of the H theorem, recurrence	
	and reversal paradoxes, Validity of the Boltzmann	
	transport equation.	
	2. Classical Statistical Mechanics	12 hours
	Review of laws of thermodynamics, Entropy,	
	Thermodynamic Potentials, Postulate of Classical	
	Statistical Mechanics, Microcanonical ensemble,	
	derivation of thermodynamics, equipartition theorem,	
	Classical ideal gas, Gibbs paradox.	
	3. Canonical and Grand Canonical Ensembles	12 hours
	Canonical ensemble, energy fluctuations in canonical	
	ensemble, grand canonical ensemble, density	
	fluctuations in grand canonical ensembles, equivalence	
	of canonical and grand canonical ensembles, behaviour	
	of W(N), meaning of Maxwell construction.	
	4. Quantum Statistical Mechanics	8 hours
	Postulates of quantum statistical mechanics, density	
	matrix, ensembles in quantum mechanics, third law of	
	thermodynamics, ideal gases in microcanonical and	
	grand canonical ensembles, foundations of statistical	
	mechanics.	8 hours
	5. Ideal Fermi Gas	onours
	Equation of state of Ideal Fermi Gas, theory of white	
	dwarfs, Landau diamagnetism, deHass-Van Alphen	
	effect, Pauli paramagnetism.	8 hours
	6. Ideal Bose Gas	0 110013
	Photons, phonons, Bose-Einstein condensation.	
Pedagogy:	Lectures/ tutorials/assignments. Sessions shall be	
<u>r cuagugy</u> .		
Poforoncos / Poodings	interactive in nature to enable peer group learning.	
References/Readings	1. Statistical Mechanics, Kerson Huang, 2/e, Wiley India	
	2008.	

·		· · · · · · · · · · · · · · · · · · ·
	2.	Fundamentals of Statistical Mechanics, B. B. Laud,
		New Age International Ltd. New Delhi 1998.
	3.	Fundamentals of Statistical and Thermal Physics, F.
		Reif, Waveland Press 2009.
	4.	Statistical Mechanics L. D. Landau and E. M.
		Lifshitz, Pergamon Press 1969.
	5.	Statistical Physics, R. P. Feynmann, The
		Benjamin Cummings Publishing Co 1981.
	6.	Introduction to Statistical Physics, S. K. Sinha,
		Narosa Publishing House, New Delhi 2007.
	7.	Statistical Physics, Tony Guenault, New Age
		International Ltd. New Delhi 2007.
	8.	Francis W. Sears, Gerhard Salinger,
		Thermodynamics, Kinetic Theory, and Statistical
		Thermodynamics, Addison- Wesley Principles of
		Physics Series, 1975.
Learning Outcomes	1.	Explain statistical physics and thermodynamics as
		logical consequences of the postulates of statistical
		mechanics.
	2.	Apply the principles of statistical mechanics to
		selected problems.
	3.	Apply techniques from statistical mechanics to a
		range of situations.

Programme: M. Sc. (Physics)

Course Code: PHDC-107 Title of the Course: Nuclear and Elementary Particle Physics Number of Credits: 4 Effective from AY: 2022-23

Effective from AT: 2022		
Prerequisites for	Concepts like Radioactivity, Nuclear fission, and knowledge	
thecourse:	of solution of 1 dimensional Schrodinger Equation	
Objective:	To introduce students to the fundamental principles and	
	concepts governing nuclear and particle physics and have	
	a working knowledge of their application to real-life	
	problems.	
Content:	1. Basic Properties of Nuclei:	8 hours
	a. Nuclear mass, charge, radius, binding energy,	
	nuclear spin, and parity.	
	b. Magnetic moments and electric quadrupole	
	moments.	12 hours
	2. Two-BodyProblem:	
	a. Brief review of quantum mechanics tools,	
	properties of deuteron, theory of the ground state	
	of deuteron, magnetic moment, and electric	
	quadrupole moment of deuteron.	
	b. Theory of nucleon-nucleon scattering at low energy,	
	phase shift and scattering length, effective range	
	theory, experimental determination of low energy	

	parameters.	10 hours
с.	Nature of nuclear forces and Meson theory of	
	nuclearforce.	
3. 1	Nuclear Models:	
a.	Liquid drop model, Weizsacker's mass formula,	
	stable and unstable nuclei, massparabolas.	
b.	Nuclear shell model, energy levels in a three	
	dimensional harmonic oscillator well potential,	
	spin orbit interaction, prediction of magic numbers,	10 hours
	ground state spinsandparities,	
с.	Magneticmoments,Schmidtlines, nuclear	
	quadrupole moments, and collective model.	
4.1	Nuclear Transformations:	
a.	Alpha decay, barrier penetration problem, Gamow's	
	theory of alpha decay, Geiger-Nuttal law, alpha	
	spectra and nuclear energylevels.	
b.	Beta decay, experiments in beta spectra, neutrino	
	hypothesis, Fermi's theory of beta decay, Kurie	
	plots, ft values, allowed and forbidden transitions,	
	selection rules, electron capture, parity violation in	
	beta decay, experimental verification, measurement	
	of neutrino helicity.	4 hours
с.	Gamma transitions, multipole radiations, quantum	
	theory of the transition probability, selection rules,	
	angular correlation, calculations of transition rates	10 hours
	and comparison with experiments,	
	internal conversion.	
4.1	NuclearReactions:	
a.	Rutherford scattering, cross-sections, decay rates,	
	resonances, Breit-Wigner formula, nuclear fission	
	and fusion processes.	
6. 1	Elementary Particles:	
a.	Classification of elementary particles; properties of	
	quarks and leptons, properties of mesons and	6 hours
	baryons. Classification of fundamental forces;	
	Strong, Weak and Electromagnetic interactions.	
b.	Introduction to Feynman diagrams, relativistic	
	kinematics, quark model and eightfold way.	
с.	Particle quantum numbers; charge, isospin,	
	strangeness and parity, Gell-Mann Nishijima	
	formula, conservation laws and symmetries.	
7.1	Particle accelerators and detectors:	
a.	Introduction to modern accelerators, event rates	
	and luminosity. Large detector systems at electron-	
	positron, electron-proton and hadron colliders.	
b.	Interaction of particles with matter, principle of gas	
	chambers, silicon detectors, scintillators, time-of-	

	flight detectors, and calorimetry.
Pedagogy:	Lectures / tutorials/assignments. Sessions shall be
	interactive in nature to enable peer group
	learning.
References/Readings	1. H. Enge, Introduction to Nuclear Physics,
	Addison- Wesley (1974).
	2. E. Segre, Experimental Nuclear Physics, John
	Wiley (1960).
	3. V. Devanathan, Nuclear Physics, Alpha
	Science International Ltd, (2011).
	4. S. N. Ghoshal, Nuclear Physics, S. Chand
	and Co. (2019)
Learning Outcomes	Student will be able to
	1. Apply the models describing the basic nucleon and
	nuclear properties.
	2. Describe the properties of strong and weak interaction.
	3. Explain the different forms of radioactivity and
	account for their occurrence.
	4. Classify elementary particles and nuclear states
	in terms of their quantum numbers.

Programme: M. Sc. (Physics) Course Code:PHDC108 Number of Credits: 4 Effective from AY: 2022-2023

Title of the Course: Atomic Physics

Effective from AY:	2022-2023	
Prerequisites	Knowledge of concepts like Bohr model of atom, Electronic	
for the Course:	transition in atoms and atomic spectra.	
Objectives:	This course is aimed at understanding the atomic structure	
	and atomic spectra	
Content:	1. Early Atomic Physics	6 hours
	Atomic spectra of hydrogen, The Bohr's theory, Relativistic	
	effects, Moseley and atomic number, Radiative decay, Einstein	
	A and B coefficients, The Zeeman effect.	
	2. One-electron atoms:	
	The Schrödinger equation for one-electron atoms, energy	12 hours
	levels, the Eigen functions of the bound states, expectation	
	values. Transitions, selection rules, parity, spin of the electron,	
	the spin-orbit interaction, Fine structure of hydrogenic atoms,	
	The Lamb shift, transitions between fine-structure levels.	
	3. Two-electron atoms:	12 hours
	The Schrödinger equation for two-electron atoms, The ground	
	state of two-electron atoms, Excited states of two-electron	
	atoms. Doubly excited states of two electron atoms.	
	4. Many-electron atoms:	15 hours
	Shell structure and the periodic table, The central field	
	approximation, The Hartree-Fock method and the self-	

	consistent field, Corrections to the central field approximation. Correction effects, <i>L-S</i> coupling and <i>j-j</i> coupling. Fine structure in the alkalis.	15 hours
	5. Interaction of atoms with electromagnetic radiation and	
	with static and magnetic field:	
	Many electron atoms in an electromagnetic field, selection rules for electric dipole transitions, Oscillator and line strengths, Retardation effects, Magnetic dipole and electric quadrupole transitions, The spectra of the alkalis, Helium and	
	the alkaline earths, Atoms with several optically active	
	electrons, Multiplet structure, X-ray spectra, The stark effect,	
	The Zeeman effect.	
Pedagogy:	Lectures/tutorials/assignments. Sessions shall be interactive	
	in nature to enable peer group learning	
References/Rea dings	1. Atomic Physics, C. J. Foot, Oxford Master Series in Physics (2005)	
411.80	2. Physics of Atoms and Molecules, B. H. Bransden, C. J.	
	Joachain, Pearson (2004)	
	3. Atomic Physics, D. C. Jones, CRC Press/Sarat Book House	
	(2018)	
	4. Atomic Physics, S. N. Ghoshal, S. Chand Publishing (2007)	
Learning	Students will understand about	
Outcomes	1. atomic structure	
	2. the optical and x-ray spectra of atoms	
	3. the interaction of atoms with electric and magnetic fields.	
I		

Programme: M. Sc. (Physics)

Title of the Course: General Physics Practical

Course Code: PHGO-105 Number of Credits: 4

Prerequisites for	Nil	
thecourse:		
<u>Objective:</u>	This course provides laboratory training in performing experiments that verify important physical laws and using modern and novel techniques of measurements.	
<u>Content:</u>	 Short Lecture Course on – Theory of errors, Treatment of Errors of observation, linear least squares fitting and Data analysis. The experiments on the following topics (any 12) are to be performed with emphasis on the estimation and calculation of errors. Types of Statistical Distributions Analysis of Sodium Spectrum – Quantum defect and Effective quantum number Michelson Interferometer/Fabry-Perot Interferometer Diffraction experiments using laser- single slit, 	120 hours

developelity systems
 double slit, grating 5. Polarization experiments using laser –linearly and elliptically polarized light 6. Statistical Distribution of radioactive decay 7. Verification of Inverse Square Law using GM counter 8. Linear Absorption Coefficient of Aluminium using GM counter 9. Verification of Debye Relaxation Law and measurement of thermal relaxation of serial light bulb 10. Thermal diffusivity of Brass 11. Thermometry – measurement of thermoemf of Iron- Copper (Fe-Cu) thermocouple as a function of temperature and verification of law of intermediate metals
 Calibration of Lock-in Amplifier Measurement of mutual inductance of a coil using lock-in amplifier
 14. Measurement of low resistance using lock-in amplifier 15. X-ray Emission – characteristics lines of a W target 16. Experiments using Strain Gauge 17. Ultrasonic Interferometer
 17. Ottrasonic interferometer 18. Nonlinear dynamics – Feigenbaum circuit 19. Nonlinear dynamics – Chua's circuit 20. Verification of Percolation phenomena
 Measurement of electrical resistance of Ni wire to verify para to ferromagnetic phase transition Measurement of electrical resistance of NiTi based
shape memory alloy 23. Measurement of Young's modulus of Brass by Flexural vibrations
Lectures and Laboratory Experiments.
 P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill (Indian Edition) 2015. R. Srinivasan, K. R. Priolkar and T. G. Ramesh, A Manual on Experiments in Physics, Indian Academy of Sciences, 2018.
 Employ proper techniques when making scientific measurements Demonstrate the ability to use selected pieces of measuring devices including the multimeter, oscilloscope, and AC and DC power supplies, Lock-in Amplifier Demonstrate the ability to use the computer as a data analysis tool Demonstrate the ability to maintain a laboratory

	notebook
5.	Apply the appropriate physics to the physical
	situation presented
6.	Quantitatively analyse experimental data
7.	Estimate and translate errors and report quantities
	up to last significant digit
8.	Formulate and report scientific conclusions based on
	data analysis
9.	Prepare lab reports in standard scientific format