
Transactions on Computer Systems and Networks

Jivan S. Parab ·
Madhusudan Ganuji Lanjewar ·
Marlon Darius Sequeira · Gourish Naik ·
Arman Yusuf Shaikh

Python
Programming
Recipes for IoT
Applications

Transactions on Computer Systems
and Networks

Series Editor

Amlan Chakrabarti, Director and Professor, A. K. Choudhury School of
Information Technology, Kolkata, West Bengal, India

Jivan S. Parab · Madhusudan Ganuji Lanjewar ·
Marlon Darius Sequeira · Gourish Naik ·
Arman Yusuf Shaikh

Python Programming
Recipes for IoT Applications

Jivan S. Parab
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Marlon Darius Sequeira
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Arman Yusuf Shaikh
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Madhusudan Ganuji Lanjewar
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Gourish Naik
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

ISSN 2730-7484 ISSN 2730-7492 (electronic)
Transactions on Computer Systems and Networks
ISBN 978-981-19-9465-4 ISBN 978-981-19-9466-1 (eBook)
https://doi.org/10.1007/978-981-19-9466-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-9466-1

Contents

1 PYTHON Programming and IoT . 1
1.1 Introduction to Python . 1
1.2 Can Python Replace C/C++? . 2
1.3 Overview of Python Programming . 2
1.4 Python for Embedded System . 23
1.5 Introduction to IoT . 23
1.6 IoT Applications . 25
References . 26

2 Configuring Raspberry Pi, MicroPython Pyboard, and Jetson
Nano for Python . 27
2.1 Raspberry Pi Board Features . 27

2.1.1 Configuration of Raspberry Pi . 29
2.2 MicroPython Pyboard Features . 33

2.2.1 Configuration of MicroPython Pyboard 34
2.3 Jetson Nano Board Features . 40

2.3.1 Configuration of Jetson Nano Board . 41
References . 48

3 Simple Applications with Raspberry Pi . 49
3.1 Blinking of LED . 49
3.2 OLED Display Interface . 55
3.3 Camera Interfacing . 62
3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 69
3.5 Raspberry Pi and Mobile Interface Through Bluetooth 83
References . 87

4 MicroPython PyBoard for IoT . 89
4.1 Home Automation . 90
4.2 Smart e-waste Bin . 96
4.3 Industrial Environmental Monitoring . 105

xi

xii Contents

4.4 Greenhouse Monitoring . 111
4.5 Aquaculture Monitoring . 116
References . 121

5 FoG and Cloud Computing with Jetson Nano . 123
5.1 Introduction to FoG Computing . 123
5.2 Architecture Model of FoG . 126
5.3 Introduction to Cloud Computing . 127
5.4 Cloud Computing Architecture . 129
5.5 Role of FoG and Cloud Computing in IoT . 131
5.6 Examples of FoG and Cloud Computing . 131

5.6.1 Patient Monitoring system with Cloud 131
5.6.2 Home security with FoG . 138

References . 165

6 Machine Learning (ML) in IoT with Jetson Nano 167
6.1 What is AI? . 167
6.2 Concepts of Machine Learning (ML) and Deep Learning (DL) 168
6.3 Pattern Recognition Using ML with Cloud . 171
6.4 Object Classification Using ML with FoG . 178
6.5 Prediction of Unknown Glucose Concentration Using ML

at EDGE . 186
References . 192

Chapter 5
FoG and Cloud Computing with Jetson
Nano

Abstract FoG and cloud paradigms are helping the IoT devices to offload the
computing in order to reduce power consumption and increase battery life. The
Jetson Nano SBC is an exciting platform which can act as a FoG node and as an
intermediate layer between the cloud and IoT devices. The Jetson Nano module is a
small Artificial Intelligence (AI) computer that has the performance and power effi-
ciency needed to run modern AI workloads, multiple neural networks in parallel and
process data from several sensors simultaneously. The ongoing chapter introduces
the concepts of FoG and Cloud computing along with its role in IoT. At the end, this
chapter covers implementation of FoG and Cloud computing.

Keywords FoG · Cloud · Patient monitoring · Home security · Fire alert system ·
Home safety lock · Surveillance

5.1 Introduction to FoG Computing

Cloud computing has gained widespread acceptance due to the services such as
data storage, computing, etc. offered by it at a very affordable cost. To achieve this,
centralized data centers are offered by big players. More businesses are able to adopt
cloud computing for their operations due to the ready adaptability and reduced cost of
cloud services (Chiang and Zhang 2016). This offloads a lot of workload and in turn
increases productivity (Khan et al. 2017). To keep up with the market needs, cloud
computing was able to evolve and offers better performance, security, and reliability.
Today, cloud is able to offer various models for services such as Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

The world has seen an unprecedented rise in devices connected to the Internet over
the decade. According to Cisco system inc, there are around 50 billion connected
devices (Evans 2011). Naturally, there is high demand for quality cloud services
and IoT devices. Since the overall operation of cloud data servers is centralized,
it proves to be a hindrance for IoT devices spread over a large geographic area.
Problems such as network congestion and high latency are common occurrences in
such scenarios. FoG computing is an extension of the existing cloud platform which

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. S. Parab et al., Python Programming Recipes for IoT Applications, Transactions
on Computer Systems and Networks, https://doi.org/10.1007/978-981-19-9466-1_5

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9466-1_5&domain=pdf
https://doi.org/10.1007/978-981-19-9466-1_5

124 5 FoG and Cloud Computing with Jetson Nano

was put forward by Cisco to resolve the issue faced and elaborated on above. Cisco
was the first player to formally put forward the concept of FoG computing (Tang
et al. 2015). An additional layer called the FoG layer is introduced in between the
cloud data centers and the end-users. In principle, this layer is physically much closer
to the end-user or the IoT nodes. It helps to achieve the decentralization of the data
centers.

FoG computing together with cloud computing and IoT devices (End devices)
forms three-tier architecture as shown in Fig. 5.1 (Taneja and Davy 2016). The
bottom Tier 1 consists of the End /IoT devices which are the generators of the
data. The IoT devices are equipped with sensors that generate the raw data. Tier
2 is the FoG computing layer. This computing layer generally consists of devices
such as gateways, routers, switches, etc. which can provide processing and storage
of information. Hence, this layer is sometimes referred to as FoG intelligence. If
the devices which form the part of the FoG computing layer wishes to send data
to the cloud they can do so on a periodic basis. In FoG computing architecture,
not every data packet is redirected to the cloud, instead all real-time analysis and
latency sensitive applications have a dependency to run from the FoG layer itself.
Tier 3 is named as cloud computing layer, also referred to as the cloud intelligence,
which leverages modern infrastructure such as data centers to provide enormous
storing and processing capabilities to the lower layers.

Dastjerdi et al. defined FoG computing as a distributed computing environment
extending the services of cloud computing to one-hop distance from the user (Dast-
jerdi et al. 2016). FoG network consists of multiple FoG nodes, which communicates
with one another and also in sync with the cloud data center. FoG computing and cloud
computing work together to enhance the quality and performance of any system. In
this type of computing, one utilizes a network of FoG nodes which are placed at just
one leap from the end-user or IoT device. This allows the local data processing on
the FoG node rather than on the cloud data center which may be placed geographi-
cally at a distant location. In addition to data processing, FoG node may also provide

Fig. 5.1 Three-tier architecture

5.1 Introduction to FoG Computing 125

Fig. 5.2 Six-layer FoG architecture

networking between the end-users (edges) and the cloud data centers. The features
like communication, mobility, and computing offered by FoG node aim to provide
low latency.

FoG Computing Essential Characteristics

This section briefly discusses the essential characteristics of FoG computing. If
a device possesses storage, computing capacity, and network connectivity, it can
operate as a FoG node. They can be deployed anywhere within a network. Examples
of such devices are routers, switches, embedded servers and industrial controllers,
and cameras for video surveillance (Atlam et al. 2018). FoG Computing in general
should have the below characteristics:

• Location awareness and low latency: FoG computing features location awareness
and can be set up in any location. As FoG nodes are closer to the end devices,
FoG computing gives low latency operation (Atlam et al. 2018).

• Scalability: One of the main features of FoG computing is distributed computing
and storage networks which work as end devices/sensor networks. Additionally,
FoG computing supports the ready addition of new end devices/sensor networks
(Atlam et al. 2018).

• Geographical distribution: Services and applications given by FoG nodes are
distributed and can be deployed anywhere, in contrast to the services of centralized
data servers.

• Heterogeneity and Interoperability: FoG nodes or end devices are designed by
different manufacturers but still possess the ability to work on different platforms
and across different service providers (Atlam et al. 2018).

• Real-time interactions: FoG computing gives a real-time interaction between FoG
nodes rather than the batch processing model provided by the cloud (Atlam et al.
2018).

126 5 FoG and Cloud Computing with Jetson Nano

• Support for mobility: Mobile devices can be connected directly in FoG applica-
tions (Atlam et al. 2018).

5.2 Architecture Model of FoG

In FoG computing, the facilities provided by the data centers of cloud computing
are taken to the edge of the network. FoG nodes offer limited computing, storing,
and networking capabilities. These capabilities are provided in a distributed manner
that spans the Edge/IoT devices and the traditional cloud data centers. Here the sole
objective is to give minimal latency for time-sensitive application running on the
Edge/IoT devices (Atlam et al. 2018; Shi et al. 2015).

The architecture for FoG is made up of six layers as shown in the figure 5.2
(Mukherjee et al. 2018; Aazam and Huh 2014, 2015; Muntjir et al. 2017) namely,
physical and virtualization, monitoring, pre-processing, temporary storage, security,
and transport layer.

The lowest layer is the physical and virtualization layer and is made up of virtual
sensor networks along with physical and wireless sensor networks. In this layer,
myriad types of sensors are geographically distributed for environment sensing which
generates raw data. This raw data is passed to the next layers via gateways for further
processing and filtering (Liu et al. 2017).

The next layer is the monitoring layer which monitors the resource utilization
and the availability of FoG nodes along with the other network elements. This layer
is also responsible for monitoring services, performance, power consumtion, and
tracking the status of applications running on FoG nodes (Mukherjee et al. 2018;
Aazam and Huh 2015).

Preprocessing and temporary storage layer handles the tasks of data management.
The data forwarded by the lower layers are analyzed, trimmed, and filtered to extract
meaningful information. This preprocessed data in the below layer is then required
to be temporarily stored in the next layer (Aazam and Huh 2015; Muntjir et al. 2017).

The encryption/decryption of the data on the FoG nodes is handled at the security
layer. Additional integrity mechanism is also applied to the data to protect the data
from being tampered.

The topmost layer of the architecture is the transport layer where the data is
uploaded to the cloud to generate more useful services (Aazam and Huh 2015; Muntjir
et al. 2017). As the FoG nodes are constrained by limited resources, the protocols
used for communication on the FoG nodes have to be lightweight, efficient, and
customizable (Aazam et al. 2014; Marques et al. 2017).

5.3 Introduction to Cloud Computing 127

5.3 Introduction to Cloud Computing

Prior to the introduction of cloud computing, if there is a need of computational
facility, one has to invest in the hardware, software, networking, and storage require-
ments for such an endeavor. The cost includes the upfront cost of the real estate to
house the hardware, the maintenance, and the operational cost. This becomes an
enormous cost for an individual or enterprise needing a large computing facility
(Chandrasekaran 2015). With the cloud, it is possible to use the computing facility
of a provider as and when it is needed. Hence, cloud computing can be termed as
utilizing the computing infrastructure made available by a service provider, to the
extent needed, and paying only for the service consumed.

What is Cloud Computing?

The popular definitions among the experts on cloud computing were put forward
by the National Institute of Standards and Technology (NIST). It states that “Cloud
computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources (e.g. networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction” (Sunyaev 2020).

Cloud computing Essential Characteristics:

A cloud service should have below essential characteristics such as on-demand self-
service, ubiquitous access, multi-tenancy, location independence, rapid elasticity,
and metering.

On-demand self-service: A cloud service should allow a user/consumer to inde-
pendently avail computing resources, such as network storage and server time,
without human intervention (Mell and Grance 2011).

Ubiquitous access: The services are disseminated using a broadband network
prominently using the Internet. The services can be availed on various devices such
as smart phones, tablets, and workstations using standard communication interfaces.
This enables the users to avail any cloud service from any device or platform at any
given time (Mell and Grance 2011; Iyer and Henderson 2010).

Resource pooling and Multi-tenancy: Computing resource pooling is done at
the providers end in order to service users/consumers using a multi-tenant archi-
tecture. Sharing computing resources is part of what could make cloud computing
economically beneficial (Mell and Grance 2011; Arasaratnam 2011).

Location Independence: A user/consumer wanting to use cloud service is given a
sense of location independence, where the user has no knowledge nor control of the
physical location of the computing resources. The user may be provided a control of
choosing at a higher level of abstraction, such as a choice of country, state, or data
center (Mell and Grance 2011).

Rapid Elasticity: A sense of elasticity is provided to the user where the resource
can be elastically commissioned and decommissioned to keep pace with the current

128 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.3 Cloud service
pyramid

resources needs. The rapid elasticity gives the users/customers an impression of the
availability of unlimited resources.

Metering service: A metering capability is incorporated by the service provider
in order to automatically control and optimize the resource utilization. The metering
is done for the resources such as bandwidth, storage, processing, etc. This provides
transparency to both the consumer and service provider.

Cloud Computing Service Models

The services provided by cloud computing have evolved into three typical service
models, namely, (1) Infrastructure as a Service, (2) Platform as a Service, and (3)
Software as a Service as shown in Fig. 5.3. One finds a hierarchical organization
of these top three models based on the level of abstraction of the capabilities made
available by individual layers (Kumar and DuPree 2011).

Infrastructure as a Service (IaaS): In the IaaS scheme, a consumer acquires
processing, storage, networking, and other resources from the service provider. Here,
the consumer is free to utilize the acquired resources at his discretion by running or
deploying arbitrary software of his choice which can include applications and oper-
ating systems. In IaaS, the service provider gives to the consumer a large number
of virtual resources by dividing a very large physical resource of the infrastruc-
ture (). The most popular IaaS service providers in the market are IBM, Microsoft,
Rackspace, NTT, Oracle, Fujitsu, and Amazon (Marston et al. 2011).

Platform as a Service (PaaS): In PaaS cloud model, a user/consumer develops
applications to run on the cloud infrastructure. The applications are developed using
programming languages, services, tools, and libraries supported by the provider
(Mell and Grance 2011). The user is not given the control or management of the
cloud infrastructure, but given the control of configuration settings for the application
hosting environment and applications. A PaaS provides a cloud developer freedom
to design, build, test and deploy custom applications (). Leading providers offering
PaaS are Amazon, Microsoft, Alibaba, Google, IBM, and Rackspace (Voorsluys et al.
2011).

5.4 Cloud Computing Architecture 129

Software as a Service (SaaS): As the name suggests the user/consumer uses the
applications provided by the cloud service provider. These applications are running
on the cloud infrastructure. The applications are accessed using a client device
running a thin client interface such as a browser or a program interface. The manage-
ment and control of the cloud infrastructure are not done by the user/consumer, while a
limited user specific application configuration setting is controlled by the user (Mell
and Grance 2011). Therefore, user/consumer enjoys abstraction from all the finer
details of the current applications running behind the scenes (Arasaratnam 2011;).
Leading SaaS providers are Salesforce, Microsoft, SAP, Oracle, Adobe Systems, and
IBM.

Deployment Models

There are four different deployment models such as Private, Public, Community, and
Hybrid cloud.

Private cloud: The infrastructure is exclusively reserved for use by the single orga-
nizations who’s services are given to a large number of consumers, namely, business
units. The cloud infrastructure may be housed on the premises of the organization or
off premises (Mell and Grance 2011).

Community cloud: The infrastructure is exclusively reserved for a particular
community of users from organizations that have common concerns. The cloud
infrastructure may be housed on the premises of the organization or off premises
(Mell and Grance 2011).

Public cloud: The infrastructure is not reserved for specific users and is open to
the general public.

Hybrid cloud: Here, two or more distinct cloud deployment models such as
community, public, or private are combined together. However, the individual entities
remain unique.

5.4 Cloud Computing Architecture

The cloud architecture is split into two parts, namely, frontend and backend. Fig. 5.4
depicts an internal architectural view of cloud computing.

Cloud computing architecture consists of client infrastructure, application,
service, runtime, storage, infrastructure, administration, and security (ITCandor
2018).

Frontend: The cloud architecture’s frontend refers to the cloud’s client infrastruc-
ture, which includes all user interfaces and applications.

Backend: Backend refers to the cloud itself which is used by the service provider.
It controls resources and implements security measures. It also contains massive
storage, virtual applications, virtual computers, traffic management techniques,
deployment models, and so on.

130 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.4 Internal architectural of Cloud

• The Application Layer consists of a software platform that is accessed by the
client and offers services in the backend based on the client’s needs.

• The Service Layer includes three types of cloud-based services: SaaS, PaaS, and
IaaS, and it offers selectable services based on customer requests.

• The Cloud Runtime Layer is in-charge of providing the virtual machine with an
execution and runtime platform/environment.

• Storage Layer handles the management and scalability of storage services
provided to clients.

• The Infrastructure Layer refers to cloud software and hardware such as servers,
storage, network equipment, and so on.

• The Management Layer manages all the backend components.
• Security Layer is responsible to implement different security mechanisms in the

backend.
• For interaction and communication, the Internet Layer serves as a bridge between

the frontend and the backend.

There are various advantages of Cloud Computing Architecture, such as a simpler
overall computing system, improved data processing needs, more security, improved
disaster recovery, lower operational costs, and so on.

5.6 Examples of FoG and Cloud Computing 131

5.5 Role of FoG and Cloud Computing in IoT

The advent of IoT has seen smart devices permeating every home, vehicle, and
workplace with connectivity to the Internet. Due to technological advancements, the
things which surround us are potentially getting connected to the Internet and hence
there is a huge stress on the current Internet and cloud infrastructure in place.

The conventional approach is to utilize a centralized cloud for processing which
is localized at one site. But due to the proliferation of IoT devices, the sheer amount
of data generated by these devices is increasing day by day. The existing cloud
infrastructure will be severely strained by this massive explosion of data [29].

FoG computing allows computing to happen via IoT devices and only pushes
relevant data to the cloud. The FoG brings the cloud closer to the objects that generate
and act on IoT data. The FoG nodes can be deployed anywhere with a network
between cloud and IoT devices. They analyze the most time-sensitive data at the
network edge instead of sending vast amounts of IoT data to the cloud. Only required
data can be sent to the cloud for historical analysis and longer term storage. It is very
important to point out that FoG does not eliminate the cloud but complements it to
improve the efficiency (Schneider and Sunyaev 2016).

5.6 Examples of FoG and Cloud Computing

The FoG and cloud computing has become ubiquitous in the modern computing
scenario. On a regular basis, FoG and cloud service providers are adding exciting
features to the existing platforms. Here, authors have brought out the salient features
of both the paradigms especially relating to IoT with various applications. Under
cloud computing, authors have implemented a Patient Monitoring system to monitor
Oxygen Saturation, Pulse, and Body Temperature. FoG computing is leveraged for
Home Security in which Home Surveillance, Home Safety Lock, and Fire Alert
systems are implemented.

5.6.1 Patient Monitoring system with Cloud

In modern society, the incidence of chronic diseases has increased due to different risk
factors such as dietary habits, physical inactivity, alcohol consumption, etc. It is said
that in the next 10 years, deaths from chronic diseases will increase by 17%. If these
diseases are not monitored and treated early, they can lead to several complications
and even pose threat to life. Therefore, monitoring of health parameters is of utmost
importance (Schneider and Sunyaev 2016).

132 5 FoG and Cloud Computing with Jetson Nano

This application demonstrates the Patient Monitoring system. Here, various health
parameters such as Oxygen Saturation (SpO2), Pulse Rate, and Body Temperature
are monitored using appropriate sensors. The main heart of this system is Jetson Nano
SBC, which is interfaced with these sensors, as shown in Fig. 5.5. The Oxygen Satu-
ration and Pulse Rate are obtained from the MAX30102 sensor which is interfaced
with the Jetson nano SBC using I2C. The Body Temperature is obtained using the
MLX90614 IR Temperature Sensor which is also interfaced using I2C. The health
parameters are updated to ThingSpeak Cloud for monitoring from any geographic
location. ThingSpeak is an open IoT platform for monitoring patients data online.
Table 5.1 tabulates the pin connection of MAX30102 and MXL90614 with Jetson
Nano.

MAX30102 is an integrated pulse oximetry and heart-rate sensor. It integrates two
LEDs (IR and Red), a photodetector, optimized optics, and low-noise analog signal
processing to detect pulse oximetry and heart-rate signals. It is fully configurable
through software registers, and the digital output data is stored in a 32-deep FIFO
within the device. It also has an ambient light cancellation (ALC), 18-bit sigma delta
ADC, and discrete time filter. It has an ultra-low-power operation which makes it
ideal for battery operated systems. MAX30102 operates within a supply range of 1.7
to 2 V. The same sensor can be used for various applications such as fitness assistant,
wearable devices, etc.

Fig. 5.5 Conceptual and pin diagram of Patient Monitoring system

Table 5.1 Pin connections
for patient monitoring

Jetson Nano SBC MAX30102 MXL90614

3.3 V VIN VIN

GND GND GND

PIN 3 (I2C 1 SDA) SDA SDA

PIN 5 (I2C 1 SCL) SCL SCL

5.6 Examples of FoG and Cloud Computing 133

MLX90614 sensor is manufactured by Melexis Microelectronics Integrated systems.
It works on the principle of infrared thermopile sensor for temperature measurement.
These sensors consist of two units embedded internally to give the temperature
output. The first unit is the sensing unit which has an infrared detector, followed
by the second unit which performs the computation of the data using Digital Signal
Processing (DSP). This sensor works on Stefan-Boltzmann law which explains power
radiated by a black body in terms of its temperature. MLX90614 sensor converts the
computational value into 17-bit ADC and that can be accessed using the I2C protocol.
This sensor measures the ambient temperature as well as object temperature with the
resolution of 0.02 °C and can be operated with a supply ranging from 3.6 V to 5 V.

Implementation and Configuration steps:

Step 1: Before using I2C on Jetson Nano SBC, one need to install the relevant
libraries by executing the following command on Jetson Nano terminals.

sudo apt-get install python-setuptools
sudo apt-get install -y i2c-tools

There are two I2C ports available on the J41 Header of the Jetson Nano SBC.
Here, authors have used the I2C-1 for both the sensors as shown in Fig. 5.5. Pin 3
and Pin 5 of J41 header is SDA and SCL of I2C-1, respectively. One can test if the
I2C device is properly connected by using the below command.

sudo i2cdetect –y –r 1

Step 2: Configuration of Library for MAX30102.

Create a folder named “Patient Monitoring system” → Download the library for
MAX30102 from the github link: https://github.com/doug-burrell/max30102 →
Extract the downloaded file and place it in the above created folder. A few Python
libraries, namely, ’smbus’ and ’numpy’, are required. Use “apt” to install the
these libraries.
sudo apt install python- smbu s
sudo apt install python-numpy
There are some changes to be done in the file ’heartrate_monitor.py’ of the down-

loaded library for efficient access to the parameters. The authors have introduced
two variables, namely, ’self.print_bpm’ and ’self.print_spo2’ with an initial value as
zero inside the class ’HeartRateMonitor (object)’. These variables are updated later
in the same class. The rest of the library files specific to MAX30102 are kept intact.
To avoid confusion in the readers mind, authors recommend to adopt the below code.

https://github.com/doug-burrell/max30102

134 5 FoG and Cloud Computing with Jetson Nano

heartrate_monitor.py
from max30102 import MAX30102
import hrcalc
import threading
import time
import numpy as np

class HeartRateMonitor(object):
"""
A class that encapsulates the max30102 device into a thread
"""
LOOP_TIME = 0.01

def __init__(self, print_raw=False, print_result=False):
self.bpm = 0
self.print_spo2 = 0
self.print_bpm = 0
if print_raw is True:

print('IR, Red')
self.print_raw = print_raw
self.print_result = print_result

def run_sensor(self):
sensor = MAX30102()
ir_data = []
red_data = []
bpms = []

run until told to stop
while not self._thread.stopped:

check if any data is available
num_bytes = sensor.get_data_present()
if num_bytes> 0:

grab all the data and stash it into arrays
while num_bytes> 0:

red, ir = sensor.read_fifo()
num_bytes -= 1
ir_data.append(ir)
red_data.append(red)
if self.print_raw:

print("{0}, {1}".format(ir, red))

while len(ir_data) > 100:
ir_data.pop(0)
red_data.pop(0)

if len(ir_data) == 100:
bpm, valid_bpm, spo2, valid_spo2 = hrcalc.calc_hr_and_spo2(ir_data,

red_data)
if valid_bpm:

bpms.append(bpm)
while len(bpms) > 4:

bpms.pop(0)

5.6 Examples of FoG and Cloud Computing 135

self.bpm = np.mean(bpms)
if (np.mean(ir_data) < 50000 and np.mean(red_data) < 50000):

self.bpm = 0
if self.print_result:

print("Finger not detected")
if self.print_result:

print("BPM: {0}, SpO2: {1}".format(self.bpm, spo2))
self.print_spo2 = spo2
self.print_bpm = self.bpm

time.sleep(self.LOOP_TIME)

sensor.shutdown()

def start_sensor(self):
self._thread = threading.Thread(target=self.run_sensor)
self._thread.stopped = False
self._thread.start()

def stop_sensor(self, timeout=2.0):
self._thread.stopped = True
self.bpm = 0
self._thread.join(timeout)

Step 3: Configuration of Library for MLX90614.

Download the library from the link: https://pypi.org/project/PyMLX90614/#files.
Before using the library, it must be extracted to the same folder which was created
earlier. There are no changes needed in this library.

Step 4: Configuration of ThingSpeak Channel

To create ThingSpeak channel, one has to first sign up on ThingSpeak (https://thi
ngspeak.com/). In case one has an account on ThingSpeak just sign in using your id
and password. For signup, fill your details, then verify with the received email and
proceed. After this, click on ’New Channel’ button which will subsequently ask for
the ’Name and Description’ of the data you want to upload on this channel as shown
in Fig. 5.6.

In this application Pulse Rate, Oxygen Saturation, and Body Temperature are sent
to ThingSpeak cloud. Hence, the authors have named the channel as “Pulse, Oxygen
Saturation, and Body Temperature”.

More than one field of data can be activated by checking the box next to the
’Field’ option as shown in Fig. 5.6. The authors have created three fields, namely,
BPM, SpO2, and Temp. After this, click on ’save channel’ button to save the details.

https://pypi.org/project/PyMLX90614/#files
https://thingspeak.com/
https://thingspeak.com/

136 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.6 Name and description of channel for Patient Monitoring system

Obtain the API Key

To send data to ThingSpeak, a unique API key is required, which is used in the
main code to upload body parameters to ThingSpeak server. Navigate to ’API Keys’
header under the newly created above channel to get a unique API key as shown in
Fig. 5.7.

Now copy ’Write API Key’ to use it in the main code. To set up the Python
environment for sending data to ThingSpeak, one must install libraries using the
below commands.

sudo apt-get install httplib
sudo apt-get install urllib

5.6 Examples of FoG and Cloud Computing 137

Fig. 5.7 API Key for Patient Monitoring system

After completing these steps the channel is ready to send the body parameters.
Fig. 5.8 gives the flow chart of Patient Monitoring System with Cloud.

Step 4:

Create a file ’main.py’ in the project folder with the below code.

Imports required for MAX30102 sensor
from heartrate_monitor import HeartRateMonitor
import time
import argparse

Imports required for MLX90614 sensor
import smbus
from mlx90614 import MLX90614

Imports required for Thingspeak cloud update
import os
import http.client
import urllib

key = "2TN5A7GW7ZYDBAL1" # Put your Thingspeakcloud API Key here

138 5 FoG and Cloud Computing with Jetson Nano

MAX30102 sensor update section

parser = argparse.ArgumentParser(description="Read and print data from MAX30102")
parser.add_argument("-r", "--raw", action="store_true",

help="print raw data instead of calculation result")
parser.add_argument("-t", "--time", type=int, default=30,

help="duration in seconds to read from sensor, default 30")
args = parser.parse_args()

print('sensor starting...')
hrm = HeartRateMonitor(print_raw=args.raw, print_result=(not args.raw))
hrm.start_sensor()
try:

time.sleep(args.time)
except KeyboardInterrupt:

print('keyboard interrupt detected, exiting...')

hrm.stop_sensor()
print('sensor stoped!')
print(hrm.print_bpm,hrm.print_spo2)

MLX90614 sensor update section

bus1 = smbus.SMBus(1)
sensor = MLX90614(bus1, address=0x5a)
print ("bodyTemperature :", sensor.get_object_1())
body_temp = sensor.get_object_1()
bus1.close()

Thingspeak cloud upload section

params = urllib.parse.urlencode({'field1': hrm.print_bpm, 'field2': hrm.print_spo2, 'field3': body_temp, 'key':key })

headers = {"Content-typZZe": "application/x-www-form-urlencoded","Accept": "text/plain"}
conn = http.client.HTTPConnection("api.thingspeak.com:80")
conn.request("POST", "/update", params, headers)
response = conn.getresponse()

print(response.status,response.reason)
data = response.read()
conn.close()

In the Heart Rate and SpO2 section of the code, authors instantiate an object of
the class ’HeartRateMonitor’ found in ’heartrate_monitor.py’. The thread is initiated
and terminated by calling ’start_sensor’ and ’stop_sensor’, respectively. When the
thread is active one can access ‘bpm‘ to get beats per minute (BPM). The user has
to wait for a few seconds to get a reliable BPM value. Also, make sure that there is
minimum movement as the sensor is very sensitive to it. The program is designed in
such a way that a keyboard interrupt (CNTRL + C) can stop the sensor and transit
to the next section of the code. The last reading for Pulse rate and Oxygen saturation
is written into ’hrm.print_bpm’ and ’hrm.print_spo2’ variables, respectively, which
are then sent to ThingSpeak Cloud.

Step 5: To run the above ’main.py’ use the below command.

python3 main.py

The output after execution is shown on the terminal as in Fig. 5.9 and also the
data visualization on the ThingSpeak server is shown in Fig. 5.10.

5.6.2 Home security with FoG

Certainly, the advent of the IoT and FoG computing paradigm has made it available for
user to efficiently approach the problem of Home security. The authors have leveraged

5.6 Examples of FoG and Cloud Computing 139

Fig. 5.8 Flowchart for
Patient Monitoring system
with cloud

various security hardware such as PIR sensors, Surveillance cameras, Smart locks,
etc. to safeguard property and human life from potential life threatening situations.
In this section, authors have implemented Home Surveillance, Home Safety Lock,
and Fire alert system. The programming of the IoT nodes is done by Thonny IDE
using MicroPython programming as detailed in below steps.

Step 1: Download the Thonny IDE for windows from the link: https://thonny.org

Step 2: Download ESP 32 Firmware from the link https://micropython.org/dow
nload/esp32/

Step 3: Install appropriate MicroPython Firmware on ESP32:

https://thonny.org
https://micropython.org/download/esp32/
https://micropython.org/download/esp32/

140 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.9 Health parameters on terminal

Fig. 5.10 Health parameters on ThingSpeak cloud

Open Thonny IDE→ Tools→ options→ interpreter→ select MicroPython (ESP32)
→ select COM port (Make sure the virtual com port drivers are installed) → click
on “’install and update firmware’ → select port and firmware path (downloaded
MicroPython Firmware path) → then click on ’install’.

Step 4: MicroPython interpreter selection:

Goto Tools → options → click on interpreter tab and select drop down for
Micropython (ESP 32). Also select the proper COM port for communication.

5.6 Examples of FoG and Cloud Computing 141

5.6.2.1 Home Surveillance

Home Surveillance system consists of IoT device ESP32-CAM having PIR sensor
interfaced to it. IoT device communicates with Jetson Nano SBC which is configured
as FoG node as shown in Fig. 5.11. Intruder activity is sensed by a PIR sensor and an
image of the activity is captured by a camera interfaced with IoT device. The captured
image is sent over Wi-Fi using MQTT protocol to the Jetson Nano SBC. The Jetson
Nano SBC(FoG node) stores the received image. The Jetson upon reception of the
image will intimate the house owner with a prompt WhatsApp message to his mobile
phone using the Twilio cloud python package. The FoG node will also upload the
same image to the Google Drive cloud so that the house owner can monitor the house
in real time. The detailed conceptual and pin diagram are shown in Fig. 5.11. Table
5.2 depicts the pin connection of PIR sensor to ESP32 CAM.

IoT Device (ESP32-CAM)

The ESP32-CAM is a fully-featured microcontroller that has an integrated video
camera and microSD card socket. It is easy to use, and perfect for various IoT

Fig. 5.11 Conceptual and pin diagram of home surveillance system

Table 5.2 Pin connection for
Home Surveillance

ESP32-CAM PIR sensor

VCC VCC

GND GND

IO13 OUT

142 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.12 ESP-32 CAM programming through FTDI 232

applications requiring a camera with advanced functions like image tracking and
recognition.

Here,2 megapixel camera module OV2640 is used, which gives outputs in various
formats such YUV422, YUV420, RGB565, RGB555, and 8-bit compressed data.
This ESP32-CAM doesn’t have USB port to program hence one has to use an FTDI
adapter.

The IoT device is interfaced with HC-SR 501 (PIR sensor). The PIR sensor is
used to detect animal/human movement. This pyroelectric PIR sensor detects motion
based on emitted infrared radiation.

Programming the ESP32-CAM:

It is important to note that the FTDI adapter must be set for a 5V VCC output with
proper jumper settings, as we are powering the ESP32-CAM using the 5 V as shown
in Fig. 5.12.

To upload the firmware, one has to short GPIO 0 pin to Ground on ESP32 - CAM.
This connection is required only for firmware upload to ESP32-CAM. For switching
to programming mode remove the short between GPIO 0 and ground.

The ESP32-CAM firmware required for this application can be downloaded
from the link https://github.com/lemariva/micropython-camera-driver/tree/master/
firmware. The firmware upload and programming for ESP32-CAM are done using
MicroPython in the Thonny IDE.

In order to configure ESP32-CAM for MQTT protocol, one requires MicroPython
MQTT client(umqtt) and camera package which can be downloaded using the steps
outlined in Sect. 3.2 of Chapter 3. Now the ESP32-CAM is ready to capture the
image and implement the MQTT protocol. Flowchart for configuring ESP32-CAM
module for Home security is shown in Fig. 5.13.

Create a ’main.py’ file in Thonny IDE and enter the below code in it. Then click
the ’run’ button to execute the code. Make sure before running the code, the Wi-Fi

https://github.com/lemariva/micropython-camera-driver/tree/master/firmware
https://github.com/lemariva/micropython-camera-driver/tree/master/firmware

5.6 Examples of FoG and Cloud Computing 143

Fig. 5.13 Flowchart for configuring ESP32s-CAM module for Home security

hotspot created on FoG node is active. Here ESP32-CAM is the client which will
publish the captured image to MQTT topic named as ’Image’.

from machine import Pin #importing classes
from umqtt.simple import MQTTClient
import time
import os
import camera

make sure wifi hotspot is enabled on jetson nano SBC(FoG Node)
import network
station = network.WLAN(network.STA_IF)
station.active(True)
station.connect("jetson-desktop", "11111111")

SERVER = '10.42.0.1' # MQTT Server Address (IP address of jetson hotspot)
CLIENT_ID = 'esp32-camera'
TOPIC = b'Image'

Connect to MQTT broker
c = MQTTClient(CLIENT_ID, SERVER)
c.connect()

camera.init(0, format=camera.JPEG)

144 5 FoG and Cloud Computing with Jetson Nano

Motion_status = False #Global variable to hold the state of motion sensor

def handle_interrupt(Pin): #defining interrupt handling function
global Motion_status
Motion_status = True

PIR_Interrupt=Pin(13,Pin.IN) # setting GPIO13 PIR_Interrupt as input

#Attach external interrupt to GPIO13 and rising edge as an external event source
PIR_Interrupt.irq(trigger=Pin.IRQ_RISING, handler=handle_interrupt)

while True:
if Motion_status:

print('Motion is detected!')
buf = camera.capture()
c.publish(TOPIC, buf)
time.sleep_ms(100)
Motion_status = False

Configuring the FoG Node

In order to use the Jetson Nano SBC as the FoG computing node, one need to enable
the Wi-Fi hotspot on the Jetson Nano which will enable the image transfer using
MQTT protocol.

Establishing MQTT on FoG:

MQTT is a lightweight publish-subscribe network protocol that transports messages
between devices. The MQTT protocol defines two types of network entities: a broker
and clients. An MQTT broker is a server responsible to receive and route all messages
from the clients to the appropriate destination. An MQTT client is any device that
connects to an MQTT broker over a network.

For MQTT on the FoG Node, Mosquitto library package is required to be installed.
This can be done by running the below commands on the Jetson terminal.

sudo apt-get install mosquittomosquitto-clients

One also requires the ’paho-mqtt’ library , which can be installed using the below
command.

sudo apt-get install python3-pip
sudo pip3 install paho-mqtt

The Jetson FoG node is now ready for MQTT protocol communication.

Enabling Wi-Fi Hotspot on FoG node:

To enable the hotspot on the FoG node, select the settings menu on Jetson user
interface. Under setting menu → Select ’Wi-Fi’ → on the right-hand side, hover
over the three horizontal lines () → Turn on Wi-Fi hotspot.

It is not possible to access the Internet over wireless when hotspot is active. Hence
a wired connectivity is provided for the Jetson Nano SBC to connect to the Internet
for uploading the image to Google Drive and sending a message using Twilio cloud.

5.6 Examples of FoG and Cloud Computing 145

Configuring the FoG Node to Communicate with Cloud

In this application, authors have used two cloud platforms, namely, Twilio and Google
Drive cloud. The Twilio communication platform is used to send the WhatsApp
message indicating that there is an intruder activity. At the same time, the surveillance
image is also uploaded to the Google Drive cloud. The configuration details of both
these platforms are given below.

Twilio Configuration:

Next, one needs to prepare the Jetson Nano SBC (FoG node) to send the WhatsApp
message using Twilio cloud communication platform. One has to create the Twilio
account by visiting the website (https://www.twilio.com/)

Click on the signup option, and fill the respective user details. Once the account
is created the verification of registered email and phone number is done.

Once the verification steps are done, one needs to specify the Twilio features
required. Select the features using dropdown and radio buttons as shown in Fig. 5.14.
At last click on button ’Get started with Twilio’ which will take user to the console,
wherein user needs to agree to activate the sandbox and click confirm.

Under the ’Manage account’ navigate to ’general settings’. Next copy the Account
SID and the Auth token which are highlighted in Fig. 5.15. These are needed in python
code to send a WhatsApp message using the Twilio cloud.

Next step is to send a WhatsApp message with content “’join every-plain’ to the
phone number “+14155238886” (same number must be entered) from the registered
phone number which will be used to receive the notification.

Setting up Jetson Nano SBC (FoG node) for Twilio

Before using the python code to receive and send WhatsApp messages we need to
install the Twilio package on Jetson Nano SBC using the following command:

sudo pip install twilio

Now the system is ready to send and receive notifications on WhatsApp via the
Twilio cloud platform.

Google Drive Configuration

In this implementation, the surveillance image is stored on to Google Drive. To do
this, user need to install the Pydrive Python module using the following command.

pip install pydrive

To upload the image to Google Drive using python, one need an active google
cloud account. User need to get the authentication files for Google Service API, so
that the Python code can access Google Drive. To do that, one need to follow the
below steps.

Step 1: Create a new project in Google Developer Console by clicking
’CREATE PROJECT’ with the proper name of the project. The link for the

https://www.twilio.com/

146 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.14 Twilio feature
selection

same is https://console.cloud.google.com/cloud-resource-manager?organizationId=
0&authuser=1&supportedpurview=project.

Step 2: Next step is to Enable APIs and their Services by clicking the ’ENABLE
APIS AND SERVICES’. This will bring you to the API library. Then Search ’Google
Drive’ → Click the ’Google Drive API’ icon → Then click ’ENABLE’, which will
enable Google Drive API service.

Step 3: Creation of credentials: click on ’credentials’ and select the options shown in
Fig. 5.16 and click ’done’. Next hover over to ’create credentials’ and select ’OAuth
Client ID’ as shown in Fig. 5.17.

Step 4: Next click on the button ’configure consent screen’ → Navigate to OAuth
consent screen → select ’External’ and then click ’Create’.

https://console.cloud.google.com/cloud-resource-manager?organizationId=0&authuser=1&supportedpurview=project
https://console.cloud.google.com/cloud-resource-manager?organizationId=0&authuser=1&supportedpurview=project

5.6 Examples of FoG and Cloud Computing 147

Fig. 5.15 Account SID and Auth token

On the next screen enter the ’app name’ and the ’user support email id’ as well
as the developer contact information (developer email id) and then click ’save’ and
’continue’. On the following screen, click on ’save and continue’ as no changes are
required. Next add a test user’s email id and click ’add’ → then click ’save and
continue’. The next screen displays the summary of the OAuth consent.

Step 5: Next under Credential on left panel click ’Create Credentials’ → select
OAuth Client ID → Provide the settings as shown in Fig. 5.18 and click ’create’.
Now the OAuth Client ID is created.

Step 6: After creating the OAuth client ID → click on ’download’ button to get
.JSON file. This downloaded JSON file is required for Python code to access Google
Drive. After downloading the .JSON file, rename it to ’client_secrets.json’ and make
sure that it is placed in the same folder where the ’main.py’ is present.

Step 7: The Python code for home surveillance running on Jetson Nano SBC (FoG
node) requires the user to enter the google account and password. After authentication
is completed browser displays ’The authentication flow has completed’ and initiates
the uploading of the image onto Google Drive.

The surveillance image sent by ESP32-CAM is received by FoG node will be
saved in the folder named as ’photos’ in the project folder of the FoG node. The same
image is also uploaded to Google Drive in its root directory for remote monitoring.
The flow chart for configuring Jetson Nano for Home security is given in Fig. 5.19.

Step 8: Create a ’main.py’ to enter the below Python code on the Jetson Nano SBC
and run it using the below command.

python3 main.py

148 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.16 Creation of credentials

After successfully running the code the Twilio message notification is sent to the
registered mobile number of the house owner as shown in Fig. 5.20.

5.6 Examples of FoG and Cloud Computing 149

Fig. 5.17 OAuth client ID

Fig. 5.18 OAuth client ID creation

150 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.19 Flow chart for using Twilio cloud and Google Drive from Jetson Nano

Fig. 5.20 Twilio message
notification

5.6 Examples of FoG and Cloud Computing 151

import time
import paho.mqtt.client as mqtt

#twilio imports
import os
from twilio.rest import Client

setuptwilio

twilio_client = Client('AC230101cb426d251b82479e33a992c149', '1d55483a6ab87ed20eac8531d70650c4');
this is the Twilio sandbox testing number
from_whatsapp_number='whatsapp:+14155238886'

replace this number with your personal WhatsApp Messaging number
to_whatsapp_number='whatsapp:+91705750xxxx'

setuptwilio ends

Google drive setup
from pydrive.drive import GoogleDrive
from pydrive.auth import GoogleAuth

Google drive authentication
gauth = GoogleAuth()

Creates local webserver to handle authentication
gauth.LocalWebserverAuth()
drive = GoogleDrive(gauth)

Replace with the path, where the image is present
path = r"/home/jetson/MQTT-M5Camera/photos"

Googel drive setup ends here

def on_connect(client, userdata, flags, rc):
print("Connected with result code "+str(rc))
client.subscribe('Image')

def on_message(client, userdata, msg):
generate filename
timestamp = time.gmtime()
time_str = '%4d%02d%02d%02d%02d%02d' %(timestamp[0], timestamp[1], timestamp[2], timestamp[4], timestamp[5], timestamp[6])
Create a file with write byte permission
f = open('photos/'+time_str+'.jpg', "wb")
f.write(msg.payload)
f.close()
print("Image received and saved!")

twilio message
message = twilio_client.messages.create(body='Motion Detected : Image saved on GooogleDrive',from_=from_whatsapp_number,to=to_whatsapp_number)
print(message.sid)

Google drive image upload

t = drive.CreateFile({'title': time_str+'.jpg'})
t.SetContentFile(os.path.join(path, time_str+'.jpg'))
t.Upload()

client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message
client.connect('localhost', 1883, 60)

client.loop_forever()

5.6.2.2 Home Safety Lock

Safety is the most important requirement for any home. More than ever before, a need
is felt for a home safety lock to safeguard one’s house and the belonging therein.
With the advent of IoT, one can give the connectivity to the door lock.

Here, authors have designed a smart home safety lock that communicates with the
owner. It also informs the owner of an authentic entry into the house, or if an intruder
is trying to enter the house. The solenoid lock is placed with IoT node configured on

152 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.21 Conceptual and pin diagram for home safety lock

Fig. 5.22 Flow chart for home safety lock on ESP32 Wi-Fi module

5.6 Examples of FoG and Cloud Computing 153

Table 5.3 Pin connection for
Home Safety lock

ESP3 Wi-Fi module Keypad Level shifter input

VCC – –

GND – –

3V3 – LV

GND – GND

D15 – LV1

D13 ROW 1 –

D12 ROW 2 –

D14 ROW 3 –

D27 ROW 4 –

D26 COL 1 –

D23 COL 2 –

D33 COL 3 –

D32 COL 4 –

Level shifter output Relay module

HO 5 V(power supply)

HO1 IN

GND GND

Relay module Solenoid lock 12 V Power supply

– RED PIN + PIN(RED)
NO – - PIN(BLACK)

COM GND PIN –

ESP32 Wi-Fi module. When PIR sensor detects motion, the IoT node prompts the
user to enter the password. If the password is valid, only then the lock will open and
the user is allowed to enter the house. The status of valid/invalid entry is informed
to the Jetson Nano SBC configured as FoG node using MQTT protocol. The FoG
node in turn sends an alert message to the house owner using Twilio cloud platform
on WhatsApp. The conceptual diagram and pin diagram is shown in Fig. 5.21. Table
5.3 depicts the pin connection for the home safety lock.

To Configuring MQTT on ESP 32 Wi-Fi Module:

To configure, follow the steps already given in Sect. 5.6.2.1. This includes connecting
to the hotspot hosted by Jetson Nano SBC.

Here, ESP32 is the client and publishes the sensor data to a topic called ’pass-
word_verify’. FoG node, i.e. the Jetson Nano SBC will be the broker and client. A
Python MQTT client running on the FoG node will subscribe to the ’password_verify’
topic and collect the results. After setting up the MQTT protocol on the IoT node, it
is ready for communication. The flow chart for configuring ESP32 for Home Safety
Lock is given in Fig. 5.22.

154 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.23 Flow chart for configuring Home Safety Lock using Jetson Nano

Create a ’main.py’ file in Thonny IDE and enter Python code. Then click the ’run’
button to execute the code.

5.6 Examples of FoG and Cloud Computing 155

from machine import Pin #importing classes
from time import sleep #Import sleep from time class
from umqtt.simple import MQTTClient
import time
import machine

make sure wifi hotspot is enabled on jetson nano SBC(FoG Node)
import network
station = network.WLAN(network.STA_IF)
station.active(True)
station.connect("jetson-desktop", "11111111")

KEY_UP = const(0)
KEY_DOWN = const(1)

keys = [['1', '2', '3', 'A'], ['4', '5', '6', 'B'], ['7', '8', '9', 'C'], ['*', '0', '#', 'D']]

Pin names
rows = [13,12,14,27]
cols = [26,25,33,32]

set pins for rows as outputs
row_pins = [Pin(pin_name, mode=Pin.OUT) for pin_name in rows]

set pins for cols as inputs
col_pins = [Pin(pin_name, mode=Pin.IN, pull=Pin.PULL_DOWN) for pin_name in cols]

def init():
 for row in range(0,4):
 for col in range(0,4):
 row_pins[row].value(0)

def scan(row, col):
 """ scan the keypad """
 # set the current column to high
 row_pins[row].value(1)
 key = None

 # check for keypressed events
 if col_pins[col].value() == KEY_DOWN:
 key = KEY_DOWN

 if col_pins[col].value() == KEY_UP:
 key = KEY_UP

 row_pins[row].value(0)
 # return the key state
 return key

SERVER = '10.42.0.1' # MQTT Server Address (Change to the IP address of your Pi)
CLIENT_ID = 'ESP32'

156 5 FoG and Cloud Computing with Jetson Nano

TOPIC = b'password_verify'

client = MQTTClient(CLIENT_ID, SERVER)
client.connect() # Connect to MQTT broker

Motion_status = False #Global variable to hold the state of motion sensor

def handle_interrupt(Pin): #defining interrupt handling function
global Motion_status
Motion_status = True

lock=Pin(15,Pin.OUT) #setting GPIO14 led as output
PIR_Interrupt=Pin(34,Pin.IN) # setting GPIO13 PIR_Interrupt as input

#Attach external interrupt to GPIO13 and rising edge as an external event source
PIR_Interrupt.irq(trigger=Pin.IRQ_RISING, handler=handle_interrupt)

password = ['1','0','0','0']
input_pass = ['0','0','0','0']

def password_verify(): #defining interrupt handling function
print('Please enter the password')
break_loop = 0
i = 0

while i<4:
 while break_loop == 0:
 for row in range(4):
 for col in range(4):
 key = scan(row, col)
 if key == KEY_DOWN:
 print("Key Pressed", keys[row][col])
 time.sleep(0.5)
 last_key_press = keys[row][col]
 break_loop = 1

break_loop = 0
input_pass[i]=last_key_press
i=i+1

set all the columns to low
init()
lock.value(1)# initially locked
while True:

if Motion_status:
 print('Motion is detected!')
 password_verify()

 print(input_pass)

 if input_pass == password:
 print('yes')
 lock.value(0)

5.6 Examples of FoG and Cloud Computing 157

 t = 1.0 # 1.0 indicates authentication done,lock opened
 if isinstance(t, float): # Confirm sensor results are numeric
 msg = (b'{0:3.1f}'.format(t))
 client.publish(TOPIC, msg) # Publish data to MQTT
 print(msg)
 else:
 print('Invalid sensor readings.')

 sleep(10)
 lock.value(1)
 Motion_status = False

else:
 print('No')
 lock.value(1) # dont open door
 t = 0.0 # 0.0 indicates authentication not done
 if isinstance(t, float): # Confirm sensor results are numeric

msg = (b'{0:3.1f}'.format(t))
 client.publish(TOPIC, msg) # Publish sensor data to MQTT
 print(msg)
 else:
 print('Invalid sensor readings.')

 sleep(5)
 Motion_status = False

Upon a valid password entry, the IoT node will unlock the lock and at the same
time send an MQTT message ’1’ to the Jetson Nano SBC (FoG Node) indicating
the same. If the intruder tries to enter the invalid password, the IoT node will send
an MQTT message as ’0’ to indicate that it is an invalid entry and will not open the
lock.

To configure the Jestson Nano (FoG Node) for MQTT and Twilio cloud follow
the steps given in Sect. 5.6.2.1. The flow chart for configuring Jetson Nano for Home
Safety Lock is given in Fig. 5.23.

Create a ’main.py’ and enter Python code and run using the below command.

python3 main.py

After successfully running the code, the Twilio message notification is sent to the
registered WhatsApp mobile number of the house owner.

import paho.mqtt.client as mqtt
global z

#twilio imports
import os
from twilio.rest import Client

setuptwilio

twilio_client = Client('AC230101cb426d251b82479e33a992c149','1d55483a6ab87ed20eac8531d70650c4')
this is the Twilio sandbox testing number
from_whatsapp_number='whatsapp:+14155238886'

replace this number with your personal WhatsApp Messaging number
to_whatsapp_number= 'whatsapp:+91705750xxxx'

setup twilio ends

158 5 FoG and Cloud Computing with Jetson Nano

Callback fires when conected to MQTT broker.
def on_connect(client, userdata, flags, rc):

print('Connected with result code {0}'.format(rc))
Subscribe (or renew if reconnect).
client.subscribe('password_verify')

Callback fires when a published message is received.
def on_message(client, userdata, msg):

print(msg)
z = [float(x) for x in msg.payload.decode("utf-8").split(',')]
if z[0] == 1.0:

twilio message
message = twilio_client.messages.create(body='Authorized person

entered',from_=from_whatsapp_number,
to=to_whatsapp_number)

print(message.sid)
if z[0] == 0.0:

message = twilio_client.messages.create(body='Intruder Trying to entered',
from_=from_whatsapp_number,
to=to_whatsapp_number)

print(message.sid)

client = mqtt.Client()
client.on_connect = on_connect # Specify on_connect callback
client.on_message = on_message # Specify on_message callback
client.connect('localhost', 1883, 60) # Connect to MQTT broker (also running on Jetson).

Processes MQTT network traffic, callbacks and reconnections (Blocking)
client.loop_forever()

Once the code is executed on Jetson SBC (FoG node), it will receive a message
from the IoT node using MQTT protocol. If the message received indicates an
authentic entry, it will inform the owner of the same. If there is invalid entry, it
indicates that the intruder is trying to enter.

5.6.2.3 Fire Alert System

Fire is one of the most dangerous threats that home and business owners need to take
into account. In the unfortunate case of a fire, there is a risk of losing the majority
of your belongings. A lack of safety precautions may result in material and financial
losses, as well as death. As a result, having a fire alert system installed is a great
way to keep premises safe. This method provides early alert of the hazard, allowing
adequate time to evacuate the premises and contact authorities before the fire spreads
out of control.

Here, the authors have designed a Fire Alert system to mitigate such situation. In
this implementation, authors have used the ESP32-CAM module configured as IoT
device. MQ-4 Sensor Module is interfaced to detect the smoke in the air. The MQ-
4 can detect smoke concentrations anywhere from 200 to 10,000 ppm. It provides
analog as well as digital output corresponding to the concentration of the gases in
the air.

When the IoT node detects a fire, it will inform the Jetson Nano SBC (FoG
node) using Wi-Fi over MQTT protocol. On reception of a message from the IoT
node, the FoG node will inform the house owner by a WhatsApp message using the
Twilio Cloud Platform, that there is a fire in the house for preventive measures. The

5.6 Examples of FoG and Cloud Computing 159

Fig. 5.24 Conceptual and pin diagram for Fire Alert system

Table 5.4 Pin connection for
Fire Alert system

ESP32-CAM MQ4 module

VCC VCC

GND GND

IO13 D O

conceptual diagram and pin diagram for Fire Alert system are shown in Fig. 5.24.
Table 5.4 depicts the pin connection for the Fire Alert system.

To Configuring MQTT on ESP32-CAM

To configure ESP32-CAM module for MQTT follow the steps already given in
Sect. 5.6.2.1. Here, ESP32 is the client and publishes the sensor data to a topic called
’smoke_alert’. FoG node, i.e. the Jetson Nano SBC will be the broker and client. A
Python MQTT client running on the FoG node will subscribe to the ’smoke_alert’
topic and collect the results. After setting up the MQTT protocol on the IoT node it is
ready for communication. The flow chart for the above process is given in Fig. 5.25.

Create a ’main.py’ file in Thonny IDE and enter the Python code . Then click the
’run’ button to execute the code.

160 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.25 Flow chart for configuring ESP 32 Wi-Fi module for Fire Alert system

5.6 Examples of FoG and Cloud Computing 161

import network
station = network.WLAN(network.STA_IF)
station.active(True)
station.connect("jetson-desktop", "11111111")

from machine import Pin #importing classes
from time import sleep #Import sleep from time class
from umqtt.simple import MQTTClient
import time
import machine

SERVER = '10.42.0.1' # MQTT Server Address (Change to the IP address of your Pi)
CLIENT_ID = 'ESP32'
TOPIC = b'smoke_alert'

client = MQTTClient(CLIENT_ID, SERVER)
client.connect() # Connect to MQTT broker

smoke_status = False # variable to hold the state of motion sensor

MQ4=Pin(13,Pin.IN) # setting GPIO13 as input

while True:
if MQ4 value() == 0:

smoke_status = True

if smoke_status:
print('smoke is detected!')

t = 1.0 # 1.0 indicates authentication done
if isinstance(t, float): # Confirm sensor results are numeric

msg = (b'{0:3.1f}'.format(t))
client.publish(TOPIC, msg) # Publish sensor data to MQTT topic
print(msg)

else:
print('Invalid sensor readings.')

sleep(5)
smoke_status = False

To Configure the Jestson Nano (FoG Node) for MQTT and Twilio follow the steps
given in Sect. 5.6.2.1. Now both the nodes are ready for communication. The flow
chart for configuring Jetson Nano for the Fire Alert system is given in Fig. 5.26.

162 5 FoG and Cloud Computing with Jetson Nano

Fig. 5.26 Flow chart for configuring Jetson Nano for Fire Alert system

5.6 Examples of FoG and Cloud Computing 163

Next Create a ’main.py’ with the below code on the Jetson Nano SBC and run it
using the below command

python3 main.py

import paho.mqtt.client as mqtt
global z

#twilio imports
import os
from twilio.rest import Client

setuptwilio
twilio_client =
Client('AC230101cb426d251b82479e33a992c149','1d55483a6ab87ed20eac8531d70650c4');
this is the Twilio sandbox testing number
from_whatsapp_number='whatsapp:+14155238886'

replace this number with your personal WhatsApp Messaging number
to_whatsapp_number='whatsapp:+917057504996'

setuptwilio ends

Callback fires when connected to MQTT broker.
def on_connect(client, userdata, flags, rc):

print('Connected with result code {0}'.format(rc))
Subscribe (or renew if reconnect).
client.subscribe('smoke_alert')

Callback fires when a published message is received.
def on_message(client, userdata, msg):

print(msg)
z = [float(x) for x in msg.payload.decode("utf-8").split(',')]
if z[0] == 1.0:

message = twilio_client.messages.create(body='Smoke/Fire
Detected',from_= from_whatsapp_number,
to= to_whatsapp_number)

print(message.sid)

client = mqtt.Client()
client.on_connect = on_connect# Specify on_connect callback
client.on_message = on_message# Specify on_message callback
client.connect('localhost', 1883, 60) # Connect to MQTT broker

Processes MQTT network traffic, callbacks and reconnections. (Blocking)
client.loop_forever()

After successfully running the code, the Twilio message notification is sent to the
registered mobile number of the house owner that there is the fire in the house and
necessary action has to be taken.

164 5 FoG and Cloud Computing with Jetson Nano

Conclusion:

NVIDIA® Jetson Nano™ lets you bring incredible new capabilities to millions
of small and power-efficient AI systems. It opens new worlds of embedded IoT
applications. Jetson Nano is a powerful computer that lets run multiple codes for
various applications. In this chapter, the authors have given a brief introduction to FoG
and Cloud computing along with its architectures, characteristics, service models,
and various models deployment. It also covers the role of FoG and Cloud computing
in IoT applications. The authors have provided the detailed implementation steps
for the Patient Monitoring system with Cloud, wherein the system monitors Oxygen
saturation, Pulse, and Body Temperature. Authors have also implemented Home
Security system such as Home Surveillance, Home Safety Lock, and Fire alert system
by providing detailed steps. This Home Security system is implemented with Jetson
Nano as a FoG node.

Exercise:

(1) Similar to Sect. 5.6.2.3 (Fire alert system), using the ESP32-CAM module,
design a system that reads the temperature from the DHT22 sensor and updates
it over the FoG in regular intervals of 30 minutes.

(2) Modify the system mentioned in Sect. 5.6.1 (Patient Monitoring System with
Cloud) to work on Raspberry Pi instead of Jetson Nano.

(3) Referring to Sect. 5.6.1 (Patient Monitoring System with Cloud) interface a
MAX30102 Heart Rate sensor with Jetson Nano to monitor the patient’s
heart rate continuously. If the heart rate deviates outside the normal range and
send an alert message via Twilio Cloud.

(4) Interface ESP32-CAM module with 2 PIR sensors referring to Sect. 5.6.2.2
(Home Safety Lock). Also interface a light source through relay module. Write
a Python program which can make the ESP32-CAM module to take inputs from
both the PIR sensors. If both the PIR sensors detect movement, then send the
signals indicating the same to Jetson Nano and turn on the light source. Further,
send the message “Movement detected, Light On” through Twilio cloud to
WhatsApp number.

(5) Modify the setup in Sect. 5.6.2.1 (Home Surveillance) to capture images
in interval of 10 minutes if there is no movement detected by the PIR sensor.

(6) To enhance the Home Security, interface fingerprint sensor module with system.
(7) Increase the number of IoT nodes with smoke sensors in Fire Alert system to

detect fire in multiple rooms.

References 165

References

Aazam M, Huh EN (2014) Fog computing and smart gateway based communication for cloud of
things. In: Proceedings of the 2014 international conference on future internet of things cloud,
FiCloud 2014, Barcelona, Spain, 27–29 August 2014, pp 464–470

Aazam M, Huh EN (2015) Fog computing micro datacenter based dynamic resource estimation
and pricing model for IoT. In: Proceedings of international conference on advanced information
network applications, AINA 2015, pp 687–694

Aazam M, Hung PP, Huh E (2014) Smart gateway based communication for cloud of things.
In: Proceedings of the 2014 IEEE ninth international conference on intelligent sensors, sensor
networks and information processing, Singapore, 21–24 April 2014, pp 1–6

Arasaratnam O (2011) Introduction to cloud computing. In: Halpert B (ed) Auditing cloud
computing, a security and privacy guide. Wiley, Hoboken, NJ, pp 1–13

Atlam HF, Walters RJ, Wills GB (2018) Fog computing and the internet of things: a review. Big
Data Cogn Comput 2:10. https://doi.org/10.3390/bdcc2020010

Cha H-J, Yang H-K, Song Y-J (2018) A study on the design of fog computing architecture using
sensor networks. Sensors 18:3633. https://doi.org/10.3390/s18113633

Chandrasekaran K (2015) Essentials of cloud computing. http://www.crcnetbase.com/isbn/978148
2205442

Chiang M, Zhang T (2016) Fog and IoT: an overview of research opportunities. IEEE Internet
Things J 3(6):854–864

Dastjerdi AV, Gupta H, Calheiros RN, Ghosh SK, Buyya R (2016) Fog computing: principles,
architectures, and applications. In: Buyya R, Vahid Dastjerdi A (eds) Internet of things. Morgan
Kaufmann, pp 61–75. https://doi.org/10.1016/B978-0-12-805395-9.00004-6

Evans D (2011) The internet of things how the next evolution of the internet is changing every-
thing. https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf.
Accessed 13 Nov 2021

Fog Computing and Its Role in the Internet of Things. https://readwrite.com/2020/10/30/fog-com
puting-and-its-role-in-the-internet-of-things/

ITCandor (2018) Distribution of cloud platform as a service (PaaS) market revenues worldwide
from 2015 to June 2018, by vendor. https://www.statista.com/statistics/540521/worldwidecloud-
platform-revenue-share-by-vendor/

Iyer B, Henderson JC (2010) Preparing for the future: understanding the seven capabilities of cloud
computing. MIS Q Exec 9(2):117–131

Khan S, Parkinson S, Qin Y (2017) Fog computing security: a review of current applications and
security solutions. J Cloud Comput. 6(1):19

Kumar N, DuPree L (2011) Protection and privacy of information assets in the cloud. In: Halpert
B (ed) Auditing cloud computing, a security and privacy guide. Wiley, Hoboken, NJ, pp 97–128

Liu Y, Fieldsend JE, Min G (2017) A framework of fog computing: architecture challenges and
optimization. IEEE Access 4:1–10

Marques B, Machado I, Sena A, Castro MC (2017) A communication protocol for fog computing
based on network coding applied to wireless sensors. In: Proceedings of the 2017 IEEE Inter-
national symposium on high performance computer architecture, Vosendorf, Austria, 24–28
February 2017, pp 109–114

Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A (2011) Cloud computing—the business
perspective. Decis Support Syst 51(1):176–189

Mell P, Grance T (2011) The NIST definition of cloud computing. National Institute of Standards
and Technology, NIST Special Publication (SP), pp 800–145. https://doi.org/10.6028/NIST.SP.
800-145

Mukherjee M, Shu L, Wang D (2018) Survey of fog computing: fundamental, network applications,
and research challenges. IEEE Commun Surv Tutor

https://doi.org/10.3390/bdcc2020010
https://doi.org/10.3390/s18113633
http://www.crcnetbase.com/isbn/9781482205442
http://www.crcnetbase.com/isbn/9781482205442
https://doi.org/10.1016/B978-0-12-805395-9.00004-6
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://readwrite.com/2020/10/30/fog-computing-and-its-role-in-the-internet-of-things/
https://readwrite.com/2020/10/30/fog-computing-and-its-role-in-the-internet-of-things/
https://www.statista.com/statistics/540521/worldwidecloud-platform-revenue-share-by-vendor/
https://www.statista.com/statistics/540521/worldwidecloud-platform-revenue-share-by-vendor/
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145

166 5 FoG and Cloud Computing with Jetson Nano

Muntjir M, Rahul M, Alhumyani HA (2017) An analysis of internet of things (IoT): novel architec-
tures, modern applications, security aspects and future scope with latest case studies. Int J Eng
Res Technol 6:422–447

Ara R, Rahim MA, Roy S, Prodhan UK (2020) Cloud computing: architecture, services, deployment
models, storage, benefits and challenges. Int J Trend Sci Res Dev 4(4):837–842

Schneider S, Sunyaev A (2016) Determinant factors of cloud-sourcing decisions: reflecting on the
IT outsourcing literature in the era of cloud computing. J Inf Technol 31(1):1–31

Shi Y, Ding G, Wang H, Roman HE, Lu S (2015) The fog computing service for healthcare. In:
Proceedings of the 2015 2nd international symposium on future information and communication
technologies for ubiquitous healthcare (Ubi-HealthTech), Beijing, China, 28–30 May 2015, pp
1–5

Sunyaev A (ed) (2020) “Cloud computing,” in internet computing: principles of distributed systems
and emerging internet-based technologies. Springer International Publishing, Cham, pp 195–236.
https://doi.org/10.1007/978-3-030-34957-8_7

Taneja M, Davy A (2016) Resource aware placement of data analytics platform in fog computing.
Proc Comput Sci 97:153–156. https://doi.org/10.1016/j.procs.2016.08.295

Tang B, Chen Z, Hefferman G, Wei T, He H, Yang Q (2015) A hierarchical distributed Fog computing
architecture for big data analysis in smart cities. In: Proceedings of the ASE Big Data & Social
Informatics 2015. ACM, p 28

Voorsluys W, Broberg J, Buyya R (2011) Introduction to cloud computing. In: Buyya R, Broberg
J, Goscinski A (eds) Cloud computing. Wiley, Hoboken, NJ, pp 3–42

https://doi.org/10.1007/978-3-030-34957-8_7
https://doi.org/10.1016/j.procs.2016.08.295

