GOA UNIVERSITY Taleigao Plateau, Goa 403 206

REVISED MINUTES

of the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023 & Thursday, 23rd February, 2023

<u>Time</u>

10.00 a.m.

Venue Council Hall, Administrative Block Goa University

D 3.3	Minutes of the Board of Studies in Physics meeting held on 04.11.2022.
	The Standing Committee of the Academic Council approved the minutes of the
	Board of Studies in Physics meeting held on 04.11.2022 with a suggestion to
	Replace Terminology 'Learning Outcomes' with 'Course Outcomes'
	(Action: Assistant Registrar Academic-PG)
D 3.4	Minutes of the Board of Studies in Social Work meeting held by circulation.
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Social Work meeting held by circulation with the following suggestions:
	 Heading for the Courses listed under the structure to be mentioned. (Research Specific Elective Courses and General Elective Courses) Terminology 'Optional Courses' to be replaced with 'Elective Courses'. Terminology 'Recommended readings' to be replaced with 'References/Readings'. Uniform format for the References/Readings to be followed.
	(Action: Assistant Registrar Academic-PG)
D 3.5	Minutes of the Board of Studies in Public Administration meeting held on
	01.07.2022.
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Public Administration meeting held on 01.07.2022 with the following suggestions:
	 Data Analysis under the content of the syllabus to be added for Course code PATR-501 Qualitative and Quantitative Research Methodology. Heading for the Courses listed under the structure to be mentioned. (Research Specific Elective Courses and General Elective Courses) Course, objectives of PATR-501 - Qualitative and Quantitative Research Methodology to be checked.
	(Action: Assistant Registrar Academic-PG)
D 3.6	Minutes of the Board of Studies in Mathematics meeting held on 03.11.2022. The Standing Committee of the Academic Council approved the minutes of the Board of Studies in Mathematics meeting held on 03.11.2022 with the suggestion to verify the title of the Course Code MTTE- 407 as the same Course is offered at UG level.
	(Action: Assistant Registrar Academic-PG)
D 3.7	Minutes of the Board of Studies in English meeting held on 17.10.2022.
	The Standing Committee of the Academic Council approved the minutes of the Board of Studies in English meeting held on 17.10.2022 with the following suggestions:
	 Terminology 'Optional Courses' to be replaced with 'Elective Courses'. Terminology 'Recommended readings' to be replaced with 'References/Readings'.

GOA UNIVERSITY Taleigao Plateau, Goa 403 206

FINAL AGENDA

For the 5th Meeting of the Standing Committee of

X ACADEMIC COUNCIL

Day & Date

Tuesday, 14th February, 2023

<u>Time</u>

10.00 a.m.

Venue Conference Hall Administrative Block Goa University

	2) List of Recommended Readings to be reduced.
	3) 'Self -Study' to be removed from the Pedagogy.
	As per the above suggestion of the Academic Council, the Chairperson, Board of Studies in Women's Studies has made necessary changes and re-submited the Research Methodology Course for Ph.D. in Women's Studies.
	The revised syllabus for the Research Methodology Course for Ph.D. in Women's Studies is placed as <u>Annexure I</u> (Refer page No. 126) for consideration of the Academic Council.
	The Academic Council may kindly consider. (Back to Index)
D 3.3	Minutes of the Board of Studies in Physics meeting held on 04.11.2022. Part A
	 (i) Recommendations regarding courses of study in the subject or group of subjects at the undergraduate level: NIL (ii) Recommendations regarding courses or group of subjects at postgraduate level: BoS discussed and finalized the syllabus for the courses to be offered in semesters III and IV. The same is attached at <u>Annexure I</u> (Refer page No. 129). As there are no faculty members available to teach Biophysics specialization, BoS only approved the syllabus of earlier approved courses. It was decided to add more Research Specific Elective courses depending on the expertise of the recruited faculty members. BoS also added one more discipline specific elective course in Semester II. This is given at the end of Annexure I. Syllabus for Research Methodology course (Pre PhD Paper-I) was also discussed and finalized. (<u>Annexure II</u> Refe page No. 180).
	 Part B (i) Scheme of the Examinations at Undergraduate Level: NIL (ii) Panel of examiners for different examinations at Undergraduate Level: BoS finalised the panel of examiners for B.Sc. Physics Semester V and VI and B.Sc. B.Ed. Physics courses of Semester V to VIII. These are included in a sealed envelope. (iii) Scheme of the examinations at post-graduate level:NIL (iv) Panel of examiners for different examinations at post-graduate Level: NIL Part C (i) Recommendations regarding preparation and publication and selection of Anthologies in any subject or group of subjects and the names of person
	 recommended for appointment to make the selection: NIL Part D (i) Recommendations regarding general academic requirements in the Departments of University or affiliated colleges: NIL (ii) Recommendation of Academic Audit committee and status thereof :NIL Part E

Std. Com. X AC-5
14.02.2023

D 3.3 Minutes of the Board of Studies in Physics meeting held on 04.11.2022.

Annexure I

M.Sc. Physics Syllabus from Academic year 2023-24

The syllabus of M.Sc. Physics consists of five categories of courses:

- (a) Discipline Specific Core Courses (PHTC) Total Credits 32
- (b) Discipline Specific Optional Courses (PHPE) Total Credits 8
- (c) Research Specific Optional Courses (PHSR/PHBR/PHCR) Total Credits 12
- (d) Generic Optional Courses (PHSG/PHBG/PHCG) Total Credits 12
- (e) Bridge courses (PHOB)

Code	Title			Credits	Hours
PHOB-100	Bridge Course in Mathematical Methods			2	30
PHOB-101	Bridge Course in Thermal Physics			2	30
PHOB-102	Bridge Course i	n Optics		2	30
PHOB-103	Bridge Course i	n Quantum Mecha	nics	2	30
PHOB-104	Bridge Course i	n Electrostatics and	d Magnetostatics	2	30
PHOB-200	Introduction to	Biology and Bioph	ysics	3	45
Semester I					
PHTC-401	Mathematical I	Methods of Physics	5	4	60
PHTC-402	Classical Mecha	anics		4	60
PHTC-403	Electromagneti	c Theory		4	60
PHTC-404	Electronics			4	60
PHPE-401	Electronics Pra	ctical		2	60
PHPE-402	Computer Prog	ramming in Fortrai	n Practical*	2	60
PHPE-403	Computer Prog	ramming in C Prac	tical*	2	60
PHPE-404	Computer Prog	ramming in Pythor	n Practical*	2	60
*Any one cou	urse				
Semester II					
PHTC-405	Quantum Mechanics			4	60
PHTC-406	Statistical Mechanics			4	60
PHTC-407	Nuclear and Ele	Nuclear and Elementary Particle Physics			60
PHTC-408	Atomic Physics			4	60
PHPE-405		General Physics Practical [#]			120
PHPE-406	Methods of Exp	perimental Physics [#]	ŧ	4	120
[#] Any one cou	irse				
Semester III					
PHSR-501	Solid State	Advanced	Molecular	4	60
PHCR-501	Physics I	Quantum	Biophysics		
PHBR-501		Mechanics			
PHSR-502	Solid State	Advanced	Methods of	4	60
PHCR-502	Physics II	Statistical	Biophysics		
PHBR-502		Mechanics			
PHSG-501	Solid State	Numerical	Biophysics	4	120
PHCG-511	Physics	Techniques	Practical		
PHBG-521	Practical	Practical			

PHSG-5xx PHCG-5xx	Generic Optional Courses (to be chosen from Set I or from any other disciplines or from SWAYAM)	8	120
PHBG-5xx	, ,		
Semester IV			
PHSR-5xx	Courses worth 4 credits to be chosen from Set II or	4	60
PHCR-5xx	from SWAYAM in consultation with Dissertation		
PHBR-5xx	Guide		
PHGD-599	Dissertation	16	

Suggested Optional Courses

Set I – Generic Electives (Sem III)		Credits	Set II – Rese	earch Electives (Sem IV)	Credits
PHSG-502	Nuclear Reactor Physics	2	PHSR-503	X-ray Spectroscopy for Condensed Matter	2
PHSG-503	Advanced Optics	2	PHSR-504	Optical Spectroscopy for Condensed Matter	2
PHSG-504	Physics of Energy Materials	2	PHSR-505	Nuclear Spectroscopy for Condensed Matter	2
PHSG-505	Physics of Ferroic Materials	2	PHSR-506	Introduction to Crystallography and X-ray Diffraction	2
PHSG-506	Nanoscience and Technology	2	PHSR-507	Magnetism in Condensed Matter Physics	2
PHSG-507	Laser Physics and Applications	2	PHSR-508	Microscopy Techniques for Condensed Matter	2
PHSG-508	Experimental Techniques in Physics	2	PHSR-509	Thin film Physics	2
PHSG-509	Documentation using Latex (Skill)	2	PHSR-510	Physics of Glasses	2
PHSG-510	Astronomy and Astrophysics	2	PHCR-503	Simulation Techniques	2
PHCG-502	BEC and Superfluidity	2	PHCR-504	Physics of Quantum Materials	2
PHCG-503	Introduction to Quantum information and computing	2	PHCR-505	Superconductivity	2
PHCG-504	Introduction to Particle Physics	2	PHCR-506	Advanced Particle Physics	4
PHBG-502	Solid State and Biomaterials	4	PHCR-507	Numerical methods and Fortran parallel programming using openMP	2

(Back to Index) (Back to Agenda)

Programme: M. Sc. (Physics) (Solid State Physics)Course Code: PHSR-501Title of the Course: Solid State Physics INumber of Credits: 3Effective from AY: 2023-24

Prerequisites for	Should have basic knowledge of Quantum Mechanics and Statistical	
the course:	Mechanics	
Objective:	 To introduce fundamental concepts of solids like crystalline order, symmetry in solids, simple crystal structures and their properties. To acquaint with the concept of reciprocal lattice and its importance in structure determination using x-rays. To introduce different types of crystal bindings and elastic properties of solids. To familiarize the concept of lattice vibration and their role in thermal and optical properties of solids. 	
Content:	Crystal Structure	20 hours
	Crystals - Lattice, Bravais lattice, primitive unit cell, symmetry of molecules and crystals, symmetry operations and symmetry elements, Lattices in one, two and three dimensions, Space groups, definitions of directions, coordinates and planes. Simple crystal structures: NaCl, CsCl, diamond, hexagonal close- packed structure, cubic ZnS structure and their properties, Non ideal crystal structures – random stacking and polytypism Reciprocal Lattice - Diffraction of waves by crystals, Bragg law, Scattered wave amplitude - Fourier analysis, reciprocal lattice vectors, diffraction conditions, Laue equations, Brillouin zones, Geometric structure factor, Atomic Structure factor Point Defects General Thermodynamic Features, Color centres, Line Defects: Dislocations	
	Crystal Binding and Elastic Constants Crystals of inert gases - Van der Waals - London interaction, repulsive interaction, equilibrium lattice constants, cohesive energy, lonic Crystals - Electrostatic or Madelung Energy, evaluation of Madelung constant, covalent crystals, bonding in metals and Hydrogen bonds, Atomic Radii, Analysis of elastic strains, elastic compliance and stiffness constants, elastic waves in cubic crystals Thermal Properties	13 hours
	Vibrations of a one -dimensional monatomic lattice, first Brillouin zone, group velocity, long wavelength limit, derivation of force constant from experiment. Vibrations of a one-dimensional diatomic lattice. Quantization of elastic waves, phonon momentum, Inelastic scattering by Phonons, Phonon Heat capacity, Planck distribution, normal mode enumeration, density of states in one dimension, density of states in three dimensions Debye model for density of states, Debye T ³ law, Einstein model of the density of states, Thermal conductivity - Thermal resistivity of phonon gas, Umklapp process	15 hours

r		I		
	Optical and Dielectric Properties			
	Macroscopic electric field, local electric field at atom, dielectric			
	constant and polarizability, Complex dielectric constant, Classical 12 hours			
	theory of electronic polarization and optical absorption, Structural			
	Phase transitions, Ferroelectric Crystals and Displacive transitions			
	Optical reflectance, Excitons, Raman effect in crystals. Luminescence			
	and Luminescence centres			
Pedagogy:	Lectures/ tutorials/ assignments.			
	Sessions will be interactive in nature to enable peer group learning.			
References/	1. Introduction to Solid State Physics, C. Kittel, Wiley India (2019)			
Readings	2. Elementary SolidState Physics; Principles and Applications, M. A.			
	Omar Addison Wesley (2000)			
	3. Solid State Physics, Niel W. Ashcroft, N. David Mermin, Harcourt			
	Asia Pte Ltd. (2001)			
	4. Solid State Physics, G. Bums, Academic press, Inc. London (1985)			
	5. Solid State Physics, A. J. Dekker, McMillan, India (1985)			
	6. Solid State Physics, J. S. Blakemore, W. B. Sauders, Philadelphia			
	(1969)			
Learning	1. Student will understand the fundamental aspects related to			
Outcomes:	structure of solids, lattice symmetry, and structure determination.			
	2. Student will be exposed to various aspects of crystal binding and			
	the elastic properties of solids			
	3. Student will recognize the idea of vibrating lattice, its quantization			
	and the role of phonons in thermal and optical properties of solids.			

Programme: M. Sc. (Physics) (Solid State Physics)Course Code: PHSR-502Title of the Course: Solid State Physics IINumber of Credits: 4Effective from AY: 2023-24

Prerequisites for	Should have basic knowledge of Quantum mechanics and statistical		
the course:	mechanics		
Objective:	1. To introduce electronic properties of solids		
	2. To introduce the concept of formation of bands in solids.		
	3. To acquaint with techniques associated with measurement of		
	band structure and transport phenomena in solids.		
	4. To introduce students to different types of magnetic order and		
	superconductivity in solids		
Content:	Metals: Drude and Sommerfeld models 7 hours		
	Free electron theory – Drude model - assumptions, failures of Drude		
	model, Sommerfeld model, Successes and failures of the Sommerfeld		
	model, Electrical conductivity, Experimental electrical resistivity of		
	metals, Heat capacity of electron gas, Experimental heat capacity.		
	Nearly Free electron model		
	Periodic potential, born – von Karman boundary conditions,		

Schrodinger equation in a periodic potential, Bloch's theorem, 7 h	1
electronic band structure, single electron energy state, degenerate	hours
electron levels, Consequences of the nearly free electron model,	
Fermi surface.	
Tight binding model	
Band arising from a single electronic level, electronic wavefunctions,	hours
General points about the formation of tight binding bands, Group I 7 H and II metals, Group IV elements, transition metals, comparison of	nours
tight binding and nearly free electron band structure, crystal	
momentum, effective mass, holes.	
Semiconductors and Insulators	
Band structure of Si and Ge, Band structure of direct gap III-V and II-	
VI semiconductors, Optical absorption and excitons, Thermal	
	hours
Impurities and extrinsic carrier density, degenerate semiconductors.	
Measurement of Band structure	
Lorentz force and orbits, Landau levels, electronic density of states in	
a magnetic field, quantum oscillatory phenomena, de Hass – van	hauss
	hours
electron spectroscopy – angle resolved photoelectron spectroscopy, Some case studies – Copper, Sr ₂ RuO ₄ .	
Transport Properties	
Thermal and electrical conductivity of metals, electron-electron	
	hours
semiconductors, Disordered systems and hopping conduction, Hall	
effect, magnetoresistance in metals, magnetophonon effect,	
magnetoresistance in two dimensional systems, quantum Hall effect,	
fractional quantum Hall effect.	
Magnetic Properties	
Magnetic moments, Quantum mechanics of spin, Atom in mangetic field, Magnetic susceptibility, Diamagnetism, Paramagnetism,	
Semiclassical treatment, Quantum Theory of Paramagnetism, Hund's 12	2 hours
Rules, Crystal field, Paramagnetic Susceptibility of Conduction	Linours
electrons, Van Vleckparamagnetism, Adiabatic demagnetization	
Ferromagnetism, The Weiss model of a ferromagnet, Origin of	
molecular field, Magnons, Domains, Antiferromagnetism, Neel's	
theory, Ferrimagnetism	
Superconductivity	
Experimental survey- Occurrence of Superconductivity, Destruction	
of superconductivity by magnetic fields, Meissner effect, Heat	
capacity, Energy gap, microwave and infrared properties, Isotope Effect 6 H	hours
Theoretical Survey - Thermodynamics of the transition, London	nours
equation, Coherence length, BCS theory, Flux quantization, Type II	
superconductors, Tunnelling, Josephson effects, High Tc	
superconductivity (introduction)	
Pedagogy: Lectures/ tutorials /assignments.	

	Sessions will be interactive in nature to enable peer group learning.
References /	1. Band theory and Electronic Properties of Solids, J. Singleton,
<u>Readings</u>	Oxford University Press, (2014)
	2. Introduction to Solid State Physics, C. Kittel, Wiley India (2019)
	3. Solid State Physics, Niel W. Ashcroft, N. David Mermin,
	Harcourt Asia Pte Ltd. (2001)
	4. Elementary Solid State Physics; Principles and Applications, M.
	A. Omar Addison Wesley (2000)
<u>Learning</u>	1. Student will learn about electronic properties of solids
Outcomes:	2. Student will understand formation of bands, their importance in
	classification of solids and theoretical models of calculation of
	band structure.
	3. Student will get familiarized with some the techniques of band
	structure measurement and comprehend the effect of band
	structure on electronic transport properties of solids.
	4. Student will recognize diverse types of magnetic orders in solids
	and phenomenon of superconductivity.

Programme: M. Sc. (Physics)(Solid State Physics)

Course Code: PHSG-501	Title of the Course: Solid State Physics Practical
Number of Credits: 4	

Effective from AY: 2021-22

Prerequisites 1	None			
for thecourse:				
	This course aims at developing advanced level experimental skills and competence in the analysis of experimental data on structural,			
r	magnetic, transport and optical properties of solids and relate them			
t	o different physical concepts studied in the theory courses, PHSR-			
	501 and PHSR-502.			
	 X-ray diffraction: Analysis of diffraction patterns of cubic crystal 1 structures to determine their lattice constant, intensity ratios, and lattice type Measurement of dispersion relation of monoatomic and diatomic lattices using electrical equivalent circuits. Measurement of Resistivity of a metal and a Semiconductor by Four Probe Method Measurement of Thermoelectric Power of a metal Determination of Magnetic Susceptibility and Magnetic Moment of a Paramagnetic Material by Gouy's Method. Determination of Magnetic Susceptibility and Magnetic Moment of a Paramagnetic Liquid by Quinke's Method. Study of Hysteresis loop of magnetic materials. Determination of Lande's Splitting Factor, g, in an organic radical. 	.20 hours		

	· · · · · · · · · · · · · · · · · · ·
	9. Study of Elastic behaviour of solids using a composite
	piezoelectric oscillator
	10. Measurement as well as determination of Transition
	Temperature of a Ferroelectric Material Dielectric Constant and
	understanding failure of mean field theory
	11. Measurement of Activation Energy of F-Centres in Alkali Halide
	Crystals Thermoluminescence
	12. Determination of a Hall Coefficient and Nature of a
	Semiconductor and Mobility of Charge Carriers
	13. Analysis of frequency dependence of Dielectric constant of a material.
	14. Study of optical properties of a material - absorption,
	excitation and emission spectra.
	15. Measurement of thermal conductivity of a good and poor
	thermal conductor.
	16. Raman effect – demonstration applied to a particular material.
	A minimum of 12 experiments are expected to be done by the
	students.
Pedagogy:	Laboratory experiments, self-study
<u>References/</u>	1. Experimental Manuals assigned to each experiment.
<u>Readings</u>	2. Introduction to Solid State Physics, C. Kittel, 7th Edition, John
	Wiley & Son, Inc. New York (1997).
	3. Advanced Practical Physics for Students, B.L. Worsnop& H.T. Flint,
	(1927).
	4. Solid State Physics, A. J. Dekker, McMillan, India (1985).
	5. Physics Lab. Experiments 7/e, Jerry D. Wilson, D. C. Heath and
	Company (2009).
Learning	
	1. Quantitative measurements and evaluation of various properties
<u>Outcomes</u>	and constants introduced in the theory courses of Physics.
<u>Outcomes</u>	and constants introduced in the theory courses of Physics.2. Verification of different laws and concepts learned in the
<u>Outcomes</u>	and constants introduced in the theory courses of Physics.2. Verification of different laws and concepts learned in the theory courses of Physics
<u>Outcomes</u>	and constants introduced in the theory courses of Physics.2. Verification of different laws and concepts learned in the

Programme: M. Sc. (Physics)(Computational Physics)Course Code: PHCR-501Title of the Course: Advanced Quantum MechanicsNumber of Credits: 4Effective from AY: 2023-24

Prerequisites for the course:	Should have knowledge of Quantum Mechanics	
Objective:	To introduce advanced topics in the field of quantum	
	mechanics such as many-body systems, relativistic wave	

	equations and relativistic fields	
<u>Content:</u>	Second Quantization Identical Particles, Many-Particle States, and Permutation Symmetry, Completely Symmetric and Antisymmetric States, Bosons: States, Fock Space, Creation and Annihilation Operators, The Particle- Number Operator, General Single- and Many-Particle Operators, Fermions: States, Fock Space, Creation and Annihilation Operators, Single- and Many-Particle Operators, Field Operators: Transformations Between Different Basis Systems, Field Operators, Field Equations, Momentum Representation: Momentum Eigen functions and the Hamiltonian, Fourier Transformation of the Density, The Inclusion of Spin.	8 hours
	 Spin-1/2 Fermions Noninteracting Fermions, The Fermi Sphere, Excitations, Single-Particle Correlation Function, Pair Distribution Function, Density Correlation Functions, and Structure Factor, Ground State Energy and Elementary Theory of the Electron Gas, Hamiltonian, Ground State Energy, in the Hartree–Fock Approximation, Modification of Electron Energy Levels due to the Coulomb Interaction, Hartree–Fock Equations for Atoms. Bosons 	10 hours
	Free Bosons, Pair Distribution Function for Free Bosons, Two-Particle States of Bosons, Weakly Interacting, Dilute Bose Gas, Quantum Fluids and Bose–Einstein Condensation, Bogoliubov Theory of the Weakly Interacting Bose Gas, Superfluidity. Green's Function	10 hours
	Interaction representation, driven harmonic oscillators, Wick's theorem and generating functionals. Green's functions, Green's function for free fermions, Green's function for free bosons. Adiabatic concept, Gell-Mann Low theorem, generating functions for free fermions, spectral representation. Many particle Green's function Relativistic Wave Equations	10 hours
	Klein-Gordon equation, Plane wave solution, charge and current densities, hydrogen atom. Dirac equation, algebra of Dirac matrices, covariance of Dirac equation, plane wave solutions, equation in an electromagnetic field. Properties of Dirac electron. The spin of the Dirac particle, Magnetic dipole moment of electron, Velocity operator, Expectation value of the velocity. Parity, Charge conjugation and time reversal operations, Parity operation, Charge conjugation, and Time reversal operation. Dirac's hole theory, Feynman's theory of Positrons.	10 hours
	Quantization of Fields and Radiation TheoryWave equation for a field, Conjugate field momentum, Hamiltonian, density conservation laws, quantum condition and quantization of scalar field, quantization of complex scalar and Schrodinger fields, Quantization of electromagnetic fields, Interaction of radiation with	12 hours

	matter spontaneous and induced emission, Thomson scattering,	
	cross-section for photoelectric effect, Heisenberg-Kramer formula,	
	Rayleigh and Raman scattering. Quantization of Schrodinger field by	
	anticommutator, Atomic level shift, Lamb shift.	
Pedagogy:	Lectures/ tutorials/assignments. Sessions will be interactive in	
	nature to enable peer group learning.	
References/	1. Advanced Quantum mechanics, Franz Schwabl, Springer (2005)	
Readings:	2. Advanced Quantum mechanics, J. J. Sakurai, Addison-Wesley	
	(1967).	
	3. Quantum Mechanics, B. H. Bransden and C. J. Joachain, Pearson	
	(2004)	
	4. Quantum Mechanics, S. N. Biswas, Books and Allied Pvt. Ltd.	
	(2015)	
	5. Quantum Mechanics: Theory and Applications, A. K. Ghatak and S.	
	Lokanathan, Springer (2004)	
	6. Introduction to Many Body Physics, P. Coleman, Cambridge	
	University Press (2015)	
Learning	1. In the first unit students will learn the formalism of second	
Outcomes	quantization and its application to the most important problems	
	of weakly interacting electron gas and Bose gases and Green's	
	Function.	
	2. In the second unit students will learn about the Klein-Gordon and	
	Dirac equation, and their important aspects.	
	3. In the third unit students will learn about quantization of Klein-	
	Gordon, Dirac and radiation fields	

Programme: M. Sc. (Physics) (Computational Physics)Course Code: PHCR-502Title of the Course: Advanced Statistical MechanicsNumber of Credits: 4Effective from AY: 2023-24

Prerequisites	Should have attended Quantum Mechanics and Statistical Mechanics	
for thecourse:	courses.	
Objective:	To introduce advanced statistical methods to study phase transition	
	and critical phenomena.	
Content:	Phase Transition and Critical Phenomena	8 hours
	First and second-order transitions, critical phenomena, morphology,	
	fluctuation and correlation and response, Critical exponents, scaling	
	inequalities, how to study critical phenomena.	
	Models and Universality	
	Ising models and its ground state, Ising models and its applications,	6 hours
	other models and their ground states, Universality in different	
	models.	
	Mean Field theory	
	Mean field theory for fluids, critical exponent of a fluid system, Mean	12 hours

		,
	field theory for magnetic systems, Mean field equation of state and its solution, Mean field critical exponents, correlation length and correlation function, Bethe approximation, Bethe approximation for 2D Ising model, Landau theory of Phase transition, Critical exponents from Landau theory. Transfer Matrix method	
	Transfer matrix and 1D Ising model, Determination of magnetization, susceptibility, specific heat, and correlation length. Spin-1 Ising model and potts model, 2D Ising model. Series expansion method (Perturbation method)	6 hours
	High-temperature expansion and 1-D Ising model, High and low- temperature expansions for 2D Ising model, Duality and critical temperature, approximation techniques Monte Carlo method (Numerical method)	6 hours
	Ensemble average in Monte Carlo method, Ergodicity, Detailed balance, and Metropolis algorithm, Monte Carlo Simulation for 2D Ising model, Measurements and errors. Scaling and renormalization	8 hours
	Homogeneous function, Homogeneity of free energy and scaling, Renormalization group, Renormalization Group, Renormalization operation, Free energy function, correlation length, Critical exponents, fixed point, and universality.	14 hours
<u>Pedagogy</u> :	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a combination of some of these.	
References/ Readings:	 Statistical Mechanics, R. K. Pathria and P. D. Beale, Elsevier, London, 2011. Statistical Physics, L. D. Landau and E. M. Lifshitz, Third Edition, Part 1: Volume 5 (Course of Theoretical Physics, Volume 5), Butterworth-Heinemann (1980) Statistical Mechanics of Phase Transitions, J. M. Yeomans, Oxford University Press, New York, 1994. Introduction to Phase Transitions and Critical Phenomena, H. E. Stanley, Oxford University Press, New York, 1987. Principles of Condensed Matter Physics, P. M. Chaikin and T. C. Lubensky, Cambridge University Press, Cambridge 2013. Statistical Mechanics and Critical Phenomena: A brief overview, in Computational Statistical Physics, S. B. Santra and P. Ray, edited by S. B. Santra and P. Ray, Hindustan Book Agency, New Delhi, 2011. 	
<u>Learning</u> <u>Outcomes</u>	Students will be able to learn Physics of phases and phase transitions, critical phenomena, elementary excitations, models, and Monte Carlo method etc.	

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHCG-501 Title of the Course: Numerical Techniques Practicals

Number of Credits: 4 Effective from AY: 2023-24

Prerequisites	Basic knowledge of Computer programming	
for thecourse:	busic knowledge of compater programming	
Objective:	Tointroducethemethodsofsolvingmathematicalproblems thatoccur	
	inphysics usingnumerical techniques.	100
Content:	1. FindingErrors: its sources, propagation and analysis	120
	2. FindRootsoffunctions:bisection,Newton-	hours
	Raphson, secant method, fixed-point iteration.	
	3. SolutionofLinearequations:GaussandGauss-Jordan	
	elimination, Gauss-Seidel, LU decomposition.	
	4. EigenvalueProblems.	
	5. Leastsquarefittingoffunctions.	
	6. Interpolation.	
	7. Numerical differentiation.	
	8. Numericalintegration.	
	9. SolutionsofODEby	
	initial value problems, Euler's method, second and four thorder Rung	
	e-Kuttamethods.	
	10. Boundaryvalueproblems byfinitedifferencemethod.	
	11. Random number generation and MonteCarlo simulation.	
	12. Optimization techniques.	
Pedagogy:	Lectures/Laboratorypracticals. Sessionsshallbeinteractive	
	innaturetoenable peergrouplearning.	
References/	1. NumericalRecipes:TheArtofScientificComputing,	
Readings:	W.H.Press,S.A.Teukolsky,W.T. Vetterling,B.P.Flannery,Cambridge	
	UniversityPress, 1986.	
	2. Numerical Mathematics and Computing, Thomson	
	HigherEducation,W.Cheney,D.Kincaid,USA, 2012.	
	3. NumericalmethodsforPhysics,A.	
	L.Gercia,CreateSpaceIndependent Publishing, 2015.	
	4. Computational Physics, S. E. Koonin, and D. C. Meredith, Westview	
	Press, 1998.	
	5. S. Chapra, R. Canale, Numerical Methods for Engineers, McGraw Hill	
	Education, 7 th edition, 2016.	
<u>Learning</u>	Students will earn basic algorithms, advanced, and cutting-edge	
<u>Outcomes</u>	numerical techniques used in Computational Physics.	

(Back to Index) (Back to Agenda)

Programme: M.Sc (Physics)(Biophysics)Course Code: PHBR-501Title of the Course: Molecular BiophysicsNumber of Credits: 4Effective from AY: 2023-24

Prerequisites for	PHOB-200	
the course:		
Objective:	This course is intended to enrich the students with the basics of molecular biophysics. The students will learn about the different physical process occurring in biological systems.	
Content:	Cellular Biophysics General organization of the cell, Structure of biomolecules, cellular mechanics and transport, Chemical bonding, ionization energy, electron affinity, electron negativity, strong bonds and weak, bond energies in biomolecules, Interatomic potentials for strong and weak bonds, cellular mechanics, transport mechanism	8 hours
	Structure of Proteins, DNA and Enzymes Kinetics Basics aspects of protein structure, Polypeptide chain geometrics, estimates of potential energy, results of potential energy calculations, hydrogen bonding, hydrophobic & hydrophilic interactions and water as universal solvent in biological systems, Primary structure sequencing of polypeptide, haemoglobin, homologies in proteins, Secondary structure alpha and beta conformation, collagen structure, stability of alpha helix, Ramchandran plot, Tertiary structure, structure of myoglobin and hemoglobin, Quaternary structure, symmetry consideration, Analysis of subunits and chain arrangement of subunits, stability of globular quaternary structure. Protein folding rules, pathways and kinetics Nucleic acids, purines and pyrimides, double helical structure of DNA, polymorphism of DNA, RNA structure, thermodynamics of DNA supercoiling, chromosome structure Enzymes, enzyme kinetics, Michaelis-Menten equation, Inhibitors, kinetics of competitive, non-competitive and uncompetitive inhibitors Membrane Biophysics Fundamental aspects of biological membrane, Various membrane	20 hours
	models, Carbohydrate, Lipids & Proteins, Components of cell membrane, Composition of biological membranes- lipid molecules, proteins, glycoprotein, membrane, skeletons, forms of lipids and proteins, electrical properties of lipids and proteins, principles of membrane organization & stability, Biogenesis of cell membrane, Molecular motion in membrane & membrane fluidity, Protein lipid interactions, Electric properties of membranes: electric double layer, Poisson-Boltzmann theory of electric double layer, Gouy-Chapman model of electric double layer, free energy of electric double layer, bonds and adhesion of electrified molecules on the surface of a membrane, Hodgkin Huxley equation, membrane impedance, Zeta, Stern & total electrochemical potential, Helmholtz-Smoluchowski equation; it's correction by Debye-Huckle theory, transmembrane potential & it's measurement by microelectrodes. Neurobiophysics Transport across membranes: diffusion and osmosis, Selectivity & ion specificity of biomembrane, Ion	20 hours

	where a lateration for the lateration of the lateratio of the lateration of the late]			
	channel structure and gating function, Ion channel types and				
	characterization, transport of macromolecules with & without				
	vesiculation& by intermediate mechanism, Transport and				
	communication between cells and				
	organelles.				
	Molecular biomechanics				
	Biological motion, free energy transduction, chemochemical				
	machines, pumps and motors as chemochemcial machines, flux force				
	dependence, molecular motors, mechanochemistry of molecular				
	motors, biomolecular forces, biomechanics of muscle contraction and	12 hours			
	cardiovascular system.				
Pedagogy:	Lectures/ Tutorials/Assignments.				
	Sessions shall be interactive in nature to enable peer group learning.				
References/Rea	1. Introduction to Molecular Biophysics, Jack A Tuszynski and Michal				
dings	Kurzynski First Edition, CRC Press (2003).				
	2. Biophysics: An Introduction, Rodney Cotterill, Wiley (2002).				
	3. Applied Biophysics, A Molecular Approach for Physical Scientist,				
	Thomas A Weigh Wiley (2007).				
	4. Molecular & Cellular Biophysics, Mayer & Jackson, Cambridge				
	(2006).				
	5. Biophysics, VasanthaPattabhi and N. Goutham First Edition,				
	Narosa (2002).				
	6. Biomembrane structure and Function, Ed. Chapman D.,				
	Macmillan, (1983).				
	7. Introduction to Biological Membrane, Jain R K, John Wiley& Sons				
	(1988).				
	8. Text Book of Physiology, Guyton & Hall, 12 th Edition, Elsevier				
	(2010).				
	9. Molecular motors, Schliwa, Wiley-VCH Verlag GmbH & Co (2003).				
Learning	1. The students will be familiarized with the basic concepts of				
Outcomes:	molecular biophysics.				
	2. The students will have gained sufficient knowledge in the				
	structure and functioning of molecular processes.				
	3. The students will be exposed to the recent developments in				
	biomechanics and molecular motion.				
	אטוווכנוומוונג מווע וווטוכנעומו וווטנוטוו.				

Programme: N	Programme: M.Sc (Physics)(Biophysics)			
Course Code:	PHBR-502	Title of the Course: Methods in Biophysics		
Number of Cre	Number of Credits: 4			
Effective from	AY: 2023-24			
Prerequisites for	PHOB-200			
the course:				
Objective:	The aim of cou	rse is introduced various experimental techniques used		
	in biophysical	systems. The student will learn about the basic and		
	advanced char	acterization tools for biophysics.		

Content:	Separation techniques I	15 hours
	Electrokinetics methods: electrophoresis, electrophoretic mobility	13 110013
	(EPM), factors affecting EPM, Paper, PAGE, SDS-PAGE, Disc gel,	
	gradient gel, electrophoresis of nucleic acid and its application, Pulse	
	field electrophoresis, single cell gel electrophoresis,	
	Isolectrophoresis, preparative electrophoresis, 2-D gel	
	electrophoresis, Capillary, Iso-Electric focusing, applications in	
	biology and medicine. Chromatography, TLC, adsorption, partition,	
	ion exchange, gel filtration, affinity and FPLC, GLC,	
	Separation techniques II	
	HPLC: mobile phase systems, modes of operations, application,	15 hours
	Hydrodynamics method: fundamental principles' Centrifugation:	
	principle, preparative centrifuge, analytical, ultracentrifuge,	
	sedimentation and diffusion, Ultracentrifugation and their	
	applications in molecular weight, size determination. Viscosity and its	
	application, dialysis, solvent fractionation, isoelectric precipitation,	
	Spectroscopic methods	
	Principles of spectroscopic techniques, Ultraviolet-visible	
	spectroscopy, circular dichroism and optical rotatory dispersion,	15 hours
	fluorescence spectroscopy, infrared spectroscopy, Raman	
	spectroscopy, Atomic Absorption spectroscopy- Inductively coupled	
	plasma atomic emission spectrophotometry. Electron spin	
	resonance, Nuclear Spin resonance, X-ray spectroscopy	
	Microscopic Techniques	
	Principle, instrumentation and application of optical microscopy,	
	image formation, magnification, resolving power. optimum	15 hours
	resolution, image defects, different types of Microscopy: Dark field,	
	Phase contrast, polarization microscopy, Interference microscopy,	
	Fluorescence microscopy, Electron microscopy: Electron guns,	
	Electron lens, electrostatic focusing, magnetic focusing, SEM, STEM,	
	Atomic force microscopy.	
Pedagogy:	Lectures/Tutorials/Assignments.	
	Sessions shall be interactive in nature to enable peer group learning.	
References/	1. Methods in Molecular Biophysics, Igor N S, N Zaccai& J Zaccai, First	
Readings	Edition, Cambridge (2007).	
	2. Principle of Biochemistry, D Voet, J Voet and CW Pratt, Third	
	Edition, John Wiley and Sons, (2008).	
	3. DNA Cloning, Grover Vol. I, II, III, First Edition, Oxford (1987).	
	4. Biophysics VasanthaPattabhi and N. Goutham, First Edition,	
	Narosa (2002).	
	5. Advanced Methods in Protein Microsequencing, Wittmann, First	
	Edition, Springer (1986).	
	6. Fundamentals of Molecular Spectroscopy, Banwell, Fourth	
	Edition, McGraw Hill (1994). 7 Ecceptial Biophysics Narayanan Eirct Edition New Age	
	7. Essential Biophysics, Narayanan First Edition, New Age	
	Publications (2000).	

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

	8. Handbook of Molecular Biophysics (Methods & Application) Henrik G Bohr, First Edition, Wiley (2009).
Learning Outcomes:	1. The students will be familiarized with the basic experimental techniques used in biophysics.
outcomes.	 The students will expand their knowledge on various spectroscopic and microscopic methods in characterization.

(Back to Index) (Back to Agenda)

Programme: M.Sc (Physics) Course Code: PHBG-501Title of the Course: Biophysics Practical Number of Credits: 4 Effective from AY: 2023-24

Prerequisites for	PHOB-200, basic knowledge in experimental techniques in chemistry	
the course:	and biology	
Objective:	This laboratory course is intended to provide basic laboratory training in the experiments in biophysics. Important biophysical phenomena will be tested and studied. The experiments will start from familiarization of basic characterization tools and protocols followed by advanced experiments.	

Content:	Short lectures on general protocols of biophysics experiments.	120
	The following experiments are to be performed/demonstrated:	hours
	Experiments to be performed	
	1. Microscopic techniques: The study of biological samples/cells	
	using fluorescence /DIC microscopy	
	2. Protein-protein interactions using spectroscopy (fluorescence/UV visible) techniques	
	3. Study of DNA-Protein interaction using fluourimetry	
	4. Study of fluorescence sensitivity and quenching, fluorescence recovery after photobleaching (FRAP)	
	5. PAGE and SDS PAGE Demonstrations	
	 Classification of gram –ve& +ve organisms, observe cell growth/ survival by colony forming assay, estimation of cell viability by dye exclusion and colony formation assay, observe cell death by physical and chemical agents 	
	7. Preparation of buffers and pH analysis	
	8. Determination of the titration curve of Proteins, amino acids & calculation of the pKa values	
	9. Isolation of Proteins- Casein from milk, Hb from RBC.	
	10. Study of interaction of acridine orange with DNA	
	11. Enzyme Assays (LKH, beta galactosidase, acid phosphatase,	
	arginase, Succinic Dehydrogenase): Time, Temp, enzyme	
	concentration, cofactors. LKH: Km &Vmax	
	Demonstrations via online videos	
	12. Gel filtrations chromatography	
	13. DEAE cellulose chromatography of DNA	
	14. Study of phase transition of membrane phospholipids and Study of the membrane potential using fluorescence	
	spectroscopy.	
	15. To study the charge characteristics of cells through micro Electrophoresis	
	16. Osmolarity: Determination of osmotic pressure of salts.	
	17. Study of diffusion of biomolecules/ions (Fick's Law)	
Pedagogy:	Laboratory work, Presentations, demonstrations.	
References/	1. Introduction to Experimental Biophysics: Biological Methods for	
Readings	Physical Scientists, Jay Nadeau, CRC Press (2012).	
	2. Introduction to Practical Biochemistry, Plummer, D. T. 3rd edition.	
	McGraw-Hill Publishing Co. (1987).	
	3. Basic Methods for the Biochemical Lab, Holtzhauer, M. 1st English	
	edition. Springer (2006). 4. Experimental techniques in bacterial genetics, Stanley R. Maloy,	
	John and Bartlett (1989).	
Learning	1. The students will be familiarized with the basic experimental	
Outcomes:	methods in biophysics.	
	2. The students will have gained sufficient knowledge in the various	
	characterization and spectroscopic tools.	

3.	This course will also enable the students to have an understanding	
	of some of the advanced techniques in experimental biophysics	

Programme: M. Sc. (Physics) (Solid State Physics)Course Code: PHSG-502Title of the Course: Nuclear Reactor PhysicsNumber of Credits: 2Effective from:2023-24

Prerequisites	Should have basic knowledge of nuclear physics, thermodynamics,	
for thecourse:	quantum mechanics, and solid state physics	
Objective:	To introduce students to the fundamental principles of neutron and their interaction with matter. To understand the phenomenon of diffusion and slowing down of neutron and waste disposal.	
<u>Content:</u>	Introduction: Discovery of neutron, Fundamental properties of neutron, decay of neutron, moment of the neutron, Classification of neutron energy: slow neutrons, thermal neutrons, Epithermal neutrons, Resonance neutron, Intermediate neutrons, Fast neutrons. Interaction of Neutrons with Matter:	2 hours
	Interaction of neutrons with matter, cross-section, variation of cross section with neutron energy. Neutron flux, Maxwellian distribution, Fissile and fertile materials, Neutron life cycle, Fermi four factor formula k _{eff} . Neutron Diffusion:	4 hours
	Diffusion theory approximation, neutron leakage, diffusion equation. Thermal diffusion length, One group critical equation for bare reactor. Boundary conditions and extrapolation distance, measurement of diffusion length Slowing down of Neutrons :	5 hours
	Slowing down length, lethargy, slowing down in a mixture. Moderations. Calculation of Critical Size of Reactors:	5 hours
	Critical equation, One group model, four factor formula and calculation of parameters. Critical size of sphere. Effect of reflector. Power Operation :	5 hours
	Reactor kinetics, prompt neutron lifetime, stable reactor period, the Inhour equation, Fission product poisoning. Fuel burn-up. Measurement or reactor power and period. Radiological Protection:	5 hours
	Units of radiation and radioactivity, Radiation protection standards, Radiation monitoring instruments. Reactor Fuels and Materials:	2 hours
	Uranium resources and requirements. Isotope separation. (one method), reprocessing of spent fuel, Nuclear fuel management.	2hours

Pedagogy:	Lectures / tutorials/assignments. Sessions shall be interactive
	in nature to enable peer group learning.
References/ Readings	 Nuclear Reactor Engineering, S. Glasstone and A. Sesonske, Van Nostrand Reinhold Co., (1963). Fundamentals of Nuclear Reactor Physics, E. E. Lewis, Elsevier (2008). Introduction to neutron Physics, L.F. Curtiss, D. Van Nostrand Co., (1969). Introduction to the theory of Thermal Neutron scattering, G. L. Squires, Dover Publication, Inc. (1996).
	5. Safe Handling of Radioisotopes (Safety Series no.1) (1958).
<u>Learning</u>	Students will be able to
<u>Outcomes</u>	 Understand neutron interaction with matter Familiarise with the main features of a nuclear reactor and
	conditions that determine its criticality. 3. Understand neutron diffusion and slowing down 4. Gain insight on the management of nuclear waste

Programme: M. Sc. (Physics) (Solid State Physics)

Course Code: PHSG-503	Title of the Course: Advanced Optics
Number of Credits: 2	
Effective from AY: 2023-24	

Effective from AY: 2023-24		
Prerequisites for	Should have studied basic courses in optics and electromagnetic	
the course:	theory, quantum mechanics with good understanding in	
	mathematics.	
Objective:	This course is aimed at understanding intermediate to advanced	
	optics. This course includes fundamental theoretical optics to applied	
	optics and a brief introduction to quantum optics.	
Content:	1. Light Waves	7 hours
	Eikonal equations, laws of reflection and refraction, guided optics,	
	Lagrange and Hamiltonian formulation of optics, ABCD matrix, thin	
	lens formula, Gaussian optics, Aberrations.	
	2. Coherence of light and Fourier Optics	8 hours
	Fourier transforms in one and two dimensions, convolution	
	operations, spatial frequency filtering, phase contrast microscopy,	
	Correlation function, The Wiener–Khinchin Theorem, Linewidth,	
	Spatial coherence, Interference spectroscopy, Temporal coherence,	
	Stellar intereferometers, Fourier transform properties of lenses.	
	3. Optical Modulation and nonlinear optics	
	Electro-optical effects, acousto-optical effect, Raman-Nath	8 hours
	diffraction, Magneto-optics.	
	Nonlinear optical media, second-order and third order optical effects,	
	Kerr optical effect, self-focussing, optical bistability, second and third	
	harmonic generation, coupled mode equations, Ultrafast optics.	
	4. Introduction to Quantum Optics	

	Quantum states of electromagnetic fields, coherent and squeezed	7 hours
	states, Operators, ordering procedures and star products, Q, P and	
	Wigner functions of a density operator, Correlation functions and	
	quantum coherence,	
	Nonclassical light, Quantum entanglement, Bell's inequalities, Cavity	
	QED, Quantum cryptography.	
Pedagogy:	Lectures/ tutorials/ term papers/assignments/. Sessions shall be	
	interactive in nature to enable peer group learning.	
References/	1. Modern Optics, B. D. Guenther, Oxford University Press, 2015	
<u>Readings</u>	2. Optical Electronics, AjoyGhatak and K. Thyagarajan, Cambridge University Press, 2017.	
	3. Optics- Principles and Applications, Sharma K. K., Academic Press, Elsevier 2006	
	4. Photonics-Optical Electronics in Modern Communications, Yariv and Yeh, Oxford University Press, 2007	
	5. Fundamentals of Photonics, B.E.A. Saleh and M. C. Teich, John Wiley and Sons, 2019	
	6. Introduction to Fourier Optics, J. Goodman, Roberts and Company Publishers; 3rd edition (December 10, 2004)	
	7. Nonlinear Optics, R. W. Boyd, Elsevier 4 th Edition, 2020	
	8. Quantum optics: an introduction, Marc Fox, Oxford University Press, 2009	
Learning	1. Understanding advanced theoretical concepts in optical	
<u>Outcomes</u>	physics	
	2. Knowledge in recent advances in optics	

Programme: M. Sc. (Physics) (Solid State Physics)
Course Code: PHSG-504 Title of the Course: Physics of Energy Materials
Number of Credits: 2
Effective from AY: 2023-24

Prerequisites for thecourse:	Student should have basic understanding of the physics concepts related to thermodynamics and electrodynamics.	
Objective:	 To develop the understanding of different energy materials, their properties and how to make use of them for energy extraction To understand the basic principle of different energy extraction phenomenon. 	

Contonti	Dhatavaltaia Fuarra matariala	Zhaura
<u>Content:</u>	Photovoltaic Energy materials	7 hours
	Sources of energy: renewable and non-renewable sources, solar	
	power and photovoltaic materials, photovoltaic devices	0.1
	Energy Storage materials	8 hours
	Electrochemical energy conversion and storage, Battery materials,	
	fuel cells, supercapacitors, metal-organic framework for hydrogen	
	storage, materials for water splitting.	
	Thermoelectric Materials	8 hours
	Introduction, The Seebeck and Peltier effects, thermoelectric figure	
	of merit, Measuring the thermoelectric properties, Heat conduction	
	by the crystal lattice, Materials for Peltier cooling, Generator	
	materials, Thermoelectric refrigerators and generators.	
	Magnetocaloric materials	
	Magnetocaloric effect in the phase transition region, Methods of	7 hours
	investigation of magnetocaloric properties, Magnetocaloric effect in	
	different types of materials, Magnetocaloric effect in nanosized	
	materials, Magnetic refrigeration	
Pedagogy:	lectures/ tutorials /viva/ seminars/ term papers/assignments/	
	presentations	
<u>References/</u>	1. Handbook of Energy Materials, Edited by Ram Gupta, Springer	
<u>Readings</u>	Singapore, 2022	
	2. Energy Materials, Duncan W. Bruce, Dermot O'Hare, Richard I.	
	Walton, Wiley, 2011	
	3. Solar Cell Device Physics, Stephen J Fonash, 2 nd Edition,	
	Academy Press, 2010.	
	4. Materials for Solar Energy Conversion: Materials, Methods and	
	Applications, R. Rajasekar (Editor), C. Moganapriya (Editor), A.	
	Mohankumar (Editor), Wiley, 2022.	
	5. The Physics of Thermoelectric Energy Conversion, H Julian	
	Goldsmid, Morgan & Claypool Publishers, 2017.	
	6. The Magnetocaloric Effect and its Applications, A.M. Tishin, Y.I.	
	Spichkin, CRC press (Taylor and Francis group), 2016.	
Learning	Students will understand the basic principles of energy extraction	
	devices such as solar cells. This course will also help student in	
Outcomes:		
	understanding the physics of thermoeleastic and magnetocaloric	
	effects for energy applications.	

Programme: M. Sc. (Physics)(Solid State Physics)Course Code: PHSG-505Title of the Course: Physics of Ferroic MaterialsNumber of Credits: 2Effective from AY: 2023-24

Prerequisites for	Basic knowledge of Solid State Physics/Chemistry	
the course:		

Objective:	To introduce various types of ferroic materials and its applications	
	to the students.	
Content:	Phase Transition Landau Theory of phase transition – first order and second order.	4 hours
	Ferroelectrics <i>P</i> – <i>E</i> Loop, Relationships Between Dielectric, Piezoelectric, Pyroelectric, and Ferroelectric, Origin of Ferroelectrics, Structure-Induced Phase Change from Paraelectric to Ferroelectric, Soft Phonon Mode, Ferroelectric Domains and Domain Switching, Domain Structure, Ferroelectric Switching, Ferroelectric Materials – BaTiO ₃ , PbTiO ₃ , Antiferroelectric PbZrO ₃ , Pb(Zr _x Ti _{1-x})O ₃ (PZT), Relaxor Ferroelectrics. Ferromagnetics	
	General Introduction to Ferromagnetics, Domain and Domain Wall, Magnetoresistance Effect and Device, Anisotropic Magnetoresistance (AMR), Giant Magnetoresistance (GMR), Colossal Magnetoresistance (CMR), TunnellingMagnetoresistance (TMR), Spin-Transfer Torque Random-Access Memory (STT-RAM), Magnetostrictive Effect and Device Applications, Magnetostrictive Properties of Terfenol-D, Magnetostrictive Ultrasonic Transducer, Magnetoelastic Effect, Magnetomechanical Strain Gauge, Multiferroics, Magnetoelectric Effect, Why Are There so Few Magnetic Ferroelectrics? Single Phase Multiferroic Materials, ME Composite Materials, MultilayeredHeterostructures. Ferroelastics	
	Shape Memory Alloy, SMA Phase Change Mechanism, Nonlinearity in SMA, One-Way and Two-Way Shape Memory Effect, Superelastic Effect (SE), Application Examples of SMAs, Ferromagnetic Shape Memory Alloys, Formation of Twin Variants, Challenges for Ni–Mn–Ga SMA, Device Application of MSMA.	8 hours
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a combination of some of these.	
<u>References/</u> <u>Readings</u>	 Ferroic Materials for Smart Systems: From fundamentals to device applications, Jian Dai, Wiley VCH (2020) Introduction to Ferroic Materials, V. K. Wadhavan, Taylor & Francis (2000) Ferroic Functional Materials: Experiment, Modeling and Simulation, JörgSchröder, Doru C. Lupascu, Springer (2018) 	
Learning Outcomes	 Students will learn about different Ferroic phase transitions. Students will gain knowledge about characteristics and applications of ferroelectric, ferromagnetic and ferroelastic materials. 	
L	(Beek to Index) (Beek to A	

Programme: M. Sc. (Physics) (Solid State Physics)Course Code: PHSG-506Title of the Course: Nanoscience and TechnologyNumber of Credits: 2Effective from AY: 2023-24

Prerequisites for	Basic knowledge of Solid-State Physics / Solid State Chemistry	
the course:		
Objective:	This course is aimed at introducing different concepts of nanoscience and technology. It aims at presenting the recent developments in the field of nanomaterials including synthesis and characterization methods.	
<u>Content:</u>	Introduction to Nanomaterials Introduction to Nanoscience, Physics and Chemistry of solid surfaces, Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area and aspect ratio- band gap energy- quantum confinement size.Classifications of nanomaterials - Zero dimensional, one-dimensional and two- dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice clusters of metals, semiconductors and nanocomposites. Nanoparticles through homogeneous and heterogeneous nucleation- Oswald ripening process	7 hours
	Synthesis of nanostructures Top down and bottom-up approaches–Mechanical alloying and mechanical ball milling Mechanical and chemical process, Inert gas condensation technique – Arc plasma and laser ablation. Sol gel processing-Solvothermal, hydrothermal, precipitation, Spray pyrolysis, Electro spraying and spin coating routes, Self-assembly, self-assembled monolayers (SAMs). Langmuir-Blodgett (LB) films, micro emulsion polymerization- templated synthesis, pulsed electrochemical deposition Vapor deposition and different types of epitaxial growth techniques (CVD, MOCVD, MBE, ALD)- pulsed laser deposition, Magnetron sputtering - lithography: Photo/UV/EB/FIB techniques, Dip pen nanolithography, Etching process: Dry and Wet etching, micro contact printing	8 hours
	Characterization tools in Nanoscience Optical microscopy: Use of polarized light microscopy – Phase contrast microscopy –Interference Microscopy – hot stage microscopy - surface morphology – Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), HRTEM use in nanostructures. Atomic Force Microscopy (AFM) Scanning Force Microscopy-Shear force Microscopy-Lateral Force Microscopy-Magnetic Force microscopy. Scanning Tunnelling Microscopy: Principle- Instrumentation- importance of STM for nanostructures – surface and molecular manipulation using STM -3D map of electronic structure. Applications of Nanoscience	8 hours

	Nanomaterials for energy applications, Nanoelectronics,	
	Nanomagnetism and devices, Nanophotonics, Surface plasmons, 7 h	ours
	Nanobio applications, Environmental issues.	
Pedagogy:	Lectures/ tutorials/ term papers/assignments/. Sessions shall be	
	interactive in nature to enable peer group learning.	
References/	1. Nanostructures & Nanomaterials: Synthesis, Properties &	
Readings	Applications G. Cao, Imperial College Press, 2004.	
	2. Textbook of Nanoscience and Nanotechnology, Murthy. B.S.	
	Murty, P. Shankar, James Murday and Baldev Raj, University Press,	
	Springer Berlin (2013)	
	3. Principles of nano-optics, L. Novotny and B. Hecht, Cambridge	
	University Press, 2009.	
	4. Lithographic pattern formation via metastable state rare gas	
	atomic beam, Nanotechnology, M. Baker et al., 15, 1356, 2004.	
	5. Fabrication of polymer photonic crystals using nanoimprint	
	lithography, Helmut Schift, Sunggook Park, Bokyung Jung, Choon-	
	Gi Choi, Chul-SikKee, Sang-Pil Han, Keun-Byoung Yoon and Jens	
	Gobrecht, Nanotechnology 16, 261, 2005.	
	6. Nanolithography- Dip-Pen, R.D. Piner, Science 283, 661, 1999.	
	7. Surface plasmonsubwavelength optics, Barnes, W., Dereux, A.	
	&Ebbesen, T., Nature 424, 825, (2003)	
	8. Surface Plasmons on Smooth and Rough Surfaces and on Gratings	
	Heinz Raether, Springer Tracts in Modern Physics, Vol. 111,	
	Springer Berlin 1988.	
	9. Plasmonics: Fundamentals and Applications, Stefan Maier,	
Learning	Springer 2007.	
Learning	1. Gain knowledge in Nanoscience and Nanotechnology	
<u>Outcomes</u>	2. Understand various techniques in cutting-edge nanoscience	
	3. To be aware of recent advances in nanotechnology and its	
	applications	

Programme: M. Sc. (Physics) (Solid State Physics)
Course Code: PHSG-507 Title of the Course: Laser physics and applications
Number of Credits: 2
Effective from AY: 2023-24

Prerequisites for	Student should have basic knowledge of Atomic Physics.	
the course:		
Objective:	 To develop understanding of construction and operation of different Laser systems. To understand advances in laser physics and its Applications 	

Content:	Introduction to lasers:	6 hours
<u>Content:</u>	Definition, brief history of Lasers, unique Properties of laser, coherence, fundamental wave and quantum properties of light, Laser Safety: Various hazards due to laser radiation-eye, skin, chemical etc., safety measures and standard ANSI Laser Amplifiers and Resonators:	8 hours
	Conditions for producing a laser – population inversions, Gain and gain saturation, Development and growth of laser beam, Requirements for obtaining population inversion, laser pumping requirements and techniques. laser cavity modes: longitudinal and Transverse, Q switching, mode- locking, pulse shortening techniques, ultrashort - pulsed laser and amplifier system, Ring lasers, Cavities for producing spectral narrowing of laser output.	
	Laser systems and their applications He -Ne laser, Ar ion laser, Molecular Gas lasers: CO ₂ laser, Excimer lasers, Laser systems involving high-density gain media: Organic dye lasers, solid state lasers: Ruby laser, Nd-YAG and glass lasers. Applications of lasers in materials engineering (cutting, welding, cladding, peening, surface engineering), communication, LIDAR, Medical Applications (dentistry, LASIK, laser lithotripsy, dermatology etc), Laser Cooling and Trapping of Atoms, Spectroscopic applications (RAMAN, LIBS).	16hours
<u>Pedagogy</u> :	Lectures/ tutorials/laboratory work/project work/ vocational training/viva/ seminars/ term papers/assignments/ presentations/ self-study/ Case Studies etc. or a combination of some of these. Sessions will be interactive in nature to enable peer group learning.	
References/Rea dings	 Laser Fundamentals, second edition William T. Silfvast, Cambridge publication, 2004 Laser Electronics, third edition, Joseph T. Verdeyen, Prentice Hall series, 1994. Basics of laser physics, second edition, Karl F. Renk, Springer, 2012. Laser Physics and application, Tarasov. L, Mir Publication, 1987. Principles of Laser Plasmas, Bakefi, George, John Wiley & Sons Inc., 1977. Laser application, William V. Smith, Artech House Publishers, 1970. Lasers: Fundamentals and Applications (Graduate Texts in Physics), second edition, K. Thyagarajan, AjoyGhatak, Springer publication, 2012. Laser application, Ross Monte, Academic press New York, 1974. 	
<u>Learning</u> Outcomes:	 Student will understand the basic principle and operation of different types of Lasers. Student will get exposure to applications of Lasers in different 	

fields.

(Back to Index) (Back to Agenda)

Programme: M. Sc. (Physics) (Solid State Physics)Course Code: PHSG-508Title of the Course: Experimental Techniques in PhysicsNumber of Credits: 2Effective from AY: 2023-24

Duous autoites	Chudanta annulling fan this annua shauld have lunaudadan in hasis	
Prerequisites	Students enrolling for this course should have knowledge in basic	
for the course:	mathematical concepts	
Objective:	This course introduces the concepts in experimental physics,	
	instrumentation and error analysis	
Content:	Data Interpretation and Error Analysis	15 hours
	Data interpretation and analysis. Uncertainties, Statistical analysis of	
	uncertainties, Precision and accuracy, Parent and Sample	
	Distributions, Mean and Standard Deviation of Distributions,	
	Binomial Distributions, Poisson Distribution, Gaussian or Normal	
	Error Distribution, Lorentzian Distribution; Approximation and Errors	
	in Computing: Significant Digits, Numerical Errors, Modelling errors,	
	Conditioning and Stability, Convergence of Iterative Processes. Error	
	analysis, propagation of errors. Least squares fitting, Linear and	
	nonlinear curve fitting, chi-square test	
	Measurements and Instrumentation	
	Transducers (temperature, pressure/vacuum, magneticfields,	15 hours
	vibration, optical, and particle detectors), low current and voltage	
	measurements, High and low temperature measurements,	
	thermocouples, photoresistors, thermal and electronic conduction	
	measurements, optical measurements, photon counting techniques,	
	low and high magnetic field measurements, Measurement and	
	control. Signal conditioning and recovery. Impedance matching,	
	amplification (Op-amp based, instrumentation amp, feedback),	
	filtering and noise reduction, shielding and grounding. Fourier	
	transforms, lock-in detector, box-car integrator, modulation	
	techniques. High frequency devices (including generators and	
	detectors)	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or	
	a combination of some of these.	
<u>References/</u>	1. Data Reduction and Error Analysis for the Physical Sciences 3rd	
<u>Readings</u>	Ed. by Philip R Bevington and D Keith Robinson, McGraw – Hill	
	(2003)	
	2. An Introduction to Error Analysis: The Study of Uncertainties in	
	Physical Measurements, 2nd Ed. John R. Taylor, University	
	Science Books (1997)	
	3. Methods of Experimental Physics, M. I. Pergament, CRC Press	
	(2019)	
	4. Experiments in Physics, R. Srinivasan, K. R. Priolkar and T. G.	

	 Ramesh, Indian Academy of Sciences (2018) 5. Practical Physics, G. L. Squires, 4th Edition, Cambridge University Press, (2015) 6. Introduction to Measurements and Instrumentation, A. K. Ghosh, PHI Learning Pvt. Ltd., (2012) 	
<u>Learning</u> Outcomes	On completion of this course, students will be able to understand the basics concepts in measurement techniques, experimental physics and error analysis.	

Programme: M. Sc. (Physics) Course Code: PHSG-509 Number of Credits: 1T + 1P Effective from AY: 2023-24

Title of the Course: Documentation using Latex

Effective from	m AY: 2023-24	
<u>Prerequisites</u>	Nil	
for the course:		
Objective:	This course provides an introduction to technical writing with	
	Latex.	
Content:	Introduction	5 hours
	Introduction and Installation of the software LaTeX. Understanding	
	Latex compilation.	
	Module 1.	6 hours
	Basic Syntax of Latex, Writing equations, Matrix, Tables	
	Module 2.	
	Page Layout – Titles, Abstract, Chapters, Sections, References,	7 hours
	Equation references, citation. List-making environments, Table of	
	contents, generating new commands, Figure handling, numbering,	
	List of figures, List of tables, Generating index.	
	Module 3.	Chaura
	Packages: Geometry, Hyperref, amsmath, amssymb, algorithms,	6 hours
	algorithmic graphic, color, tiles listing Model 4.	
	Classes: article, book, report, beamer, slides.	3 hours
	Module 5.	5 110015
	Applications to:	
	Writing Resume	18 hours
	Writing question paper	10 110 113
	Writing articles/ research papers	
	Presentation using beamer.	
	Preparing Poster.	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a	
	combination of some of these.	
References/	1. LaTeX in 24 Hours: A Practical Guide for Scientific Writing,	
Readings:	DilipDatta, Springer, (2017).	
	2. LaTeX: A Document Preparation System, Leslie Lamport,	
	Addison-Wesley Professional (1994).	
	3. The LaTeX Companion, 2nd edition (TTCT series), Frank	

Mittelbach, Michel Goossens, Johannes Braams, David
Carlisle, Chris Rowley, Addison-Wesley Professional, 2004.
By the end of this course, the student will have acquired proficiency
with LaTeX, as well as many powerful features of LaTeX which
include:
1. Download and install a comprehensive LaTeX distribution.
2. Create basic types of LaTeX documents (article, report, letter,
book).
3. Format words, lines, and paragraphs, design pages, create lists,
tables, references, and figures in LaTeX.
4. Typeset complicated mathematics.
5. Import graphics,
6. Listing content and references
7. Develop large documents.
8. Create professional presentations using LaTeX.

Title of the Course: Astronomy and

Programme: M. Sc. (Physics) (Solid State Physics) Course Code:PHSG-510 Astrophysics Number of Credits:2 Effective from AY: 2023-24

Prerequisites for	Should have basic knowledge of electromagnetic theory, classical	
thecourse:	mechanics, thermodynamics	
Objective:	The objective of this course is to develop an understanding of the scale, constituents, radiative process and stellar astronomy. A descriptive course includes the methods astronomy in different bands of electromagnetic radiation.	
N f e t L a n A E l I I F B r s e r	Fundamentals of Astrophysics Major contents of universe, Black body radiation, specific intensity, Major contents of universe, Black body radiation, specific intensity, Major contents of universe, Black body radiation, specific intensity, Major contents of universe, Black body radiation, specific intensity, Magnitudes, Color index, Color temperature, effective temperature, Brightness temperature, Excitation memperature, kinetic temperature, stellar atmospheres Astronomical Scales and techniques Units of measurement, celestial coordinates, precession, Mass, length and time scales in Astrophysics, Parallax method. Standard Candle method. Cepheid variable method. RedShift. Astronomy in different bands of electromagnetic radiation Electromagnetic radiation, Optical astronomy , Radio astronomy , nfrared, UV and X-ray astronomy. Radiative Processes Basics of theory of radiation field, radiation transfer equation, thermal radiation, radiative diffusion, basics of radiative transfer, elementary stellar atmospheres, relativistic electrodynamics, emission of electromagnetic radiation, scattering, Brehmstrahlung, synchrotron radiation, inverse-Compton process, plasma effects. Stellar Physics	5 hours 5 hours 6 hours

	(Desk to Index) (Desk to 1	condo)
	the advanced study in Astrophysics.	
<u>Learning</u> Outcomes	On completion of this course, the students will get necessary foundation in astronomy and astrophysics that will prepare them for	
	 The Structure of the Universe, J.V. Narlikar, Oxford University Press, 1977 	
	press,2010	
	ed., Institute of Physics, 2003. 3. Astrophysics for Physicist, A R Choudhuri, Cambridge	
<u>neuung</u>	2. Astronomy Principles and Practice, Roy, A.E., & Clarke, D., 4th	
<u>References/</u> Readings	 Radiative Processes in Astrophysics, Rybicki, G.B., & Lightman, A.P., John Wiley, 1985. 	
	in nature to enable peer group learning.	
Pedagogy:	Lectures / tutorials/assignments. Sessions shall be interactive	
	of compact objects, equilibrium configurations, equations of state, stability criteria, and mass limits, the influence of rotation and magnetic fields, pulsar phenomena, black hole spacetimes, Hawking radiation, mass flow in binary systems, spherical and disk accretion, high-temperature radiation processes, pulsar spin-up, compact x-ray sources and x-ray bursts, supermassive black holes in star clusters and galactic nuclei, gravitational and neutrino radiation from supernova collapse and binary coalescence.	5 hours
	Physics of Compact Objects Properties of black holes, white dwarfs, and neutron stars, formation	
	and CNO cycle, He-burning, C-burning, Si-burning, photo-dissociation, neutrino emission from stars, Chandrashekhar limit.	
	stellar opacities, Energy Generation in Stars: Calculation of thermonuclear reaction rates, the various reaction chains: PP chain	
	Electromagnetic spectrum, spectral classification of stars, HR diagram,	

Programme: M. Sc. (Physics) (Computational Physics)Course Code: PHCG-502Title of the Course: BEC and SuperfluidityNumber of Credits: 2Effective from AY: 2023-24

Prerequisites	Should have basic knowledge of electrodynamics, thermodynamics	
for the course:	and quantum mechanics, and solid-state physics	
Objective:	To introduce up-to-date experimental and theoretical progress in BEC	
	and superfluidity.	

Content:	Superfluid Helium-4	8 hours
	Introduction, Classical and quantum fluids, the macroscopic wave	
	function, Superfluid properties of He II, Flow quantization and	
	vortices, the momentum distribution, quasiparticle excitations.	
	Superfluid Helium-3	Г h a.ura
	Introduction, The Fermi liquid normal state of He-3, the pairing	5 hours
	interaction in liquid He-3, Superfluid phases of He-3.	
	Bose-Einstein Condensates-Theory	10 h a
	Ultracold atomic gases. Bose-Einstein condensation in an ideal gas. Interacting Bose-Einstein condensates. Dynamics of Bose-Einstein	10 hours
	condensates. Elementary excitations. Bose-Einstein condensates at	
	finite temperatures. Two-dimensional Bose gases. Quantum vortices	
	in Bose-condensed gases. True and quasi condensates in one-	
	dimensional trapped gases. Solitons in 1D Bose-condensed gases.	
	Strongly interacting 1D Bose gases. Rapidly rotating Bose gases.	
	Bose-Einstein Condensate-: Experiment	
	Ultracold quantum gases: What? Why? How? Atom-laser interaction,	
	Bloch sphere Dressed state picture, Optical Bloch equations Light	7 hours
	forces, Molasses cooling, Sisyphus cooling	
	Atomic beam oven, Zeeman slower, Magneto-optical trap	
	Optical dipole trap, Magnetic trap, Technology, Evaporative cooling,	
	Characterizing a BEC.	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a	
	combination of some of these.	
References/	1. Superconductivity, Superfluids and Condensates James F.	
Readings	Annett, Oxford Series in Condensed Matter Physics (2004).	
	2. Statistical Mechanics, R.P. Feynman, Westview Press, (1972).	
	3. Statistical Mechanics, K. Huang, Wiley Eastern Limited, (1988).	
	4. Theory of quantum liquids, Ph. Nozieres and D. Pines, , Vol II,	
	CRC. (2019).	
	5. Bose-Einstein condensation, S. Stringari and L. Pitaevskii,	
	Clarendon Press, (2003).	
	6. Bose-Einstein condensation in dilute gases, C.J. Pethick and H.	
	Smith, Cambridge University Press, (2011).	
	7. Laser Cooling and Trapping, H. J. Metcalf and P. van der Straten,	
	Springer (1999).	
	8. Making an ultracold gas, D. Jervis and J. H. Thywissen,	
	arXiv:1401.7659, (2014).	
<u>Learning</u>	Students will be able to understand the basics of superfluidity, BEC,	
<u>Outcomes</u>	and different laser cooling and trapping techniques to create and	
	characterize ultracold quantum gases in the lab.	

Programme: M. Sc. (Physics) (Computational Physics)Course Code: PHCG-503Title of the Course: Introduction to Quantum Information

and Computing Number of Credits: 2 Effective from AY: 2023-24

Proroquisitos	Basic knowledge of Quantum mechanics.]
<u>Prerequisites</u> for the course:	Basic knowledge of Quantum mechanics.	
Objective:	This course provides an introduction to the theory and practice of	
<u>Objective.</u>	quantum computation.	
Content:	Introduction	8 hours
	Need of Quantum Computing, Postulates of Quantum Mechanics,	
	Qubits, Bloch sphere representation, Multiple Qubit States,	
	Quantum Gates, and Quantum Circuits.	
	Quantum measurement and communication protocols	5 hours
	No-Cloning Theorem and Quantum Teleportation, Super Dense	
	Coding, Density Matrix, Bloch Sphere, Measurement Postulates.	
	Quantum Algorithms	_
	Deutsch Algorithm, Simon Problem. Grover's Search Algorithm,	7 hours
	Grover's Search Algorithm, Quantum Fourier Transform, Shor's	
	Factorization Algorithm.	
	Quantum Information theory	
	Classical Information Theory, Shannon Entropy, Shannon's	7 hours
	Noiseless Coding Theorem, Von Neumann Entropy, EPR and Bell's	
	Inequalities, Cryptography and RSA Algorithm, Quantum	
	Cryptography	
	Quantum error correction and experimental aspects	
	Quantum error correction, Experimental Aspects of Quantum	3 hours
	Computing.	
<u>Pedagogy</u> :	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a	
	combination of some of these.	
References/	1. Quantum Computation and Information, Michael A. Nielsen and	
Readings:	Issac L. Chuang, Cambridge University Press (2002).	
	2. Quantum Computing, Mikio Nakahara and Tetsuo Ohmi, CRC	
	Press (2008).	
	3. Quantum Computer Science, N. David Mermin, Cambridge	
	University Press (2007)	
	4. Quantum Information theory, Mark M. Wilde, Cambridge	
	University Press (2017)	
	5. Introduction to Quantum Computation and Information HK.Lo,	
	T. Spiller, S. Popescu, World Scientific, (1998).	
	6. Principles of Quantum Computation and Information. G. Benenti,	
	G. Casati, G. Strini, World Scientific (2004).	
<u>Learning</u>	1. Students will be able to understand basic quantum gates, circuits,	
<u>Outcomes</u>	and algorithms.	
	2. Students will be able to understand the basics of Quantum	
	Information Theory and the importance of Quantum error	
	correction.	

Programme: M. Sc. (Physics) CourseCode:PHCG-504 Number of Credits: 2 Effective from AY: 2023-24

Title of the Course: Introduction to ParticlePhysics

<u>Prerequisites</u> for the course:	Basic knowledge of Quantum Mechanics	
Objective:	To introduce students the fundamental principles and concepts in particle physics and particle accelerators	
<u>Content:</u>	Introduction to Elementary Particles: Historical introduction, Mesons, Baryons, antiparticles, neutrinos, strange particles, The eightfold way and the quark model	4 hours
	Cross-section and decay rates: Cross-sections, decay rates, resonances, Breit-Wigner formula	3 hours
	Relativistics Kinematics:LorentzTransformationsandFour-vectorsEnergy and Momentum conservationsClassical and Relativistic Collisions, examples and applications	5 hours
	Elementary Particle Dynamics: Introduction to Feynman diagrams and four forces Quantum Electrodynamics (QED), Quantum Chromodynamics (QCD), and Weak interactions Weak and Electromagnetic couplings of W and Z Decays and conservationlaw, and unificationschemes. Symmetries	7 hours
	Symmetries, groups, and conservation Laws Angular momentum and addition of angular momenta Flavor Symmetries, Discrete Symmetries, Parity, Charge Conjugation and CP symmetries Neutral Kaons, CP Violation and Time Reversal and the TCP Theorem	7 hours
	Particle accelerators: Introduction to modern accelerators LHC at CERN and and RHIC and BNL, event rates and luminosity. Large detector systems at electron-positron, electron-proton and hadron colliders.	4 hours
Pedagogy:	Lectures/tutorials/assignments. Sessions shall be interactive in nature to enable peer group learning.	

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

<u>References/</u> <u>Readings</u>	 Introduction to Elementary Particles by David Griffiths, Wiley (2008) Modern Particle Physics by M. Thomson, Cambridge University Press India (2016) Quarks and Leptons, by F. Halzen and A. D. Martin, John Wiley (1984)
<u>Learning</u> <u>Outcomes</u>	 Student will be able to Classify elementary particles and fundamental forces, draw Feynman diagrams for reactions. Learn particles states and their quantum numbers, conservation laws, and symmetries in nature. Learn modern particle accelerators and its working

(Back to Index) (Back to Agenda)

Programme: M.Sc (Physics)(Biophysics)Course Code: PHBG-502Title of the Course: Solid state and BiomaterialsNumber of Credits: 4Effective from AY: 2023-24

Prerequisites for	None	
<u>the course:</u>		
<u>Objective:</u>	This course is intended to introduce the concepts in biomaterials. The students will have a good understanding of the different bio materials and their properties. A brief introduction to new and advanced materials for biological applications will also be covered in the course.	
<u>Content:</u>	Introduction to Solid State	15 hours
	imperfections, defects and dislocations, non-crystalline solids, surface	
	energy, contact angle, surface tension, Types of materials-ceramics, metals, semiconductors, polymers, composites, Impact of biomaterials	
	Properties of Materials	15 hours
	Mechanical properties-elasticity, stress, strain, tensile strength, plastic deformation, hardness, thermal properties, optical properties,	
	Introduction to biomaterials, property requirements for biomaterials, concept of biocompatibility, structure of cells and biological tissues, cell material interaction and response to foreign bodies, histocompatibility, genotoxicity. Biomaterials II	15 hours
	Important biometallic alloys: Ti-based, stainless steels,	15 hours
	Co-Cr-Mo alloys, Nitinol, Tantalum and magnesium, Bioinert,	
	Bioactive and bioresorbable ceramics, Processing and properties of	
	different bioceramic materials silicates, aluminates, Zirconia,	
	Crystal structure, Crystal Binding, Phase changes, crystal imperfections, defects and dislocations, non-crystalline solids, surface energy, contact angle, surface tension, Types of materials-ceramics, metals, semiconductors, polymers, composites, Impact of biomaterials Properties of Materials Mechanical properties-elasticity, stress, strain, tensile strength, plastic deformation, hardness, thermal properties, optical properties, Biomaterials I Introduction to biomaterials, property requirements for biomaterials, concept of biocompatibility, structure of cells and biological tissues, cell material interaction and response to foreign bodies, histocompatibility, genotoxicity. Biomaterials II Important biometallic alloys: Ti-based, stainless steels, Co-Cr-Mo alloys, Nitinol, Tantalum and magnesium, Bioinert, Bioactive and bioresorbable ceramics, Processing and properties of	15 hour 15 hour

	Microstructure and properties of glass-ceramics, common
	biocompatible polymers and their properties, biodegradable
	polymers, Natural biomaterials, design concept of developing new
	materials for bioimplant applications, Nanobiomaterials
Pedagogy:	Lectures/Tutorials/Assignments
	Sessions shall be interactive in nature to enable peer group learning.
<u>References/</u>	1. Biomaterials Science: An introduction to Materials in Medicine,
Readings	Edited by Ratner, Hoffman, Schoet and Lemons, Third Edition,
	Elsevier Academic Press (2012).
	2. Introduction to Biomaterials: Basic Theory with Engineering
	Applications, MauliAgrawal, Ong, Appleford and G. Mani, First
	Edition, Cambridge Press, (2013).
	3. Biomaterials Science and Biocompatability, Fredrick H. Silver and
	David L. Christiansen, Piscataway, First Edition, Springer (1999).
	4. Biomaterials: An Introduction, John B Park and Roderik S Lakes,
	Third Edition, Springer, (2007).
	5. Nanobiomaterials: Classification, Fabrication and Biomedical
	Applications, Ed: Wang, M. Ramalingam, X. Kong L. Zhao, First
	Edition, Wiley (2018).
	6. Nanobiomaterials, Roger Narayan, First Edition, Elsevier (2017).
Learning	1. The students will be familiarized with the basic types of
Outcomes:	biomaterials and their properties.
	2. The students will have gained sufficient knowledge in the
	biomaterials and their applications.
	3. The students will be exposed to the recent developments in
	biomaterial engineering and nanobiomaterials.
	(Pack to Index) (Pack to Acondo)

Programme: M. Sc. (Physics)(Solid State Physics)Course Code: PHSR-503Title of the Course: X-ray SpectroscopyNumber of Credits: 2Effective from AY: 2023-24

Prerequisites for	Basic knowledge of Solid State Physics/Chemistry and Electromagnetic	
thecourse:	waves	
<u>Objective:</u>	To introduce students to various techniques in x-ray spectroscopy and their applications to condensed matter physics, chemistry and material science.	

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

Content:	X-rays: Sources and Interaction with matter	6 hours
_	X-rays: Waves and photons, Scattering, Absorption, Refraction and	
	Reflection.	
	X-ray tubes, Synchrotron radiation, Bending magnet sources,	
	Undulator radiation, Wiggler radiation. X-ray detection	
	Scattering of X-Rays	8 hours
	Scattering from an electron, scattering from an atom, scattering from a molecule, scattering from liquids and glasses, small angle x-ray	
	scattering, scattering from a crystal, Debye-Waller factor, measured intensity from a crystallite.	
	X-ray Absorption	8 hours
	Absorption coefficient, absorption edge, Definition: x-ray absorption fine structure (XAFS), x-ray absorption near edge structure (XANES), extended x-ray absorption fine structure (EXAFS), History, Theory of XAFS, XAFS Experiment, Beamline and optics, Data acquisition, treatment and modelling, XANES as fingerprint technique, x-ray magnetic circular dichroism.	
	Photoelectron Spectroscopy	8 hours
	Photoelectric Effect, history of x-ray photoelectron spectroscopy (XPS), theoretical model – three step model, instrumentation, the electron mean free path, Auger electrons, core level binding energies in atoms, molecules and solids, final state effects, valence band in solids, band structure, angle resolved photoelectron spectroscopy (ARPES).	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a combination of some of these.	
References/ Readings	 Elements of Modern X-ray Physics, Jens Als-Nielsen and Des Mc Morrow, 2nd Edition, Wiley 2011. 	
	2. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014.	
	3. Introduction to XAFS, Grant Bunker, Cambridge University Press, 2010.	
	4. Photoelectron Spectroscopy, Principles and Applications, Stefan	
	Hufner, Springer 2003.	
Learning	Hutner, Springer 2003. 1. Student will gain knowledge about characteristics of different X-	
Learning Outcomes		
	1. Student will gain knowledge about characteristics of different X-	
	 Student will gain knowledge about characteristics of different X- ray sources, especially synchrotron radiation sources; 	
	 Student will gain knowledge about characteristics of different X- ray sources, especially synchrotron radiation sources; Students will understand the principles, experimental equipment, 	
	 Student will gain knowledge about characteristics of different X- ray sources, especially synchrotron radiation sources; Students will understand the principles, experimental equipment, basic data analysis methods with respect to X-ray diffraction 	

(Back to Index) (Back to Agenda)

Programme: M. Sc. (Physics) (Solid State Physics)

Course Code: PHSR-504Title of the Course: Optical SpectroscopyNumber of Credits: 2

Effective from AY: 2023-24

Prerequisites for the course:	Should have studied courses in classical mechanics, electromagnetism, elementary quantum mechanics and nuclear physics.	
Objective:	To introduce different optical spectroscopic techniques that can be used for characterization of materials, especially in condensed matter.	
<u>Content:</u>	Electronic Spectroscopy One-electron and two-electron atoms: spectrum of hydrogen, helium and alkali atoms; Many electron atoms: Hund's rule, L-S and j-j coupling, Spectroscopic terms, Lande interval rule; Interaction with Electromagnetic fields: Zeeman, Paschen Back and Stark effects, electron spin resonance spectroscopy, Hyperfine structure and isotope shift, selection rules; Lamb shift, Electromagnetic radiation, Absorption and Emission of radiation, Line width and its broadening mechanisms, Spontaneous and stimulated emissions, Einstein coefficients, Introduction to lasers and laser spectroscopy	15 hours
	Molecular Spectroscopy Microwave spectroscopy, Infrared spectroscopy, the vibrating diatomic molecule – simple harmonic oscillator, the anharmonic oscillator, the diatomic vibrating rotator, Interaction of rotation and vibrations, the vibrations of polyatomic molecules, Raman spectroscopy– Electronic spectra of diatomic molecules – Born- Oppenheimer approximation, vibrational coarse structure – progressions. Intensity of vibrational transitions – the Franck-Condon principle. Optical absorption: Free carrier absorption-optical transition between bands-direct, and indirect-excitons, Luminescence in crystal - excitation and emission - decay mechanism, Fluorescence, Phosphorescence, Crystal Field Theory, Spectroscopy of transition metals complexes, Fluorescence spectroscopy, Introduction to time-resolved spectroscopy	15 hours
Pedagogy:	Lectures/ tutorials/seminars/ term papers/assignments/ presentations/ self-study. Sessions shall be interactive in nature to enable peer group learning.	
References/Rea dings	 Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain,2nd Edition, Pearson; 2008. Fundamentals of Molecular Spectroscopy, C. N. Banwell and E. M. McCash, 4th Edition, Tata McGraw, 2004 Introduction to Atomic Spectra, H. E. White, Tata McGraw Hill, 1934. Lasers Theory and Applications, K. Thayagarajan and A.K Ghatak, Macmillan (Tata McGraw Hill) 1995. 	

	 5. Handbook of Molecular Spectroscopy, D. SatyanarayanaInternational Publishing House, 2015, 1st edition 6. Solid State Luminescence, A. H. Kitai, Chapman and Hall London; 1993. 7. Luminescence of Solids edited by D. R. Vij, Plenum Press, New York, 1998.
Learning Outcomes	 Understand different optical spectroscopic techniques Better understanding of atomic and molecular physics Apply the techniques in experimental characterisation of materials.

Programme:M. Sc. (Physics) (Solid State Physics) Course Code: PHSR-505 Title of the Course: Nuclear Spectroscopy for Condensed Matter Number of Credits: 2 Effective from AY: 2022-23

Prerequisites for	Should have studied classical mechanics, electromagnetism,	
the course	elementary quantum mechanics and nuclear physics.	
Objectives	To introduce the concept of methods that uses properties of a	
	nucleus to probe material properties	
<u>Content</u>	Properties of a nucleus:	4 hours
	Nuclear magnetic dipole moment, nuclear electric dipole moment,	
	nuclear decays, magnetic and electric hyperfine interactions	
	Nuclear Magnetic Resonance (NMR) Spectroscopy:	
	Principles, classical treatment of NMR (Bloch equations), quantum	6 hours
	theory of NMR, experimental methods, Chemical shift, Knight shift in	
	metals, spin-lattice relaxation, spin-spin relaxation, applications.	
	Mossbauer Spectroscopy:	
	Principles, The Debye-Waller Factor, Mossbauer Sources and	
	Experimental Apparatus, Isomer Shifts, Electric quadrupole	6 hours
	interaction, Magnetic Dipole Interaction, Quadratic Doppler effect,	
	Results from Mossbauer spectroscopy.	
	Neutron Scattering:	
	Neutrons and Neutron Sources, neutron spectrometer and detectors,	
	the process of neutron scattering, response function and correlation	6 hours
	function for inelastic neutron scattering, results from neutron	
	scattering.	
	muon spin rotation (μSR) spectroscopy:	
	Muons and muon spin rotation, influence of internal fields, results	
	from μSR	4 hours
	Positron annihilation spectroscopy (PAS):	
	Positrons in solids, positron sources and spectrometers, results from	
	PAS	4 hours
Pedagogy	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a	
	combination of some of these.	

<u>Std. Com. X AC-5</u> 14.02.2023

Reference/Readi	Text Books/References:
<u>ngs</u>	1. Nuclear condensed matter physics: nuclear methods and
	applications, G. Schatz and A. Weidinger, John Wiley; 1997.
	2. Solid-state spectroscopy, H. Kuzmany, Springer, 1998.
	3. Concepts of Modern Physics, A. Beiser, McGraw Hill Education, 6 th
	Edition, 2003
	4. Methods in Physical Chemistry, R. Schafer and P. C. Schmidt, Wiley-
	VCH Verlag GmbH & Co. 2012
Learning	Student will be known with
<u>Outcomes</u>	1. NMR, Mossbauer, neutron scattering, μSR, and PAS spectroscopic
	techniques
	2. Apply the techniques in experimental characterization of materials.
	(Back to Index) (Back to Agenda)

Programme: M. Sc. (Physics) (Solid State Physics)

Course Code: PHSR-506

Title of the Course: Introduction to Crystallography and X-ray Diffraction

Number of Credits: 2

Effective from AY: 2023-24

Prerequisites for	Basic knowledge of Solid State Physics / Solid State Chemistry	
the course:		
Objective:	This course is designed to familiarize students with general aspects of	
	symmetry, crystal structure and X-ray diffraction and use the basic	
	understanding in the characterization of materials.	
Content:	Introduction to Symmetry and Crystal Structures	7 hours
	Symmetry elements and their operations, Unit cell and crystal	
	systems, Bravais lattice, Point groups and space groups and their	
	stereographic representations, Herrmann-Mauguin and Schoenflies	
	notations, Group-subgroup-supergroup relationships, Equivalent	
	points, General and special positions, Deriving general positions of	
	space groups, Wyckoff notations and site symmetry, Shifting of origin	
	in lattice, Crystal directions and planes, Miller indices, Real space vs	
	reciprocal lattice, Close packed structures, Octahedral and	
	tetrahedral sites, Asymmetric unit, Concept of Z and Z', Metric matrix,	
	Deriving bond length and bond angles, Introduction to quasicrystals	
	and their importance	
	X-ray Scattering and Structure Factors	8 hours
	White and Characteristic X-rays, Laboratory and synchrotron X-ray	
	sources and their properties, Coherent and incoherent scattering,	
	Scattering of X-rays by an electron, atom and crystal, Atomic	
	scattering factor, Structure factor, Fourier transform, Electron	
	density, Laue's equations, Bragg's law, Ewald's sphere, Limiting	
	sphere and reflecting sphere, Bragg's law in reciprocal space,	
	Systematic absences, Deriving conditions for systematic absences,	
	Phase problem in crystallography, Solution to the phase problem,	
	Direct method, Patterson method, ∇F synthesis, L-P corrections,	
	Temperature factors, Absorption and extinction of X-rays, Friedel's	

	law and Absolute configuration determination, Anomalous	
	scattering, Laue method, X-ray detectors	
	Single Crystal X-ray Diffraction (SCXRD)	
	Pros and cons of single crystal and powder X-ray diffraction, Single	5 hours
	crystal growth and selection, Indexing of crystals, Data collection,	
	Data reduction, Space group determination, Structure solution and	
	refinement, Parameters/constraints/restraints, Anisotropic	
	displacement parameters (ADPs), Reliable (R) factor, Twining,	
	Treatment of disordered structures, Introduction structure	
	refinement software: OLEX2 and WinGX, Crystal structure analysis,	
	CIF preparation, Validation of structures,	
	Examples: X-ray data of aspirin and KHSO ₄	
	Powder X-ray Diffraction (PXRD)	
	Importance of PXRD method, Background of methodology,	5 hours
	Geometrical basis of PXRD, Sample preparation, background noise	
	determination, Indexing powder pattern, Le-bail profile fitting,	
	Rietveld refinement, phase identification and quantification,	
	Crystallite size and strain determination, Example: PXRD of CeO ₂	
	Total X-ray Scattering and Pair Distribution Function (PDF)	
	Short- and long-range order, Bragg and diffuse scattering concepts,	
	atomic scattering amplitude, Debye's scattering intensity, Total	5 hours
	scattering structure function, atomic PDF, Structure and reaction	5 110015
	mechanism, Examples: Ni and WO ₃ nanoparticles	
	meenanism, Examples. In and Weshanoparticles	
Pedagogy:	Lectures/tutorials/term	
Pedagogy:	Lectures/tutorials/term papers/assignments/presentations/self- study	
	study	
References/	study 1. Fundamentals of Crystallography, C. Giacovazzo, Oxford Science	
	study1. Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011.	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. Underneath the Bragg Peaks: Structural Analysis of Complex 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. 	
References/	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, T. Egami and S. J. L. Billinge, Pergamon Materials Series, 	
References/ Readings	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, T. Egami and S. J. L. Billinge, Pergamon Materials Series, Volume 16, 2012 	
References/ Readings	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, T. Egami and S. J. L. Billinge, Pergamon Materials Series, Volume 16, 2012 The student is expected to acquire basic understanding of 	
References/ Readings	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition, Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, T. Egami and S. J. L. Billinge, Pergamon Materials Series, Volume 16, 2012 The student is expected to acquire basic understanding of crystallography and X-ray diffraction in the solid state. 	
References/ Readings	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition,Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, T. Egami and S. J. L. Billinge, Pergamon Materials Series, Volume 16, 2012 The student is expected to acquire basic understanding of crystallography and X-ray diffraction in the solid state. Have basic knowledge of single crystal, powder X-ray diffraction 	
References/ Readings	 study Fundamentals of Crystallography, C. Giacovazzo, Oxford Science Publications, 2011. X-ray Structure Determination: A Practical Guide, G. H. Stout and L. H. Jensen, John Wiley and Sons, New York, 1989. Elements of X-ray Diffraction, B.D.Cullity and S. R. Stock, 3rd edition,Pearson Education, 2014. The Basics of Crystallography and Diffraction, C. Hammond, Oxford Science Publications, 2015. Jens Als-Nielsen and Des Mc Morrow, Elements of Modern X-ray Physics, 2nd Edition, Wiley 2011. Crystal Structure Determination, W. Massa, Springer, 2000. The Rietveld Method, R. A. Young, Oxford University Press, 1993. Underneath the Bragg Peaks: Structural Analysis of Complex Materials, T. Egami and S. J. L. Billinge, Pergamon Materials Series, Volume 16, 2012 The student is expected to acquire basic understanding of crystallography and X-ray diffraction in the solid state. Have basic knowledge of single crystal, powder X-ray diffraction and PDF methods. 	

Programme: M. Sc. (Physics) (Solid State Physics)
Course Code: PHSR-507Title of the Course: Magnetism in Condensed Matter Physics
Number of Credits: 2
Effective from AY: 2023-24

		1
Prerequisites for	Basic knowledge of Solid-State Physics / Solid State Chemistry	
the course:		
Objective:	This course is designed to familiarize students with general and	
	specific aspects of magnetic interaction in condensed matter and	
	methods of magnetic measurements.	
Content:	Magnetic structures and interactions	11 hours
	Diamagnetism, Paramagnetism, Ferromagnetism,	
	Antiferromagnetism, Effect of magnetic field, Ferrimagnetism,	
	Dipolar interactions, Exchange interactions – origin, direct and	
	indirect exchange, Indirect exchange in ionic solids, indirect exchange	
	in metals, Double exchange, Anisotropic exchange	
	Measurement of magnetic order	4 hours
	Magnetic fields, Atomic scale magnetism, Domain scale	
	measurements, Bulk magnetism measurements – magnetization and	
	magnetic susceptibility, Neutron scattering, other techniques	
	Order and broken symmetry	
	Broken symmetry, Landau theory of ferromagnetism, Heisenber and	8 hours
	Ising models (1D and 2D), Consequences of broken symmetry, Phase	
	transitions, Rigidity, Excitations – magnons, Domains, Domain walls,	
	Magnetocrystalline anisotropy, Domain wall width, Magnetization	
	process, Observation of domain wall, small magnetic particles,	
	Stoner-Wohlfarth model, Soft and hard materials	
	Magnetism in metals	
	Pauli paramagnetism, spontaneously spin-split bands, spin- density	
	functional theory, Landau levels, Landau diamagnetism	3 hours
	Competing interactions and low dimensionality	
	Frustration, Spin glasses, Superparamagnetism, One dimensional and	
	two-dimensional magnets – spin chains, Spinons Haldane chains,	4 hours
	Spin-Peierls transitions, spin ladders, Magnetoresistance, Magneto-	
	optics	
Pedagogy:	Lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a	
. сицеобу.	combination of some of these.	
References/Rea	1. Magnetism in Condensed Matter, Stephen Blundell,Oxford	
dings	University Press 2001.	
41153	2. Magnetism and magnetic materials, J. M. D. Coey, Cambridge	
	University Press, 2010.	
	3. Theory of Magnetism, D. C. Mattis, Springer Verlag, 1981.	
Loorning		
Learning	1. The student is expected to acquire basic understanding of	
Outcomes	Magnetism and magnetic interactions in solids.	
	2. Distinguish between different types of magnetic order and	
	magnetically frustrated states.	

3.	Have basic knowledge of different experimental methods o	f
	measuring magnetization at bulk, domain size and atomic level.	

Programme:M. Sc. (Physics) (Solid State Physics) Course Code: PHSR-508 Title of the Course:Microscopy Techniques for Condensed Matter Number of Credits: 2 Effective from AY: 2023-24

Prerequisites for	Basic knowledge of Solid State Physics,	
the course		
Objectives	Student will be able to gain knowledge about working principle,	
	instrumentation, material imaging and data analysis using imaging	
	techniques such as Transmission electron microscopy, scanning	
	electron microscopy and scanning probe microscopy.	
<u>Content</u>	Transmission Electron Microscopy (TEM)	10 Hours
	Interaction of electrons with matter, elastic and inelastic scattering,	
	secondary effects, Instrumentation: Electron sources, pumps and	
	holders, lenses, apertures, and resolution, Diffraction in TEM:	
	Selected area diffraction, specimen preparation, Imaging and	
	interpretation.	
	Scanning Electron Microscopy (SEM)	10Hours
	Electron beam -specimen interaction, Backscattered electrons,	
	Secondary electrons, SEM instrumentation, specimen preparation,	
	Image formation and interpretation, Image defects, data analysis	
	using Image J, Energy Dispersive Spectroscopy (EDS).	
	Scanning Probe Microscopy (SPM)	10Hours
	Introduction, principle, Atomic Force Microscope instrumentation	
	(AFM), Forces Between Tip and Sample, Technical Aspects of Atomic	
	Force Microscopy, Calibration of AFM Measurements, Static Atomic	
	Force Microscopy, Amplitude Modulation (AM) Mode in Dynamic	
	Atomic	
	Force Microscopy, Intermittent Contact Mode/Tapping Mode,	
	Frequency Modulation (FM) Mode in Dynamic Atomic Force	
	Microscopy—Non-contact Atomic Force Microscopy, AFM image	
	artefacts, Applications of AFM, Scanning Tunnelling Microscopy	
	(STM): Overview, Experimental Realization of Spectroscopy with STM,	
	Normalized Differential Conductance, Relation Between Differential	
	Conductance and the Density of States, Asymmetry in the Tunnelling	
	Spectra, Energy Resolution in Scanning Tunneling Spectroscopy,	
	Barrier Height Spectroscopy, Spectroscopic Imaging with examples,	
	Vibrational Spectroscopy with the STM, Principles of Inelastic	
	Tunneling Spectroscopy	
	with the STM, Examples of Vibrational Spectra Obtained with the STM	

References	 Transmission Electron Microscopy-A Textbook for Materials Science, David B. Williams and C. Barry Carter, Springer US, 2nd edition, 2009. Scanning Electron Microscopy and X-Ray Microanalysis, Joseph I. Goldstein, Dale E. Newbury, Joseph R. Michael, Nicholas W.M. Ritchie, John Henry J. Scott, David C. Joy, Fourth Edition, Springer Atomic Force Microscopy, Peter Eaton, Oxford University Press, 2010 Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy, Nano Science and Technology, Bert Voigtlander, Springer, 2015, Introduction to Scanning Tunnelling Microscopy, C. Julian Chan, Second Edition, Oxford Science Publication, 2007 Transmission electron microscopy of metals, Thomas G., John
Learning	Wiley, 1996. 1. The student will be able to understand basic principle,
Outcomes:	working, data capture and data analysis of TEM, SEM and SPM. 2. The student will also gain knowledge about applications TEM,
	SEM and SPM

Programme: M. Sc. (Physics) (Solid State Physics)Course Code: PHSR-509Title of the Course: Thin film PhysicsNumber of Credits: 2Effective from AY: 2023-24

<u>Prerequisites</u>	Basic knowledge of concepts in physics, chemistry, electrochemistry	,
for thecourse:	and experimental techniques.	
Objective:	To introduce various types of thin films techniques, growth	
	mechanisms and their applications.	
Content:	Introduction to Thin Films	4 hours
	Definition of thin films, Comparison of thin and thick films, Theory of	
	growth of thin films: Nucleation, condensation, Capillarity model,	
	Atomistic model, comparison of models, various stages of film	
	growth.	
	Physical, Electrochemical, Chemical Deposition Techniques	8 hours
	Overview of vacuum techniques, physical vapour deposition,	
	chemical vapour deposition, molecular beam epitaxy, sputtering,	
	electron –beam deposition, pulsed laser ablation.	
	Electrodeposition: deposition mechanism and preparation of	
	compound thin film, anodization, chemical bath deposition,	
	successive ionic layer adsorption reaction method (SILAR) method	
	Spray pyrolysis: deposition mechanism and preparation of compound	
	thin films, sol-gel method, hydrothermal method.	
	Characterization of Thin Films	10 hours

	Thickness measurement - Tolansky technique, Talystep (styles)	
	method, Quartz crystal microbalance, Stress measurement by optical	
	method, Gravimetric method.	
	Influence of thickness on the resistivity of thin films, Hall Effect &	
	Magneto-resistance in thin films, Fuch-Sondhemir theory, TCR and its effects.	
	Mechanical properties: Contact angle (hydrophobicity and	
	hydrophillicity), Adhesion and its measurement with mechanical and	
	nucleation methods, stress measurement by using optical method. Structural characterization: X-ray diffraction (GI-XRD)	8 hours
	Emerging Thin Film Materials and Applications	o nours
	Patterning techniques (Photolithography), Diamond Films, Thin film	
	resistors, capacitors, Junction devices (Diodes, Transistors, Solar	
	cells), ICs, Thin film sensors (gas and humidity), Thin films for	
	information storage (Magnetic and optical recording), Metallurgical	
	applications, Photo thermal converters, Optical coatings, Electro	
	acoustics and telecommunication	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a	
<u></u>	combination of some of these.	
References/ Readings	 Hand book of Thin Film Technology, Maissel and Glang, (McGraw Hill) 1970. 	,
	2. Thin Film Phenomena, K. L. Chopra (McGraw Hill), 1969.	
	3. Material Science of Thin Films, M. Ohring (Academic Press), 2 ^{nc} edition, 2001.	1
	 Thin Film Process, J. L. Vossen and Kern (Academic Press) 1st edition, 1991 	,
	 Vacuum Technology, A. Roth, 3rd updated and revised edition, (North Holland), 1990 	,
	 Properties of Thin Films, Joy George, 1st edition (Marcel and Decker), 1992 	
	7. Handbook of semiconductor electrodeposition, R.K. Pandey, S.N.	
	Sahu, S. Chandra, Marcel Dekker, 1996.	
Learning	5. Students will learn about different thin film techniques and growth	
<u>Outcomes</u>	mechanism involved.	
	6. Students will gain knowledge about characteristics and applications of thin film materials in various fields.	

Programme: M. Sc. (Physics) (Solid State Physics)

Course Code: P	HSR-510 Title of the Course: Physics of Glasses	
Number of Cre	dits: 2	
Effective from	AY: 2023-24	
Prerequisites	Should have basic knowledge of Solid-state Physics, Thermodynamic and	
for thecourse:	se: statistical mechanics	

Objective:	To introduce students to the Physics governing amorphous materials. The	
	course includes the preparation of amorphous materials, kinetics and	
	their characterization methods.	
<u>Content:</u>	Amorphous materials	5 hours
	Introduction, Definition, difference between crystalline and amorphous	
	materials, properties of amorphous materials, Examples of amorphous	
	materials, Methods of preparation of amorphous materials.	
	Glasses	
	Historical perspective of glass, Types of glasses. Refractive index, color,	3 hours
	density, porosity, transparency, viscosity	
	The Glass transition	
	The glass transition-change in volume with temperature, glass	8 Hours
	formation vs crystallization, Thermodynamic phase transition, Entropy,	
	Relaxation, Factors determining glass transition temperature, Theory of	
	glass transition, kinetics of glass formation,	
	Structure of glass	
	Network former, network modifier, Intermediates, Structure and	
	topology, Zachariasen random Network theory, coordination number,	9 hours
	radial distribution function, structural modelling	
	Experimental techniques	
	Microscopy, X-ray diffraction, small angle scattering, vibrational	
	spectroscopy, Raman spectroscopy, Thermal analysis.	
		5 hours
Pedagogy:	Lectures / tutorials/assignments. Sessions shall be interactive	
	in nature to enable peer group learning.	
References/	1. Physics of Amorphous materials, S R Elliott, Longman, Harlow, 1990	
Readings	2. The Physics of Amorphous materials, Richard Zallen, Wiley VCH, 2004.	
	3. Elements of X-ray Diffraction, B.D.Cullity and S. R.	
	Stock, 3rd edition, Pearson Education, 2014.Introduction to	
	the Theory of Thermal Neutron Scattering, G. L. Squires,	
	Cambridge University Press (1978)	
	4. Understanding solids: the science of materials, J D Richard Tilley,	
	Wiley publication, 2004	
	5. Infrared and Raman spectra of Inorganic and coordination	
	compounds, K Nakamoto, 6 th Edition Wiley Publication,2009	

Learning	On completion of this course, the students will get necessary foundation	
<u>Outcomes</u>	in amorphous materials that will prepare them for research in in glass	
	and other amorphous materials	

Programme: M. Sc. (Physics) Course Code: PHSR-511 Title of the Course: Nanomaterials for Energy Applications Number of Credits: 2 Effective from AY: 2023-24

Prerequisites	Basic knowledge of Solid State Physics/ Solid State Chemistry	
for thecourse:	basic knowledge of solid state ringsles/ solid state enemistry	
<u></u>		
Objective:	1. To emphasize the role of nanostructures in energy materials	
	research, their synthesis and their advantages in energy	
	extraction and storage.	
Content:	State-of-the-Art of Nanostructures in Solar Energy Research	4 hours
	Introduction, Motivations for Solar Energy, Nanostructures and	
	Different Synthesis Techniques, Nanomaterials for Solar Cells	
	Applications, Advanced Nanostructures for Technological	
	Applications, Theory and Future Trends in Solar Cells.	
	Metal Oxide Semiconductors and Their Nanocomposites	12hours
	Photovoltaic and Photocatalytic Applications	
	Introduction, Metal Oxide Nanostructures for Photovoltaic	
	Applications, TiO ₂ Nanomaterials and Nanocomposites for the	
	Application of DSSC and Heterostructure Devices,	
	ZnONanomaterials and Nanocomposites for the Application of DSSC	
	and Heterostructure Devices, Fabrication of DSSCs with Vertically	
	Aligned TiO ₂ nanotubes, ZnONanorods (NRs) and Graphene Oxide	
	Nanocomposite Based Photoanode, ZnONanocomposite for the	
	Heterostructures Devices, Fabrication of Heterostructure Device	
	with Doped ZnONanocomposite, Metal Oxide Nanostructures and	
	Nanocomposites for Photocatalytic Application, Future Directions.	
	Advanced Electronics: Looking beyond Silicon	
	Introduction, Limitations of Silicon-Based Technology, Need for	6 hours
	Carbon-Based Electronics Technology, Carbon Family, Electronic	
	Structure of Graphene and CNT, Synthesis of CNTs, Carbon Nanotube	
	Devices, Advantages of CNT- Based Devices, Issues with Carbon-	
	Based Electronics.	
	Energy storage devices	
	Definitions, Battery, Fuel Cells and supercapacitors	8 hours
	comparisons, Fundamentals of battery, design principle and operation	
	of fuel cell, types of fuel cells, conversion efficiency of fuel cell,	
	operating characteristics of fuel cells, Advantages and future	
	potential of fuel cells, limitation of fuel cell. Basic understanding of	
	supercapacitor working, principle and types of supercapacitors,	
	potential applications using different supercapacitor materials and	
	their limitations, coupling with Batteries and Fuel Cells.	
Pedagogy:	lectures/ tutorials /viva/ seminars/ term papers/assignments/	
	presentations	
Deferences	1 Advanced Energy Materials AshutashTiwari Courtiviste	
<u>References/</u>	1. Advanced Energy Materials, AshutoshTiwari, SergiyValyukh,	
<u>Readings</u>	John Wiley and Sons, 2014.	
	2. Organic nanostructured thin film devices and coatings for clean	
	energy, Sam Zhang, CRC Press (Taylor and Francis group) 2017.	
	3. Nanostructured thin films and coatings, Sam Zhang, CRC Press,	
	1st Edition, 2010.	
	4. Physical Properties of Carbon Nanotubes, R. Saito, G	

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

	 Dresselhaus, M S Dresselhaus, Imperial college Press, 2005. 5. Nanoscience and carbon nanotubes, A.S. Bhatia, Deep and deep publication, 2009. 6. Electrochemistry of porous materials, Antonio DominechCarbo, CRC Press (Taylor and Francis group) 2010 7. Computational methods for nanoscale applications, Tsukerman Igor, Springer, 2008. 8. Renewable Energy Sources, John Twidell, Tony Weir, Taylor and Francis group, 2nd Edition, 2006. 9. Non-Conventional energy Sources, G.D Rai, Khanna Publishers 2003. 10. Electrochemical supercapacitor for energy storage and delivery, fundamentals and application, Aiping Yu, Victor Chabot, Jiujun Zhang, CRC press, 2013 11. Materials for Supercapacitor Applications, M. AuliceScibioh, B. Viswanathan, Elsevier, 2020 	
Learning Outcomes:	Student will gain knowledge of different nanostructured energy materials and their use for diverse energy applicationsStudent will understand the basic principle of operation of nanostructured energy extraction/storage devices.	

(Back to Index) (Back to Agenda)

Programme: M. Sc. (Physics)(Computational Physics)

Course Code: PHCR-503Title of the Course: Simulation TechniquesNumber of Credits: 2 (1T+1P)Effective from AY: 2023-24

Prerequisites for	Basic knowledge of Computer programming, Quantum mechanics	
<u>the course:</u>	and Statistical mechanics.	
Objective:	Tointroducecomputational methods for simulating many-body	
	systems in condensed matter physics.	
Content:	Monte Carlo methods for classical spin systems	7T+4P=19
		hours
	Exact diagonalization of quantum lattice models	1T+2P=7
		hours
	The density matrix renormalization group and tensor network	
	methods	7T+4P=19
	inethous	
		hours
Pedagogy:	Lectures/Laboratorypracticals. Sessionsshallbeinteractive	
	innaturetoenable peergrouplearning.	
References/	1. Computational Physics, Second Edition, J. Thijssen,	
Readings	Cambridge University Press, 2012.	
	2. An Introduction to Computational Physics, Second Edition	
	Tao Pang, Cambridge University Press, 2006	

<u>Std. Com. X AC-5</u> <u>14.02.2023</u>

	 The density-matrix renormalization group in the age of matrix product states, U. Schollwock, Annals of Physics 326, 96192 (2011) 	
<u>Learning</u> Outcomes	Studentswilllearn methods computational methods for simulating many-body systems in condensed matter physics.	

(Back to Index) (Back to Agenda)

Programme: M. Sc. (Physics) Course Code: PHCR-504 Number of Credits: 2 Effective from AY: 2023-24

Title of the Course: Physics of Quantum Materials

Duous autoites fou	Chauld have studied as a dama whereign	
Prerequisites for	Should have studied modern physics	
the course		
<u>Objectives</u>	The aim of this course is to give a background relevant to research	
	in the physics of topological materials and low dimensional	
	structures and quantum devices.	
<u>Content</u>	Physics of topological materials:	12 hours
	Berry phase, Dirac fermions, Hall conductance and its link to	
	topology, and the Hofstadter problem of lattice electrons in a	
	magnetic field, Linear response theory, Topological phases of	
	matter such as Chern insulators and two- and three-dimensional	
	topological insulators. Angle, Spin, and Depth Resolved	
	Photoelectron Spectroscopy on Quantum Materials, Results of	
	topological insulators, HgTe, Bi ₂ Se ₃ family (Bi ₂ Te ₃ ,Sbi ₂ Te ₃)	
	topological semimetal Na ₃ Bi, quantum spin Hall insulator WTe ₂	
	Physics of low dimensional systems:	
	Concepts about heterostructures and resulting low dimensional	12 hours
	systems such as quantum wells, nanowires and quantum dots.	
	Quantum physics applied to such systems. Optical properties of low	
	dimensional systems (transition rules, polarisationetc). Electron	
	transport properties of 2D and 1D system. Quantised conductance	
	with Landauer-formalism. Scattering phenomena in 1D. Devices	
	based on quantum phenomena and Coulomb blockade.	
	Low dimensional quantum magnetism:	
	Dimers, Shastry-Sutherland network, Dimers, Bose-Einstein	
	condensation, Chains, spin liquids, phase transitions, spin gap, long-	
	range order, Ladders, Nersesyan-Tsvelik network,	8 hours
	Layers, triangular, Kagome and honeycomb lattices, Examples.	
<u>Pedagogy</u>	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a	
	combination of some of these.	
Reference/	Text Books/References:	
Readings	1. Solid State Physics, N. W. Ashcroft and N. D. Mermin, Cengage	
	Learning Publishers, 1976 1 st Edition.	
	2. Band Theory and Electronic Properties of Solids, John Singleton,	
	Oxford University Press, (2012)	

	materials such as topological materials and low-dimensional materials.
<u>Outcomes</u>	understanding and perspective on recently developed quantum
<u>Learning</u>	Students who complete this course will emerge with a broad
	 Quantum Materials, P. D. C. King et al. Chemical Reviews 121 (2021) 2816-2856. 8. Milestones of low-d quantum magnetism A. Vasiliev et al npj Quantum Materials 3 (2018) 8368
	 Topological Quantum Materials from the viewpoint of Chemistry, N. Kumar, S. N. Guin, K. Manna, C. Shekhar, C. Felser, Chemical Reviews 121 (2021) 2780-2815. Angle, Spin and Depth resolved photoelectron spectroscopy on
	 Phys. Rev. Lett. 95 (2005)226801 Simple Quantum Spin Hall Effect, Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802.
	 Topological Materials, B. Yan and S-C. Zhang, Rep.Prog. Phys. 75 (2012) 096501 Quantum Spin Hall Effect in Graphene, Kane C L and Mele E J,

Programme: M. Sc. (Physics) Course Code: PHCR-505 Number of Credits: 2 Effective from AY: 2023-24

Title of the Course: Superconductivity

Effective from AY: 2023-24		
<u>Prerequisites</u> for	Should have basic knowledge of electrodynamics, thermodynamics	
the course	and quantum mechanics, and solid state physics	
Objectives	To introduce an up-to-date experimental progresses and theories	
	of superconductivity	
<u>Content</u>	Basic Experimental Aspects	2 hours
	Introduction, Conduction in metals, Zero-resistivity, Meissner-	
	Ochsenfeld effect, Perfect diamagnetism, Type-I and type-II	
	superconductors, Application of low and high temperature	
	superconductors.	
	Superconducting Materials	10 hours
	Classical Superconductors: Elemental superconductors,	
	superconducting compounds and alloys, A15 compounds, Chevrel	
	phase compounds and their crystal structure,	
	experimental studies on these materials, Phase diagrams.	
	High-temperature Superconductors: La-Ba/Sr-Cu-O systems, Y-Ba-	
	Cu-O systems, Bi-Sr-Ca-Cu-O systems, Ti-Sr-Ca-Cu-O systems,	
	superconductivity in rare-earth and actinide compounds, organic	
	superconductors, MgB ₂ and Iron Arsenide systems, their crystal	
	structure, phase diagrams experimental studies on these materials,	
	Phase diagrams.	
	Theoretical Aspects	
	Phenomenological theories: Thermodynamics of superconducting	18 hours
	transition, expressions for critical temperature T_{C} , critical field H_{C} ,	

ondon's theory, Pippard non-local theory, Ginzburg-Landau
neory.
licroscopic theory: BCS theory, the electron-phonon interaction,
e Cooper pair formation, BCS ground state, Consequences of the
CS theory and comparison with experimental results, Coherence
the BCS ground state and the Meissner-Ochsenfeld effect.
ossible Mechanisms of high TC Superconductors
ctures/ tutorials/ seminars/ assignments/ presentations/ etc. or a
ombination of some of these.
ext Books/References:
Superconductivity, Superfluids and Condensates, James F.
nnett, Oxford Series in Condensed Matter Physics (2004).
Superconductivity, J.B. Ketterson and S.N. Song, Cambridge Univ.
ress (1999).
Introduction to Superconductivity, M. Tinkham, McGraw Hill
996).
Introduction to Solid State Physics, C. Kittel, Wiley, Eight Ed.
997).
Solid State Physics, H. Ibach and H. Luth, Springer (2012).
udent will
gain knowledge of different families of superconducting
aterials.
learn about theories on conventional superconductors and
ossible mechanisms of unconventional superconductivity.

Programme: M. Sc. (Physics)

CourseCode:PHCR-506Title of the Course: Advanced ParticlePhysicsNumber of Credits: 4

Effective from AY: 2022-23

Prerequisites for the course:	Introduction to Particle Physics (PHCG-504) and Nuclear and Elementary Particle Physics (PHTC-407), Quantum Mechanics (PHTC-405)	
Objective:	To introduce students the core principles in particle physics	
<u>Content:</u>	Feynman Calculus: Decays, scattering and cross-sections Fermi Golden rule, Golden rule for two particle decays and scattering of particles Two-body scattering in the COM frame Feynman rules for a toy theory and higher-order Feynman diagrams Quantum Electrodynamics: Dirac equation, solutions to the Dirac equation, and bilinear covariants Photon, Feynman rules for QED and examples	10 hours 12 hours

	Casimir's Trick, cross-sections and lifetimes, and renormalization Hadronproduction in e+e- collisions Elastic electron-proton scattering	
	Quantum Chromodynamics:FeynmanrulesforChromodynamicsColor factors, quark and antiquarkPair annihilation in QCDAsymptotic Freedom	10 hours
	Weak Interactions: Charged leptonic weak Interactions Decay of muon, neutron, and pion Charged weak interactions of quarks Neutral weak interactions	12 hours
	Electroweak unificationand chiral fermion states Weak isospin and hypercharge, electroweak mixing Gauge Theories: Lagrangian formulation of classical particle mechanics and Lagrangians in relativistic field theory	
	Local gaugeinvariance and Yang-Mills Theory Chromodynamics, Feynman rules and Mass term Spontaneous symmetry-breaking Higgs Mechanism Neutrino Oscillations:	12 hours
	Solar neutrino problem and neutrino oscillations Neutrino mixing and neutrino mixing matrix	4 hours
<u>Pedagogy</u> :	Lectures/tutorials/assignments. Sessions shall be interactive in nature to enable peer group learning.	
<u>References/</u> <u>Readings</u>	 Introduction to Elementary Particles by David Griffiths, 2nd edition, Wiley (2008) Quarks and Leptons, by F. Halzen and A. D. Martin, John Wiley (1984) Introduction to High Energy Physics by D. H. Perkins, 4th edition, Cambridge (2000) Modern Particle Physics by M. Thomson, Cambridge University Press India (2016) 	
<u>Learning</u> Outcomes	 Student will be able to Learn Feynman diagrams, rules and calculate cross- section for QED, QCD and Weak processes. Classify particles and fundamental forces. Learn about QED, QCD and Weak interactions in details Gain understanding of Lagrangian formulation and local gauge invariance, spontaneous symmetry- breaking and Higgs mechanics. 	

5. Understand neutrino oscillations and mixing.	
---	--

Programme: M. Sc. (Physics) (Computational Physics)

Course Code: PHCR-507 Title of the Course: Introduction to Parallel Programing using openMP

Number of Credits: 2 Effective from AY: 2023-24

Prerequisites	Students enrolling for this course should be comfortable with	
for the course:	programming in FORTRAN	
Objective:	This is an introductory course in shared memory parallel programming suitable for students working on parallel/HPC applications and interested in parallel programming.	
<u>Content:</u>	Parallel Programming with OpenMP What is Parallel Computing? Why would one make codes parallel? Shared and Distributed Memory OpenMP Who would use OpenMP?	8 hours
	How do you make your existing codes parallel? How does one make existing codes parallel? How does one compile code to run OpenMP? How does one decide if a loop is parallel or not? What are Private and Shared variables? How can one do Summations? Summary	8 hours
	Basic Linear Algebra using OpenMP and OpenMP tasks Numerical Integration Matrix Multiplication Solution of linear equations Solution of Ordinary differential equations	14 hours
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a combination of some of these.	
<u>References/</u> <u>Readings:</u>	 Introduction to Parallel Computing, Second Edition, AnanthGrama, Anshul Gupta, George Karypis, Vipin Kumar, Addison Wesley, (2003). OpenMP Tutorial from LLNL (https://computing.llnl.gov/tutorials/openMP Computer Programming in FORTRAN 90 and 95, V. Rajaraman, Prentice-Hall of India, New Delhi (1999). Fortran 95, Martin Counihan, UCL Press Limited University College London (1996). Fortran 95/2003: for Scientists and Engineers, Stephen Chapman, McGraw-Hill (2007). 	

Learning	Students will be able to understand the basics of parallel	
<u>Outcomes</u>	programming using OpenMP, understanding of numerical	
	methods to solve linear and non-linear algebraic equations, and	
	understanding of eigenvalue problems.	

Programme: M. Sc. (Physics)

Course Code: PHPE-406 Title of the Course: Methods of Experimental Physics Number of Credits: 4(1L+3P) Effective from AY: 2021-22

Prerequisites for	Nil		
the course:			
Objective:	This course seeks to develop understanding of principles of measurement of various fundamental quantities in a Physics laboratory.		
<u>Content:</u>	 Measurement of temperature Thermocouple, diode and semiconductor sensors, RTD, pyrometer, Langmuir probes, Measurement of resistance Two probe measurement and four probe measurement using constant current source and constant voltage source, Lock-in amp, discharge of capacitance Measurement of capacitance Measurement of radiation GM counter, ionization chambers, scintillation detector, solid state detectors, CCD detectors Measurement of magnetic flux Force methods, induction methods (including SQUID), Hall probe, indirect methods (MOKE) Measurement of frequency Resonance methods Estimation of errors in measurement. Precision and accuracy, estimation of errors, propagation of errors, general formula, least square fitting, non-linear least square 	1 hours 15 hours 1 hours 15 hours 1 hours 15 hours 15 hours 1 hours 15 hours 9 hours	++++
Pedagogy:	Lectures and Laboratory Experiments.		
<u>References/</u> <u>Readings</u>	 P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, McGraw Hill (Indian Edition) 2015. R. Srinivasan, K. R. Priolkar and T. G. Ramesh, A Manual on Experiments in Physics, Indian Academy of Sciences, 2018. 		
<u>Learning</u> Outcomes	 Understand the advantages and disadvantages of using a technique or probe for making scientific measurements. Demonstrate the ability to use selected pieces of measuring 		

	devices. 3. Estimate and translate errors and report quantities up to last significant digit
--	--

Annexure II

Programme: Ph.D (Physics) Course Code: Title of the Course: Research Methodology Number of Credits: 4 Effective from AY: 2022-23

Prerequisites for the course:	M.Sc. in Physics	
Objective:	The aim of course is to orient Pre-PhD students towards research by introducing them to research methodology and data analysis in science. The basic principles of different experimental methods and characterization techniques will be covered along with computer programming and numerical methods.	
Content:	UNIT I What is research?, Research methods and research methodology, Basic and applied research, Selection of a research topic, Literature survey, Internet as a medium of research, Reference collection, Assessing the current status, Hypothesis, Mode of approach, Actual investigation - experiment, analysis and results; Theoretical research, Critical thinking, Investigation, Survey, Ab initio, semi- empirical, empirical search; Inquiry, Quest, Exploration, Innovation (innovative ideas), Discovery and invention in science; Knowledge and creativity, Presenting a scientific seminar-oral report, Art of writing a research paper and thesis, Outline of a report, Layout of a research, quantitative measurement by Impact factor, h-index, Scientometry.	15 hours
	UNIT II Uncertainties in measurements: Measuring errors, Uncertainties, Parent and sample distributions, Mean and standard deviation of distributions, Binomial distributions, Poisson distribution, Gaussian or normal Error distribution, Lorentzian distribution; Approximation and errors in computing: Significant digits, Numerical errors, Modelling errors, Conditioning and stability, Convergence of iterative processes. Error analysis: Instrumental and statistical uncertainties, Propagation of errors, Application of error equations, Method of least squares, Statistical fluctuations, Probability tests, 🛛 2 test of a distribution. Curve fitting (Regression analysis); Least square fit to a straight line, Error estimation of the fitted parameters, Limitations of the least	15 hours

square method, Least squares fit to a polynomial, matrix solution, Goodness of a fit, Linear correlation coefficient, Multivariable correlations.

UNIT III (For Experimental students)

30 hours

1. Methods of Material Preparation:

Crystal growth, Single crystal, Zone melting, Epitaxy, Compaction and sintering, Methods of quenching, Sol-gel process, Deposition technique, Chemical analysis.

2. Vacuum Techniques:

Production and measurement of vacuum, Different types of vacuum systems and gauges, their working and limitations, Leak detection

3. Methods of Characterization:

X-ray diffraction, Raman Spectroscopy, IR Spectroscopy, UV-Visible spectroscopy, Mossbauer spectroscopy, Electrical transport and magnetic measurement techniques, Scanning and transmission electron microscopy, Differential scanning calorimetry – Principles, instrumentation and applications.

UNIT III (For Theory students)

30 hours

1. Computer Programming and Numerical Techniques:

C/Fortran/Python programming,

Finite differential calculus, Interpolation and extrapolation, Roots of equations, Solution of simultaneous Linear algebraic equation, Linear and non-linear least squares, Curve fitting, Numerical differentiation and integration, Fourier transform techniques, Numerical solution of ordinary differential equations, Matrix Eigen value problem, Monte Carlo and Maximum entropy method.

Test paper/Assignments/Presentations/Self-study

Pedagogy: References/ Readings

- 1. Research Methods for Science, M. P. Marder, Cambridge University Press, 2011.
- 2. Research Methodology Techniques and Trends Khanzode, V, APH Publishing Corporation House, 1995.
- 3. Research Methodology, S. Rajasekar, P. Philominathan, V. Chinnathambi, arXiv: physics /0609001v3 (2006)
- Data Reduction and Error Analysis for the Physical Sciences 3rd Ed. by Philip R Bevington and D Keith Robinson, McGraw – Hill (2003)
- 5. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd Ed. John R. Taylor, University Science Books (1997)
- 6. Preparative Solid State Chemistry, P. Haggenmuller, Academic Press, London (1972)
- 7. Crystal Growth, C. H. L. Goodman, Plenum Press, New York

	 Elements of X-ray Diffraction, B. D. Cullitty, Stock S. R. Prentice Hall, New Jersey (2001)
	9. Fundamentals of Vacuum Technology, A. Pipko, V. Pliskovsky, B. N. Korolev, Mir Publishers, Moscow (1984)
	 Thin Film Technology and Applications, K. L. Chopra, Tata McGraw-Hill, New Delhi (1985)
	11. An Introduction to Electron Microscopy Instrumentation, Imaging and Preparation, Andres Kaech (reading material)
	 Fundamentals of Molecular Spectroscopy, C. Banwell and E. M. McCash, Tata McGraw-Hill, New Delhi, (2000)
	13. Numerical Recipes in C, C. W. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Cambridge University Press (2008)
	 Introduction to numerical programming: a practical guide for scientists and engineers using Python and C/C++, Beu, Titus A., CRC Press (2015)
	 Fortran 90/95 for Scientists and Engineers, Stephen J. Chapman, McGraw-Hill Higher Education, (2004)
	16. Computer Programming in Fortran 90 and 95, V. Rajaraman, PHI Learning Pvt. Ltd. (1997)
Learning Outcomes:	 The students will get familiarize in research methodology and data analysis and expected to adopt it in their research work.
	 The students expand their knowledge in different experimental characterization techniques and theoretical methods.
	The student may show better planning, execution and presentation in their research.