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Plant growth-promoting
diazotrophs: Current research
and advancements

Chanda Vikrant Berde®, P. Veera Bramhachari",
and Vikrant Balkrishna Berde®

“Marine Microbiology, School of Earth, Ocean and Atmospheric Sciences, Goa
University, Taleigao Plateau, Goa, India, ®Department of Biotechnology, Krishna
University, Machilipatnam, Andhra Pradesh, India, °Department of Zoology,
Arts Commerce and Science College, Lanja, Maharashtra, India

8.1 Introduction

Increasing demands for food supply run parallel with increasing
population. To meet the demands of increasing food production, it
is necessary to increase the agricultural yields. Application of bio-
fertilizers in the form of diverse nitrogen-fixing microorganisms
called diazotrophs will ensure the optimization of agricultural yields.
The overall increase of crop plant growth is achieved through plant
growth-promoting rhizobacteria (PGPR). The PGPR covers microor-
ganisms such as IAA (indole acetic acid) producers, phosphate solu-
bilizers, potassium mobilizers, etc. Biological nitrogen fixation carried
out by the diazotrophic microorganisms contributes to more than
60% of the fixed nitrogen on our planet. Thus, isolating very efficient
nitrogen-fixing microorganisms, studying the mechanisms involved
in nitrogen fixation, using these microorganisms as formulations for
agricultural use for not only the leguminous but also the nonlegumi-
nous crops, will help in achieving success in increasing the crop yield
(Singh, 2018). Research over the last few years has been handling
various approaches to extend nitrogen fixation to crops other than
legumes, develop inoculums with diazotrophs for nitrogen-deficient
soils, and application of nonleguminous diazotrophs (Saumare et al.,
2020). Those studies seek to illustrate diazotrophic agronomic value
for the improvement of soil fertility and crop production as a nonpol-
luting, cost-effective method. The biological fixation of nitrogen pro-
duces about 200 million tonnes (Graham, 1992; Peoples et al., 2009).

Trends of Applied Microbiology for Sustainable Economy. https://doi.org/10.1016/B978-0-323-91595-3.00012-4
Copyright © 2022 Elsevier Inc. All rights reserved.
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With agricultural practices such as mixed cropping patterns, the nitro-
gen fixed in the soil during one crop can be efficiently utilized by the
next crop. Thus, mixed cropping with leguminous and nonleguminous
crops such as the soybean-wheat system, or the next season crops in
crop rotation, can maximally utilize the fixed nitrogen (Fustec et al.,
2010). This chapter focuses on the recent advances in the diazotrophic
research apropos to terrestrial as well as diazotrophs from the ocean,
the research focused on nitrogen-fixing genes, the enzymes and pro-
teins involved as well as the efforts taken to apply the nitrogen-fixing
ability of diazotrophs to nonleguminous plants.

8.2 Nitrogen fixation in diazotrophs

Atmospheric nitrogen fixation by diazotrophs is carried out by the
enzyme nitrogenase, which catalyzes the conversion of nitrogen to am-
monia (Hoffman et al., 2014; Einsle and Rees, 2020). All diazotrophic
microorganisms harbor this enzyme. It is made up of two metallopro-
tein components, both of which play a role in ammonia formation.
Component I, also called dinitrogenase, i.e., molybdo-ferro-protein
(Mo-Fe-protein), is 2.2x10°Da protein, which reduces nitrogen as
well as several substrates such as acetylene, protons, cyanide, isocy-
anide, and azide, as reported in nonphototrophic bacteria R. rubrum
(Munson and Burris, 1969). Component II, also called dinitroge-
nase reductase, is an electron-transfer Fe protein. Catalysis requires
a reduction source and Mg-ATP. In a catalytic loop of single-electron
transfer and Mg-ATP hydrolysis, two member proteins associate and
dissociate. The active substrate binding and reduction site, involving
electron transfer from the Fe protein to FeMo-Co, is provided by an
iron-molybdenum cofactor. Alternative nitrogenases of the form -V
and -Fe, where Mo from FeMo-Co is substituted with V or Fe, were
discovered as well. The extension of nitrogenase substrates to include
CO and CO, has been reported (Seefeldt et al., 2020).

Many diazotrophs have another hydrogenase enzyme that is in-
volved with the elimination of the hydrogen that is formed as nitro-
gen is fixed. Hydrogenases reuse H, for ATP synthesis and increase
N, fixation speed (Johansson et al., 1983). Hydrogenase also has an
oxygen sensitivity as nitrogenase enzyme and contains four iron and
four molecule-labile sulfur atoms. Hence, the removal or utilization
of hydrogen is important, to prevent the inactivation of the nitroge-
nase enzyme. In some diazotrophs like Azotobactor vinelandii and A.
chroococcum, nitrogen fixation and hydrogen production may be car-
ried out by the same enzyme complex. Hydrogen evolved is quickly
removed from the cells by diffusion.

Nitrogenase enzyme is also inhibited by the higher concentration
of ammonia. Hence, ammonia formed during nitrogen fixation needs
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to be converted to organic nitrogen compounds, to protect the nitro-
genase enzyme from getting inactivated. Aerobic diazotrophs, which
lack special compartments for nitrogen fixation, demonstrate a high
respiratory rate, which is an adaptation to prevent the oxygen from
reaching the nitrogenase enzyme and inactivating it. In the case of
cyanobacteria, reduction of nitrogen occurs in heterocysts, which are
thick-walled cells (Haselkorn, 2003). The O,-producing photo-system
11, ribulose bisphosphate carboxylase, is missing and the photosyn-
thetic biliproteins may be lacking or diminished. In nonheterocystous
cyanobacterial species such as Lyngbya, the nitrogen fixation occurs
in cells in the center of the colony where oxygen penetration is less. In
leguminous plants, nitrogen fixation takes place in root nodules that
contain leghemoglobin to regulate oxygen tension.

8.3 Terrestrial nitrogen-fixing diazotrophs

The need to satisfy the growing demand for food productivity
requires isolation and the efficiency of diazotrophs. The efficient
relationship between diazotrophs and the host plant is a major pre-
requisite for nitrogen fixation, given the phylogenic and ecological
richness of diazotrophic bacteria and their hosts. Hye Jia et al. (2014)
identified diazotrophs from 576 endophytic bacteria of leaves, stems,
and roots, from 10 rice cultivars. Eighty-one percent of these isolates
produced ammonia and were classified with the application of spe-
cial nif gene primary set as the diazotrophic bacteria. Diazotroph
species of Bacillus, Penibacillus, Microbacteria, and Klebsiella have
been reported as belonging to the genes of nifH. This group focused
on the ability to fix nitrogen and other properties of the diazotrophs,
including the ability to produce auxins and siderophores, solubilize
phosphate and induce fungal resistance in plants. Diazotrophic bac-
terial isolation from maize mucilage has been confirmed by Higdon
et al. (2020a) with the potential to fix nitrogen and having other plant
growth-promoting attributes. Three large groups of sequences refer-
ring to the nitrogen-fixing gene were included in the sequences of the
isolates. The sequences were homologous to nif genes (nifHDKENB)
in the Dos Santos model (Dos Santos et al., 2012; Higdon et al., 2020b).
Half of the overall diazotrophic isolates revealed the nifH gene and
193 isolates among these were belonging to Enterobacter, Klebsiella,
Metakosakonia, Pseudomonas, Rahnella, and Raoultella species
(Higdon et al., 2020Db).

Lateral transfer of chromosomal symbiosis islands was observed
in species of the genus Mesorhizobium, bearing the ability to nodulate
legumes like chickpeas (Laranjo et al., 2014). This trait helps in nodu-
lating new hosts, which is beneficial for the development of bioinocu-
lants with wider host ranges. Thus, understanding the mechanisms of
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adaptation to new hosts and the symbiosis between the gene bearers
and the host plant will enable more effective development of mesorhi-
zobium bioinoculants as biofertilizers.

Recent studies by Elhady et al. (2020) focused on the effect of nod-
ule size on nitrogen-fixing efficiency of Bradyrhizobium japonicum
and the host soybean crop. Smaller nodules were formed as a result of
P. penetrans invasion of plant roots. It affected the nodule size as well
as the number of bacteroids in the infested roots; however, the num-
ber of nodules was higher. Therefore, it can be seen that the successful
establishment of the diazotroph in the host plant, and establishment
of nitrogen-fixing mechanism in the host, is still affected by external
factors, biotic as well as abiotic.

Numerous cyanobacteria contain pale and dense cells called het-
erocysts in Anabaena, Nostoc, and Cylindrospermopsis and are fila-
mentous (Ogawa and Carr, 1969; Haselkorn, 2003; Willis et al., 2015;
Aly and Andrews, 2016; Zulkefli and Hwang, 2020). These are the
nitrogen fixation sites (Haselkorn, 2003; Videau et al., 2016). In the
absence of available combined nitrogen, heterocysts are formed, as
ammonia prevents the differentiation of heterocysts as well as inhib-
its the nitrogenase enzyme. Nitrogen fixation takes place in in-house
structured cells under reduced conditions; cyanobacteria such as
Lyngbya, Oscillatoria, Plectonomas, and in bacterium do not produce
heterocyst. The nitrogen fixation occurs in root nodules produced by
Rhizobium (in leguminous plants) and Frankia (in nonleguminous
plants). The lichens (a symbiotic structure created by cyanobacte-
ria and fungi) are the site of nitrogen fixation in lower community of
microorganisms.

Diazotrophism is seen in endophytic microorganisms, especially
endophytic bacteria; these intracell colonizers bring about nitro-
gen fixation in tissues of the plants and promote their growth. The
endophytic diazotrophs can be exploited as biofertilizers for sus-
tainable agriculture. A strain of P. polymyxa can colonize nonnative
hosts and fix atmospheric nitrogen within, promoting plant growth.
Gluconacetobacter diazotrophicus is another well-studied endophytic
diazotroph isolated from sugarcane. It has the nitrogen-fixing ability
as well as additional plant growth-promoting traits (Puri et al., 2017).
Diazotrophs imparting drought stress resistance to the plants such
as strains of genus Herbaspirillum offer great hope for agriculture in
drought-prone areas (Aguiar et al., 2016).

8.4 Nitrogen fixation in the ocean

Diazotrophs were isolated from the rhizosphere and soil in
general, but during recent years, the focus is shifted to endophytic
and marine diazotrophic microorganisms. The occurrence of
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diazotrophs, both bacteria and archaea, has been detected in the
Arctic Ocean and found to play a role in the conversion of atmo-
spheric nitrogen to bioavailable ammonia in the marine ecosystem.
Both symbiotic cyanobacterial nitrogen fixation and heterotrophic
diazotrophs have been reported (von Friesen and Riemann, 2020).
The research workers, however, point out some gaps such as the in-
ability to sample larger regions and the nonavailability of enough
quantitative data to come to specific conclusions. This calls for
future and in-depth research on diazotroph distribution, compo-
sition, and their activity in pelagic and sea ice-associated environ-
ments of the Arctic Ocean.

Though previously, there were reports of studies being carried out
measuring nitrogen fixation and denitrification at the seafloor and
pelagic zone using stable isotope technique (Fan et al., 2015). The
same group has also worked on the diversity, abundance, and activity
of nitrogen-fixing and denitrifying microorganisms at three stations
in the southern North Sea. Their genomic analysis studies indicated
the presence of nifH genes in anaerobic sulfur/iron reducers and sul-
fate reducers. These results are concomitant with the reports of the
discoveries of diazotrophic methanogenic archaea Methanosarcina
barkeri by N radiotracer technique (Murray and Zinder, 1984;
Leigh Nitrogen, 2000) and Methanococcus thermolithotrophicus by
acetylene reduction assay (ARA) technique (Belay et al., 1984; Leigh
Nitrogen, 2000).

Noncyanobacterial diazotrophs or heterotrophic diazotrophs
are distributed widely in marine waters, including the oxygenated
zones; however, the mechanism of nitrogenase protection from
oxygen is yet to be understood (Pedersen et al., 2018; Geisler et al.,
2019). A major fraction of the aquatic biosphere such as eutrophic
estuaries has high ambient nitrogen concentrations and oxidized
aphotic water. The diazotrophs found in these zones are closely
associated with bacterioplankton and are referred to as planktonic
heterotrophic diazotrophs. The prime requirement for the coloni-
zation of the diazotrophs onto surfaces is the initial colonization
by bacterioplankton (Pedersen et al., 2018). Putative diazotrophs
appeared after 80 h of colonization initiation, after the plankton,
following the colonization by bacterioplankton. The surfaces for
the colonization of diazotrophs can be natural particles that act as
the nitrogen fixation loci. The natural particles or aggregates com-
prise polysaccharides that offer a microenvironment with less ox-
ygen for the activity of the nitrogenase enzyme. It was also pointed
out by the authors that resuspension of sediment material can pro-
mote pelagic N,-fixation. Thus, these heterotrophic diazotrophs
are responsible for the nitrogen fixation taking place in the ocean
waters.
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Work on diazotrophs associated with the particulate matter re-
lated to their high concentrations of nitrogen fixation rates and the
existence of nifH genes indicates that they are extremely unique and
specific. This relationship was shown for the first time recently with
a direct staining approach (Geisler et al., 2019). Earlier such research
was conducted mostly through indirect relations and various method-
ological especially statistical approaches. This new staining technique
incorporates fluorescent tagging of active diazotrophs by nitrogenase
immunolabeling and Alcian blue or concanavalin-A polysaccharide
stain. Nucleic acid staining was used for the total bacteria. This ap-
proach provides nitrogen fixing frequencies, bacterial activity, and
specific location of heterotrophic diazotrophs on artificial and natural
aggregates (Geisler et al., 2019).

Diazotrophs in the marine environment contribute to nitrogen fix-
ation, but these studies have been focusing only a certain hotspots.
There is a dearth of knowledge of diazotrophic activities in the open
oceans. The reasons are very less volumes being sampled, fewer
sampling sites as compared to the vastness of the oceans, less fre-
quency of sampling, and the practical difficulties of having a good
geographic coverage. These difficulties have hampered the studies
on diazotrophic diversity and distribution; hence, getting global ni-
trogen budget becomes a failure or is inaccurate. A solution for these
inadequacies requires leveraging high spatiotemporal resolution
measurements, and failure to employ these has come in the way of
measurement methods according to Benavides and Robidart (2020).
Increasing the spatiotemporal resolution of diazotroph activity and
diversity will provide more accurate quantifications of nitrogen fluxes
in ocean waters. A very recent study based on the application of com-
bined values from two established acetylene-based assays was used
to study the nitrogen cycling in coral reefs (El-Khaled et al., 2020).
This method makes possible studying two processes, i.e., nitrogen
fixation and denitrification, simultaneously by analyzing the gases
formed during the processes. Gas chromatography is used for eth-
ylene and nitrous oxide analyses formed during nitrogen fixation and
denitrification, respectively.

8.5 Genomic and transcriptomics of
diazotrophs

Mahmud et al. (2020) in their review have elaborated the need
for research focusing on transferring nitrogen-fixing mechanisms to
nonlegumes, with emphasis on molecular techniques. This in turn ne-
cessitates the importance of genome and proteomic/transcriptomic
studies. The last two decades has seen a slow and assuring increase in
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reports on work pertaining to these aspects of diazotrophic research.
From diazotrophic rhizobial genome, numerous symbiotic genes (nod
genes) encoding for nodulation, and nitrogen-fixing genes (nifgenes),
have been identified.

In symbiotic diazotrophs, especially Rhizobium sp., nif genes are
located on a megaplasmid adjacent to nod genes. In the nonsymbi-
otic diazotrophs like cyanobacteria, these genes are localized on the
chromosome. Nifgenes comprises gene cluster of 24-Kb nucleotides,
between the genes encoding for histidine (his) and shikimic acid
(shi A). The cluster is organized in seven operons, i.e., transcription
units (e.g., QB AL FM VSUX NE YKDH J). These operons transcribe
for nitrogenase, Fe-protein, and Mo-Fe-protein. In nonsymbiotic
diazotroph Azospirillum sp., m/HDK cluster megaplasmid and the
sequence homologous to nod genes were reported (Acosta-Cruz
et al., 2012). The presence of plasmids has also been described for
other diazotrophs, including Anabaena, Azotobacter, and Frankia
(Elmerich et al., 1987).

Diazotrophs also harbor hydrogen uptake (or Hup) genes that help
in the removal of hydrogen formed during nitrogen fixation. The need
for the removal of hydrogen is due to the reduced efficiency of nitro-
genase in the presence of hydrogen. There are reports of genetically
engineered diazotrophic strain by transferring the Hup genes of R.
leguminosarum into Rhizobium strain (Lambert et al., 1985). This is
the world’s first report of interspecific transfer of Hup genes. The effi-
cient transfer and expression of Hup genes has made it easier for the
chick-pea-Rhizobium system to improve symbiotic energy efficiency.
Transfer of nitrogen-fixing genes to nonleguminous plants is one of
the strategies to overcome nitrogen deficiency and also to reduce the
use of chemical fertilizers. The best way to improve nitrogen availabil-
ity in crop plants would be to transfer the genes m/genes into chlo-
roplasts; however, lack of chloroplast transferring techniques and
protection of nitrogenase from O, evolved during photosynthesis are
the drawbacks of the process that need to be addressed (Long, 1989;
Bdascones et al., 2000).

According to Gaby and Buckley (2011), the diazotrophs are a poorly
described group and many more diazotrophic strains and nitrogen-
fixing genomes need to be discovered and studied. The authors have
reported 16,989 nifH sequences so far. Other sequences include nitroge-
nase genes nifD, nifK, nifE, nifN, etc., which make up the total of 32,954
sequences in the database. This database allowed for a comparative
study of the symbiotic systems designed to identify core genetic net-
works that shape the root nodule and to define strategies to transfer the
nitrogen-fixing capability of nonlegume crops (Lopez-Torrejon et al.,
2016; Wardhani et al., 2019; Mahmud et al., 2020; van Heerwaarden
et al., 2018). In a recent study, homologous coding sequences for the
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acdS and ipdC/ppdC genes were identified for the diazotrophs grouped
in Dos Santos Positive (DSP) (Higdon et al., 2020b). In the case of PQQ
genes, approximately 28% of all isolates examined had homologous
pgqBCDE sequences, whereas 12% had coding sequences equal to
pqqF and 90% had pgqDH matches (Higdon et al., 2020a).

The simultaneous developments in transcriptomics of diazotrophs
and the nitrogen-fixing mechanisms have opened up a new era in
this field. Mergaert et al. (2003) reported the discovery of the NCR
(module-specific cysteine-rich) peptides in nodules of Medicago
truncatula. Using transcriptome analysis, it was found that these have
a signal peptide with a conserved cysteine motif and 300 plus mem-
bers have been discovered in galeloid legumes as well as other plants
(Wojciechowsk et al., 2004; Kondorosi et al., 2013; Pan and Wang, 2017;
Kereszt et al., 2018). Further characterization of these NCR peptides
has been reported by some workers (Kereszt et al., 2018; Lindstrom
and Mousavi, 2019).

8.6 Beneficial mechanisms other than
N-fixation provided by diazotrophs

Apart from fixing atmospheric nitrogen for the plants, the di-
azotrophs have been reported to have multiple other abilities that
add to overall growth-promoting attributes. Phosphate solubilization
helps in making inorganic phosphorus available, potassium mobiliza-
tion provides essential potassium for plant growth and functions, the
production of plant growth hormones like IAA benefits the plant root
and shoot development, protection against plant diseases is provided
by the production of secondary metabolites, etc. These are some of the
additional properties observed and studied in diazotrophic microor-
ganisms (Unpublished data). Genome mining showed that isolates of
all diazotrophic groups possessed marker genes for multiple mecha-
nisms of direct plant growth promotion (PGP). These findings reveal a
potential to confer the targeted PGP traits to the host organism and also
revealed phenotypic variation among isolates. Diazotrophs belonging
to Rhizobia, Bradyrhizobia, Azotobacter, Azospirillum, Pseudomonas,
Klebsiella, and Bacillus genera that harbor the beneficial mechanisms
in addition to nitrogen fixation, play a vital role in the overall growth
and yield of crop plants.

There is a lacunae of information and research on the other ben-
eficial properties present in diazotrophs forming legume nodules ex-
cept for the knowledge about their nitrogen-fixing abilities. Table 8.1
summarizes some of the plant growth-promoting attributes reported
in some diazotrophs in addition to nitrogen-fixing properties.
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Table 8.1 Plant growth-promoting properties found in diazotrophs.

Properties Diazotrophic microorganism References

Acetic indole (IAA), hydrocyanic acid (HCN), Rhizobia Gopalakrishnan et al.
antibiotics and/or mycolytic enzymes, organic (2015, 2018)

acid, and siderophores

Inorganic phosphate solubilization, nitrogen Mycorrhizae Agnolucci et al. (2019)
fixation, IAA production

ACC-deaminase activity and production of 12 Diazotrophic strains, including Laskar et al. (2013)
IAA, phosphorous solubilization Sphingomonas azotifigens (JN085438),

Pseudomonas putida (JN222977),
Herbispirillum sp. (JF990839)

IAA production, FePQ, solubilization, AIPQ, 91 Isolates belonging to the Zuluaga et al. (2020)
solubilization, siderophores production Proteobacteria phylum

Higher auxin-producing activity, high Two species of Penibacillus, three spe- Hye Jia et al. (2014)
siderophore-producing activity, high cies of Microbacterium, three Bacillus

phosphate-solubilizing activity species, and four species of Klebsiella

8.7 Application in global agriculture

A variety of diazotroph-based biofertilizers are available glob-
ally for agricultural applications. Table 8.2 summarizes the available
diazotroph-containing biofertilizers used for different crop cultivars
and the difference in yields obtained. Use of diazotrophic biofertilizers
impacted the economy of several countries such as Brazil with an eco-
nomic benefit in terms of N-fertilizer saving over USDA 2.5 billion per
year (Bruno et al., 2003). Countries like Canada, Germany, the United
Kingdom, Spain, Italy, France China, Japan, Australia, New Zealand,
India, and the rest of Asia produce large numbers of biofertilizers that
are based on nitrogen-fixing bacteria and contributing to economic
growth making around USD 0.284-0.45 billion dollars (Swarnalakshmi
et al., 2016). China holds more than 511 biofertilizer products and ac-
counted for 43.2% of the biofertilizer market share for the Asia-Pacific
region in 2017 (Market Data Forecast, 2018).

As a result of the availability of biofertilizers, the nitrogen fixed
by crops is around 55-60 million tons per year (Vitousek et al., 2013;
Figueiredo et al., 2013; Rao and Balachandar, 2017) and the highest
contributor is Bradyrhizobium species found in the legumes of soy-
bean as microsymbiont (Hungria and Mendes, 2015; Gyogluu et al.,
2018). Application of the biological nitrogen-fixing diazotrophs along



Table 8.2 Commercially available diazotrophic biofertilizers and their impact on agricultural yields.

Commercial
biofertilizer

Diazotroph formulated with
perlite-biochar carriers
Biofix and Legumefix
Sympal and Legumefix
Nitragin

Maize seeds coated with
Azospirillum

Microbin and Azottein

BioGro

Biofertilizer

Biofertilizer

Microorganism used

Rhizobium leguminosarum
bv. phaseoliL.CS0306
Rhizobia inoculants
Rhizobia inoculants
Root-associated bacteria
Azospirillum

Phosphate solubilizing and
nitrogen fixing

BNF

Rhizobia

Azospirillum brasilense,

Azotobacter chroccocum,
and Trichoderma lignorum

Herbaspirillum seropedicae,

Pseudomonas sp., and
Bacillus megaterium

Country
Spain

Ghana
Zambia
Germany

Mexico,
Argentina

Egypt

Southeast Asia

Northern
Nigeria

Benefits

Increased yield
Grain yield (12%—-19%)

Rise in yields from 2000 to
4000kg/ha

Three- to fourfold increase
inyield

Yield increase

Grain yield increased

Replaced 23%-52% of N
chemical fertilizers without
the loss of yield

Yield increase by 447 kg/ha

Contributed to 60% of the
nitrogen

Yield increase from 18% to
57.31%

Plant
cultivar

Common bean
Soybean and
cowpea
Soybean
Soybean
Maize

Barley

Rice

Soybean

Sugarcane

Sugarcane

References

Pastor-Bueis et al. (2019)
Ulzen et al. (2016)
Thuita et al. (2018),
Mathenge et al. (2019)
William and Akiko (2020)
Reis (2007)

El-Sayed et al. (2000)

Rose et al. (2014)

Ronner et al. (2016)

Serna-Cock et al. (2011)

Antunes et al. (2019)
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with vermicompost and other soil conditioners has been observed
to further improve the soils, especially poor alkaline soils (Mathenge
etal., 2019).

8.8 Future challenges in agriculture:
Application of diazotrophs to nonlegumes

Research into the genetics of diazotrophic microorganisms has led
to the transfer of the benefits of nitrogen fixation to nonleguminous
plants such as wheat, rice, sorghum, or maize. One way of achieving
this is by inducing symbiosis between the diazotrophs and the non-
nitrogen-fixing plants, resulting in the development of root nodules
(Mus et al., 2016; Burén and Rubio, 2018). The plant needs to produce
and secrete nodulation signals for the initiation of nodulation by the
diazotroph. Another approach is to introduce the nitrogen-fixing
genes in the nonleguminous plant itself (Dent and Cocking, 2017;
Vicente and Dean, 2017; Burén et al., 2018).

The difficulty of this biosynthesis and the enzyme’s oxygen sen-
sitivity are a major challenge for this strategy to be implemented. It
is also uncertain if the power and energy required to support nitro-
genase catalysis can be provided by the cereal host (van Velzen et al.,
2018). There are reports of the successful transfer of nifgenes to nondi-
azotrophs such as E. coli, Saccharomyces cerevisiae, Paenibacillus sp.,
tobacco plants (Dixon and Postgate, 1972; Han et al., 2015; Oldroyd
and Dixon, 2014; Burén et al. 2017; Burén and Rubio, 2018), as well
as research carried out on the nonlegumes, Parasponi legumes, and
Actinorrhizae, which shows that such a transfer of genes leading to
acquiring nitrogen-fixing ability is possible. Significant developments
in developing strategies in this regard were reported mostly in trans-
genic plants, yeast, etc. Ivleva et al. (2016) reported the integration
of nifH and nifM genes into the tobacco chloroplast genome, which
could encode active Fe protein of nitrogenase in the transgenic plant.
Burén and Rubio (2018) described the transfer of nif cassette of nine
genes in transgenic yeasts (Saccharomyces cerevisiae), which is suffi-
cient for nitrogen fixation. Another report shows that the transfer of
the nitrogenase gene to mitochondria and root plastids in eukaryotes
can result in nitrogenase expression under a low-oxygen environment
(Wardhani et al., 2019; Ivleva et al., 2016).

According to Postgate (1992), the production of a “diazoplast” in
plants would allow plants to resolve their genetic and physiological
bacterial dependency for nitrogen fixation. The new organelle has di-
azotrophic properties incorporated in chloroplasts. By adding an en-
dosymbiotic prokaryote to the plant’s genome, diazoplast could also
be obtained similarly to a chloroplast. Research on the establishment
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of Gluconacetobacter diazotrophicus in root meristem cells indicate
that symbiosomal vesicular cytoplasmic compartments are possible
locations for diazoplast formation.

A third approach can be making use of the endophytic microbial
community that is associated with the plant system, which will en-
able aerobic nitrogen fixation by microsymbionts, for improved plant
growth (Kennedy and Islam, 2001). For example, Yonebayashi et al.
(2014) have reported the association of endophyte and tumorous
growth on sweet potato. Oliveira et al. (2003) have studied the effect of
diazotrophic endophytic inoculants on sugarcane growth. Similarly,
the nonsymbiotic diazotrophs also contribute significantly to nitrogen
fixation as pointed out by the work done by Pankievicz et al. (2015) and
van Deynze et al. (2018).

Nitrogen fixation efficacy and plant growth benefits in
rhizobia-legume symbiosis have been successfully demonstrated for
Gluconacetobacter diazotrophicus (Dent and Cocking, 2017). The de-
velopment of nitrogen-fixing endophytic bioinoculants that can be
useful to all staple food crops and an apt replacement for chemical ni-
trogen fertilizers, having yield benefits, is significant progress leading
to Greener Nitrogen Revolution (Dent and Cocking, 2017).

8.9 Conclusions and future perspectives

The extensive application of synthetic fertilizers to meet the in-
creasing nitrogen demand of agriculture has been seen in the last
decades. This has ultimately led to environmental pollution espe-
cially due to the runoff of excess nitrates and soils losing fertility.
The increasing concern over the deteriorating environment neces-
sitates lowering the dependence on chemical fertilizers. Scientists
are investigating bio-inoculants, in particular diazotrophic bioinoc-
ulants, in different dimensions to enhance legume and nonlegume
plant growth. This is crucial for the future of sustainable farming, in
an effort to guarantee food security and also to reduce air-polluting
emissions from chemical fertilizers. Research dimensions being tar-
geted include diazotrophs for nonlegumes, endophytic diazotrophs
as bioinoculants, transferring nif genes to nondiazotrophs as well as
crops and organelles of plants, etc. Future in situ studies are needed
to establish the identity, activity, and ecology of particle-associated
noncyanobacterial diazotrophs (NCDs) and also focus future re-
search on diazotrophs of the aquatic system as well as environments
in which diazotrophic research lacks or has been overlooked. The
PGP properties of diazotrophs offer promise as effective bioinocu-
lants of the future. By appropriate application of the naturally occur-
ring endophytic diazotrophs, biological nitrogen fixation for cereals
and other nonlegumes can be achieved.
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