Advances in Biological Science Research A Practical Approach

Edited by Surya Nandan Meena and Milind Mohan Naik

Advances in Biological Science Research

A Practical Approach

Edited by

Surya Nandan Meena

Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa, India

Milind Mohan Naik Department of Microbiology, Goa University, Goa, India

Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

Copyright © 2019 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-817497-5

For information on all Academic Press publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Andre G. Wolff Acquisition Editor: Linda Versteeg-buschman Editorial Project Manager: Sandra Harron Production Project Manager: Poulouse Joseph Cover Designer: Vicky Pearson Esser

Typeset by TNQ Technologies

Contents

Contributors	xxi
Preface	XXV
Acknowledgments	xxix

Bioinformatics methods: application toward analyses and interpretation of experimental data 1.

Shyamalina Haldar

1.1	Aim of the chapter		
1.2	DNA sequencing		
1.3	Identification of organisms from nucleotide sequence		
	1.3.1	What is BLAST?	2 2
	1.3.2	Methods for nucleotide BLAST	2
	1.3.3	Interpretation of BLAST results	4
	1.3.4	Construction and interpretation of phylogenetic tree	5
	1.3.5	Sequence deposition	6
1.4	Micro	bial ecology statistics	6 7 7
	1.4.1	Species composition/species richness	
	1.4.2	Species abundance	7
	1.4.3	Species diversity	10
1.5	Biosta	tistics	13
	1.5.1	Sampling statistics	14
	1.5.2	Testing of hypothesis	15
	1.5.3		15
1.6	Advan	ced bioinformatics tools in biological sciences	17
	1.6.1	Sequence analysis	17
	1.6.2	Phylogenetic analysis	17
	1.6.3	Sequence databases	18
1.7	Concl		18
	Refere	ences	18
Ger	nome	sequence analysis for bioprospecting of	
		cterial polysaccharide-degrading enzymes	

2. marine bacterial polysaccharide-degrading enzymes

Md Imran and Sanjeev C. Ghadi

2.1	Introduction	21
2.2	Marine polysaccharides and polysaccharide-degrading	
	bacteria: an overview	22

3.

4.

2.3	Identification of polysaccharide-degrading genes through genome annotation	23
2.4	Identification of polysaccharide-degrading genes in newly	25
	sequenced bacterial genome: a guide for beginners	27
2.5	Genome sequence analysis unravels organization of	
	polysaccharide-degrading genes as polysaccharide	
	utilization loci	28
2.6	Genome annotation: a potential tool for the elucidation	
~ -	of glycometabolism pathways	28
2.7	CAZy database: a promising tool for the classification of polysaccharide-degrading genes/enzymes identified in	
	newly sequenced genomes	29
2.8	Validation of computationally identified polysaccharide-	29
2.0	degrading genes in the genomes of marine bacteria	30
	Acknowledgments	30
	References	30
	teomics analysis of <i>Mycobacterium</i> cells: llenges and progress	
Suvi	dha Samant and Abhishek Mishra	
3.1	Introduction	35
3.2	Proteome analysis of axenic mycobacteria	37
3.3	Proteome analysis of mycobacteria-infected cells	39
3.4	Proteome analysis of mycobacteria-containing host	20
э г	vacuoles Conclusion	39
3.5	References	40 41
	References	41
	nt proteomics: a guide to improve the proteome	
	erage	
Chh	aya Patole and Laurence V. Bindschedler	
4.1	Introduction	45
4.2	Hurdles associated with plant proteins sample preparation	
	for mass spectrometry-based proteomics	46
4.3	Primary considerations to design suitable workflows for	
	plant proteomics	46
	4.3.1 Effective protein sample preparation: extraction and	FO
	recovery from difficult plant samples4.3.2 Contaminant removal from or during protein digestion	50 53
	4.3.2 Contaminant removal from or during protein digestion 4.3.3 Overcoming the high-dynamic range of protein	55
	concentrations for the discovery of low-abundant	

	proteins	54
4.3.4	Digestion of plant proteins	58
4.3.5	Overcoming technical and biological variations	59

4.4	Advan	ces and applications in plant proteomics	61
	4.4.1	Proteogenomics to help annotation of open reading	
		frames (ORFs) in newly sequenced genomes	61
	4.4.2	Understanding plant development and responses to	
		environmental clues	62
4.5	Concl	usion and future perspective	62
	Refere	ences	63

5. Structural analysis of proteins using X-ray diffraction technique

Umesh B. Gawas, Vinod K. Mandrekar and Mahesh S. Majik

5.1	Introduction	69
5.2	Historical background	70
5.3	X-ray crystallography	71
5.4	Protein X-ray crystallography	72
5.5	Advances in protein crystallography	74
5.6	Case study: extended spectrum β-lactamases	76
5.7	Conclusion	80
	Acknowledgments	80
	References	80

6. Technological advancements in industrial enzyme research

Vazhakatt Lilly Anne Devasia, R. Kanchana, Poonam Vashist and Usha D. Muraleedharan

6.1	Introduction 8		
6.2	Enzyme discovery 8		
6.3	Enzyme customization	89	
6.4	Improvement of existing enzymes through mutagenic		
	approaches	90	
	6.4.1 By site-directed mutagenesis	90	
	6.4.2 By random mutagenesis	91	
6.5	High-throughput screening of genetic variants for novel		
	enzyme production	93	
6.6	Immobilization of enzymes	93	
6.7	Enzyme inhibitor studies	94	
6.8	Enzyme promiscuity and multifunctional enzyme studies	95	
6.9	Sequence-dependent approach of the novel gene		
	encoding the target enzyme/protein	96	
6.10	Function-based identification of the novel gene	96	
6.11	Identification of the novel gene by sequencing techniques	97	
6.12	Improvement of enzymatic catalysis by microbial cell		
	surface display	98	
6.13	Conclusion	99	
	References	99	

7. Biotechnological implications of hydrolytic enzymes from marine microbes

Poonam Vashist, R. Kanchana, Vazhakatt Lilly Anne Devasia, Priyanka V. Shirodkar and Usha D. Muraleedharan

7.1	Introduction		103
7.2	Applica	tions of marine hydrolases	104
	7.2.1	Biorefineries	105
	7.2.2	Pharmaceuticals and cosmeceuticals	105
	7.2.3	Food industry	106
	7.2.4	Feed industry	108
	7.2.5	Biopolymer industry	108
	7.2.6	Detergent industry	109
	7.2.7	Textile industry	109
	7.2.8	Leather industry	110
	7.2.9	Paper and pulp industry	110
	7.2.10	Organic synthesis	111
	7.2.11	Waste treatment	111
	7.2.12	Nanoparticle synthesis	112
7.3	Prospec	ting the use of hydrolytic enzymes from marine	
	microb	25	112
	Referen	ces	113
	Further	reading	118

8. Recent advances in bioanalytical techniques using enzymatic assay

Kanchanmala Deshpande and Geetesh K. Mishra

8.1	Introd	Introduction		
	8.1.1	Why biosensors?	120	
	8.1.2	Emergence of biosensors	120	
8.2	Classif	ication of biosensors	121	
	8.2.1	Enzyme biosensor	122	
	8.2.2	Overcoming limitations in enzyme-based biosensors	124	
	8.2.3	Application of enzyme biosensor	126	
8.3	Enzym	e biosensors for environmental monitoring	127	
8.4	Enzym	e biosensors for food quality monitoring	128	
8.5	Future	prospects and conclusions	129	
	Refere	ences	131	
	Furthe	r reading	134	

9. Microbial lectins: roles and applications

Hetika Kotecha and Preethi B. Poduval

9.1	Introd	luction	135
9.2	Roles	136	
9.3	Applications of microbial lectins		141
	9.3.1	Lectins in diagnostics	141
	9.3.2	Lectins in bioremediation	141

	9.3.3	Lectins in bioflocculation	142
	9.3.4	Lectins in fluorescent staining	143
	9.3.5	Lectin and probiotics	143
9.4	Conclusion		143
	References		144
	Further reading		147

10. Biodegradation of seafood waste by seaweedassociated bacteria and application of seafood waste for ethanol production

Sanika Samant, Milind Mohan Naik, Diviya Chandrakant Vaingankar, Sajiya Yusuf Mujawar, Prachi Parab and Surya Nandan Meena

10.1	Introduc	tion	149
10.2	Materials	s and methods	151
	10.2.1	Collection of marine seaweed samples	151
	10.2.2	Enrichment of Ulva-associated bacteria	151
	10.2.3	Isolation of calcium carbonate solubilizing	
		marine Ulva-associated bacteria	151
	10.2.4	Investigating seafood waste (fish, crab, prawn	
		waste) utilizing potential of selected calcium	
		carbonate—solubilizing bacteria	151
	10.2.5	Agarase production by marine Ulva spassociated	
		bacteria	152
	10.2.6	Production of protease by Ulva spassociated	
		bacteria	152
	10.2.7	Phosphate solubilization by acid-producing Ulva	
		sp.—associated bacteria	152
	10.2.8	Cellulase production by <i>Ulva</i> sp.—associated	
		bacteria	152
	10.2.9	Production of chitinase by Ulva spassociated	
		bacteria	153
	10.2.10	Degradation of fish/crab/prawn waste using	
		microbial consortia developed using Ulva	
		sp.—associated bacteria	153
	10.2.11	Identification of seaweed-associated bacteria	154
10.3		nd discussion	154
10.4		on of seafood waste for bioethanol production	157
		edgments	158
	Reference	es	158

11. Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances

Neha Prabhu, Sunita Borkar and Sandeep Garg

11.1	Introduction	161
11.2	Phosphate-solubilizing microorganisms: an overview	161

		11.2.1	Screening microorganisms for phosphate solubilization	163
	11.3	Phosph	ate solubilizing microorganisms: mechanisms	164
		11.3.1	Inorganic phosphate-solubilization mechanisms	165
		11.3.2	Organic phosphate solubilization mechanisms	167
	11.4	Phosph	ate-solubilizing microorganisms: applications and	
		advance	° ° · · ·	167
		11.4.1	Biofertilizer	167
		11.4.2	Phytoremediation	169
	11.5	Conclus		171
		Referen	ices	171
12.			ics a modern approach to reveal the nculturable microbes	
	Kashi	f Shamin	n, Sajiya Yusuf Mujawar and Milind Mutnale	
	12.1	Introdu	ction	177
	12.2	History	of metagenomic approach	178
	12.3		ch, strategies, and tools used in the	
		metage	nomic analysis	179
		12.3.1	Isolation of metagenomic DNA	180
		12.3.2	0	182
			Screening of metagenomic clones	182
		12.3.4	1 0 /	
			the metagenomic clones	183
	12.4		tion of the metagenomic approach	183
	12.5		sion remarks	186
			vledgments	189
		Referen	lces	189
13.			rchaea as beacon for exobiology: nces and future challenges	
	Abhila	ash Sunc	larasami, Akshaya Sridhar and Kabilan Mani	
	13.1	Introd		197
	13.2	Missio	ns with exobiological significance	198
		13.2.1	1960-2000	198
		13.2.2		200
		13.2.3		201
	13.3		nophiles-a general overview	202
	13.4		hiles in the universe	204
	13.5	Modes	of energy generation in halophilic archaea	205
	13.6		ion resistance in halophilic archaea	206
	13.7		hilic archaea from ancient halite crystals	207
	13.8		ation of halophilic archaea to extreme	200
		tempe	ratures and pH	208

	13.9	Growth of halophilic archaea in the presence of	
		perchlorates	209
	13.10	Saline environments in space	209
		13.10.1 Mars	209
		13.10.2 Europa	210
		13.10.3 Enceladus	210
	13.11	0 1	
		econiches	210
	13.12	Conclusion References	211 212
14.		erial probiotics over antibiotics: a boon to aculture	
	Sama	ntha Fernandes and Savita Kerkar	
	14.1	Introduction	215
	14.2	The probiotic approach	216
	14.3	Antimicrobial mechanism of probiotics	217
		14.3.1 Production of antagonistic compounds	217
		14.3.2 Competitive exclusion	217
		14.3.3 Immunomodulation	218
		14.3.4 Production of other beneficiary compounds	219
	14.4	Screening and development of probiotics	219
		14.4.1 In vitro screening for antimicrobial activity14.4.2 Mucus adhesion, colonization, and growth	219
		profile	221
		14.4.3 Pathogenicity test	221
		14.4.4 Organism identification	222
		14.4.5 Route of delivery, dosage, and frequency	222
		14.4.6 In vivo validation	223
		14.4.7 Shelf life	223
		14.4.8 Economic evaluation	224
	14.5	Recent probiotics used in aquaculture	224
	14.6	Conclusion and future perspectives	224
		Acknowledgments	228
		References	228
15.	Rece path	ent advances in quorum quenching of plant ogenic bacteria	
	Gaur	i A. Achari and R. Ramesh	
	15.1	Introduction	233
	15.2	Overview of the different quorum sensing molecules of plant pathogenic bacteria	234

plant pathogenic bacteria		234
Mechar	nisms of quorum quenching	236
15.3.1	Inhibition of synthesis of quorum sensing signal	236
15.3.2	Inhibition of sensing of quorum sensing signal	236
	Mechar 15.3.1	plant pathogenic bacteriaMechanisms of quorum quenching15.3.1Inhibition of synthesis of quorum sensing signal15.3.2Inhibition of sensing of quorum sensing signal

	15.3.3 Degradation of quorum sensing molecules	237
15.4	Quorum quenching against plant pathogens	239
15.5	Transgenic plants expressing quorum quenching	
	molecules	240
15.6	Summary and future research needs	241
	Acknowledgments	242
	References	242

16. Trends in production and fuel properties of biodiesel from heterotrophic microbes

Gouri Raut, Srijay Kamat and Ameeta RaviKumar

16.1	Introdu	ction	247
16.2	Growth	of different sources of biodiesel on various	
	substrat	tes	248
	16.2.1	Screening of lipid-producing microorganisms	248
16.3	Harvest	ing of cellular biomass from fermentation broth	252
16.4	Cell lys	is	253
16.5	Lipid ex	ktraction	255
16.6	Transes	terification/FAME preparation—conventional	
	two-ste	p, one-step, use of lipases	257
	16.6.1	Transesterification process	257
16.7	Determ	ination of fuel properties of heterotrophic	
	microb	es	261
	16.7.1	Cetane number	261
	16.7.2	Viscosity	262
	16.7.3	Density	262
	16.7.4	Higher heating value	263
16.8	Conclus	sions and future perspectives	264
	Acknow	vledgments	264
	Referen	ices	265

17. Advances and microbial techniques for phosphorus recovery in sustainable wastewater management

Meghanath Shambhu Prabhu and Srikanth Mutnuri

17.1	Introdu	ction	275
17.2	Techno	logies for phosphorus recovery	277
	17.2.1	The process of struvite crystallization	277
	17.2.2	Recovery of struvite from wastes	278
	17.2.3	Source of magnesium for struvite formation	278
17.3	Struvite	crystallization technologies	279
	17.3.1	Lab-scale studies	279
	17.3.2	Biological struvite precipitation	279
	17.3.3	Struvite formation within wastewater treatment	
		plants: pilot-scale studies	282
17.4	Use of s	struvite as fertilizer and its potential market	283
	17.4.1	Use of struvite to increase soil fertility	283

	17.4.2 World and India's fertilizer requirements	284
17.5	Economic feasibility of struvite recovery process	285
17.6	Conclusion	285
	References	286

18. Genotoxicity assays: the micronucleus test and the single-cell gel electrophoresis assay

Avelyno D'Costa, M.K. Praveen Kumar and S.K. Shyama

18.1	Introdu	Introduction	
	18.1.1	Micronucleus test	292
	18.1.2	Comet assay (single-cell gel electrophoresis)	295
18.2	Conclu	sion	298
	References		299

19. Advances in methods and practices of ectomycorrhizal research

Lakshangy S. Charya and Sandeep Garg

19.1	Introdu	ction	303
19.2	Benefits	s of ECM association	304
19.3	Cultivat	tion and physiology of ECM fungi	305
	19.3.1	Cultivation media for ECM fungi	305
	19.3.2	Isolation methods of ECM fungi	306
19.4	Identifi	cation methods of ECM fungi	308
	19.4.1	Conventional methods	308
	19.4.2	Case study	309
	19.4.3	Challenges in the identification of ECM	310
	19.4.4	Advances in identification of ECM	310
19.5	Assessn	nent and quantification of ECM	310
	19.5.1	Conventional methods of assessment and	
		quantification of ECM	311
	19.5.2	Molecular tools of assessment and quantification	
		of ECM	312
19.6	Stress r	esponse and pigments/phenolics in ECM fungi	313
19.7	Applica	tion in forestry: ECM fungi as bioinoculants	315
	19.7.1	Types of ectomycorrhizal inoculants	316
	19.7.2	Ectomycorrhizal inoculants in field applications	318
19.8	Conclu	sion	318
19.9	Future	prospects	320
	Acknow	vledgments	320
	Referen	ices	320
	Further	reading	325

21.

20. Photocatalytic and microbial degradation of Amaranth dye

Pranay P. Morajkar, Amarja P. Naik, Sandesh T. Bugde and Bhanudas R. Naik

20.1 20.2	Introdu	ction ed photocatalytic amaranth degradation using	327
20.2		n dioxide	329
		Characterization of TiO_2 supported mesoporous	525
	20.2.1	Al_2O_3 catalyst	331
	20.2.2	Amaranth adsorption versus photocatalytic-	
		degradation kinetics	333
	20.2.3	Identification of photodegradation products using	
		LC-ESI-HRMS technique	336
	20.2.4	Toxicity of photodegradation products	337
20.3		ediation of amaranth dye	338
20.4		ng of photocatalysis with bioremediation methods	339
	Referen	nces	342
	<i>c</i>		
		oparticles in advanced biomedical	
resea			
DV	lunkalak	ar and Umesh B. Gawas	
Λ.Λ. Γ	<i>unkaleka</i>	ar and onlesh b. Gawas	
21.1	Introdu		347
	Introdu Cancer	ction therapy	347 348
21.1	Introdu Cancer	ction	
21.1 21.2	Introdu Cancer Metal n agents	ction therapy anoparticles as drug delivery and anticancer	348 349
21.1 21.2	Introdu Cancer Metal n agents 21.3.1	ction therapy aanoparticles as drug delivery and anticancer Gold nanoparticles	348 349 350
21.1 21.2 21.3	Introdu Cancer Metal n agents 21.3.1 21.3.2	ction therapy aanoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles	348 349
21.1 21.2	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o	ction therapy aanoparticles as drug delivery and anticancer Gold nanoparticles	348 349 350 351
21.1 21.2 21.3	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer	 348 349 350 351 352
21.1 21.2 21.3	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles	 348 349 350 351 352 353
21.1 21.2 21.3 21.4	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1 21.4.2	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles Miscellaneous	 348 349 350 351 352
21.1 21.2 21.3	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1 21.4.2 Carbon	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles Miscellaneous -based nanoparticles as drug delivery and	348 349 350 351 352 353 354
21.1 21.2 21.3 21.4	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1 21.4.2 Carbon antican	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles Miscellaneous -based nanoparticles as drug delivery and cer agents	 348 349 350 351 352 353
21.1 21.2 21.3 21.4	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1 21.4.2 Carbon	ction therapy aanoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles Miscellaneous -based nanoparticles as drug delivery and cer agents Graphene oxide/reduced graphene oxide for drug	348 349 350 351 352 353 354
21.1 21.2 21.3 21.4	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1 21.4.2 Carbon antican	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles Miscellaneous -based nanoparticles as drug delivery and cer agents Graphene oxide/reduced graphene oxide for drug delivery	348 349 350 351 352 353 354 354
21.121.221.321.421.5	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1 21.4.2 Carbon antican 21.5.1 Conclus	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles Miscellaneous -based nanoparticles as drug delivery and cer agents Graphene oxide/reduced graphene oxide for drug delivery sions	348 349 350 351 352 353 354 354 355
21.121.221.321.421.5	Introdu Cancer Metal n agents 21.3.1 21.3.2 Metal o agent 21.4.1 21.4.2 Carbon antican 21.5.1 Conclus	ction therapy anoparticles as drug delivery and anticancer Gold nanoparticles Silver nanoparticles oxide nanoparticles as drug delivery and anticancer Iron oxide nanoparticles Miscellaneous -based nanoparticles as drug delivery and cer agents Graphene oxide/reduced graphene oxide for drug delivery sions vledgments	348 349 350 351 352 353 354 354 355 356

22. Iron-oxygen intermediates and their applications in biomimetic studies

Sunder N. Dhuri and Sarvesh S. Harmalkar

63
67
68
69

	22.5	Mononuclear high-valent iron(IV)-oxo complex	370
	22.6	Mononuclear nonheme iron(V)-oxo complex	371
	22.7	Application of iron-oxygen intermediates in biomimetics	373
	22.8	Summary	373
		Acknowledgments	374
		References	374
23.	Fron	tiers in developmental neurogenesis	
	Shan	ti N. Dessai	
	23.1	Introduction to neurogenesis	381
		23.1.1 Developmental neurogenesis	381
	23.2	Signaling pathway cross talk of developmental	
		neurogenesis	382
		23.2.1 Notch	383
		23.2.2 Wingless/Integrated	384
		23.2.3 Hedgehog/Sonic hedgehogs23.2.4 Fibroblast growth factor	385
		23.2.4 Fibroblast growth factor	385
		23.2.5 Neuronal progenitor cell environment	386
	23.3	Tools to study developmental neurogenesis	386
		23.3.1 In vitro models	387
		23.3.2 Time-lapse analysis	389
		23.3.3 Transcriptome, metabolomics, and single-cell	
		"omics"	390
		23.3.4 Real-time analysis of progenitors in both	
		embryonic and postnatal studies by tissue	
		explants/slice assays	390
	23.4	Conclusion	391
		References	391
24.		ytical methods for natural products isolation:	
	prine	ciples and applications	
	Mahe	sh S. Majik, Umesh B. Gawas and Vinod K. Mandrekar	
	24.1	Introduction	395
	24.2	Extraction techniques	396
	24.3	Isolation and purification techniques	398
	24.4	High-performance liquid chromatography	400
		24.4.1 Analysis of chromatograms obtained from	
		HPLC/GC	401
	24.5	Spectroscopic methods for characterization	401
		24.5.1 Ultraviolet-visible spectroscopy	402
		24.5.2 Infrared spectroscopy	402
		24.5.3 Mass spectrometry	402
		24.5.4 Nuclear magnetic resonance spectroscopy	402
	24.6	Chemical profiling of marine sponges: case studies	403
		24.6.1 Marine sponge, Haliclona cribricutis	405
		24.6.2 Marine sponge, Fasciospongia cavernosa	405
		24.6.3 Marine sponge, Axinella donnani	407

24.7	Conclusion	407
	Acknowledgments	408
	References	408

25. Advanced bioceramics

Kiran Suresh Naik

25.1	Introdu	ction	411
25.2		cation of biomaterials	412
25.3	Applica	tions and properties of bioceramics	413
	25.3.1	Hydroxyapatite	413
	25.3.2	β -Tricalcium phosphate (β -TCP)	414
	25.3.3	Alumina (Al_2O_3)	414
	25.3.4	Zirconia	414
	25.3.5	Bioglass and glass ceramics	415
25.4	Conclus	sion and future perspectives	415
	Acknow	vledgments	415
	Referen	nces	416

26. Production of polyhydroxyalkanoates by extremophilic microorganisms through valorization of waste materials

Bhakti B. Salgaonkar and Judith M. Bragança

26.1	Introduction		419
26.2	Synthesis of polyhydroxyalkanoates		421
26.3	Classifie	cation of PHAs	423
	26.3.1	Biosynthetic origin	423
	26.3.2	Monomer size	424
	26.3.3	Monomers units	424
	26.3.4	Nature of the monomers	424
26.4	Screeni	ng, extraction, and characterization of	
	polyhyo	droxyalkanoates	424
	26.4.1	Screening for PHA	424
	26.4.2	PHA extraction	426
	26.4.3	PHA characterization	426
26.5	Advanc	es in the applications of PHAs	428
	26.5.1	Food industry	428
	26.5.2	Medical industry	428
	26.5.3	Agricultural industry	429
26.6	Extrem	ophilic microorganisms	430
26.7	Extrem	ophilic microorganisms producing PHAs	430
26.8	PHAs fr	rom renewable resources and agroindustrial	
	wastes		432
26.9	Conclu	sions	437
	Acknov	vledgments	437
	Referer	nces	438

27. Techniques for the mass production of Arbuscular Mycorrhizal fungal species

James Dsouza

27.1	Introduction	445
27.2	Pot/substrate-based mass production system	446
27.3	The AM host plants	447
27.4	Root trap cultures	448
27.5	Plant trap cultures	448
27.6	Soil as inoculum	449
27.7	Microenvironment	449
27.8	Conclusion	450
	References	450

28. Metagenomics: a gateway to drug discovery

Flory Pereira

29.

28.1	Introduc		453
28.2	Approac	ches to accelerate antibiotic discovery	454
	28.2.1	Mining unusual habitats as a source of novel	
		secondary metabolites	454
	28.2.2	Revolutionary cultivation techniques	454
	28.2.3	Next-generation sequencing techniques in mining	
		for bioactive compounds	456
28.3	Metager	nomic or environmental or community genomic	
	sequenc	cing	458
	28.3.1	Sequence-based metagenomics	458
	28.3.2	Function-based metagenomics	458
28.4		etagenomics facilitates drug discovery	460
28.5	Conclus	ion	463
		202	464
Арр	Reference lication	of 3D cell culture techniques in	404
cosn	lication oneceutic		404
cosn	lication oneceutic	of 3D cell culture techniques in al research Meena and Chellandi Mohandass	469
cosn Surya	lication neceutic Nandan Introduc	of 3D cell culture techniques in al research Meena and Chellandi Mohandass	
cosn Surya 29.1	lication neceutic <i>Nandan</i> Introduc Two-din	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research	469
cosn <i>Surya</i> 29.1 29.2	lication neceutic Nandan Introduc Two-din Role of	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction	469
cosn <i>Surya</i> 29.1 29.2	lication neceutic Nandan Introduc Two-din Role of cosmece	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research three-dimensional cell culture system in	469 469
cosn Surya 29.1 29.2 29.3	lication neceutic Nandan Introduc Two-din Role of cosmece Key feat	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research three-dimensional cell culture system in eutical research	469 469 470
cosn Surya 29.1 29.2 29.3 29.4	lication neceutic Nandan Introduc Two-din Role of cosmece Key feat Diverse	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research three-dimensional cell culture system in eutical research tures of 3D cell culture	469 469 470 470
cosn Surya 29.1 29.2 29.3 29.4 29.5	lication neceutic Nandan Introduc Two-din Role of cosmece Key feat Diverse	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research three-dimensional cell culture system in eutical research tures of 3D cell culture application of 3D cell culture	469 469 470 470 471
cosn Surya 29.1 29.2 29.3 29.4 29.5	lication neceutic Nandan Introduc Two-din Role of Cosmece Key feat Diverse Preparat	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research three-dimensional cell culture system in eutical research tures of 3D cell culture application of 3D cell culture tion of 3D reconstructed human skin model	469 469 470 470 471
cosn Surya 29.1 29.2 29.3 29.4 29.5	lication neceutic Nandan Introduc Two-din Role of Cosmece Key feat Diverse Preparat	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research three-dimensional cell culture system in eutical research tures of 3D cell culture application of 3D cell culture tion of 3D reconstructed human skin model The traditional approach for 3D skin model preparation Bioprinting technology for preparation of 3D skin	469 469 470 470 471 472
cosn Surya 29.1 29.2 29.3 29.4 29.5	lication neceutic Nandan Introduc Two-din Role of cosmece Key feat Diverse Preparat 29.6.1	of 3D cell culture techniques in cal research Meena and Chellandi Mohandass ction nensional cell system in cosmeceutical research three-dimensional cell culture system in eutical research tures of 3D cell culture application of 3D cell culture tion of 3D reconstructed human skin model The traditional approach for 3D skin model preparation	469 469 470 470 471 472

29.7	Application of 3D skin models in cosmeceutical research		
	29.7.1	29.7.1 Skin whitening or melanin content	
	29.7.2	Skin antiaging study using 3D in vitro skin	
		model	475
	29.7.3	Antioxidant activity	475
	29.7.4	Antiinflammatory activity	476
	29.7.5	Wound healing assay	476
	29.7.6	Skin corrosion test	476
	29.7.7	Skin cell irritation test	477
	29.7.8	Skin penetration assay	477
	29.7.9	Phototoxicity study	477
	29.7.10	Genotoxicity assay	478
	29.7.11	Skin absorption assay	478
29.8	Conclusi	on	478
	Acknowl	edgments	479
	Referenc	es	479

30. Advances in isolation and preservation strategies of ecologically important marine protists, the thraustochytrids

Varada S. Damare

30.1	Introduction		485
30.2	Occurrence and ecolo	ogical significance	486
30.3	Isolation		487
	30.3.1 Isolation of th	nraustochytrids	488
	30.3.2 Isolation of la	byrinthulids	494
30.4	Preservation of culture	es	495
30.5	Summary and future p	prospects	495
	Acknowledgments		495
	References		496

31. Advances in sampling strategies and analysis of phytoplankton

Priya M. D'Costa and Ravidas K. Naik

31.1	Introduo	ction	501
31.2	Samplin	g strategies	502
	31.2.1	Choice of research vessel	502
	31.2.2	Sampling in coastal waters	503
	31.2.3	Aspects to be considered	504
31.3	Analysis	of phytoplankton	504
	31.3.1	Phytoplankton taxonomy	504
	31.3.2	Analysis of phytoplankton community structure	505
	31.3.3	Analysis of benthic diatoms	507
	31.3.4	Analysis of dinoflagellate cysts	508
	31.3.5	Study of fouling diatoms/biofilms	508
	31.3.6	Analysis of epibiotic phytoplankton	509

	31.3.7	Study of picophytoplankton	509
	31.3.8	Phytoplankton pigment analysis	510
	31.3.9	Analysis of viability and photosynthetic	
		parameters of phytoplankton populations	511
	31.3.10	Toxin analysis	513
31.4	Primary	productivity	514
	31.4.1	Estimation of primary productivity using remote	
		sensing	515
	31.4.2	Monitoring of HABs using remote sensing	515
31.5	Future p	perspectives	515
	Acknow	ledgments	516
	Referen	ces	516

Index

523