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Abstract 

The marine nitrogen cycle is important ecologically as nitrogen is a 
nutrient required by phytoplankton, which as primary producers, form the 
basis of the marine food chain. Nitrate and nitrite ions are utilised as 
terminal electron acceptors for respiration by microorganisms during the 
unavailability of oxygen. The anaerobic processes of nitrogen 
transformation, such as denitrification and anammox are prolific in the 
oxygen minimum zones of the marine environment. Eukaryotic 
microorganisms or protists form a major part of picoplankton and 
nanoplankton in the pelagic water column of the oceans and seas. These 
also thrive and flourish in the marine sediments and are involved in 
various biogeochemical activities along with bacteria. These are known to 
be involved in the nitrogen cycle by various enzymes involved in 
denitrification, nitrification, and ammonification. The fungi, diatoms, 
dinoflagellates, and foraminifera are the most widely known eukaryotes to 
be involved in nitrogen cycling. These eukaryotic microorganisms belong 
to various supergroups in the tree of life and contribute to the marine 
nitrogen cycle in some way or the other. This chapter summarises the 
various eukaryotic microorganisms involved in the different processes of 
the nitrogen cycle, as well as those whose involvement is still ambiguous. 
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Introduction 

The marine environment sustains nitrogen (N) for the survival and growth 
of organisms in the form of organic and inorganic N. Organic and 
inorganic N moves through the environment undergoing various 
biotransformations from one form to another, either to be assimilated by 
the organisms or to be lost to the environment. The latter can occur in 
many ways, one of which is via the transport of marine snow into the deep 
sea. Marine snow (marine aggregates present in the pelagic water column) 
constitutes a rich habitat for microbial growth including protists (eukaryotic 
unicellular microorganisms), and hence are deemed hotspots for microbial 
activity (Azam and Long 2001, 496; Glud et al. 2015, 2026). The diversity 
of protists inhabiting an aggregate and the spatial distribution of protists 
over an aggregate (surface and inner parts of the aggregate, and aggregate-
water interphase) depend upon the substrate availability, and in turn, on 
the age of the aggregate (Artolozaga et al. 2000, 191, 193-94; Thornton 
2002, 155-56). Marine aggregates and their plumes are rich sources of 
nutrients, owing to the continuous biological processes occurring within 
them. These processes involve decay of organic matter formed due to the 
death of organisms associated with the aggregates, as well as the release of 
dissolved organic matter (DOM) by the living organisms within the 
aggregate (Azam and Long 2001, 497). Thus, the labile DOM that is 
utilised by microorganisms gets converted into the semi-labile form and 
further into the recalcitrant form which is buried into the deep sea for 
thousands of years and reaches the surface of the ocean only during 
thermohaline circulation (Jiao et al. 2010, 593). The sinking of the 
recalcitrant organic matter in the form of aggregates results in the 
sequestration of organic carbon in the deep sea and also serves as a 
medium for the loss of N from the pelagic water column into the greater 
depths. Furthermore, the action of various microbes that convert the 
organic or inorganic nitrate (NO3

−) into nitrous oxide (N2O) or dinitrogen 
(N2) via dissimilatory nitrate reduction to ammonium (DNRA) and 
denitrification, acts as another means for N loss through the water-air 
interface (Isobe and Ohte 2014, 4-12). 
 
For decades it has been thought that the processes that sustain the N cycle 
in the marine environment were carried out only by prokaryotes. Bacteria 
are known to be involved in every biotransformation process that governs 
the N cycle: N fixation, ammonification, nitrification, assimilatory nitrate 
reduction, DNRA, denitrification, and anaerobic ammonium oxidation 
(anammox) (Thamdrup 2012, 411). Ammonium-oxidising archaea and 
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denitrifying archaea have emerged as significant contributors of the 
marine N cycle and are responsible for the oxidation of ammonium (NH4

+) 
to nitrite (NO2

−) and reduction of NO3
− to N2, respectively (Cabello et al. 

2004, 3527, 3533-36). But the role of microeukaryotes in N cycling was 
not reviewed until their presence was detected in the oxygen-deficient 
zones of the marine water column which led researchers to speculate their 
probable involvement in the marine N cycle. Moreover, some of these 
harbour endosymbiotic N fixing prokaryotes that provide their eukaryotic 
host with bioavailable organic N (Kneip et al. 2007, 1).  
 
Protists are an important component of the microbiota of the redoxclines, 
which form nitrate-sulphide interfaces at an intermediate layer in the water 
column possessing strong vertical redox gradients generated due to 
stratification which prevents the mixing of the upper oxygenated and 
anoxic bottom waters (Hannig et al. 2007, 1336, Wylezich and Jürgens 
2011, 2939). This has been proved by classical microscopy and 18S rDNA 
surveys. These eukaryotes regulate the abundance and productivity of the 
prokaryotes in these regions (Anderson et al. 2013, 1580). They form an 
important constituent of the biota in marine waters representing almost 
half of the biomass in surface waters and about a quarter in subsurface 
waters (Fukuda et al. 2007, 203; Suttle 2007, 803). These microorganisms, 
though collectively commonly known as protists or protozoa, fall into 
various supergroups in the tree of life (Adl et al. 2012, 429-93). The 
classification of these microorganisms into different eukaryotic 
supergroups is under continuous revision, mainly due to their diverse 
characteristics (Adl et al. 2012, 429; Pawlowski 2013, 40; Burki 2014, 1). 
An overview of their classification is shown in Figure 9-1 (Adl et al. 
2012). The intracellular storage of NO3

− has been observed in many of the 
microeukaryotes, such as foraminifera, gromiids, diatoms, dinoflagellates, 
fungi, haptophytes, and chlorophytes. The intracellular concentration of 
NO3

− even exceeds the concentration in the surrounding pore water (Kamp 
and Stief 2017, 1). More than 60 mmol L-1 NO3

− is accumulated by free-
living, as well as aggregate-associated diatom Skeletonema marinoi 
(Kamp et al. 2016, 1). Foraminifera store up to 463 mM, gromiids up to 
567 mM, haptophytes up to 14 mM, chlorophytes up to 4.9 mM, 
dinoflagellates up to 1.8 mM, and fungi up to 0.4 mM NO3

− intracellularly. 
The NO3

− uptake rates in six different species of diatoms and 
dinoflagellates range from 18 to 310 fmol cell-1 h-1 at ambient NO3

− 

concentrations of < 40 µM (Lomas and Gilbert 2000, 905). This 
intracellular NO3

− is used up when denitrification is triggered due to 
anoxic conditions. Diatoms also utilise NO3

− for assimilatory NO3
− 
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reduction (Lomas and Glibert 2000, 909; Kamp et al. 2011, 5649-50). The 
intracellular NO3

− is either reduced nutritionally for growth and 
biosynthesis, or non-nutritionally releasing NO2

−, NH4
+, or dissolved 

organic nitrogen (DON) in the surrounding waters (Lomas and Gilbert 
2000, 908). Denitrification in these systems is generally mediated by the 
bacterial endosymbionts, mostly the Gamma-Proteobacteria, within these 
eukaryotes (Bernhard et al. 2004, 955). Nitrate respiration in eukaryotes 
was first reported in a protozoan Loxodes found in freshwater lakes. This 
was catalysed by the nitrate reductase (NAR) enzyme found in their 
mitochondria. Certain diatoms and dinoflagellates also accumulate NH4

+ 
intracellularly (Lomas and Gilbert 2000, 906).  
 

 
 
Figure 9-1: The tree of life for the protists as modified from Adl et al. (2012). The 
thick lines show the supergroups and the groups within. The thin lines are the 
incertae sedis groups as reported by Adl et al. (2012). The tree only shows 
phylogenetic placement irrespective of the time of evolution. Hence the length of 
the lines may be ignored.  
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The contribution of microorganisms belonging to the various eukaryotic 
supergroups to the N cycle is discussed further (Burki 2014, 1) (Tables 9-1 
and 9-2). 

Opisthokonta 

This supergroup consists of choanoflagellates, ichthyosporeans, 
microsporidians, and fungi. Choanoflagellates are heterotrophic 
nanoflagellates (HNF) that are bacterivorous in nature. These are the 
normal inhabitants of the oxic water column (Vørs et al. 1995, 590, 598; 
López-García et al. 2001, 604; Leakey et al. 2002, 333), but of late, are 
found in hypoxic and sulphidic water masses too (Wylezich and Jürgens 
2011, 2939; Wylezich et al. 2012, 1). Earlier, these had been detected by 
targeted environmental sequencing in the oxygen minimum zones (OMZ) 
of the Arabian Sea (Jebaraj et al. 2010, 406). Ichthyosporeans normally 
inhabit the digestive tract of marine invertebrates and are also known to be 
pathogenic to fishes. These can survive under anoxic conditions owing to 
the presence of the pfl gene which codes for an oxygen-sensitive enzyme, 
pyruvate formate lyase, which generates formate and acetyl-CoA non-
oxidatively from pyruvate and CoA. Microsporidians are obligate 
intracellular parasites of both marine and freshwater organisms. They 
infect organisms while switching between habitats, such as fish, 
crustaceans, nematodes, etc. from shallow sediments to methane seeps in 
the deep sea (Ironside et al. 2008, 355; Ardila-Garcia and Fast 2012, 1544; 
Sapir et al. 2014, 1; Stentiford et al. 2016, 336). These amitochondriate 
microorganisms are characterised by the presence of a highly reduced 
organelle, the mitosome that is devoid of enzymes for oxidative 
phosphorylation and the Kreb’s cycle thus, rendering these 
microorganisms anaerobic (Burri et al. 2006, 15916). Microsporidians are 
now classified under Phylum Microsporidia of Kingdom Fungi.  
 
Fungi are ubiquitous in the terrestrial environment and are now also 
known to be occurring in the freshwater and marine environments. These 
saprophytes can survive harsh conditions by their spores. Marine 
environments harbour yeast, as well as filamentous forms of these 
microorganisms (Raghukumar 2006, 388, 396; Kutty and Philip 2008, 
465). They are also found in the OMZ of the water column and hence 
thought to be playing a role in denitrification (Cathrine and Raghukumar 
2009, 100). Fungi are capable of reducing NO2

− to NO (nitric oxide), N2O, 
and N2 under varying oxygen levels (Shoun et al. 1992, 277). This is 
mediated by nirK [Cu containing nitrite reductase (NIR)] and p450nor 
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[cytochrome P450 nitric oxide reductase (NOR)] located within the 
mitochondria (Shoun et al. 2012, 1186). The genes for these denitrifying 
enzymes were first identified in Fusarium oxysporum and Cylindrocarpon 
tonkinense (Morozkina and Kurakov 2007, 544). Fungi also carry out 
ammonia (NH3) fermentation during complete anaerobic conditions (Zhou 
et al. 2002, 1892) which is similar to the DNRA pathway seen in some 
bacteria (Giblin et al. 2013, 124). The NAR in fungi is similar to that of E. 
coli and other denitrifying bacteria and is also involved in the DNRA 
pathway (Morozkina and Kurakov 2007, 546). Many denitrifying fungi 
have the capacity for co-denitrification, that is, to produce N2 or N2O from 
NO2

− along with other N substrates under denitrifying conditions. 
Nitrogen is produced from amines, and N2O is produced from imines or 
azide (Shoun et al. 2012, 1188).  
   
 

Table 9-1: The various pathways of the nitrogen cycle observed in 
different eukaryotic groups 

 

Supergroup Pathway Examples (with 
significance) 

Opisthokonta Denitrification, DNRA, 
Co-denitrification 

Fungi (saprophytes, 
pathogens) 

Amoebozoa Ammonia oxidation, 
Denitrification 

Amoebae (shape 
microbial communities) 

Stramenopiles (of 
SAR) 

Intracellular nitrate 
storage, DNRA 

Diatoms 
(phytoplankton) 

Nitric oxide formation 
from nitrite, 

Denitrification 

Oomycetes (infectious 
zoosporic organisms) 

Alveolates (of 
SAR) 

Nitrate assimilation in 
cytosol, Nitrate 

reduction 

Dinoflagellates (causal 
agents of harmful algal 

blooms-HABs) 

Rhizaria (of SAR) 

Store nitrate 
intracellularly, 

Denitrification by 
endobiotic bacteria 

Gromiids under Cercozoa 
(dominant component of 
benthos in the deep sea) 

Denitrification 

Radiolarians, 
Foraminifera (important 
for micropaleontology 

studies) 
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Table 9-2: The various pathways of the nitrogen cycle proposed in 
different eukaryotic groups 

 

Supergroup Group Evidence Probable 
pathway Examples 

Opisthokonta 

Choanoflagellates 

Hypoxic, sulphidic 
waters; Fewer 

mitochondria with 
tubular cristae, use 
alternate electron 

acceptors (fumarate, 
nitrate) 

Denitrification 

Monosiga, 
Choanoeca, 

Diaphanoeca, 
Codosiga 

Ichthyosporeans 

Survive anoxic 
conditions due to 
pyruvate formate 

lyase 

Denitrification 

Pseudoperkinsus, 
Sphaeroforma, 

Anurofeca, 
Ichthyophonus, 

Amoebidium 

Microsporidians Presence of 
mitosome Denitrification 

Microgemma, 
Microsporidium, 

Thelohania, 
Nadelospora, 

Perezia 

Excavata 

Euglenozoa, 
kinetoplastids, 

bodonea, 
heteroloboseids 

Presence of 
hydrogenosomes Denitrification 

Euglena, 
Trypanosoma, 

Naegleria, 
Pharyngomonas 

Archaeaplastida Prasinophytes 

Assimilate ammonia 
through multiple 

ammonium 
transporters 

Ammonification Micromonas 

Stramenopiles 

Oomycetes 
Nitric oxide 

formation by nitrite 
reductase 

Denitrification 

Eurychasma, 
Ectrogella, 
Lagenisma, 

Pythium  

Raphidophytes Blooms lead to 
oxygen depletion Denitrification Heterosigma, 

Chattonella 

Labyrinthulomycetes 
Anoxic waters and 
suboxic to anoxic 

sediments 
Denitrification 

Schizochytrium, 
Thraustochytrium, 
Aplanochytrium, 

Labyrinthula, 
Aurantiochytrium 

Bicosoecids 

Oxygen-depleted 
waters and 

sediments; synthesise 
ectoine that 
accelerates 

denitrification 

Denitrification 
Cafeteria, 

Halocafeteria, 
Caecitellus, Rictus 

Prymnesiophytes Coccolithophores, 
haptophytes 

Harmful blooms lead 
to loss of oxygen and 

sediment nitrate 
Denitrification 

Emiliana, 
Phaeocystisi 
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Amoebozoa 

Organisms belonging to this supergroup are found in the NH3-oxidising 
activated sludge systems and hence, can carry out the process of NH3 
oxidation (Moreno et al. 2010, 2203, 2205). The gene involved in 
denitrification, nirK, has been identified in organisms belonging to 
Amoebozoa. Genus Hartmannella is a widespread organism in anoxic 
sediments of waterlogged agricultural fields (Wang et al. 2017, 2). These 
organisms are thus, quite likely to be involved in denitrification and NH3 
oxidation in anoxic marine systems like the OMZ. 

Excavata 

The heteroloboseids in this supergroup effectively switch between the 
amoeba and flagellate stages. Some of them are obligate flagellates. This 
group generally consists of aerobic organisms but also comprises 
obligately anaerobic or microaerophilic organisms. These can be found in 
brackish habitats and inland salt marshes (Pánek et al. 2014, 2281). This 
supergroup includes euglenozoa, kinetoplastids, bodonea, and other 
flagellates which are either, free-living in freshwater and marine habitats 
or occur as parasites or symbionts to marine organisms/vertebrates. The 
organisms possess hydrogenosomes which are membrane-bound 
organelles similar to mitochondria. Hydrogenosomes produce hydrogen 
and ATP by substrate-level phosphorylation and help generate energy 
under anaerobic conditions, (Mentel and Martin 2008, 2719). 

Archaeaplastida 

This group comprises plants, green algae, and red algae. The sequences 
belonging to protists in this supergroup have been identified by 
metagenomic analyses of samples from extreme habitats, such as the 
subglacial lakes at Antarctica, and the glacial cryoconite holes in the 
Arctic glaciers and Antarctica (Cameron et al. 2012, 254; Rogers et al. 
2013, 629). In addition to the sequences of these protists, the sequences 
belonging to nitrifying, NO3

− reducing, and anammox bacteria were also 
revealed, indicating the occurrence of these activities in that environment. 
Micromonas pusilla is the picoeukaryotic green alga (0.2-3 µm cell size) 
under prasinophytes belonging to this supergroup. It is one of the most 
abundant picoplankton found in the surface waters of oceans worldwide 
and more often in the temperate coastal environments (Vaulot et al. 2008, 
808). Their chloroplasts possess a peptidoglycan cell wall (Van Baren et 
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al. 2016, 2) and they show a mixotrophic mode of nutrition during 
conditions of low nutrient availability (McKie-Krisberg and Sanders 2014, 
1953). A Micromonas-like genome was found to be associated with the 
Phaeocystis blooms in the Amundsen Sea, Antarctica and these were 
found to assimilate NH3 through multiple NH4

+ transporters almost twice 
as much as that of NO3

− or urea (Cochlan and Harrison 1991, 129; 
Delmont et al. 2015, 1). 

SAR (Stramenopiles, Alveolates, and Rhizaria) group 

Stramenopiles 

This group was formerly classified as Kingdom Chromista and includes 
diatoms, brown algae, golden algae, oomycetes, raphidophytes, and 
labyrinthulomycetes. Brown algae and golden algae are multicellular 
seaweeds seen on tropical and temperate beaches. During certain stages of 
their growth, they occur as unicellular forms, such as spores or gametes 
that spread throughout the water. 

Diatoms  

These form the basis of the marine food chain owing to their ability to 
carry out primary production and are thus, important ecologically (Fig. 9-
2). Therefore, they are found abundantly in surface waters to fulfil their 
requirement of sunlight. They also occur in large numbers in the 
subsurface region forming the secondary chlorophyll maxima. Oxygen 
minimum zones prevail below the photic zone where diatoms would have 
been thought not to exist due to the absence of light which is the essential 
requirement for primary production. But diatoms are found in many OMZ 
all over the world (McCreary Jr. et al. 2013, 15; Parris et al. 2014, 4-5). 
These tend to form blooms in the surface waters during favourable 
conditions, such as the abundance of nutrients, favourable light, and 
temperature. When these blooms senesce, their cells sink and are exposed 
to decay. Therefore, they also form an important component of marine 
snow (Thornton 2002, 149). Fossilised diatoms are used to construct the 
paleoclimate and are also found in the polar region (Miettinen et al. 2018). 
Diatoms store NO3

− intracellularly as they grow to use it up later in case of 
stress conditions (Kamp et al. 2011, 5649). Stress could be due to the 
depletion of surface nutrients leading to the decay in phytoplankton 
blooms and thus, their sinking to the deep. As the diatom cells start 
sinking, they pass from the surface oxic waters to suboxic and anoxic 
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waters. Their transition between these waters also includes phases of 
darkness. Such stress conditions force their conversion to the resting stage 
to survive. In this instance, they use up the intracellular NO3

− pool to 
sustain cell metabolism during the transition and temporary stay in anoxic 
layers. The diatoms are also capable of DNRA (Kamp et al. 2013, 1) 
which was earlier thought to be an exclusively bacterial process. This may 
be possible due to the incorporation of prokaryotic genes within the 
diatom genome by horizontal gene transfer (Bowler et al. 2010, 333, 337). 
The DNRA activity of diatoms also releases NH4

+ in the OMZ. This NH4
+ 

in the anoxic waters is the substrate for anammox which is responsible for 
up to 50% of the N loss from the ocean (Kamp et al. 2016, 1, 4; Stief et al. 
2016, 2, 8). 
 

 
 
Figure 9-2: A microphotograph of the diatom Chaetoceros sp. as viewed under a 
bright field microscope with a 10X magnification. (Picture courtesy: Dr. Ravidas 
Naik) 

Oomycetes 

These are the water molds that cause infection in fish, crustaceans, 
nematodes, and algae (Beakes 2009, 11, 15, 16; Strittmatter et al. 2011, 
259). These produce NO as an offensive strategy in plants during an 
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infection (Arasimowicz-Jelonek and Floryszak-Wieczorek 2016, 1). The 
NO leads to plant cell death and accelerates the spread of infection. The 
production of NO is known to occur from NO2

− by the action of NIR 
produced by the nir gene (Arasimowicz-Jelonek and Floryszak-Wieczorek 
2014, 407). Cell lysis during viral infections or natural death may release 
this NO in the environment to be utilised by other microorganisms. Under 
anoxic or suboxic conditions, these organisms may also cause complete 
denitrification to N2. 

Raphidophytes 

These are unicellular algae found in marine and freshwater systems. Some 
species produce blooms on surface waters. They contribute to the red tides 
and subsequently, loss of fish populations (Padmakumar et al. 2012a, 1). 
Examples include Heterosigma akashiwo and Chattonella marina. These 
blooms deplete the oxygen in the underlying waters forcing these 
microeukaryotes to use endogenously produced electron acceptors, such as 
fumarate (Müller et al. 2012, 446-453). These organisms may also utilise 
NO3

− as a terminal electron acceptor in the absence of oxygen, a process 
not yet investigated in them.  

Labyrithulomycetes  

These protists are known to be obligately marine and aerobic (Fig. 9-3). 
However, environmental sequencing has revealed their occurrence in the 
anoxic Cariaco Basin (off the north-central coast of Venezuela) at 270 and 
340 m depth and in the anoxic Berkeley Aquatic Park, California (Stoeck 
et al. 2003, 5661-62; Danovaro et al. 2011, 8325). Recently, they were 
isolated from the sediments of the Arabian Sea where the dissolved 
oxygen concentrations approached near-zero levels. These occurred as 
frequently as 6-81% in the suboxic to anoxic sediments (Cathrine and 
Raghukumar 2009, 102). These sediments were identified to harbour 
anaerobic denitrification by fungi. Hence, it could be speculated that these 
protists too may have the capability to carry out denitrification to survive 
in such regions. These protists are generally called thraustochytrids, with 
labyrinthulids and aplanochytrids as their sister groups. These 
characteristically produce polyunsaturated fatty acids especially ω-3 
docosahexanoic acid (DHA) and eicosapentanoic acid (EPA), 
intracellularly, and in large amounts. Since the fatty acid biosynthetic 
pathways require oxygen, the presence of these organisms in regions 
devoid of oxygen, was mystifying. It is now known that the synthesis of 
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polyunsaturated fatty acids (PUFA) occurs by two distinct pathways, one 
aerobic and the other anaerobic involving PUFA synthase enzyme 
(Matsuda et al. 2012, 1210). Hence these organisms can survive anaerobic 
conditions. 
 

 
 
Figure 9-3: A microphotograph of a thraustochytrid isolate grown on an agar 
medium (Modified Vishniac medium). The photograph shows spherical cells of 5-
15 µm size and with biflagellate zoospores (marked by a black arrow). The 
zoospores are ellipsoidal to oval in shape depending on the plane in which they 
were captured during their flagella-aided motion. The thraustochytrid cells produce 
rhizoid-like structures called ectoplasmic net elements (marked by a white arrow) 
which are extensions of the plasma membrane. These structures aid in the 
attachment to the substratum and the secretion of extracellular enzymes and are a 
characteristic feature of Labyrinthulomycetes. 

Biocosoecids  

These are heterotrophic nanoflagellate voracious bacterivores and include 
Cafeteria, Halocafeteria, Caecitellus, and Rictus. These are mostly found 
in the coastal waters, hypersaline habitats, and sediments with low oxygen 
(Park and Simpson 2010, 1173; Yubuki et al. 2010, 264; Raja et al. 2017, 
266). Their sequences have also been identified from the oxygen-depleted 
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waters of various estuaries and fjords (Zuendorf et al. 2006, Kolodzieg and 
Stoeck 2007, 2723; 485; Stoeck et al. 2010, 27). Their presence in anoxic 
waters and their tendency to phagocytose bacteria may, therefore, prove 
important in N cycling in such anoxic regions which harbour various 
nitrifying/denitrifying bacteria as these may fall prey to the bicosoecids 
thus, causing an imbalance in the cycle. They produce ectoines which act 
as stress protectants and as nutrients that mediate various 
ecophysiologically important processes in food webs when released in the 
environment (Czech et al. 2018, 39, 42). 

Alveolates 

Dinoflagellates, which are one of the main players of the harmful algal 
blooms, belong to this group (Fig. 9-4). They take up NO3

− and store it in 
the cytosol, as well as reduce it via NAR (Dortch and Maske 1982, 299). 
They never fall devoid of N due to diurnal vertical migration. In the 
presence of NH4

+, they do not take up NO3
− (Dagenais-Bellefeuille and 

Morse 2013, 4).  
 

 
 
Figure 9-4: A microphotograph depicting the aboral side view and the top view of 
the dinoflagellate Noctiluca sp. as observed under a bright-field microscope with a 
10X magnification. (Picture courtesy: Dr. Ravidas Naik) 
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They form symbiotic associations with corals, to whom they supply N rich 
organic matter fixed autotrophically within their cells. They also absorb 
the N lost by the animal host. These endosymbionts, also called 
zooxanthellae thus, drive the microscale N cycle in the reef ecosystem 
(Tanaka et al. 2018, 1). Warm temperatures result in their expulsion from 
the corals causing coral bleaching and considerable loss of the N reserves 
from the ecosystem (Tanaka et al. 2018, 7). Some dinoflagellates also live 
in association with denitrifying bacteria, such as Labrenzia which possess 
nos genes for nitrous oxide reductase (NOS) (Wyman et al. 2013, 2670-
72). Phylum Chromerida also includes photosynthetic protozoa that are 
endosymbiotic within a few corals and hence, may play a role in the N 
cycle (Cumbo et al. 2013, 237). 

Rhizaria  

This group of SAR includes cercozoans, radiolarians, and foraminifera 
(Fig. 9-5). Sequences of cercozoans which include amoebae and 
flagellates have been observed in the anoxic basins of Gotland Deep in the 
central Baltic Sea, the Mediterranean Sea, and the OMZ of the Arabian 
Sea (Marie et al. 2006, 403; Cathrine and Raghukumar 2009; Stock et al. 
2009, 267, 273-278). Hence, they are likely to carry out denitrification 
under anoxic conditions. The gromiids under Cercozoa store NO3

− 
intracellularly and possess endobiotic bacteria that carry out denitrification 
(Høgslund et al. 2017, 1). These resemble the foraminifera in producing 
organic tests (hard external shells). The radiolarians consisting of 
Polycystinea and Acantharea form the majority of microfossils; the former 
containing silica and the latter a strontium sulphate skeleton. Their tests 
are a robust source of organic N and thus, N isotope studies of these 
microfossils help to extract the palaeoclimate which reflects the prevailing 
conditions at the sea surface during the period of their survival. Based on 
such studies the radiolarians were thought to have witnessed 
denitrification in the equatorial Pacific and the Southern Ocean in the past 
(Robinson et al. 2007, 201; Robinson et al. 2015, 912). Benthic 
foraminifera are also important in palaeoceanographic studies due to their 
high potential for fossilisation and the presence of calcareous tests. They 
occur in a wide range of oxygen concentrations including OMZ and 
anaerobic conditions. The varying oxygen levels determine their varying 
distribution (Panchang et al. 2006, 235). They are also infaunal and show 
higher assimilation within the sediments on par with the meiofauna under 
suboxic conditions.  
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Figure 9-5: Scanning electron microphotographs of foraminifera (a) Bulimina 
marginata and (b) Brizalina striata. (Picture courtesy: Dr. Rajani Panchang) 
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They were previously not known to tolerate anoxic conditions. But, of late, 
they have also been found to survive in anoxic-dysoxic environments by 
respiring NO3

− and forming N2 by denitrification (Piña-Ochoa et al. 2010a, 
1148, 1150). Their denitrification rates were found to be very significant 
in the Peruvian OMZ. Up to 50% of benthic denitrification was attributed 
to these organisms in certain regions in the OMZ (Glock et al. 2013, 4767, 
4772). Globobulimina pseudospinescens was the first foraminifer to be 
found to carry out denitrification. This species produces a shell with 
multiple chambers and hence deemed multilocular. Allogromid foraminifera 
are unilocular tectinous species that also perform denitrification. They are 
known to store NO3

− intracellularly, either transporting from the outside 
environment or producing it intracellularly (Risgaard-Petersen et al. 2006, 
94; Bernhard et al. 2012, 967). Recently, it has been discovered that they 
survive anoxic-dysoxic conditions by their symbiotic association with 
denitrifying bacteria, archaea, or kinetoplastidy (by sequestering algal 
plastids). These even calcify in an anoxic environment (Nardelli et al. 
2014, 4029; Meilijson et al. 2016, 78). The denitrification ability of the 
foraminifera is attributed to their endobionts and this was identified by 
GeneFISH using the nirK probe. The number of endobionts required to 
give rise to measurable denitrification rates is in the order of 6-23 x 103 
cells (Risgaard-Petersen et al. 2006, 94; Bernhard et al. 2012, 964-968). 

Prymnesiophytes 

Also called haptophytes, these organisms are responsible for harmful ocean blooms 
which adversely affect marine productivity and consequently, the global carbon cycle 
and climate. The blooms of Phaeocystis spp. are particularly a nuisance due to the 
ensuing foam formation on the beach. Emiliana huxleyi is a coccolithophore having a 
calcium carbonate skeleton, whose blooms are so big that they can be seen from 
space. The blooms of both these organisms are significant from an ecological point 
of view because as the blooms grow they block sunlight penetration and cause 
oxygen depletion, thereby instigating a series of events leading to eutrophication and 
subsequent death of the water body. E. huxleyi has been found to utilise N sources 
other than NO3

−, such as amino acids, amides, urea, purines (like 
hypoxanthine), and especially NH4

+ produced by the blooms and hence, 
can bloom even in NO3

−-limited waters (Lessard et al. 2005, 1020-22). 
Phaeocystis spp. and E. huxleyi both affect the sulphur cycle due to the 
production of dimethylsulphoniopropionate (DMSP) which is converted to 
dimethyl sulphide (DMS). DMS is volatile and cloud-inducing. Moreover, 
E. huxleyi causes an upsurge in calcium carbonate deposition in sediments. 
Over the past millions of years, this has given rise to chalk cliffs, such as 
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those seen on the island of Rügen in the Baltic Sea (Tyrrell et al. 2008, 
486). When these blooms collapse due to viral infection, they significantly 
affect the marine ecosystem because of the increase in microbial activity 
which depletes the oxygen in the water column (Danovaro et al. 2011, 
997-1000). The formation of suboxic to anoxic conditions during bloom 
decay may prove important to the N cycle. Under the conditions of N 
depletion, the production of E. huxleyi viruses is delayed and the burst size 
of P. pouchetii viruses is consequently reduced (Danovaro et al. 2011, 
1001). The loss of sediment NO3

− due to denitrification is a common 
phenomenon as P. pouchetii competes with the spring diatom blooms 
(Jiang et al. 2014, 36-37). 

The contribution of microeukaryotes to the major 
processes in the nitrogen cycle 

Ammonification 

Ammonia is found to be assimilated by organisms belonging to 
Archaeaplastida through multiple NH4

+ transporters. The DNRA activity 
of the diatoms also gives rise to NH3 from NO3

− in the water column. 
Nitrogen fixation also gives rise to NH4

+. 

Nitrogen fixation 

The colony-forming cyanobacteria fix atmospheric N2, and 50% of the 
nitrogen is released as NH4

+ in the surrounding water and transferred to 
the diatoms and copepods. This transfer takes place in a short turnover 
time. Thus, the newly fixed N may reach the shallow sediments by fast 
export through faecal pellets and marine snow. Thus, cyanobacteria may 
contribute to the transfer of N into the food web and impact the 
biogeochemical processes in short time scales (Adam et al. 2016, 450, 
457). 
 
Solenicola setigera is a stramenopile living in a symbiotic association with 
the diatom Leptocylindrus mediterraneus in the open ocean waters and 
even in suboxic waters (Padmakumar et al. 2012b, 97). The 
cyanobacterium, Synechococcus, which also fixes N2, forms an 
endosymbiotic relationship with the stramenopile Solenicola (Carpenter 
and Foster 2007, 14). The cyanobacterium, Richelia intracellularis is 
symbiotic with the diatoms Rhizosolenia and Hemiaulus and gets passed 
on to the next generation of the host during the formation of auxospores, 
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which are specialised cells for the enlargement of vegetative cells that 
usually have undergone size reduction due to successive mitotic divisions 
(Villareal 1989, 357, 361). Calothrix is symbiotic and attaches externally 
to Chaetoceros (Hilton et al. 2013, 2, 4). The cyanobacterium Cyanothece 
is an endosymbiont of the diatom Rhopalodia gibba (Kneip et al. 2008, 2). 
Thus, the symbiotic diatom populations are an equally important source of 
NH4

+ as the free-living colonial cyanobacteria (Foster et al. 2011, 1489-91). 
Dinoflagellates, such as Ornithocercua, Histoneis, and Citharistes, possess 
cyanobacterial symbionts. The radiolarian Dictyocoryne truncatum also 
possess cyanobacterial symbionts (Carpenter and Foster 2002, 15). The 
uncultured N fixing unicellular cyanobacterium group A (UCYNA) grows 
endosymbiotically within many prymnesiophytes, such as Braarudosphaera 
bigelowii and Chrysochromulina parkeae (Hagino et al. 2013, 1). 

Nitrification 

Fungi possess the nitric oxide dioxygenase gene (nod) which converts NO 
back into NO3

− in their cytoplasm, which then enters the mitochondria 
where it is reduced to NO2

− (Morozkina and Korokov 2007, 547). Many 
protists, such as the diatoms, dinoflagellates, radiolarians, and foraminifera 
store NO3

− intracellularly via assimilation from the environment or an 
internal nitrification process.  

Dissimilatory nitrate reduction to ammonium 

Fungi convert NO3
− to NH4

+ by DNRA. The process involves the 
reduction of NO3

− to NO2
− by the nar genes followed by the reduction to 

NH4
+ by the nrfA gene. In addition to fungi, the diatoms also reduce 

intracellular NO3
− and produce NH4

+ by the dissimilatory pathway. 

Denitrification 

Denitrification is a very common phenomenon carried out by many 
eukaryotes. It is an anaerobic process and hence, takes place in the absence 
of oxygen as organisms utilise alternate sources of electron acceptors, such 
as NO3

− or NO2
−. Although N2O is formed as an intermediate, the end 

product of denitrification is N2. Microeukaryotes of different groups are 
found to be involved in this process. Fungi produce all the enzymes 
involved in denitrification, such as NAR, NIR, NOR, and NOS 
(Morozkina and Kurakov 2007, 544-46). They are also involved in the co-
denitrification process from amines and imines (Shoun et al. 2012, 1188, 
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1191). Amoebae under Amoebozoa also possess genes for denitrification 
but they are not as significant as the bacterial or fungal denitrifiers. The 
diatoms have an intracellular stock of NO3

− which they reduce during 
harsh conditions necessary for their survival, such as those experienced in 
anoxic or suboxic environments. Diatoms reduce NO3

− via DNRA. Thus, 
though denitrification by diatoms occurs under anoxic conditions, it is not 
very significant as compared to bacteria or fungi. Diatoms generally have 
shown to have either no or little effect on denitrification in microcosm 
experiments and very rarely, they enhance denitrification (Stock et al. 
2014, 1, 4). However, the aggregates of diatoms formed after the 
senescence of the bloom may become anaerobic internally as they sink to 
greater depths. This occurs due to the excessive microbial activity within 
the aggregates. Thus, these aggregates are active spots for denitrification 
by denitrifying bacteria (Thornton 2002, 149, 156). The oomycetes also 
possess the denitrifying ability to cause nitrosative stress caused by NO 
derived molecules called reactive nitrogen species (RNS) in their host 
plant tissues for the spread of infection (Arasimowicz-Jelonek and 
Floryszak-Wieczorek 2014, 410-11). The presence of these organisms in 
oxygen-deficient regions of the water column or in shallow water 
sediments, where they may cause infection to the algae living in low light 
regions, may contribute to denitrification in the surrounding environment. 
The capacity of Labyrinthulomycetes (fungi-like protists) to withstand 
oxygen-deficient conditions in the OMZ and survive there may bestow 
them with the denitrifying ability that is similar to fungi (Leaño and 
Damare 2012, 215-17). However, no study reports this ability which 
leaves the door open for future investigation. Dinoflagellates too 
contribute to denitrification owing to the presence of symbiotic 
denitrifying bacteria in association with them (Wyman et al. 2013, 2676-
77). The protists belonging to Rhizaria too contribute to denitrification by 
the endobiotic denitrifying bacteria. Foraminifera are the most noteworthy 
amongst these (Risgaard-Petersen et al. 2006, 93; Glock et al. 2013, 4767).    

Concluding remarks 

The occurrence of eukaryotic microorganisms in anoxic marine waters 
gives them the ability to survive in such environments using alternate 
electron acceptors, such as NO3

−, in the absence of oxygen. Thus, these 
organisms significantly contribute to the marine N cycle. They carry out 
processes, such as denitrification and DNRA. The NO3

− stored within 
some of these cells comes to their use during stress conditions or aids 
prokaryotes when released from the cells. Thus, marine eukaryotes, 



Chapter 9 
 

218 

including fungi, diatoms, dinoflagellates, and foraminifera, have 
tremendous untapped potential in N cycling, especially in anoxic waters 
and sediments. 
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