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Foreword

Natural products  are the new interest of the current era 
worldwide over synthetic ones, as sustainability is now 
on everyone’s mind. Various natural products have 
been obtained from the different sources including ani-
mals, plants, and microbes, which have great value in 
industries. Microbes, especially fungi, represent an 
incredibly rich reservoir of natural products or biomol-
ecules. Fungi, the highly diverse clade of eukaryotes, 
are known to produce various biomolecules, such as 
enzymes, organic acids, fatty acids, pigments, second-

ary metabolites, and bioactive compounds. These biomolecules have been explored 
in various industries, including cosmetic, food, tannery, and textiles, as coloring 
agents, pH adjuster, and catalyst for various biochemical reactions for the produc-
tion of goods. Fungal biomolecules do comprise various benefits, such as low pro-
duction cost of natural products and ease to obtain. In comparison to the synthetic 
products, these products have no detrimental effects on the environment. This vol-
ume clearly describes the emerging industrial application of biomolecules obtained 
from the fungal communities.

I recommend Industrially Important Fungi for Sustainable Development, 
Volume 2: Bioprospecting for Biomolecules to researchers and students working in 
this emerging and fascinating field of mycology. The book will advance the knowl-
edge to a greater extent in these areas with significant broader research on fungal 
communities. The editors of this book deserve credit for such a splendid and innova-
tive contribution to mycological research.

Davinder Singh, 
Eternal University, Baru Sahib 
Baru Sahib, Himachal Pradesh, India
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Foreword

Today, fungal communities offer important advances 
in global industries due to their mind-blowing potential 
in medical, agriculture, and pharmaceutical industries; 
food and feed processing; and environment for sustain-
able development. Fungi have been obtained from dif-
ferent sources including plants, soil, and water, which 
have great value in pharmaceutical industries and are 
used in several fermentative processes like production 
of enzymes, vitamins, pigments, lipids, glycolipids, 
polysaccharides, and polyhydric alcohols. The unique 
characteristics of fungi hold important promise for the 
production of various biomolecules, such as organic 
acid, pigments, secondary metabolites, and bioactive 

compounds. These biomolecules have been explored in several industries such as 
synthetic pigments are used as additives, antioxidants, colorants, and color intensi-
fiers, in many aspects including the textile for the coloring agent, pharmaceutical, 
cosmetic, painting, food, and beverage industries, tannery and catalysts for various 
biochemical reactions for the goods production. Fungal secondary metabolites as 
structurally different compounds show a variety of biological activities like antimi-
crobial, antitumor, antiparasitic, antioxidant, and immunosuppressant activities, and 
they can also act as plant growth stimulators, pesticides, molluscicides, anthelmin-
tics, and nematicides, leading to industrial scale production of enzyme alkaloids, 
acids, detergents, and bio-surfactants. Fungi are being used as high-cost food due to 
their high protein and low color value. This book clearly mentions the evolving 
industrial applications of biomolecules obtained from the fungal communities.

This volume on Industrially Important Fungi for Sustainable Development, 
Volume 2: Bioprospecting for Biomolecules is a very timely publication, which 
provides state-of-the-art information in the area of mycology, broadly involving 
fungi and fungus-based products for sustainable development in the industry. The 
book volume comprises 23 chapters. The first chapter by Nouh et al. describes the 
bioprospecting for biomolecules from different fungal communities. Nahas et al. 
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highlight fungi as a gold mine of antioxidants in Chap. 2. Chapter 3 by Abdel- 
Azeem et al. describes endophytic fungi as a source of new pharmaceutical biomol-
ecules. Chapter 4 by Gezaf et  al. highlights fungal communities from different 
habitats for tannins in industry. Nouh et al. describe recent advances in fungal anti-
microbial molecules in Chap. 5. In Chap. 6, Nahas et al. have given the details of 
fungal laccases to where and where. Ghosh et al. highlight the current research and 
future challenges of fungal cellulases in Chap. 7.

In Chap. 8, Marwa Tamim A. Abdel-Wareth describes the current research, com-
mercial aspects, and applications of fungal secondary metabolites. Balbool et al. 
highlight bioprospecting of thermophilic fungal enzymes and potential applications 
in Chap. 9. Berde et al. highlight bioactive secondary metabolites from psychro-
philic fungi and their industrial importance in Chap. 10. Fungal amylases and their 
industrial applications have been described by Patil et al. in Chap. 11. Chapter 12 by 
Parsa Mahmood Dar describes current research and applications of fungal phytases 
in the food industry. Darwish et al. highlight insights into molecular structures and 
biotechnological applications of fungal lipases in the medicine and dairy industry in 
Chap. 13. Dar and Dar discuss fungal xylanases for different industrial applications 
in Chap. 14. Fungal pigments for the food industry are discussed in Chap. 15 by 
Soliman et al. Dikkala et al. describe the fungal production of vitamins and their 
food industrial applications in Chap. 16. Jagadish et al. describe the nutraceutical 
potential of wild edible mushroom Hygrocybe alwisii in Chap. 17. Current research, 
production, and potential applications of fungal biopharmaceuticals have been dis-
cussed in Chap. 18 by Askari et al. Chapter 19 by Ashok et al. describes natural 
pigments from filamentous fungi and their applications. Kour et  al. describe the 
bioprospecting of industrially important mushrooms in Chap. 20. Bioactive attri-
butes of Xylaria species from the scrub jungles of southwest India have been 
described by Jagadish et al. in Chap. 21. Current research and future challenges of 
fungicide as potential vaccine are discussed in Chap. 22 by Verma et al. Finally, the 
conclusion and future prospects of bioprospecting for biomolecules from industri-
ally important fungi have been described by the editors and co-authors in the last 
chapter.

Overall, great efforts have been carried out by the editorial team and scientists 
from different countries to compile this book as a highly unique and up-to-date 
source on Industrially Important Fungi for Sustainable Development, Volume 2: 
Bioprospecting for Biomolecules for students, researchers, scientists, and academi-
cians. I hope that the readers will find this book highly useful and interesting during 
their pursuit of mycology.

Amrik Singh Ahluwalia
Eternal University, Baru Sahib 
Baru Sahib, Himachal Pradesh, India
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Preface

Fungi are an essential, fascinating, and biotechnologically useful group of organ-
isms with an incredible biotechnological potential for industrial exploitation. 
Knowledge of the world’s fungal diversity and its use is still incomplete and frag-
mented. There are many opportunities to accelerate the process of filling knowledge 
gaps in these areas. The worldwide interest of the current era is to increase the ten-
dency to use natural substances instead of synthetic ones. The increasing urge in 
society for natural ingredients has compelled biotechnologists to explore novel bio-
resources, which can be exploited in the industrial sector. Fungi, due to their unique 
attributes and broad range of biological activities, hold great promise for their appli-
cations in biotechnology and industry. Fungi are an efficient source of antioxidants, 
enzymes, pigments, and many other secondary metabolites. 

Industrially Important Fungi for Sustainable Development, Volume 2: 
Bioprospecting for Biomolecules covers major aspects of industrially important 
fungi. The book focuses on fungal communities from diverse niches and habitats as 
potential source of industrially important compounds. The increasing use and 
exploration of novel bioactive compounds from fungi solve countless problems 
mankind faces in today’s constantly changing scenario, such as emergence of life- 
threatening viruses and drug-resistant bacteria and increasing incidences of fungal 
and bacterial infections. The large-scale production of fungal pigments and their 
utility provide natural coloration without creating harmful effects on entering the 
environment, a safer alternative to synthetic colorants. Fungal enzymes can be 
exploited in a wide range of industries, such as food, detergent, and paper, and also 
for removal of toxic waste. Thus, this book will surely serve as a valuable reference 
to current state of knowledge and a stepping-stone for unexplored novel compounds 
from fungi. The book will be extremely useful for researchers, students, microbiolo-
gists, and scientists especially working in the field of mycology. Each chapter has 
been contributed by internationally recognized researchers and scientists with their 
firm viewpoints and experiences in the field of mycology. This book will serve as a 
valuable source of information as well as will provide new directions to researchers 
to conduct novel research in the field of mycology.
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Industrially Important Fungi for Sustainable Development, Volume 2: 
Bioprospecting for Biomolecules provides a discussion of fungal communities 
from diverse habitats and their industrial applications for future sustainability. This 
volume encompasses advanced research of fungal communities and their potential 
biotechnological applications in industry and allied sectors. The book will be useful 
to scientists, researchers, and students working in microbiology, biotechnology, 
agriculture, molecular biology, environmental biology, and related subjects.

Ismailia, Egypt Ahmed M. Abdel-Azeem  
Sirmour, Himachal Pradesh, India  Ajar Nath Yadav  
Ghazipur, Uttar Pradesh, India  Neelam Yadav  
Tallinn, Estonia  Minaxi Sharma  

Preface
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10.1  Introduction

Psychrophilic microorganisms are cold-adapted organisms that have an optimum 
growth temperature below 15 °C, and often below 5 °C. The cold biosphere includes 
aquatic and terrestrial environments, but many temperate habitats often have cold 
temperatures during autumn and winter (Margesin and Miteva 2011; Yadav et al. 
2018). Cold-adapted fungi are ubiquitous in cold habitats such as the deep seas, 
Arctic and Antarctic areas, and glaciers. Psychrophilic fungi, including yeasts and 
filamentous fungi, are adapted to cold ecosystems like the Arctic and Antarctic 
zones. Despite the extreme conditions of glacial ice of Antarctica, such as tempera-
tures below 0 °C, low nutrient availability (ultra-oligotrophic conditions), and low 
water activity, we detected a diverse fungal community, including species never 
before reported in the glacial ice of Arctic and Antarctica (Vincent 1988; Vishniac 
1996; Del Frate and Caretta 1990; Robinson 2001; Deming 2002; Gocheva et al. 
2005; Frisvad 2008; Yadav et al. 2020b).

Cold-adapted fungi have evolved special properties, for example, cold-adapted 
enzymes, change of membrane fluidity, and other cellular components, to enable 
them to grow at low temperatures at rates comparable to those of mesophiles at 
moderate temperatures (D’Amico et al. 2006; Ruisi et al. 2007). The terms steno-
psychrophile and eurypsychrophile have therefore been proposed to modify the 
definitions of psychrophilic and psychrotolerant. The “steno-” and “eury-” are 
referred ecological terms derived from Shelford’s law of tolerance that describe nar-
row or wide tolerance to an environmental determinant, respectively. The stenopsy-
chrophile (equal to “psychrophile”) refers to microorganisms with a restricted 
growth-temperature range that cannot tolerate higher temperatures. Eurypsychrophile 
(equal to “psychrotolerant microorganisms”) describes microorganisms that “like” 
permanently cold environments, but can also tolerate a wide range of temperatures 
extending into the mesophilic range (Cavicchioli 2006).

In recent years, the diversity of filamentous fungi in cold niches has been increas-
ingly investigated, and the number of known species has greatly expanded (Möller 
and Dreyfuss 1996; Robinson 2001; Blanchette et  al. 2004; Arenz et  al. 2006; 
Connell et  al. 2006; Held et  al. 2006; Malosso et  al. 2006; Duncan et  al. 2008; 
Onofri et  al. 2008; Selbmann et  al. 2008; Arenz and Blanchette 2009; Jurgens 
et al. 2009).

Most species in these studies, however, are psychrotolerant, and only a few were 
documented as psychrophiles such as Thelebolus microsporus, Mucor strictus, 
Phoma herbarum, Humicola marvinii, Pseudogymnoascus destructans, and some 
snow molds for example Sclerotinia borealis, Microdochium nivale, Coprinus psy-
chromorbidus (Schipper 1967; Dejardin and Ward 1971; Traquair and Smith 1982; 
Richard et al. 1997; Hsiang et al. 1999; Tronsmo et al. 2001; Singh et al. 2006; 
Gargas et al. 2009; Hoshino et al. 2010; Anupama et al. 2011; Minnis, and Lindner 
2013). Species in several yeast genera including Mrakia, Mrakiella, and Rhodotorula 
were usually described as psychrophilic. For example, Mrakia frigida grew well at 
15 °C and 4 °C but poorly at 20 °C (Margaret 1966) thus proving its psychrophilic 
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nature; Mrakia psychrophila from Antarctic soil had an optimal growth temperature 
of 10 °C (Xin and Zhou 2007); Mrakiella cryoconiti, M. aquatica, and M. niccomb-
sii from alpine and Arctic habitats also exhibited psychrophilic features and failed 
to grow at temperatures over 20 °C (Margesin and Fell 2008; Robin et al. 2010).

During the past two decades, research on cold-adapted fungi has increased, 
driven by their potential value for application in biotechnology (Margesin and 
Schinner 1994, 1999). Cold-adapted fungi have become important sources for the 
discovery of novel bioactive secondary metabolites and enzymes (Flam 1994; Pietra 
1997; Biabini and Laatch 1998; Gudjarnnson 1999; Höller et al. 2000; Verbist et al. 
2000; Bhadury et al. 2006; Ebel 2006; Blunt et al. 2007; Rateb and Ebel 2011). This 
chapter highlights the production of bioactive secondary metabolites by psychro-
philic fungi.

10.2  Biodiversity and Distribution of Psychrophilic Fungi

Three-quarters of the earth’s surface are dominated by the cold habitats spanning 
from the Arctic to the Antarctic and from high-mountain regions to the deep ocean 
(Deming and Eicken 2007; Rodrigues and Tiedje 2008). The major fraction of this 
extreme environment is represented by the deep sea (90% of the ocean volume), 
followed by snow (35% of land surface), permafrost (24% of land surface), sea ice 
(13% of the earth’s surface), and finally glaciers (10% of land surface). Other cold 
environments are cold-water lakes, cold soils, cold deserts, and caves (Lauro and 
Bartlett 2008; Yadav et al. 2017, 2020a). These extreme environments are colonized 
by enormously diverse communities of prokaryotes and eukaryotes (Cavicchioli 
2006; Kalanetra et al. 2009; Margesin and Miteva 2011; Buzzini et al. 2012; Lamilla 
et  al. 2017) are able to survive and maintain metabolic activity at subzero 
temperatures.

As an attempt to understand the global climate change scenario, study of the 
glacial ice samples for their physicochemical composition (de Menezes et al. 2019) 
was undertaken. During this study, the presence of fungal spores or hyphal frag-
ments trapped in the ice matrix was observed. The probable reasons for this may 
also be the growth of fungi due to the occasional melting and freezing of the ice in 
the Arctic regions as reported by Lutz et  al. (2015), DuoSaito et  al. (2018), and 
Perini et al. (2019a, b). Paleomycological and paleoecological investigations of the 
North and South Poles have indicated the presence of fungi in Antarctica since at 
least the Permian period because diverse fossil fungi have been found from the 
Triassic and Jurassic Periods (Stubblefield and Taylor 1983; Taylor and Osborne 
1996; Harper et al. 2012).

Despite being an extreme and ultra-oligotrophic environment, the glacial ice of 
Antarctica seems to harbor rich fungal diversity. Latest reports indicate the presence 
of Basidiomycota and Ascomycota taxa among fungal assemblages to predominant 
the glacial ice from the Arctic (Perini et al. 2019a, b) and Patagonia (DuoSaito et al. 
2018) as well as soil from Antarctica (Connell et al. 2008; Arenz and Blanchette 
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2011). Zygomycetes and Chytridiomycota species have also been isolated from 
Antarctic lakes and ponds (Lawley et al. 2004; Paterson 1973).

Bridge and Spooner (2012) listed over 400 fungal genera and more than 1000 
species that had been reported from Antarctic regions and suggested that fungi may 
be the most diverse biota in Antarctica. Species such as Thelebolus, Glaciozyma, 
Rhodotorula, and Penicillium were also found in high densities and 11 taxa were 
found in low densities, which had not been recorded in Antarctic glacial ice. 
Thelebolus sp. are abundant in lakes and is associated with skuas, petrels, and other 
birds in Antarctica (de Hoog et al. 2005; Brunati et al. 2009; Gonçalves et al. 2012a, 
b) and are isolated from Arctic and Antarctic regions (Kobayasi et  al. 1967; 
Montemartini et al. 1993; Sazanova et al. 2019; Alves et al. 2019). The psychro-
philic fungal diversity and incidence of fungal species in different habitats of 
Antarctica are given in Table 10.1.

Bovio et al. (2018) reported Thelebolus balaustiformis a new psychrophilic fun-
gal species isolated from the sponge, Dyside fragilis, in the South, Atlantic Ocean 
in the glacial ice habitats. Another psychrophile Glaciozyma antarctica (former 
Leucosporidium antarcticum) was isolated from various locations including the 
Antarctic marine waters (Fell et al. 1969); the soil around Lake Fletcher, Lichen, 
and Taylor Valleys, and on the dead sponge (Turchetti et al. 2011). Timling et al. 
(2014) sampled soils along the North American Arctic Transect and was successful 
in isolating more than 4350 fungal species. The most frequently isolated fungal 
isolates were Leotiomycetes sp., followed by Thelebolus, Penicillium, Cladosporium, 
Trichoderma, Periconia, Geomyces, Cryptococcus, and Pueraria. Ascomycota 
dominated the communities, followed by Basidiomycota. Five families in 
Chytridiomycota and one family in each of Zygomycota, Glomeromycota, 
Blastocladiomycota, and Neocallimastigomycota were detected, while 
Cryptomycota were only identified at the phylum level.

Compared to the polar regions, cold-adapted fungi in the Qinghai–Tibet Plateau 
are less documented except for a study from wherein more than 1400 fungal strains 
were isolated and 150 species including 6 new species were identified and described. 
Among those species, Phoma sclerotioides and Pseudogymnoascus pannorum were 
the most dominant species. Psychrotolerant species in Helotiales (Leotiomycetes, 
Ascomycota), the most commonly found group was studied in-depth and six new 
species, Psychrophila antarctica, P. lutea, P. olivacea, Tetracladium ellipsoideum, 
T. globosum, and T. psychrophilum were described (Wang et al. 2015a, b).

Hassan (2015) isolated 77 fungal strains representing 24 fungal genera from 
Batura Passu and Siachen Glaciers in the Hindu Kush and Karakoram mountains in 
Pakistan. Most of the fungal isolates showed antimicrobial activity and production 
of enzymes such as cellulase, lipase, protease, DNase, phosphatase (Hassan 
et al. 2017).

Psychrophilic endophytic fungi (PEF) were isolated from healthy foliar tissues 
of Cupressus arizonica, Cupressus sempervirens, and Thuja orientalis 
(Cupressaceae, Coniferales). Most of the 110 endophytic fungal isolates belonged 
to ascomycetous fungi, more specifically Phoma herbarum, Phoma sp., and 
Dothideomycetes sp., with the ability to produce secondary metabolites. Phoma 
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Table 10.1 Psychrophilic fungi isolated from different habitats of Antarctica, showing antagonistic 
activities

Habitat Fungi Metabolic activities References

Benthic mats of 
Antarctic lakes

160 filamentous fungi belonging 
to 15 fungal genera

Antimicrobial and 
cytotoxic activity

Brunati 
et al. (2009)

Algae associates 
from the rocky 
coastline of 
Elephant, King 
George, and 
Deception Islands, 
in the Antarctic 
Peninsula

148 fungal strains consisting of 
Penicillium (35.8%), Geomyces 
(24.3%), and the yeast 
Mestchnikowia australis (4.7%)

Antioxidants, anti-algal, 
antifungal, and anti-insect 
metabolites

Godinho 
et al. (2013)

Associates of 
endemic 
macroalgae M. 
harioti and Pyropia 
endiviifolia

Pseudogymnoascus sp., 
Guehomyces pullulans, M. 
australis

Antifungal activities Furbino 
et al. (2014)

Penicillium steckii Inhibition of yellow fever 
virus

Associates of 
marine sponges of 
Fildes Bay, King 
George Island

101 fungal isolates including 
genera Geomyces, Penicillium, 
Epicoccum, Pseudoeurotium, 
Thelebolus, Cladosporium, 
Aspergillus, Aureobasidium, 
Phoma, and Trichocladium

Antimicrobial and 
antitumoral compounds

Henríquez 
et al. (2014)

Marine sediments 
of Admiralty Bay

23 of the 47 fungal strains 
belonging to the genera 
Pseudogymnoascus, Penicillium, 
Cadophora, Paraconiothyrium, 
and Toxicocladosporium

Antibacterial activity 
against Xanthomonas 
species

Purić et al. 
(2018)

Marine and lake 
sediments from 
Deception Island

Penicillium sp. 
Pseudogymnoascus sp. 
Schizophyllum sp.

Antimicrobial cytotoxic 
and antiprotozoal

Gonçalves 
et al. (2015)

Terrestrial soils of 
Admiralty Bay, 
King George Island, 
and Deception 
Island

8 strains from the genera 
Bauveria, Penicillium, 
Phanerochaete, 
Pseudoeurotium, 
Pseudogymnoascus, 
Purpureocillium, and 
Trichoderma sp.

Antimicrobial, cytotoxic, 
and antiprotozoal 
activities

Gonçalves 
et al. (2015)

Union Glacier, in 
the southern 
Heritage Range

17 fungi including A. sydowii, P. 
allii-sativi, P. brevicompactum, 
P. chrysogenum, and P. rubens

Antibacterial, antifungal, 
antitumoral, 
antiprotozoal, and 
herbicidal activities

Godinho 
et al. (2015)

Chinese Antarctic 
station at Fildes 
Bay, King George 
Island

14 fungal strains Cytotoxic, antimicrobial Ding et al. 
(2016)

(continued)
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herbarum has been reported by the number of workers as soil psychrophilic fungi 
that is pathogenic to plants growing in cold regions (Domsch et al. 1980; Flanagan 
and Scarborough 1974; Selbmann et al. 2005; Singh et al. 2006).

10.3  Associations and Cold Adaptation Mechanisms 
of Psychrophilic Fungi

Fungi overcome cold tolerance through several physiological mechanisms and it is 
likely that they employ them in combinations. Numerous adaptations and mecha-
nisms can be observed. One of the mechanisms is the production and accumulation 
of intracellular solutes, also called as cryopreservants or cryoprotectants, such as 
glycerol, trehalose, and so on. Cryoprotectants are exopolymeric substances (e.g., 
sugars, alcohols, and amino acids), generated in high amounts believed to be in 
response to cold. These prevent cold-induced aggregation of proteins as well as 
maintain optimum membrane fluidity under low temperatures (Krembs et al. 2002; 
Mancuso Nichols et al. 2005).

Ophiocordyceps sinensis, the Chinese caterpillar fungus, is adapted to cold tem-
perature with putative antifreeze proteins and mechanisms for increasing lipid accu-
mulation and fatty acid unsaturation (Xiao et  al. 2013). Pseudogymnoascus 
pannorum (Geomyces pannorum) is a soil-inhibiting fungus, isolated from Arctic 
and Antarctic regions, as well as glacier bank soils in some Asian countries 

Table 10.1 (continued)

Habitat Fungi Metabolic activities References

Robert, Nelson, 
King George, and 
Penguin Islands at 
South Shetland 
archipelago

Filamentous fungi 
Pseudogymnoascus destructans, 
Mortierella parvispora, and P. 
chrysogenum, P. 
tardochrysogenm

Antiviral activity against 
dengue and Zika virus; 
antiparasitic activity; 
herbicidal activity against 
L. sativa (lettuce) and 
Allium schoenoprasum 
(chive)

Gomes 
et al. (2018)

Deception Island 6 Pseudogymnoascus sp. out of 
33 filamentous isolates

Anti-Xhantomonas 
activity

Purić et al. 
(2018)

Endophytes of D. 
antarctica

21 fungal strains Antifungal activity Gonçalves 
et al. (2015)

Endophytic to moss 
Schistidum 
antarctic found in 
Admiralty Bay, 
King George Island

Mortierella alpine Antioxidant activity and 
antibacterial activity

Melo et al. 
(2014)

Endophytic 
association with D. 
antarctica and C. 
quitensis

313 fungal isolates from D. 
antarctica
251 isolates from C. quitensis

Antiparasitic to L. 
amazonensis and T. cruzi
Antitumor

Santiago 
et al. (2012)
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(Deshmukh 2002; Arenz et al. 2006; Ozerskaya et al. 2004). P. pannorum grows 
slowly at temperatures below 0 °C to as low as −20 °C. This fungus maintains cell 
and membrane function at low temperatures by elevating levels of unsaturated fats 
and compounds with cryoprotectant properties such as trehalose and various poly-
ols at low temperatures (Finotti et al. 1996; Hayes 2012). Some of the adaptation 
means are discussed below:

10.3.1  Trehalose Accumulation

Trehalose is an important storage sugar in fungal vegetative cells and spores (Lewis 
and Smith 1967) and the most widely distributed disaccharide in fungi (Thevelein 
1984). In fungal vegetative structures, trehalose is commonly found with sugar 
alcohols and glycogen. As per Cooke and Whipps (1993), trehalose appears to func-
tion as a general stress protectant in the cytosol and also stabilizing membranes 
during dehydration (Goodrich et al. 1988).

More recently, authors have demonstrated the accumulation of trehalose in fun-
gal hyphae as a response to low temperatures. An elevation in trehalose composition 
was observed after the exposure of the fungi to low temperature or during growth at 
low temperature. Trehalose concentration in Mycorrhizal roots as well as increased 
accumulation in Hebeloma sp. is reported (Niederer et al. 1992; Tibbett et al. 1998). 
A shift in growth temperature, that is, lowering growth temperature further, also 
resulted in higher production of trehalose as seen in Humicola marvinii, a psychro-
phile, isolated from fell-field soil at Jane Col, Signy Island in Antarctica as well as 
Mortierella elongata, a psychrotrophic fungus (Weinstein et al. 2000).

10.3.2  Polyol Production

Glycerol and mannitol both polyols may increase in concentration to maintain tur-
gor pressure against heat-mediated decreases in external water potential (Cooke and 
Whipps 1993). Mannitol likewise is thought to be important in protection against 
water stress (Lewis and Smith 1967) and maybe a cryoprotectant (Weinstein et al. 
1997). Initial evidence of their potential cryoprotectant role came from a study by 
Weinstein et al. (1997), using an Antarctic isolate of Humicola marvinii.

10.3.3  Antifreeze Proteins (AFPs)

AFPs either intra- or extracellular may allow fungi to function and survive under 
freezing conditions by preventing the formation of ice and also preventing the freez-
ing of cell components (Snider et al. 2000). Glaciozyma antarctica, a psychrophilic 
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yeast, produces AFPs that help in its survival in glacial ice (de Menezes et al. 2019). 
AFP is found in the hyphae of three psychrophilic snow molds, the ascomycete 
Sclerotinia Borealis, and two basidiomycetes, Coprinus psychromorbidus and 
Typhula incarnate was reported back in 1994 by Newsted et al. (1994). Recently, 
antifreeze activity in snow-mold fungi Typhula incarnata, T. ishikariensis, and 
T. phacorrhiza has been reported by Snider et al. (2000).

10.3.4  Membrane Fluidity

Another adaptation strategy is the regulation of membrane fluidity as a response to 
freezing environments. The membrane is the first barrier, protecting the cells from 
external environments, thus acts as an interface for the fungi (Chintalapati et  al. 
2004). Shivaji and Prakash (2010) reported an increase in membranes rigidity at 
cold temperatures, which activates a membrane-associated sensor and subsequent 
upregulation of genes to mediate the exchange of metabolites to and from thus 
enhancing membrane fluidity of the cell. This process is aided by the modification 
of fatty acyl chains of the membrane fatty acids (Russell 2008) wherein saturated 
fatty acids are converted to unsaturated fatty acids by desaturase enzymes 
(Chintalapati et al. 2004).

It is evident from studies that membrane composition influences the survival and 
growth of fungi over the environmental range of temperature variations (Cooke and 
Whipps 1993). Such changes leading to increased fluidity of the cell membranes 
have been observed in Candida, Leucosporidium, Mucor, Torulopsis (Kerekes and 
Nagy 1980; Dexter and Cooke 1984a, b) where the degree of unsaturated fatty acids 
increased at low temperatures. Apart from fatty acids, changes in the membrane 
phospholipid saturation levels, membrane proteins, and sterols, also determine the 
membrane fluidity and thus help in survival in low freezing (Dexter and Cooke 
1985; Hammonds and Smith 1986). Change in growth temperature of psychrophilic 
fungi Geomyces pannorum, Mortierella elongata, Microdochium nivale, showed 
the lipid composition to change towards unsaturation, thus modifying the mem-
brane fluidity to adjust to the lowered temperatures and survive (Istokovics et al. 
1998; Weinstein et al. 2000).

10.4  Bioactive Secondary Metabolites of Psychrophilic Fungi

Research and discovery of secondary metabolites from fungi from the tropics and 
temperate regions have been the focus for the last few decades. However, work on 
psychrophilic fungi started recently but has acquired a considerable pace, especially 
studies on isolation and secondary metabolite studies from different habitats of 
Antarctica (Table 10.2). Studies indicate dominance of Penicillium sp. in the glacial 
ice of Antarctica. Another well-studied niche for the psychrophilic fungi is the deep 
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Table 10.2 Secondary metabolites produced by psychrophilic fungi isolated from Antarctica

Fungi Metabolite Application References

Tritirachium sp. 4-Carboxy-5,5′-dihydroxy- 
3,3′-dimethyl-diphenylether 
and macrosphelides A and J

Cell adhesion 
inhibitors and 
moderately cytotoxic 
agent

Ivanova et al. 
(2007), 
Hayashi 
et al. (1995)

Trichoderma asperellum Asperelines A–F Inhibitory activity 
against fungi and 
bacteria

Ren et al. 
(2009)

Oidiodendron 
truncatum

Chetracins B and C, and 5 new 
diketopiperazines, named 
chetracin D and oidioperazines 
A–D, melinacidin IV, T988 B, 
T988 C, T988 A, 
chetoseminudin C, and 
cyclo-l-Trp-l-Ser

Cytotoxic towards 5 
human cancer cell 
lines

Li et al. 
(2012b)

Aspergillus sydowii 
SP-1

Acremolin C, and (cyclo-(l- 
Trp- l-Phe), 4-hydroxy-phenyl 
acetic acid, (7S)-(+)-hydroxyl- 
sydonic acid, and (7S,11S)-
(+)-12-hydroxysydonic acid)

Antibacterial Li et al. 
(2018), 
Nishanth 
Kumar et al. 
(2014), Li 
et al. (2015)

A. ochraceopetaliformis Ochraceopones A–E, 
isoasteltoxin, asteltoxin and 
asteltoxin B;
Ochracenes A–I, trans 
(3R,4S)-(−)-4-hydroxymellein, 
cis (3R,4R)-(−)-4- 
hydroxymellein, (3R,4R)-4,7- 
dihydroxymellein, 
3,5-dimethylpyrone, 
stachyline B, and 
(E)-methyl-5-methylhexa-3,5- 
dienoate

Antiviral activities 
against the H1N1 and 
H3N2 influenza 
viruses
Moderate inhibitory 
effects on 
lipopolysaccharide 
induced NO release in 
RAW 264.7 mouse 
macrophage cell lines

Wang et al. 
(2015a, 
2016, 2017)

Cadophora 
luteo-olivacea

Spiciferone F, colomitides C 
and D, cadopheronenes A–D, 
similin C, and spicifernin B; 
polyketides spiciferone A, 
spiciferol A, 
dihydrospiciferone A, and 
dihydrospiciferol A

Phytotoxicity activity 
and plant growth- 
promoter activity

Nakajima 
et al. (1989), 
Nakajima 
et al. (1990), 
Rusman 
et al. (2018)

Geomyces sp. Ethyl asterrate, n-butyl 
asterrate, and geomycins 
A–C. Asterric acid, methyl 
asterrate, and bisechlorogeodin

Antibacterial and 
antifungal activities

Li et al. 
(2008)

Pseudogymnoascus sp. Pseudogymnoascins A–C and 
3-nitroasterric acid, questin, 
pyriculamide

– Figueroa 
et al. (2015)

Pseudogymnoascus 
pannorum

Pannomycin Antibacterial activity Parish et al. 
(2009)

(continued)
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Table 10.2 (continued)

Fungi Metabolite Application References

Penicillium nalgiovense Amphotericin B Antifungal Svahn et al. 
(2015)

Penicillium sp. SCIO 
05705

Penillines A and B and 
isopenilline A; (E)-3-(1H- 
imidazole- 4-yimethylene)-6-
(1H-indl-3-ylmethyl)-2,5- 
piperazinediol, penilloid, 
meleagrin, neoxaline, 
questiomycin A, N-(2- 
hydroxypehnyl)-acetamide, 
and 2-benzoxazolinone

Cytotoxicity; 
antituberculosis 
activity

Wang et al. 
(2015b)

Penicillium funiculosum 
GWT2-24

Chrodrimanins I and J
Chrodrimanins A, B, E, F, and 
H

Inhibitory activity 
against influenza virus 
H1N1; lipid-lowering 
activity in HepG2 
hepatocytes

Zhou et al. 
(2015, 2016)

Penicillium sp. S-1-18 Butanolide A, and 
guignarderemophilane F; 
penicyclone A, xylarenone A, 
callyspongidipeptide A, 
cyclo-(l-Phe-4R-hydroxyl-l- -
Pro), cyclo-(l-Pro-l-Phe), and 
N-(2-hydroxypropanoyl)-2- 
aminobenzoic acid amide

Tyrosine phosphatase 
1B inhibition

Zhou et al. 
(2017)

Penicillium crustosum 
HDN153086

(8E,4E,6E,8E)-10- 
Hydroxyundeca- 2,4,6,8- 
tetraenoic acid, fusaperazine F 
xylariolide D and two 
diketopiperazines

Cytotoxic activities Liu et al. 
(2019)

Mortierella alpina Pyrrolo[1,2-a]pyrazine-1,4- 
dione, hexahydro-3-(2- 
methylpropyl) and 
pyrrolo[1,2-a]pyrazine-1,4- 
dione, 
hexahydro-3-(phenylmethyl)

Antibacterial activity Melo et al. 
(2014)

Pseudogymnoascus 
strains

– Antifungal activities Furbino et al. 
(2014)

Purpureocillium 
lilacinum

– Trypanocidal, 
antifungal, and 
antibacterial activities

Gonçalves 
et al. (2015)

218 fungal extracts 
including P. destructans, 
Mortierella parvispora, 
and P. chrysogenum

– Antiviral activity 
against dengue and 
Zika viruses
Antiparasitic activity 
against Trypanosoma 
cruzi and Leishmania 
amazonensis, and 
herbicidal activity

Gomes et al. 
(2018)

(continued)
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sea and a lot of research has been documented (Höller et  al. 2000; Jensen and 
Fenical 2000; Verbist et al. 2000; Hentschel 2002; Bhadury et al. 2006; Ebel 2006; 
Konig et al. 2006; Newman and Hill 2006; Paul et al. 2006; Damare et al. 2006, 
2008; Blunt et al. 2007).

Most of the species found in these cold regions have the ability to form extrolites 
in large amounts and have been reported to be species-specific (Larsen et al. 2005). 
The fungal communities found in the habitats of Antarctic regions have structures, 
which can be used for designing potential drugs and other products to treat tropical 
diseases and cancer. Rosa et al. (2019) described the extrolites produced by psy-
chrophiles and have reported Aspergillus, Cladosporium, Penicillium, 
Pseudogymnoascus, Phaeosphaeria, Microdochium, Mortierella, and 
Purpureocillium sp. in their findings. Several such reports on the production of use-
ful extrolites are available. Secondary metabolites produced by psychrophilic fungi 
are described below:

10.4.1  Antibiotics

Some unique components and products with potential bioactive properties have 
been isolated and characterized from psychrophilic fungi. Penicillium species are 
the best known fungal strains for their capability to produce diverse bioactive 

Table 10.2 (continued)

Fungi Metabolite Application References

Pseudogymnoasc, 
Penicillium, Cadophora, 
Paraconiothyrium, 
Toxicocladosporium, 
Xanthomonas citri

– Antimicrobial 
inhibitory compounds 
against phytopathogen 
bacteria

Vieira et al. 
(2018)

Penicillium 
tardochrysogenum

Penicillin, secalonic acids D 
and F

– Houbraken 
et al. (2012)

P. chrysogenum – Selective 
antimicrobial 
activities

Brunati et al. 
(2009)

P. chrysogenum – Antifungal and/or 
trypanocidal activities

Godinho 
et al. (2013)

Penicillium steckii – Antiviral activity 
against yellow fever 
virus

Furbino et al. 
(2014)

A. sydowii, P. allii- 
sativi, P. 
brevicompactum, P. 
chrysogenum, P. rubens

– Antiviral, 
antimicrobial 
(antibacterial and 
antifungal), 
anticancer, 
antiprotozoal, and 
herbicidal activities

Godinho 
et al. (2015)
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compounds, including penicillin, produced by the strain P. chrysogenum (Houbraken 
et al. 2012; Devi et al. 2020; Rastegari et al. 2019a). Penicillium sp. was isolated 
from the Antarctic soil by Antipova et al. (2018) and has been reported to produce a 
number of unknown metabolites with numerous bioactivities (Rosa et  al. 2019). 
Brunati et  al. (2009) reported the production of rugulosin and skyrin (bis- 
anthraquinones) by strains of P. chrysogenum from Antarctica which had antibacte-
rial activity against Gram-negative and Gram-positive organisms.

Another research group reported antifungal and anti-trypanocidal activities of 
P. chrysogenum extracts, associated with Antarctic algae Palmaria decipiens 
(Godinho et al. 2013). Strains of P. chrysogenum isolated from Antarctica soil sam-
ples demonstrated trypanocidal and herbicidal activities (Godinho et al. 2015). The 
most recent report on P. palitans, isolated from permafrost lying undisturbed for 
30,000 years, produced two metabolites namely, festuclavine and fumigaclavines A 
and B (Kozlovsky et al. 2020). Psychrophile fungus Penicillium rivulum, producing 
new psychrophilins, and complex alkaloids communesins was characterized by 
Dalsgaard et al. (2004a, b, 2005a). Thus the Penicillium species incident in the cold 
habitats of Antarctica is “mycofactories” having the ability to produce a diverse 
range of biometabolites with several applications.

Santiago et  al. (2012) studied the capabilities of Antarctic endophytic fungi 
recovered from Deschampsia antarctica to produce bioactive secondary compounds 
against neglected tropical diseases and tumor cells. Li et al. (2008) worked with 
Geomyces sp. strains isolated from Antarctica, that could produce asterric acid 
derivatives that are known for antibacterial, antifungal, and anti-angiogenic activi-
ties (Giddings and Newman 2014; Li et al. 2008; Mahmoodian and Stickings 1964; 
Lee et al. 2002). Further in 2012, Li and coworkers isolated a number of compounds 
from psychrophilic fungus Oidiodendron truncatum including two new epipolythio-
dioxopiperazines (ETPs), chetracins, and five new diketopiperaines, chetracin D, 
and oidioperaines A–D (Li et  al. 2012a; Jiang and Guo 2011; Giddings and 
Newman 2014)

10.4.2  Cytotoxic Metabolites

Several cytotoxic compounds from psychrophilic fungi have been reported by the 
number of workers. The secondary metabolites, some of them, new records, have 
weak to moderately significant activity toward cancer cells. Table 10.3 gives a sum-
mary of some of the cytotoxic secondary metabolites isolated from psychrophilic 
and psychrotolerant fungi.
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10.4.3  Diterpenes

Diterpenes having antibacterial activity toward Gram-positive and Gram-negative 
bacteria namely Bacillus subtilis, Staphylococcus aureus, and Escherichia coli, 
were report to be produced by Eutypella sp. D-1. Among the diterpenes isolated 
from this psychrophilic fungus, libertellenone G and libertellenone H are new while 
two other known pimarane diterpenes were also detected (Liu et al. 2014).

10.4.4  Cyclic Peptides

Cyclic peptides have applications in different fields, such as the pharmaceutical 
industry for their anti-infective, antitumor, antimalarial activity, agricultural appli-
cations as fungicides, diagnostics, and vaccines (Demmer et al. 2009; Demain and 
Sanchez 2009; Claro et al. 2018). Studies on secondary metabolites from psychro-
philic fungi producing cyclic peptides are sparse. A new cyclic nitropeptide, 
Psychrophilin Dan antitumor compound, was extracted from the fungus Penicillium 
algidium a psychrophilic fungus isolated from Greenland (Ivanova et  al. 2001). 
From the same strain, two more cyclic peptides were obtained namely, 

Table 10.3 Cytotoxic secondary metabolites isolated from psychrophilic and psychrotolerant fungi

Fungal 
species Secondary metabolite

Nature of 
metabolite Activity References

Penicillium 
algidum

Psychrophilin D, 
Cycloaspeptide A and B

Nitropeptide and 
cyclopeptides

Cytotoxic to 
murine 
leukemia cells

Dalsgaard 
et al. 
(2005b)

Aspergillus 
sp.

Psychrophilin E and F Nitropeptide Cytotoxic to 
murine 
leukemia cells; 
lipid-lowering 
activities

Ebada 
et al. 
(2014), 
Peng et al. 
(2014)

Oidiodendron 
truncatum 
GW3-13

Epipolythiodioxopiperazines 
chetracins B and C; 
diketopiperazines chetracin 
D; melinacidin IV, T988, and 
T988 A

Piperazines Cytotoxic 
activity

Li et al. 
(2012b)

Penicillium 
sp. PR19 N-1

Eremophilane-type 
compound

Sesquiterpene 
compounds

Cytotoxic to 
HL-60 cells 
and A-549 cell 
lines

Lin et al. 
(2014)

Chloro-trinoreremophilane 
sesquiterpene

Chloroeremophilan 
sesquiterpene

Wu et al. 
(2013)

Trichoderma 
velutinum

Lipovelutibols B and D Lipopeptaibols HL-60, 
MDA-MB-231, 
A549, and 
LS180 cell 
lines

Singh 
et al. 
(2018)
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cycloaspeptide A and cycloaspeptide D.  Later, Dalsgaard et  al. (2004a) isolated 
cyclic peptides related to these, that is, psychrophilin A and cycoloaspeptide D from 
the extracts of the psychrophilic fungus Penicillium reibeum, both of which are new 
metabolites having antitumor and antagonistic activities (Demain and Sanchez 2009).

10.4.5  Polyketides

Polyketides (PKs) have antimicrobial activity and other clinically important appli-
cations. PKs help in nutrient assimilation resulting in lowering the capacities of 
competitors in the environments (Mukherjee et  al. 2012). Penicillium crustosum 
PRB-2 from the deep sea of the Antarctic was found to produce Penilactones A and 
B, the oxygenated polyketides (Wu et al. 2012). While the same group also reported 
hybrid polyketides, like cladosins which were produced by Cladosporium sphaero-
spermum 2005-01-E3, a deep-sea isolates. One of the cladosins, Cladosin C showed 
antiviral activity influenza A H1N1 virus (Wu et al. 2014). The same workers fur-
ther isolated polyketide Scequinadoline A from psychrophilic fungi Dichotomomyces 
cejpii F31-1(Wu et  al. 2018) and polyketide, anthraquinone–xanthone from 
Engyodontium album LF069 (Wu et al. 2016). Scequinadoline A demonstrated anti-
viral activity against the dengue virus while the anthraquinone–xanthone could 
inhibit methicillin-resistant Staphylococcus aureus.

10.4.6  Exopolysaccharides (EPS)

Production of exopolysaccharide is a stress response observed in marine or aquatic 
organisms. Fungus EPS, apart from having good rheological properties, have 
numerous bioactive characteristic features such as antitumor, antioxidant, anti- 
inflammation, immune-stimulating, anti-anemics (Rastegari et al. 2019b). Thus it 
has a good potential in the health and drug industry (Li et al. 2013). It was observed 
that fungi with eps showed better growth under freeze-thaw conditions compared to 
fungi without eps (Selbmann et al. 2002; Yadav et al. 2019).

The fungal isolate from Antarctica, Phoma herbarum CCFEE 5080, showed the 
production of exopolysaccharide made up of glucan (Selbmann et al. 2002). Onofri 
(1999) and Selbmann et al. (2005) reported exopolysaccharide synthesis in meriste-
matic black fungi isolated from Antarctica similar to Friedmanniomyces endolithi-
cus. Exopolysaccharide has multiple applications such as in cryopreservation, for 
example, alginate beads containing EPS for sample preservation from freezing 
damage (Martínez et al. 1999). Psychrophilic fungi Thelebolus sp. IITKGP-BT12 
isolated from Antarctica, produced EPS made up of glucan, having antiproliferative 
activity in cancer cells (Mukhopadhyay et al. 2014).
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10.4.7  Pigment/Lipid Production

In the presence of low temperatures, fungi produce elevated concentrations of pig-
ments and lipids. This rise in pigment or lipid content in the psychrophilic and 
psychrotolerant fungi is due to the synthesis of lipids like fatty acids and polyun-
saturated triglycerides (Weinstein et al. 2000). These observations are supported by 
similar studies wherein increased amounts of carotenoid pigments and fatty acids 
(linoleic, stearic, linolenic, myristic, heptadecanoic, and palmitic acid) were seen in 
a cold-tolerant fungi Thelebolus microspores (Singh et  al. 2014). Castrillo et  al. 
(2018) similarly reported the synthesis of carotenoids by Neurospora crassa, when 
exposed to cold conditions. Carotenoids have application in the pharmaceutical 
industry as photoprotectors, incorporated in sunscreens and ointments used for pro-
tection from UV radiations. Likewise, mycosporin-derived molecules are of bio-
technological interest due to their UV-absorbing properties (Volkmann et al. 2003).

Production of carotenoids and mycosporines by the number of psychrophilic 
yeast isolated from different sources from Antarctica, after exposure to UV radia-
tions, has been observed by Libkind et al. (2009) and Vaz et al. (2011). The produc-
ers strain belonged to genera Dioszegia, Cryptococcus, Exophiala, Microglossum, 
and Rhodotorula genera.

10.4.8  Anti-allergic Compounds

There is a report of the production of the novel anti-allergic compounds from psy-
chrophilic fungi. The marine isolates Penicillium granulatum MCCC 3A00475 
from Prydz Bay, Antarctica was found to produce spirograterpene, a tetra-diterpene. 
This compound showed anti-IgE activity in rat mast cells (Niu et al. 2017).

10.5  Applications of Secondary Metabolites

Bioactive secondary metabolites of psychrophilic fungi have attracted a lot of atten-
tion due to their application in biotechnological and pharmaceutical fields. With 
new psychrophilic species being discovered and researched, bioprospecting of the 
fungal psychrophiles is in limelight. Some of the applications are discussed below:
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10.5.1  Agriculture

The psychrophilic fungi having antibacterial, antifungal, anti-algal activities can be 
used against plant pathogens and pests. Some secondary metabolites having herbi-
cidal activities as well as plant growth-promoting activities can be used to improve 
agriculture. Pseudogymnoascus destructans and Penicillium tardochrysogenum 
extracts showed strong and selective herbicidal activity against Allium schoenopra-
sum and Lactuca sativa (Gomes et al. 2018).

10.5.2  Medical and Pharmaceutical Applications

There is a sudden rise in the number of secondary metabolites reported from psy-
chrophilic microorganisms in general and psychrophilic fungi in particular. Fungi 
are reported to produce pharmaceutical products (Schulz et al. 2002) but the recov-
ery of such bioactive metabolites from fungi of cold regions is quite rare. The num-
ber of species of genera Penicillium itself is reported by the number of authors. 
Frisvad et al. (2006) reported the synthesis of cycloaspeptide A and griseofulvin by 
Penicillium lanosum, P. soppii, and P. jamesonlandense while Penicillium ribium 
was found to produce the metabolite, cyclic nitropeptide psychrophilin A (Dalsgaard 
et al. 2004a; Frisvad et al. 2006), whereas Penicillium rivulorum synthesized com-
munesin G and H and psychrophilin B and C (Dalsgaard et al. 2004b, 2005a). Yet 
another species, Penicillium algidum, produced cycloaspeptide A and D and psy-
chrophilin D (Dalsgaard et al. 2005b). All these cyclic peptides produced by the 
psychrophilic fungi showed bioactive properties, including antimalarial, insecti-
cidal, and so on (Dalsgaard et al. 2005b; Lewer et al. 2006).

Some endophytic psychrophilic fungi namely were isolated Phoma sp., P. her-
barum, and Dothideomycetes sp. having antifungal and antibacterial activity were 
isolated by Moghaddam and Soltani (2014). Psychrophilic fungi having antimicro-
bial potential were isolated from King George Island, Antarctic, and Svalbard as 
reported by Yogabaanu et al. (2017). Marinelli et al. (2004) and Rojas et al. (2009) 
have done documentation of the bioactive secondary metabolites of psychrophilic 
fungi of Antarctica. Table 10.4 gives a summary of the secondary metabolites pro-
duced by psychrophilic fungi along with their activity.

10.6  Conclusion and Future Prospects

With the research being focused nowadays on psychrophilic organisms, there is 
scope for the discovery of novel metabolites with biotechnological, medical, and 
industrial applications. The spectrum of bioactive compounds isolated and analyzed 
from psychrophilic fungi is fast broadening. Fungi from extreme environments, 
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Table 10.4 Secondary metabolites produced by psychrophilic fungi with their bioactivity

Psychrophilic fungi Compound name Application References

Chaetomium sp. Depsipeptide, chaetomiamide, 
diketopiperazines

Anticancer and 
cytotoxic activity

Wang et al. 
(2017)

Penicillium algidum Cyclic nitropeptide, 
psychrophilin D; cyclic 
peptides, cycloaspeptide A, and 
cycloaspeptide D

Murine leukemia cell; 
anti-Plasmodium 
falciparum

Dalsgaard 
et al. (2005a, 
b)

Eutypella sp. D-1 Cytochalasins Z24, Z25, Z26; 
scoparasin B

Cytotoxicity toward 
human breast cancer 
MCF-7 cell line

Liu et al. 
(2014), Lu 
et al. (2014)

Eutypenoids A–C Immunosuppressive 
activities

Zhang et al. 
(2016)

Lindgomycetaceae 
strains

Lindgomycin; ascosetin Antibiotic activities Wu et al. 
(2015)

Trichoderma 
polysporum strain 
OPU1571

Novel compounds Antifungal towards 
Pythium iwayamai

Kamo et al. 
(2016)

Geomyces sp. Asterric acid; geomycins A–C Antibacterial and 
antifungal

Li et al. 
(2008)

Trichoderma 
asperellum

Asperelines A–Z13 Antifungal and 
antibacterial

Ren et al. 
(2009, 2013)

Oidiodendron 
truncatum GW3-13

Epipolythiodioxopiperazines, 
diketopiperazines

Cytotoxicity to 
human cancer lines

Li et al. 
(2012b)

Penicillium sp. 
PR19N-1

Sesquiterpenes; eremofortine; 
eremophilane

Cytotoxic activity 
against HL-60 and 
A549 cancer cell lines

Wu et al. 
(2013), Lin 
et al. (2014)

Penicillium 
funiculosum 
GWT2-24

Chrodrimanins Inhibitory activities 
against influenza 
virus A (H1N1)

Zhou et al. 
(2015)

Aspergillus 
ochraceopetaliformis 
SCSIO 05702

Ochraceopones A–E Antiviral activities 
against the H1N1 and 
H3N2 influenza 
viruses

Wang et al. 
(2016)

Penicillium 
nalgiovense Laxa

Amphotericin B Antifungal, 
antibacterial

Svahn et al. 
(2015)

Mrakia frigida Toxin Anti yeast Hua et al. 
(2010), Liu 
et al. (2012)

Pseudogymnoascus 
sp.

Asterric acid derivatives Antimicrobial activity Henríquez 
et al. (2014), 
Figueroa 
et al. (2015)

Penicillium 
chrysogenum

bis-Anthraquinone (rugulosin 
and skyrin)

Insecticide and 
medicine

Parker et al. 
(2000), 
Sumarah 
et al. (2005)

(continued)
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including those living in Antarctica, may have developed specific metabolic path-
ways to produce singular natural products with bioactive properties. For this reason, 
these fungi represent potential sources of pharmaceutical molecules. Extracts 
obtained from fungi isolated in different Antarctic environments have shown prom-
ising antimicrobial, cytotoxic, antiparasitic, and antiviral activities. On the other 
hand, several pure compounds isolated from Antarctic fungal extracts show new 
carbon frameworks or unusual structural features, indicating that these fungi would 
be good sources of new chemical compounds.

This review provides a baseline or food for thought regarding the exploitation of 
cold-adapted fungi and their metabolites for biotechnology and industrial uses. 
Adaptive mechanisms of low-temperature fungi need to be investigated further, on 
a molecular and genetic basis. Two of the most important avenues are pharmaceuti-
cals and replacing synthetic compounds with bio-based or biologically synthesized 
metabolites for use in industry and biotechnology. These fungi represent potential 
biological “factories” that can produce compounds with great potential for direct 
use in medicine and agriculture or as prototypical molecules that can be chemically 
modified for pharmaceutical and agrochemical applications.
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