
Transactions on Computer Systems and Networks

Jivan S. Parab ·
Madhusudan Ganuji Lanjewar ·
Marlon Darius Sequeira · Gourish Naik ·
Arman Yusuf Shaikh

Python
Programming
Recipes for IoT
Applications

Transactions on Computer Systems
and Networks

Series Editor

Amlan Chakrabarti, Director and Professor, A. K. Choudhury School of
Information Technology, Kolkata, West Bengal, India

Jivan S. Parab · Madhusudan Ganuji Lanjewar ·
Marlon Darius Sequeira · Gourish Naik ·
Arman Yusuf Shaikh

Python Programming
Recipes for IoT Applications

Jivan S. Parab
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Marlon Darius Sequeira
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Arman Yusuf Shaikh
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Madhusudan Ganuji Lanjewar
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Gourish Naik
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

ISSN 2730-7484 ISSN 2730-7492 (electronic)
Transactions on Computer Systems and Networks
ISBN 978-981-19-9465-4 ISBN 978-981-19-9466-1 (eBook)
https://doi.org/10.1007/978-981-19-9466-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-9466-1

Contents

1 PYTHON Programming and IoT . 1
1.1 Introduction to Python . 1
1.2 Can Python Replace C/C++? . 2
1.3 Overview of Python Programming . 2
1.4 Python for Embedded System . 23
1.5 Introduction to IoT . 23
1.6 IoT Applications . 25
References . 26

2 Configuring Raspberry Pi, MicroPython Pyboard, and Jetson
Nano for Python . 27
2.1 Raspberry Pi Board Features . 27

2.1.1 Configuration of Raspberry Pi . 29
2.2 MicroPython Pyboard Features . 33

2.2.1 Configuration of MicroPython Pyboard 34
2.3 Jetson Nano Board Features . 40

2.3.1 Configuration of Jetson Nano Board . 41
References . 48

3 Simple Applications with Raspberry Pi . 49
3.1 Blinking of LED . 49
3.2 OLED Display Interface . 55
3.3 Camera Interfacing . 62
3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 69
3.5 Raspberry Pi and Mobile Interface Through Bluetooth 83
References . 87

4 MicroPython PyBoard for IoT . 89
4.1 Home Automation . 90
4.2 Smart e-waste Bin . 96
4.3 Industrial Environmental Monitoring . 105

xi

Highlight

xii Contents

4.4 Greenhouse Monitoring . 111
4.5 Aquaculture Monitoring . 116
References . 121

5 FoG and Cloud Computing with Jetson Nano . 123
5.1 Introduction to FoG Computing . 123
5.2 Architecture Model of FoG . 126
5.3 Introduction to Cloud Computing . 127
5.4 Cloud Computing Architecture . 129
5.5 Role of FoG and Cloud Computing in IoT . 131
5.6 Examples of FoG and Cloud Computing . 131

5.6.1 Patient Monitoring system with Cloud 131
5.6.2 Home security with FoG . 138

References . 165

6 Machine Learning (ML) in IoT with Jetson Nano 167
6.1 What is AI? . 167
6.2 Concepts of Machine Learning (ML) and Deep Learning (DL) 168
6.3 Pattern Recognition Using ML with Cloud . 171
6.4 Object Classification Using ML with FoG . 178
6.5 Prediction of Unknown Glucose Concentration Using ML

at EDGE . 186
References . 192

Chapter 4
MicroPython PyBoard for IoT

Abstract In this chapter, readers will learn how to program Pyboard for IoT appli-
cations using MicroPython. MicroPython is a member of the Python interpreter’s
family. MicroPython Programming language is a subset of the Python to fit and
execute on a microcontroller. It has several optimizations to ensure that it works
effectively and consumes little RAM. Hence MicroPython is perfect for embedded
systems and IoT applications. Here, authors have focused on hands on implemen-
tation of few simple IoT applications such as home automation, smart e-waste bin,
industrial environmental monitoring, green house monitoring, and aquaculture moni-
toring. Before implementing the IoT applications, one has to learn how to Install,
run and debug the Micropython using PyCharm IDE.

Keywords Home automation · Environmental monitoring · Green house ·
Aquaculture · e-waste bin

MicroPython Installation in PyCharm IDE

PyCharm IDE supports Pyboard, ESP8266, and BBC Micro:bit microcontroller
devices. In order to use Pyboard, one has to install MicroPython plugin in PyCharm.
The detailed installation and setup process of the MicroPython plugin in PyCharm
is as follows:

Step1: Download and install PyCharm IDE from the link: https://www.jetbrains.
com/pycharm/

Step 2: To install the MicroPython plugin in PyCharm: open PyCharm IDE→ File →
Settings → Plugins → Enter ’MicroPython’ in search window → click on ’Install’
button to install MicroPython plugin.

Step 3: Create Python project: Go to File → New Project (e.g TestIoT) and then click
on ’Create’ button.

Step 4: Setting project structure: Go to File → Settings → Project: TestIoT →
Project structure. Then right-click on ’.Idea’ and ’venv’ and select excluded.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. S. Parab et al., Python Programming Recipes for IoT Applications, Transactions
on Computer Systems and Networks, https://doi.org/10.1007/978-981-19-9466-1_4

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9466-1_4&domain=pdf
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://doi.org/10.1007/978-981-19-9466-1_4

90 4 MicroPython PyBoard for IoT

Step 5: To enable MicroPython support and path selection: Go to File → Settings
→ Languages & Frameworks → MicroPython and select device type as Pyboard.
Tick the Check boxes ’Enable Micropython support’ and ’Auto detect device path’.
Device path can be also given manually and then click on ’detect’ button and then
click on ’OK’.

Step 6: Restart the PyCharm IDE and right-click on project name (TestIoT) → New
→ Python file → Enter the name to Python file (i.e main.py).

Step 7: After naming the file one has to compulsorily install missing packages as
prompted by the IDE.

Step 8: Setting Python Read Evaluate Print Loop (REPL): click on Tools→ MicroPy-
thon → MicroPython REPL. This step helps to show errors and allows to run
MicroPython shell on Pyboard device.

Step 9: Flash Files to Pyboard: On taskbar, go to Run → Click on ’Flash main.py’.

Testing Simple code to Turn on LED of Pyboard:

After the successful installation of PyCharm and MicroPython plugin, the IDE is
ready.

To test the simple code to turn on Pyboard LED, enter and flash the code given
below:

import pyb
pyb.LED(1).on()
pyb.LED(2).on()
pyb.LED(3).on()
pyb.LED(4).on()

4.1 Home Automation

Nowadays, home automation has become more popular, and smart systems are
being implemented practically in every home. Home automation, often referred to as
“Smart Home Technology”, which uses technology to automate your home. Home
automation allows you to control almost every aspect of your home through the IoT.
The concept of a smart home has gained popularity in recent years as technology made
life easier (Majeed et al. 2020). Almost everything has gone digital and automated
(Stolojescu-Crisan et al. 2021). The IoT concept, conceptualizes the idea of remotely
connecting and monitoring real-world items (things) over the internet (Madhesh et al.
2020). One of the most touted benefits of home automation is providing peace of mind
to homeowners, allowing them to monitor/control their homes remotely, countering
dangers such as forgetting to turn off geyser or a front door left unlocked or lights/fan
left on. Figure 4.1 shows the basic smart home system.

4.1 Home Automation 91

Fig. 4.1 Smart home
systems

Here, the authors implemented home automation system with two approaches,
first one with Pyboard and second one with ESP32 as IoT device, using Blynk app.
The reason for using ESP32 is that Pyboard is not included in Blynk app to remotely
control the appliances. Here, four electrical appliances such as fan, refrigerator, lights,
and air condition (AC) are controlled using IoT device. This system has ESP32
configured as IoT device to remotely control the above appliances. The electrical
appliances in the house are connected through relay module to Pyboard/ESP32. The
OLED display interface is used to show the status of appliances connected to the
Pyboard/ESP32.

Here, a 0.96-inch OLED SSD1306 display is used. The OLED display will
communicate with the Pyboard/ESP 32 via the I2C protocol.

First Approach:

Home Appliances Control with Pyboard:

The four electrical appliances (fan, AC, refrigerator, and light) will be controlled
by Pyboard through the relay as shown in Fig. 4.2a. Figure 4.2b shows the entire
flowchart for controlling the four appliances. Table 4.1 tabulates the connection of
Pyboard with switches, OLED, and relays.

Implementation and Configuration Steps:

Step 1: Copy MicroPython OLED ssd1306 library from the following link:
https://github.com/micropython/micropython/blob/master/drivers/display/ssd

1306.py

Step 2: Open PyCharm IDE → paste the code in PyCharm IDE and save it as
ssd1306.py.

https://github.com/micropython/micropython/blob/master/drivers/display/ssd1306.py
https://github.com/micropython/micropython/blob/master/drivers/display/ssd1306.py

92 4 MicroPython PyBoard for IoT

Fig. 4.2 a Circuit diagram of home automation and b Flowchart for controlling four devices

4.1 Home Automation 93

Table 4.1 Pyboard, switches, and relay pins connections

Pyboard Switches Pyboard Relay Pyboard OLED

X1 SW1 Y1 R1 3.3 V Vin

X2 SW2 Y2 R2 GND GND

X3 SW3 Y3 R3 X9 SCL

X4 SW4 Y4 R4 X10 SDA

Step 3: Make sure the connections are according to Fig. 4.2 and enter the following
code in ’main.py’:

Program to control home appliances
import time
import ssd1306
import machine
from pyb import Pin
from micropython import const
width = const (128)
height= const (64)
ssd1306_scl= Pin('X9', Pin.OUT_PP)
ssd1306_sda= Pin('X10', Pin.OUT_PP)
i2c_ssd1306=machine.I2C(scl=ssd1306_scl, sda=ssd1306_sda)
oled = ssd1306.SSD1306_I2C(width, height, i2c_ssd1306)
oled.fill(0)
p_in1 = Pin('X1',Pin.IN, Pin.PULL_UP)
p_in2 = Pin('X2', Pin.IN, Pin.PULL_UP)
p_in3 = Pin('X3', Pin.IN, Pin.PULL_UP)
p_in4 = Pin('X4', Pin.IN, Pin.PULL_UP)
p_out1 = Pin('Y1', Pin.OUT, Pin.OUT_PP)
p_out2 = Pin('Y2', Pin.OUT_PP)
p_out3 = Pin('Y3', Pin.OUT_PP)
p_out4 = Pin('Y4', Pin.OUT_PP)
while (1):

oled.fill(0)
if p_in1.value() == False:

p_out1.high()
oled.text('AC-ON', 0, 0)
oled.show()

else:
p_out1.low()
oled.text('AC-OFF', 0, 0)
oled.show()

if p_in2.value() == False:
p_out2.high()
oled.text('Fan-ON', 0, 10)
oled.show()

else:
p_out2.low()
oled.text('Fan-OFF', 0, 10)
oled.show()

if p_in3.value() == False:
p_out3.high()
oled.text('Refrigerator-ON', 0, 20)
oled.show()

94 4 MicroPython PyBoard for IoT

else:
p_out3.low()
oled.text('Refrigerator-OFF', 0, 20)
oled.show()

if p_in4.value() == False:
p_out4.high()
oled.text('Light-ON', 0, 30)
oled.show()

else:
p_out4.low()
oled.text('Light-OFF', 0, 30)
oled.show()

time.sleep(0.5)

This is just a simple application to control the appliances using switches. To
control appliance over internet, the authors have demonstrated the same by using
ESP32.

Second Approach:

Home Appliances Control with ESP32 (IoT)

The four electrical appliances (fan, AC, refrigerator, and light) will be controlled by
ESP32 through the relay as shown in Fig. 4.3. Table 4.2 tabulates the connection of
ESP32 with relay.

To program ESP32, the Thonny IDE is used as it supports ESP32 board. The
detailed steps for home automation implementation are as follows:

Fig. 4.3 Complete circuit diagram of home automation system

4.1 Home Automation 95

Table 4.2 ESP32 and relay
pins connections

ESP32 Relay ESP32 OLED

23 R1 3V3 VCC

19 R2 GND GND

18 R3 D19 SDA

5 R4 D23 SCA

Step 1: Firmware installation using Thonny IDE

(1) Download the latest firmware from the link https://micropython.org/download/
esp32/

(2) Installing MicroPython Firmware onto ESP32: Open Thonny IDE → Tools
→ options → interpreter → select MicroPython (ESP32) → select COM port
→ click on ’install and update firmware’ → select port and firmware path
(downloaded MicroPython Firmware path) → then click on install.

Now, the ESP32 is ready to use for any application after firmware installation.

Step 2: Blynk app installation process

The ESP32 board is used to control appliances with Blynk app via WiFi. Blynk app
supports both iOS and Android platforms to control ESP32, Arduino, and Raspberry
Pi over the internet. It is a digital dashboard, where one can build a graphic interface
for project by simply dragging and dropping widgets. Follow the below steps to set
up the Blynk app on mobile.

(1) Download Blynk app (legacy) from Google Play Store or App Store and install
it.

(2) Create an account and log in.
(3) Create a new project and name it with a suitable name followed by selecting

ESP32 device.
(4) Click on ’Create’ button. You will receive an authentication key on your

registered email id.
(5) Then, tap anywhere on the canvas to open the widget box. All the available

widgets are located here. From the available options choose a ’button’.
(6) In this application, create four buttons to control four appliances through Blynk

app. Tap on the widget to change the setting. Select the PIN → Digital → gp21.
Choose button mode as ’switch’. Continue this step to create other buttons such
as gp19, gp18, and gp5.

(7) Now, the Blynk app is ready. On pressing ’Play’ button, it will switch from
’EDIT’ mode to ’PLAY’ mode where one can interact with the hardware.

Step 3: Controlling home appliances using Blynk

(1) Copy Blynk MicroPython library from https://github.com/lemariva/uPyBlynk/
blob/master/BlynkLibESP32.py

https://micropython.org/download/esp32/
https://micropython.org/download/esp32/
https://github.com/lemariva/uPyBlynk/blob/master/BlynkLibESP32.py
https://github.com/lemariva/uPyBlynk/blob/master/BlynkLibESP32.py

96 4 MicroPython PyBoard for IoT

(2) Edit the boot file (boot.py) of ESP32: File → open → Select ’MicroPython’ →
open ’boot.py’ and paste the below code and save it.

The boot.py file

ssid_ = "samsung" #Change your WiFi ssid
wp2_pass = "qwerty123" #Change your WiFi password
def do_connect():

import network
sta_if = network.WLAN(network.STA_IF)
if not sta_if.isconnected():

print('connecting to network...')
sta_if.active(True)
sta_if.connect(ssid_, wp2_pass)
while not sta_if.isconnected():

pass
print('network config:', sta_if.ifconfig())

do_connect()

(3) Enter the below code in ’main.py’ file with correct authentication token received
over email.

from machine import Pin, SoftI2C
from time import sleep
import network
import utime as time
from machine import Pin
import BlynkLibESP32 as BlynkLib # for ESP32
blynk = BlynkLib.Blynk("Auth token")
blynk = BlynkLib.Blynk("6GKWghlS8rPx07pQBVox63EcNif6klBA")
blynk.run()

The flowchart for home automation system using Blynk app is shown in Fig. 4.4a.
Run the ’main.py’ program and the obtained output is shown in Fig. 4.4b.

4.2 Smart e-waste Bin

In the present days, a rapid increase in urbanization and per capita income has led to
an increase in municipal solid waste generation. Society creates an unhygienic envi-
ronment for its citizens with respect to waste generation. This rapid generation of
waste leads to various infectious diseases in the environment. A smart waste manage-
ment (SWM) system ensures real-time monitoring of collection and transportation of
waste. The SWM ensures that waste is collected on time and that the cost of entire
operation is kept to a minimum (Zeb et al. 2019). To deal with various sorts of waste,
including biological, industrial, and home waste, a variety of techniques are used
(Rahman et al. 2020). Technologies such as global positioning system (GPS), radio
frequency identification (RFID), global system for mobile communications (GSM),
machine-to-machine (M2M) communication, and IoT, as well as innovative mobile

4.2 Smart e-waste Bin 97

Fig. 4.4 a Flowchart for home automation system using Blynk app and b Output status of home
appliance

98 4 MicroPython PyBoard for IoT

Fig. 4.5 Circuit diagram of smart e-waste bin

and web-based applications, can be used to improve and smoothen the ground-level
mechanism for waste collection, processing, and recycling. Hence, the authors have
implemented a smart e-waste bin using an IoT platform, which makes waste manage-
ment convenient and very efficient. Here, Pyboard with ESP 8266 is configured as
IoT node which updates the bin’s current status, whether the bin is empty or full, on
to the ThingSpeak cloud.

The smart bin system has a proximity sensor FC-45 for checking the status of
bin, ESP8266 for WiFi connectivity, and OLED to display the bin status. All these
modules are interfaced to Pyboard as shown in Fig. 4.5.

The proximity sensor uses an infrared (IR) transmitter and a receiver to detect
an object. Here, three IR sensor modules are used to give the status of the bin. The
output of these proximity sensors is connected to the Pyboard pins X1, X2, and X3.
The bottom IR sensor is connected to the X1 pin, middle IR sensor to X2 pin, and
top IR sensor to the X3 pin of Pyboard.

As Pyboard does not have WiFi feature, ESP8266 Serial WiFi Module is used
for WiFi connectivity to upload the status of smart bin on ThingSpeak cloud. The
ESP8266 WiFi Module is a self-contained SOC with an integrated TCP/IP protocol
stack that allows any microcontroller to connect to a WiFi network for accessing
internet. The pin-out details for interfacing Pyboard with 8266 WiFi model are given
in Table 4.3.

After successful hardware setup, the next step is configuration and code
implementation.

Implementation and configuration:

4.2 Smart e-waste Bin 99

Table 4.3 ESP8266 WiFi module pin description and pin connection with Pyboard

8266 Pin Description Pyboard pins

VCC Power pin = 3.3v 3.3 V

GND Ground GND

Rx Receive serial data from another device Tx

Tx Transfer serial data to other devices Rx

CH_En Chip enable pin, connected to 3.3 V 3.3 V

GPIO 0 General-purpose input–output pin used as a normal GPIO pin and
also used to enable the ESP8266 programming mode

Not connected

GPIO 2 Used as a GPIO pin Not connected

Step 1: Configuration of ThingSpeak Channel

To create channel on ThingSpeak, one has to first sign up on ThingSpeak (https://thi
ngspeak.com/). In case one has an account on ThingSpeak, just sign in using your id
and password. For signup, fill in your details and then verify with the received e-mail
and proceed. After this, click on ’New Channel’ button which will subsequently ask
for the ’Name and Description’ of the data you want to upload on this channel as
shown in Fig. 4.6

(1) In this application, smart bin status is sent to ThingSpeak. Hence, authors have
named the channel ’Smart Bin’. More than one field of data can be activated
by checking the box next to Field option. The authors have created one field,
namely ’Bin status’ (Fig. 4.7). After this, click on ’save channel’ button to save
the details.

Fig. 4.6 Channel details for smart bin

https://thingspeak.com/
https://thingspeak.com/

100 4 MicroPython PyBoard for IoT

Fig. 4.7 Channel name and field details

(2) Add widget by clicking on ’Add widget’ and select ’Gauge’ → click on ’Next’
→ enter the information → Gauge created as shown in Fig. 4.8.

Step 2: Obtain the API Key

To send data to ThingSpeak, a unique API key is required, which is used in the main
Python code to upload the status of bin to ThingSpeak server. Navigate to ’API Keys’
(Fig. 4.6) header under the newly created above channel to get the unique API key
as shown in Fig. 4.9.

Step 3: Configuring ESP8266 WiFi Wireless Module

Download Esp8266 WiFi library for Pyboard: Visit the website https://www.tinyos
shop.com/wifi-skin-for-pyboard and click on ’Test code’ to download the ’pywifi’
library (Fig. 4.10a). After extracting the downloaded file, it shows two MicroPython
files, i.e. ’main.py’ and ’pywifi.py’ as shown in Fig. 4.10a. Copy ’pywifi.py’ file and
open PyCharm IDE → paste it in a PyCharm IDE by saving it with name ’pywifi.py’
in Pyboard.

https://www.tinyosshop.com/wifi-skin-for-pyboard
https://www.tinyosshop.com/wifi-skin-for-pyboard

4.2 Smart e-waste Bin 101

Fig. 4.8 Created widget

Fig. 4.9 ThingSpeak write key access

102 4 MicroPython PyBoard for IoT

Fig. 4.10 a pywifi library details and b Flowchart for e-waste bin

4.2 Smart e-waste Bin 103

Fig. 4.11 ThingSpeak write channel feed access and channel status

Step 6: complete code (main.py)

Enter the below code in main.py (Fig. 4.11):

from pyb import Pin
import pyb
import ssd1306
import machine
from micropython import const
from machine import UART
import pywifi
width = const (128)
height= const (64)
ssd1306_scl= Pin('Y9', Pin.OUT_PP)
ssd1306_sda= Pin('Y10', Pin.OUT_PP)
i2c_ssd1306= machine.I2C(scl=ssd1306_scl, sda=ssd1306_sda)
oled = ssd1306.SSD1306_I2C(width, height, i2c_ssd1306)

104 4 MicroPython PyBoard for IoT

while 1:
rst_pyb = Pin('X11', Pin.OUT)
rst_pyb.low()
pyb.delay(20)
rst_pyb.high()
pyb.delay(500)

Pyboard_wifi = pywifi.ESP8266(1, 115200)

wifi_mode = 3

Pyboard_wifi.set_mode(wifi_mode)

pyb.delay(50)

Pyboard_wifi.connect(ssid='AndroidAP93E9', psk='uxbm0411')

pyb.delay(50)

oled.fill(0)
oled.text('WiFi Connected', 0, 0)
oled.show()
pyb.LED(4).on() #BLUE LED ON

p_in1 = Pin('X1',Pin.IN, Pin.PULL_UP)
p_in2 = Pin('X2', Pin.IN, Pin.PULL_UP)
p_in3 = Pin('X3', Pin.IN, Pin.PULL_UP)

The dest_ip for Thingspeak website is 184.106.153.149

Pyboard_wifi.start_connection(protocol='TCP',dest_ip='184.106.153.149',
dest_port=80, debug=True)

if p_in1.value() == True and p_in2.value() == True and p_in3.value() == True:
oled.text('Bin is Empty', 0, 10)
bin='0'
oled.show()

if p_in1.value() == False and p_in2.value() == True and p_in3.value() == True:
oled.text('Bin is less than Half', 0, 10)
bin='33'
oled.show()

if p_in1.value() == False and p_in2.value() == False and p_in3.value() == True:
oled.text('Bin is Half', 0, 10)
bin='66'
oled.show()

if p_in1.value() == False and p_in2.value() == False and p_in3.value() == False:
oled.text('Bin is Full', 0, 10)
bin='100'
oled.show()

#Copy write channel feed from Thingspeak website as shown in figure 4.11

Pyboard_wifi.send('GET
https://api.thingspeak.com/ update? api_key=HKFRK1JCH5BMOCQ8&field1= '
+ str(bin) + ' HTTP/1.0\r\nHost:192.168.43.176\r\n\r\n', debug=True)

pyb.delay(1000)

4.3 Industrial Environmental Monitoring 105

Fig. 4.12 Status of smart bin on ThingSpeak

After entering the above code, one has to run the ’main.py’ program and the status
of the bin will be displayed on OLED display as well as on ThingSpeak cloud shown
in Fig. 4.12.

4.3 Industrial Environmental Monitoring

Environmental monitoring is essential for protecting both human health and the
ecosystem. Industries are the backbone of today’s contemporary society, allowing for
mass production of commodities to meet the needs of an ever-increasing population.
Unfortunately, industrial pollution has a detrimental impact on the planet we live
in. Hence, it’s our responsibility to give our next generation a greener world for a
better life. Governments around the globe have created norms and regulations to
monitor the industries and to keep the pollution under check. Routine environmental
monitoring data can also be used to validate and compare results about chemical
behavior based on laboratory or field investigations (Artiola and Brusseau 2019).

106 4 MicroPython PyBoard for IoT

The authors have implemented industrial environmental monitoring systems using
IoT (Fig. 4.13). The designed system monitors industrial environment parameters
such as temperature, humidity, butane, methane (CH4), ammonia (NH3), nitrogen
dioxide (NO2), and carbon monoxide (CO). The pin-out details for interfacing
Pyboard with sensors are given in Table 4.4.

Configuration of ThingSpeak Channel

After creating the channel as shown in earlier Sect. 4.2, click on ’New Channel’
button which will subsequently ask for the ’Name and Description’ of the data you
want to upload on this channel as shown in Fig. 4.14a.

Fig. 4.13 Circuit diagram of industrial environmental monitoring

Table 4.4 Pin connection of Pyboard with various sensors

Pyboard Sensors Pin Uses

X1 DHT22 data To detect temperature and humidity

X2 MQ4 Analog out To detect methane gas

X3 MQ2 Analog out To detect butane

X4 CJMCU 6814 NH3 To detect NH3

X5 CJMCU 6814 NO2 To detect NO2

X6 CJMCU 6814 CO To detect CO

4.3 Industrial Environmental Monitoring 107

In this application, the authors have named the channel ’Industrial Environmental
Monitoring’ and seven fields are created as shown in Fig. 4.14. After this, click on
’save channel’ button to save the details.

Obtain the API Key

To send data to ThingSpeak, a unique API key is required, which is used in ’main.py’
code to upload parameters onto the ThingSpeak server. Navigate to ’API Keys’ header
under the newly created channel to get the unique API key. After completing these
steps, the channel is ready to receive the parameters. Enter the below code in ’main.py’
and save it on Pyboard. The flowchart for industrial environmental monitoring system
is shown in Fig. 4.14b.

(a)

Fig. 4.14 a Channel settings and b Flowchart for Industrial Environmental Monitoring system

108 4 MicroPython PyBoard for IoT

(b)

Fig. 4.14 (continued)

4.3 Industrial Environmental Monitoring 109

Complete code (main.py)

from pyb import Pin
import pyb
import ssd1306
import machine
from machine import Pin
from micropython import const
import dht
width = const (128)
height= const (64)
ssd1306_scl= Pin('Y9', Pin.OUT_PP)
ssd1306_sda= Pin('Y10', Pin.OUT_PP)
i2c_ssd1306=machine.I2C(scl=ssd1306_scl, sda=ssd1306_sda)
oled = ssd1306.SSD1306_I2C(width, height, i2c_ssd1306)
import pywifi
temp_hum = dht.DHT22(Pin('X1'))
while 1:

rst_pyb = Pin('X11', Pin.OUT)
rst_pyb.low()
pyb.delay(20)
rst_pyb.high()
pyb.delay(500)
Pyboard_wifi = pywifi.ESP8266(1, 115200)
wifi_mode = 3
Pyboard_wifi.set_mode(wifi_mode)
pyb.delay(50)
Pyboard_wifi.connect(ssid='AndroidAP93E9', psk='uxbm0411')
pyb.delay(50)
pyb.LED(4).on() #BLUE LED ON
pyb.delay(2000)
temp_hum.measure()
temp = temp_hum.temperature()
hum = temp_hum.humidity()
MQ4 = pyb.ADC('X2') # create an analog object for Methane
Out1 = MQ4.read() # read an analog value
MQ2 = pyb.ADC('X3') # create an analog object for Butane
Out2 = MQ2.read() # read an analog value
NH3 = pyb.ADC('X4') # create an analog object for Ammonia
Out3 = NH3.read() # read an analog value
NO2 = pyb.ADC('X5') # create an analog object for Nitrogen Dioxide
Out4 = MQ2.read() # read an analog value
CO = pyb.ADC('X6') # create an analog object for Carbon Monoxide
Out5 = CO.read() # read an analog value'''
oled.text("Tem: " + str(temp), 0, 10)
oled.text("Humidity:" + str(hum), 0, 20)
oled.text("Methane:" + str(Out1), 0, 30)
oled.text("MQ2:" + str(Out2), 0, 40)
oled.show()
oled.fill(0)
pyb.delay(1000)
oled.text("NH3:" + str(Out3), 0, 10)
oled.text("NO2: " + str(Out4), 0, 20)
oled.text("CO:" + str(Out5), 0, 30)
oled.show()
pyb.delay(1000)
Pyboard_wifi.start_connection(protocol='TCP',dest_ip='184.106.153.149',
dest_port=80,debug=True)

110 4 MicroPython PyBoard for IoT

Pyboard_wifi.send('GET
https://api.thingspeak.com/update?api_key=7RZ93ORH43F2RYP7&field1=' +
str(temp)+'&field2='+ str(hum) +'&field3='+ str(Out1)+'&field4='+
str(Out2)+'&field5='+ str(Out3)+'&field6='+ str(Out4)+'&field7='+ str(Out5)+'
HTTP/1.0\r\nHost: 192.168.43.176\r\n\r\n', debug=True)
pyb.delay(1000)

After entering the above code, one has to execute the ’main.py’ program and the
industrial environmental parameters will be displayed on OLED display as well as
on ThingSpeak cloud as shown in Fig. 4.15.

Fig. 4.15 Industrial environmental parameters monitoring system on ThingSpeak

4.4 Greenhouse Monitoring 111

4.4 Greenhouse Monitoring

Flora such as flowers and vegetables are grown in a greenhouse. Greenhouses warm
up during the day as sunlight passes through them, heating the plants, soil, and
structure. Greenhouses protect crops from a variety of illnesses, notably these are
soil-borne and splash onto plants in the rain. The greenhouse effect is a natural
phenomenon that is advantageous to humans. To achieve optimal plant growth, the
system must be continuously monitored and managed, for example, temperature,
moisture, soil humidity, light intensity, and so on (Environmental and Pollution
Science 2019). Many farmers fail to profit from greenhouse crops because they
are unable to control two critical elements that influence plant development and
output. The temperature of the greenhouse should be maintained at a specified level.
Crop transpiration and condensation of water vapor on various greenhouse surfaces
can all be caused by high humidity. This greenhouse monitoring and management
system comes to the rescue in the face of such obstacles. The design and implemen-
tation of several sensors for greenhouse environment monitoring, such as humidity,
temperature, light condition, and soil moisture, are discussed here.

The authors have implemented greenhouse monitoring systems using IoT. The
designed system monitors parameters such as temperature, humidity, water level,
and light. The pin-out details for interfacing Pyboard with sensors are given in Table
4.5. The temperature and humidity sensors detect temperature and humidity, the soil
moisture sensor detects water level, and the LDR sensor detects light. The detailed
interfacing diagram is shown in Fig. 4.16.

Configuration of ThingSpeak Channel

After creating the channel as shown in earlier Sect. 4.2, click on ’New Channel’
button which will subsequently ask for the ’Name and Description’ of the data you
want to upload on this channel as shown in Fig. 4.17.

In this application, the authors have named the channel ’Greenhouse Moni-
toring’ and four fields are created as shown in Fig. 4.17a. After this, click on ’save
channel’ button to save the details. Figure 4.17b shows the flowchart for greenhouse
monitoring system.

Table 4.5 Pin connection of Pyboard with sensors to monitor Greenhouse

Pyboard OLED DHT22 LDR Moisture

Y9 SCL – – –

Y10 SDA – – –

X1 – Data – –

X2 – – Output of circuit –

X3 – – – Aout

112 4 MicroPython PyBoard for IoT

Fig. 4.16 Circuit diagram of Greenhouse monitoring

(a)

Fig. 4.17 a Channel settings and b flowchart for greenhouse monitoring system

4.4 Greenhouse Monitoring 113

(b)

Fig. 4.17 (continued)

Obtain the API Key

To send data to ThingSpeak, a unique API key is required, which is used in the
main python code to upload parameters onto the ThingSpeak server. Navigate to
’API Keys’ header under the newly created above channel to get the unique API key.
After completing these steps, the channel is ready to receive the parameters. Enter
the below code in ’main.py’ and save it on Pyboard.

114 4 MicroPython PyBoard for IoT

#Complete code (main.py)

from pyb import Pin
import pyb
import ssd1306
import machine
from machine import Pin
from micropython import const
import dht
width = const (128)
height= const (64)
ssd1306_scl= Pin('Y9', Pin.OUT_PP)
ssd1306_sda= Pin('Y10', Pin.OUT_PP)
i2c_ssd1306=machine.I2C(scl=ssd1306_scl, sda=ssd1306_sda)
oled = ssd1306.SSD1306_I2C(width, height, i2c_ssd1306)

import pywifi
temp_hum = dht.DHT22(Pin('X1'))
while 1:

rst_pyb = Pin('X11', Pin.OUT)
rst_pyb.low()
pyb.delay(20)
rst_pyb.high()
pyb.delay(500)
Pyboard_wifi = pywifi.ESP8266(1, 115200)
wifi_mode = 3
Pyboard_wifi.set_mode(wifi_mode)
pyb.delay(50)
Pyboard_wifi.connect(ssid='AndroidAP93E9', psk='uxbm0411')
pyb.delay(50)
pyb.LED(4).on() #BLUE LED ON
pyb.delay(2000)
temp_hum.measure()
temp = temp_hum.temperature()
hum = temp_hum.humidity()
LDR = pyb.ADC('X2')
Out1 = LDR.read() # read an analog value
Moisture = pyb.ADC('X3') # create an analog object from a pin
Out2 = Moisture.read() # read an analog value
mois = ((Out2 - 3700) * (100 - 1) / (1300- 3700) +1)

oled.text("Tem: " + str(temp), 0, 10)
oled.text("Humidity:" + str(hum), 0, 20)
oled.text("Light:" + str(Out1), 0, 30)
oled.text("Moist-sense:" + str(Out2), 0, 40)
oled.text("Moisture %:" + str(mois), 0, 50)
oled.show()
oled.fill(0)
pyb.delay(1000)
Pyboard_wifi.start_connection(protocol='TCP',dest_ip='184.106.153.149',
dest_port=80,debug=True)

4.4 Greenhouse Monitoring 115

Pyboard_wifi.send('GET
https://api.thingspeak.com/update?api_key=E3SLU3MT69BN8G3V&fiel
d1=' + str(temp)+'&field2='+ str(hum) +'&field3='+ str(Out1)+ '&field4='+
str(mois)+' HTTP/1.0\r\nHost: 192.168.43.176\r\n\r\n', debug=True)

pyb.delay(1000)

After entering the above code, one has to execute the ’main.py’ program and the
greenhouse monitoring parameters will be displayed on OLED display as well as on
ThingSpeak cloud shown in Fig. 4.18.

Fig. 4.18 Greenhouse monitoring and control system on ThingSpeak

116 4 MicroPython PyBoard for IoT

4.5 Aquaculture Monitoring

Aquaculture is a fast-expanding food production method that has successfully
increased fish and shellfish production which helps to feed the world’s growing popu-
lation. Aquaculture is the primary means of survival, being the main source of income
for a large strata of society. However, this kind of food production has numerous prob-
lems, including rising costs, stricter government regulations, and restricted water
supplies. These difficulties have necessitated the development of more complex
monitoring and feeding equipment in order to provide tightly controlled and long-
term growth conditions. Aquaculture, often known as aqua farming, is the breeding,
rearing, and harvesting of fish, seaweed, algae, and a variety of other creatures. It is
also characterized as a breeding species that develops in a controlled aquatic habitat.
Aquaculture is one of the most dependable and low-impact processes for providing
high-quality protein for humans.

The authors have implemented aquaculture monitoring systems using IoT. The
designed system monitors parameters such as turbidity, water temperature, pH, and
Total Dissolved Solid (TDS).

The pin-out details for interfacing Pyboard with sensors for aquaculture moni-
toring system is given in Table 4.6. The detailed interfacing diagram is shown in
Fig. 4.19. The Grove—PH sensor detects the pH of the water, turbidity sensor will
give the turbidity of the water, TDS sensor will give the TDS of the water, and
temperature sensor (DS18B20) detects the water temperature.

Configuration of ThingSpeak Channel

After creating the channel as shown in earlier Sect. 4.2, click on ’New Channel’
button which will subsequently ask for the ’Name and Description’ of the data you
want to upload on this channel as shown in Fig. 4.20.

In this application, the authors have named the channel as ’Aquaculture moni-
toring’ and four fields are created as shown in Fig. 4.20a. After this, click on the save
channel button to save the details. Figure 4.20b shows the flowchart for aquaculture
monitoring system.

Table 4.6 Pin connection of Pyboard with sensors for aquaculture monitoring

Pyboard OLED Turbidity pH TDS DS18B20

Y9 SCL – – – –

Y10 SDA – – – –

Y11 – Output of circuit – – –

Y12 – – SIG – –

X7 – – – Aout –

X8 – – – – Sensor output

4.5 Aquaculture Monitoring 117

Fig. 4.19 Circuit diagram of aquaculture monitoring

(a)

Fig. 4.20 a Channel settings. b Flowchart for aquaculture monitoring system

118 4 MicroPython PyBoard for IoT

(b)

Fig. 4.20 (continued)

Obtain the API Key

To send data to ThingSpeak, a unique API key is required, which is used in the
main python code to upload parameters onto the ThingSpeak server. Navigate to
’API Keys’ header under the newly created above channel to get the unique API key.
After completing these steps, the channel is ready to receive the parameters. Enter
the below code in ’main.py’ and save it on Pyboard.

4.5 Aquaculture Monitoring 119

#Complete code (main.py)
import time
import ssd1306
import machine
from pyb import Pin
from micropython import const
import pyb
import onewire
import ds18x20

width = const(128)
height = const(64)
ssd1306_scl = Pin('Y9', Pin.OUT_PP)
ssd1306_sda = Pin('Y10', Pin.OUT_PP)
i2c_ssd1306 = machine.I2C(scl=ssd1306_scl, sda=ssd1306_sda)
oled = ssd1306.SSD1306_I2C(width, height, i2c_ssd1306)
import pywifi
while True:

rst_pyb = Pin('X11', Pin.OUT)
rst_pyb.low()
pyb.delay(20)
rst_pyb.high()
pyb.delay(500)
Pyboard_wifi = pywifi.ESP8266(1, 115200)
wifi_mode = 3
Pyboard_wifi.set_mode(wifi_mode)
pyb.delay(50)
Pyboard_wifi.connect(ssid='AndroidAP93E9', psk='uxbm0411')
pyb.delay(50)
pyb.LED(4).on() # BLUE LED ON
pyb.delay(2000)
oled.fill(0)
adc = pyb.ADC('Y12') # Ph sensor
adc1 = pyb.ADC('Y11') #Turbidity sensor
val1 = adc1.read()
adc2 = pyb.ADC('X8') # TDS sensor
val2 = adc2.read()
ds_pin = Pin('X7') # temperaute sensor
sensorSum = 0
for i in (0, 50):

sensorValue = adc.read()
sensorSum = sensorSum + sensorValue

sensorValue = sensorSum / 50
ph = 7 - 1000 * (sensorValue - 372) * 3.3/59.16/4095
scaled_value = (val1 - 60) * (0.2 - 5) / (2200 - 60) + 5
V = val2 * (3.3 / 4095.0)
tdsValue = (133.42 / V * V * V - 255.86 * V * V + 857.39 * V) * 0.5
ds_sensor = ds18x20.DS18X20(onewire.OneWire(ds_pin))
roms = ds_sensor.scan()
ds_sensor.convert_temp()
time.sleep(1)

120 4 MicroPython PyBoard for IoT

for rom in roms:
oled.text("Ph:" + str(ph), 0, 0)
oled.text("Turbidity:" + str(scaled_value), 0, 10)
oled.text("TDS:" + str(tdsValue), 0, 20)
a=ds_sensor.read_temp(rom)
oled.text("Temp " + str(a), 0, 30)
oled.show()
time.sleep(1)

oled.show()

Pyboard_wifi.start_connection(protocol='TCP',dest_ip='184.106.153.149',
dest_port=80,debug=True)

Pyboard_wifi.send('GET
https://api.thingspeak.com/update?api_key=UBY89DB50V2UPGGU&field1=' + str(ph) +
'&field2=' + str(scaled_value) + '&field3=' + str(tdsValue) + '&field4=' + str(a)
+ ' HTTP/1.0\r\nHost: 192.168.43.176\r\n\r\n', debug=True)

pyb.delay(1000)

After entering the above code, one has to execute the ’main.py’ program and the
greenhouse monitoring parameters will be displayed on OLED display as well as on
ThingSpeak cloud shown in Fig. 4.21.

Conclusion:
PyCharm supports various boards including Pyboard. To start with, MicroPython

installation and testing steps of Pyboard in PyCharm IDE are given in detail. The

Fig. 4.21 Aquaculture monitoring system on ThingSpeak

References 121

various applications, such as, home automation, smart e-waste bin, industrial envi-
ronmental monitoring, greenhouse monitoring and aquaculture monitoring are imple-
mented to track and control remotely. There is no WiFi support on Pyboards; hence,
authors have interfaced external WiFi module. Home automation system is first
implemented with switches and appliances interfaced directly to Pyboard. The same
application is implemented with ESP32 and controlled remotely with Blynk app. For
other applications, the authors have provided detailed interfacing and configuration
steps to monitor/control remotely through ThingSpeak cloud.

Exercise

(1) Blink eight LEDs using Pyboard
(2) Design a system to control six appliances with switches connected to ESP32.

Also, display the status of each appliance on the OLED screen.
(3) Interface a temperature sensor to ESP32. Using a relay, build a system to turn

ON/OFF the fan when temperature rises/decreases of a particular threshold
temperature and monitor the temperature.

(4) Assume there are two rooms, Room1 and Room2. Each room has a temperature
sensor and a fan respectively. Design a system that can monitor the temperature
of each room separately and turn ON/OFF the fan in the respective room if
temperature crosses the threshold.

(5) Using turbidity sensor along with ESP32, build a system to monitor cleanliness
of water. If the value of turbidity is higher than a set threshold, give out an
alarm signaling the need for water replacement/cleaning. The system can then
be applied to monitor cleanliness of water in aquariums.

(6) Interface five IR sensors to get the accurate status of the e-waste bin by placing
appropriately and displaying the status on ThingSpeak Cloud.

(7) Interface other industrial sensors to monitor Environmental parameters.

References

https://doi.org/10.1016/j.jksuci.2020.08.016.
https://doi.org/10.1016/B978-0-12-814719-1.00010-0.
https://doi.org/10.1016/B978-0-12-386454-3.01041-1.
Artiola JF, Brusseau ML (2019) The role of environmental monitoring in pollution science. In:
Brusseau ML, Pepper IL, Gerba CP (eds) Environmental and pollution science, 3rd edn. Academic
Press, pp 149–162. https://doi.org/10.1016/B978-0-12-814719-1.00010-0

Covaci A (2014) Environmental fate and behavior. In: Wexler P (ed) Encyclopedia of toxicology,
3rd edn. Academic Press, pp 372–374. https://doi.org/10.1016/B978-0-12-386454-3.01041-1

Environmental and Pollution Science (Third Edition) (2019) Academic Press, pp 149–162
Madhesh A, Kowsigan M, Khishore R, Balasubramanie P (2020) IoT based home automation and
security system. Int J Adv Sci Technol 29(9s):2733–2739. http://sersc.org/journals/index.php/
IJAST/article/view/15439

Majeed R, Abdullah NA, Ashraf I, Zikria YB, Mushtaq MF, Umer M (2020) An intelligent, secure,
and smart home automation system. Sci Program. ID 4579291, 14 p. https://doi.org/10.1155/
2020/4579291

https://doi.org/10.1016/j.jksuci.2020.08.016
https://doi.org/10.1016/B978-0-12-814719-1.00010-0
https://doi.org/10.1016/B978-0-12-386454-3.01041-1
https://doi.org/10.1016/B978-0-12-814719-1.00010-0
https://doi.org/10.1016/B978-0-12-386454-3.01041-1
http://sersc.org/journals/index.php/IJAST/article/view/15439
http://sersc.org/journals/index.php/IJAST/article/view/15439
https://doi.org/10.1155/2020/4579291
https://doi.org/10.1155/2020/4579291

122 4 MicroPython PyBoard for IoT

Nasir OA, Mumtazah S (2020) IOT-based monitoring of aquaculture system. Matter: Int J Sci
Technol 6(1):113–137. https://doi.org/10.20319/mijst.2020.61.113137

Rahman MW, Islam R, Hasan A, Bithi NI, Hasan MM, Rahman MM (2020) Intelligent waste
management system using deep learning with IoT. J King Saud Univ-Comput Inf Sci. https://doi.
org/10.1016/j.jksuci.2020.08.016

Stolojescu-Crisan C, Crisan C, Butunoi B-P (2021) An IoT-based smart home automation system.
Sensors 21:3784. https://doi.org/10.3390/s21113784

Sujin JS et al (2021) IOT based greenhouse monitoring and controlling system. J Phys: Conf Ser
1916 012062

Zeb A, Ali Q, Saleem MQ, Awan KM, Alowayr AS, Uddin J, Iqbal S, Bashir F (2019) A proposed
IoT-enabled smart waste bin management system and efficient route selection. J Comput Netw
Commun. ID 7043674, 9 p. https://doi.org/10.1155/2019/7043674

https://doi.org/10.20319/mijst.2020.61.113137
https://doi.org/10.1016/j.jksuci.2020.08.016
https://doi.org/10.1016/j.jksuci.2020.08.016
https://doi.org/10.3390/s21113784
https://doi.org/10.1155/2019/7043674

