
Transactions on Computer Systems and Networks

Jivan S. Parab ·
Madhusudan Ganuji Lanjewar ·
Marlon Darius Sequeira · Gourish Naik ·
Arman Yusuf Shaikh

Python
Programming
Recipes for IoT
Applications

Transactions on Computer Systems
and Networks

Series Editor

Amlan Chakrabarti, Director and Professor, A. K. Choudhury School of
Information Technology, Kolkata, West Bengal, India

Jivan S. Parab · Madhusudan Ganuji Lanjewar ·
Marlon Darius Sequeira · Gourish Naik ·
Arman Yusuf Shaikh

Python Programming
Recipes for IoT Applications

Jivan S. Parab
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Marlon Darius Sequeira
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Arman Yusuf Shaikh
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Madhusudan Ganuji Lanjewar
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

Gourish Naik
School of Physical and Applied Sciences
Goa University
Taleigao, Goa, India

ISSN 2730-7484 ISSN 2730-7492 (electronic)
Transactions on Computer Systems and Networks
ISBN 978-981-19-9465-4 ISBN 978-981-19-9466-1 (eBook)
https://doi.org/10.1007/978-981-19-9466-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Singapore Pte Ltd. 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-19-9466-1
Highlight

Contents

1 PYTHON Programming and IoT . 1
1.1 Introduction to Python . 1
1.2 Can Python Replace C/C++? . 2
1.3 Overview of Python Programming . 2
1.4 Python for Embedded System . 23
1.5 Introduction to IoT . 23
1.6 IoT Applications . 25
References . 26

2 Configuring Raspberry Pi, MicroPython Pyboard, and Jetson
Nano for Python . 27
2.1 Raspberry Pi Board Features . 27

2.1.1 Configuration of Raspberry Pi . 29
2.2 MicroPython Pyboard Features . 33

2.2.1 Configuration of MicroPython Pyboard 34
2.3 Jetson Nano Board Features . 40

2.3.1 Configuration of Jetson Nano Board . 41
References . 48

3 Simple Applications with Raspberry Pi . 49
3.1 Blinking of LED . 49
3.2 OLED Display Interface . 55
3.3 Camera Interfacing . 62
3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 69
3.5 Raspberry Pi and Mobile Interface Through Bluetooth 83
References . 87

4 MicroPython PyBoard for IoT . 89
4.1 Home Automation . 90
4.2 Smart e-waste Bin . 96
4.3 Industrial Environmental Monitoring . 105

xi

xii Contents

4.4 Greenhouse Monitoring . 111
4.5 Aquaculture Monitoring . 116
References . 121

5 FoG and Cloud Computing with Jetson Nano . 123
5.1 Introduction to FoG Computing . 123
5.2 Architecture Model of FoG . 126
5.3 Introduction to Cloud Computing . 127
5.4 Cloud Computing Architecture . 129
5.5 Role of FoG and Cloud Computing in IoT . 131
5.6 Examples of FoG and Cloud Computing . 131

5.6.1 Patient Monitoring system with Cloud 131
5.6.2 Home security with FoG . 138

References . 165

6 Machine Learning (ML) in IoT with Jetson Nano 167
6.1 What is AI? . 167
6.2 Concepts of Machine Learning (ML) and Deep Learning (DL) 168
6.3 Pattern Recognition Using ML with Cloud . 171
6.4 Object Classification Using ML with FoG . 178
6.5 Prediction of Unknown Glucose Concentration Using ML

at EDGE . 186
References . 192

Chapter 3
Simple Applications with Raspberry Pi

Abstract All over the world, people use the Raspberry Pi to learn the coding
skills, build simple projects, implement simple clusters and a little bit of Edge
computing. Raspberry Pi is considered as a low-cost pocket-sized minicomputer used
in various applications. In this chapter, we have focused on hands on implementation
of few simple applications such as, Interfacing LEDs, Organic LED (OLED) display,
Camera Interfacing to capture video/pictures, different types of motor control and
lastly implementation of Bluetooth with mobile .To implement these examples, we
have used Thonny Python IDE which is already integrated with Raspbian OS.

Keywords LED · PWM · Camera interfacing · Motor control · Bluetooth

3.1 Blinking of LED

To interface the LEDs with the Raspberry Pi through General-Purpose Input/Output
(GPIO) pins, we need to understand how to access the Raspberry Pi GPIO.

Raspberry Pi GPIO Access:

GPIO pins of Raspberry Pi can be used to interface with the general-purpose
input/output (I/O) devices. Raspberry Pi 3 B+ has on-board 26 programmable GPIO
pins to interface and control many I/O devices. It can connect to the internet using
on-board WiFi or WiFi USB adapter and also some pins are multiplexed as I2C,
SPI, UART, etc. There are few following options available to specify GPIO pins of
Raspberry Pi as shown in Fig. 3.1.

i. Physical (BOARD): Pin number from 1 to 40 corresponds to the physical
location on the header.

ii. Broadcom (BCM): It is generally called “GPIO” (GPIO1–GPIO26) or
RPi.GPIO

iii. WiringPi—Fig. 3.1b shows the pin numbering in Wiring Pi

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2023
J. S. Parab et al., Python Programming Recipes for IoT Applications, Transactions
on Computer Systems and Networks, https://doi.org/10.1007/978-981-19-9466-1_3

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-19-9466-1_3&domain=pdf
https://doi.org/10.1007/978-981-19-9466-1_3

50 3 Simple Applications with Raspberry Pi

Fig. 3.1 GPIO pins of physical (BOARD) and BCM. a Actual backside physical pin assignments
and b WiringPi

Raspberry Pi 3 Model B+ GPIO Pins Numbering

For accessing the GPIO pin for I/O interface, Raspberry Pi has different ways of
defining pin assignments from which normally two types are used, namely Phys-
ical and BCM. In GPIO Numbering (BCM), pin number refers to the number on
Broadcom SoC (System on Chip), while, in Physical Numbering (BOARD), pin
number refers to the pin of 40-pin P1 header on Raspberry Pi Board. The above
physical numbering is simple as we can count pin number on P1 header and assign it
as GPIO. To access GPIO through Python programming, first, take a simple example
of how to blink the LED through Raspberry GPIO.

Installation of RPi.GPIO Python Library

The configuration of the I/O pins for read and write can be done using the ’RPi.GPIO’
Python library. There are two simple methods to install the GPIO library.

Method 1: Installation of GPIO from Repository

Step 1: Open the Raspberry Pi console and update the available package versions by
using the following command:

sudo apt-get update

If the package exists, then there is no need to install; otherwise, it can be installed
using ‘apt-get’.

3.1 Blinking of LED 51

Step 2: Install the RPi.GPIO package by using the following command:

sudo apt-get install rpi.gpio

If it is already installed, it will be upgraded to newer version.

Method 2: Manual Installation

The package can be downloaded from http://pypi.python.org/pypi/RPi.GPIO
Step 1: Download the library by using the following command:

wget https://pypi.python.org/packages/source/R/RPi.GPIO/RPi.
GPIO-.5.11.tar.gz

Step 2: The downloaded file is in ’.tar’ format, so extract the archive to a new folder
by using the following command:

tar -xvf RPi.GPIO-0.5.11.tar.gz

Step 3: Navigate to the new directory.

cd RPi.GPIO-0.5.11

Step 4: RPi.GPIO is installed using the following command:

sudo python setup.py installs

Python Program to Blink LEDs

In this example, the four LEDs are interfaced to GPIOs of Raspberry Pi. Here, one
requires four LEDs, four 330 Ω resistors, and a Raspberry Pi board. Every LED
has two leads—one cathode (shorter lead) and one anode (longer lead). Choose the
cathode and use a 330-Ω resistor to ground it (Pin 6). The other end goes to pins 10,
11, 12, and 13, respectively. Do the connection as shown in Fig. 3.2a and the flow
diagram of the entire implementation is given in Fig. 3.2b. Type the following code
in Thonny IDE and execute the same.

http://pypi.python.org/pypi/RPi.GPIO

52 3 Simple Applications with Raspberry Pi

Fig. 3.2 a Interfacing of four LEDs with GPIO of Raspberry Pi and b flowchart for LED blinking

To blink 4 -LED

import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BOARD)
pin_1=10
pin_2=11
pin_3=12
pin_4=13
GPIO.setup(pin_1,GPIO.OUT)
GPIO.setup(pin_2,GPIO.OUT)
GPIO.setup(pin_3,GPIO.OUT)
GPIO.setup(pin_4,GPIO.OUT)
GPIO.output(pin_1, HIGH)
sleep(2)
GPIO.output(pin_2, LOW)
sleep(2)
GPIO.output(pin_3, HIGH)
sleep(2)
GPIO.output(pin_4, LOW)
GPIO.cleanup()

Explanations of the Above Program

import RPi.GPIO as GPIO: Import RPi.GPIO package which has class to control
GPIO to use Raspberry Pi GPIO pins in Python.

from time import sleep: Importing time module, when the statement “sleep (t)” is
executed then the next line of code will be executed after t seconds. Example sleep
(2) means the next statement will be executed after 2 s.

3.1 Blinking of LED 53

GPIO.setmode(GPIO.BOARD): This function is used to define pin numbering
system, i.e. GPIO numbering or Physical numbering. You can also use GPIO.setmode
(GPIO.BCM).

GPIO.setup(pin1,GPIO.OUT): This command is used to set the GPIO pin as the
output pin.

GPIO.output(pin1, HIGH): This command is used set GPIO pin to High.
sleep (2): It will act as a delay of 2 s.

Python Program to Control LEDs using Pulse Width Modulation (PWM)

A PWM is a method for generating an analog signal using a digital source (Christ
and Wernli 2014). A PWM signal consists of two main components, duty cycle and
frequency. The duty cycle describes the amount of time the signal is in a high (ON)
state as a percentage of the total time it takes to complete one cycle. The frequency
determines how fast the PWM completes a cycle, i.e. 100 Hz would be 100 cycles
per second), and therefore how fast it switches between high and low states. PWM
is used for controlling the amplitude of digital signals in order to control devices. A
powerful benefit of PWM is that power loss is very minimal. Compared to regulating
power levels using an analog potentiometer to limit the power output by essentially
choking the electrical pathway, thereby resulting in power loss as heat, PWM actually
turns OFF the power output rather than limiting it. Figure 3.3a shows the PWM signal
with 0–100% duty cycle and Fig. 3.3b shows the circuit diagram for understanding
the concept of PWM and Fig. 3.3c shows the flowchart. Type the following code in
Thonny IDE and execute the same.

import RPi GPIO as GPIO
from time import sleep
GPIO.Setwarning(False)
GPIO.setmode(GPIO.BOARD)
pin=18 # PWM output is on pin 18
GPIO.setup(pin,GPIO.OUT)
frequency=200 # Set duty Cycle
pwm1=GPIO.PWM(pin, frequency)
pwm1.start(0) # 0% Duty Cycle PWM
for i in range (0, 100):

pwm1.ChangeDutyCycle(i)
sleep(0.02)

for i in range (100, 0, -1):
pwm1.ChangeDutyCycle(i)
sleep(0.02)

pwm1.stop()
GPIO.Cleanup()

54 3 Simple Applications with Raspberry Pi

Fig. 3.3 a PWM signals with 0–100% duty cycle, b circuit for LED interfacing to Raspberry Pi,
and c flowchart of the Python program

3.2 OLED Display Interface 55

3.2 OLED Display Interface

To interact with the outside world and make the display more attractive as well as
readable, OLED is interfaced to Raspberry Pi Board. It supports I2C communication
through pins 3 (SDA) and 5 (SCL). Raspberry Pi pin numbers 1 (3.3 V) and 9 (GND)
are used to power up the OLED, as shown in Fig. 3.4. The hardware connection details
are shown in Fig. 3.5.

Figure 3.4 shows the interfacing circuit diagram of SSD1306 I2C OLED display
with the Raspberry Pi. Power supply 3.3 V (pin 1) is connected to VCC pin of the
OLED display. The SDA of the Raspberry Pi is connected to the OLED display’s
SDA pin. The SCL is connected with the OLED display’s SCL pin. The GND of the
Raspberry Pi is connected with the GND pin of the OLED display. The following
steps are required to display message on OLED display.

Step 1: Connect power supply to the Raspberry Pi.

Step 2: I2C set up on Raspberry Pi:
Check if the I2C bus is activated on Raspberry Pi. Click on Raspberry Pi icon(left

side corner) → preferences → Raspberry Pi configuration, as shown in Fig. 3.6a.
After clicking on Raspberry Pi configuration, window will open as shown in Fig. 3.6b.
The configuration window has the System, Display, Interfaces, Performance, and
Localization tabs. Click on the interfaces tab and enabled the I2C (Fig. 3.6b).

Fig. 3.4 OLED interfacing with the Raspberry Pi

56 3 Simple Applications with Raspberry Pi

Fig. 3.5 Hardware connections for OLED

Fig. 3.6 I2C set up on Raspberry Pi

Step 3: The I2C activation on Raspberry Pi can also be enabled using the command
terminal. Open the command terminal and enter the following command:

sudo raspi-config

This command will open the Raspberry Pi Software Configuration Tool. Use
arrow keys to scroll down and select Interface options as shown in Fig. 3.7a and

3.2 OLED Display Interface 57

press enter → the pop-up window will open as shown in Fig. 3.7b → then select the
interface options → I2C option as shown in Fig. 3.7c. After this, message will be
displayed as shown in Fig. 3.7d, then click on “yes” to enable I2C → Click “Ok”
followed by clicking on option “Finish” as shown in Figs. 3.7e and 3.6f, respectively.

After enabling the I2C, the next step is to install the libraries required to access
OLED module.

Step 1: Update and upgrade Raspberry Pi with help of the following command:

sudo apt update
sudo apt upgrade

Fig. 3.7 Enabling I2C using command Prompt

58 3 Simple Applications with Raspberry Pi

Fig. 3.8 Identifying the I2C address

Fig. 3.9 Installation of Adafruit_Python_SSD1306 library in Thonny IDE

Step 2: Check the I2C hex address using the following command (Fig. 3.8):

i2cdetect -y 1

Step 3: Connect to the internet for installing Adafruit_Python_SSD1306 library in
Thonny IDE.

3.2 OLED Display Interface 59

Open Thonny IDE → select Tools → Manage Plug ins → enter
Adafruit_Python_SSD1306 (Fig. 3.9) and then click on “Search on PyPi” (Fig. 3.9).
The search result will be displayed and then select the library (Fig. 3.10a). Click on
Install (Fig. 3.10b) to install library.

Step 4: Testing sample program on OLED

Visit https://github.com/adafruit/Adafruit_Python_SSD1306 link and click on
example folder and then open shapes.py. Copy the shapes.py program and paste
it in Thonny IDE followed by saving the program.

The entire flow diagram for displaying text, rectangle, etc., on OLED display is
shown below in Fig. 3.11

from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont

Pi pin configuration:
RST = 24
These lines are used with SPI:
DC = 23
SPI_PORT = 0
SPI_DEVICE = 0

display with I2C:
disp1 = Adafruit_SSD1306.SSD1306_128_32(rst=RST)

library initialization.
disp1.begin()

display clear function.
disp1.clear()
disp1.display()

Code to display on OLED

import time
import Adafruit_GPIO.SPI as SPI
import Adafruit_SSD1306

https://github.com/adafruit/Adafruit_Python_SSD1306

60 3 Simple Applications with Raspberry Pi

(a)

(b)

Fig. 3.10 a Selection of Adafruit_Python_SSD1306 library and b Installation of
Adafruit_Python_SSD1306 library

3.2 OLED Display Interface 61

Fig. 3.11 Flowchart for displaying text, rectangle, etc., on OLED display

Create blank image for drawing.
Make sure to create image with mode '1' for 1-bit color.
width = disp1.width
height = disp1.height
image = Image.new('1', (width, height))

draw on image with the help of drawing object.
draw = ImageDraw.Draw(image)

clear the image with black filled box.
draw.rectangle((0,0,width,height), outline=0, fill=0)

Draw some shapes.
Define constants to allow resizing of shapes with ease.
padding = 2
shape_width = 20
top = padding
bottom = height-padding
left to right movement keeping track of present x position for drawing shapes.
x = padding

62 3 Simple Applications with Raspberry Pi

ellipse is drawn.
draw.ellipse((x, top , x+shape_width, bottom), outline=255, fill=0)
x += shape_width+padding
rectangle is drawn.
draw.rectangle((x, top, x+shape_width, bottom), outline=255, fill=0)
x += shape_width+padding
triangle is drawn.
draw.polygon([(x, bottom), (x+shape_width/2, top), (x+shape_width,
bottom)], outline=255, fill=0)
x += shape_width+padding
Draw an X.
draw.line((x, bottom, x+shape_width, top), fill=255)
draw.line((x, top, x+shape_width, bottom), fill=255)
x += shape_width+padding

default font is selected.
font = ImageFont.load_default()

#Write text on line.
draw.text((x, top), 'Hello', font=font, fill=255)
draw.text((x, top+20), 'Friends!', font=font, fill=255)

Display image.
disp1.image(image)
disp1.display()

3.3 Camera Interfacing

In this section, we will learn how to interface/connect the Raspberry Pi Camera
Module to take pictures, record videos, and apply image effects. All current models
of Raspberry Pi have a Camera Serial Interface (CSI) port (3.12a) for connecting the
Camera Module as shown in following Fig. 3.12b.

Raspberry Pi Camera Module

There are two versions of the Camera Module:

• The standard version (Fig. 3.12b): Designed to take pictures in normal light.
• The NoIR version: Provided with Infrared filter so that one can use it along with

an infrared light source to take pictures in the dark.

Installation Step of Picamera() Library is Given Below:

Step: To install picamera using ’apt’, open console and enter the following
commands:

sudo apt-get update
sudo apt-get install python-picamera # for python2
sudo apt-get install python3-picamera # for python3

3.3 Camera Interfacing 63

Fig. 3.12 a Raspberry Pi camera port and b camera module

One can also try the alternate method of picamera installation using Python’s
pip tool. The steps are given below:

Step 1: Enter the following commands to install picamera library by using Python’s
pip tool:

sudo pip install picamera

Step 2: Enter the following command to use the classes in the picamera array module.

sudo pip install "picamera[array]"

Step 3: Enter the following command to upgrade your installation when new releases
are made:

sudo pip install -U picamera

Method to connect the Camera Module to Raspberry Pi is given below.

Step 1: Open the Camera Port on the Raspberry Pi: First ensure that Raspberry Pi
is turned off and locate the Camera Module port on the Raspberry Pi 3 B+, 2 and 3,
the camera port is between the LAN port and the HDMI port as shown in Fig. 3.12a.
To open the port, use two fingers and lift the ends up slightly, as shown in Fig. 3.13a.

Step 2: Insert the Camera Cable: The cable has to be inserted with the right
orientation with the blue side facing the Ethernet port, and the silver side is facing
the HDMI port. Gently pull the clip of CSI port and insert the ribbon cable of camera
module as shown in Fig. 3.13b.

64 3 Simple Applications with Raspberry Pi

Fig. 3.13 Camera module installation

Step 3: Close the Camera Port: To close the port, push the top of the plastic clip
back into the place as shown in Fig. 3.13c.

Step 4: To enable Camera interface on Raspberry Pi: Power up the Raspberry Pi
→ go to the main menu → open the Raspberry Pi Configuration tool (Fig. 3.14a)
→ Select the Interfaces tab and ensure that the camera is enabled (Fig. 3.14b).

Step 5: Testing Camera Module Via the Command Line: Open a terminal window
and enter the following command to take a still picture and save it on the Desktop
(Fig. 3.14c):

raspistill -o Desktop/image.jpg

When the above command runs, you can see the camera preview opens up for 5
seconds before a still picture is taken. Look for the picture file icon on the Desktop,
and double-click to open the picture.

The entire flow diagram for capturing the images using Picamera is shown below
in Fig. 3.15.

Python Code to Capture Image Using Camera Module

The Python “picamera” library allows to control Camera Module.

Step 1: Open a Thonny Python IDE → Create a new file and save it as test_camera.py
or any other suitable name as per your choice but make sure to avoid naming it as
“picamera.py” and enter the code given below.

3.3 Camera Interfacing 65

Fig. 3.14 a,b Camera enabling process on Raspberry Pi. c Terminal window to enter the command

#Python program for taking image by using camera module

from picamera import PiCamera

from time import sleep

filepath="/home/pi/Desktop/img%s.jpg"

camera = PiCamera()

camera.resolution=(1280,720)

for i in range (0,5):

sleep(5)

camera.capture(filepath %i)

print("image taken")

66 3 Simple Applications with Raspberry Pi

Fig. 3.15 Flowchart for capturing the images using Picamera

Step 2: Save and run the above program. The camera will take one picture every
5 s. Once the fifth image is taken, check the desktop or filepath to find the captured
images (Fig. 3.16).

#Python Program to Add Text on the Captured Image

Sometimes, it is required to put some text on the captured image. An example of this
can be putting a time stamp on it. Here, we have written the code which captures the
image and puts the desired text on it. The flow diagram for displaying text on camera
captured image is shown in below Fig. 3.17a.

3.3 Camera Interfacing 67

Fig. 3.16 Five pictures taken by picamera module

#In this program we will add text “Hello Friends!” on captured image.

from picamera import PiCamera

from time import sleep

filepath="/home/pi/Desktop/image.jpg"

camera = PiCamera()

camera.resolution = (2592, 1944)

camera.framerate = 15

camera.start_preview()

camera.annotate_text = "Hello Friends!"

camera.annotate_text_size = 100

sleep(5)
camera.capture(filepath)

camera.stop_preview()

After executing the above code in Thonny IDE, the text is imposed on image as
shown in Fig. 3.17b.

#Python Program to Record Video by Using Camera Module

We have already learned how to take images by using camera module. Now, we will
see how to record the video by using the same camera module and executing the
below code in Thonny IDE.

68 3 Simple Applications with Raspberry Pi

(a)

(b)

Fig. 3.17 a flowchart for displaying text on camera-captured image. b Text on picamera captured
image

3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 69

from picamera import PiCamera

from time import sleep

filepath="/home/pi/Desktop/video1.h264"

camera = PiCamera()

camera.start_preview() # live video preview on screen

camera.start_recording(filepath) # Camera will start video recording

sleep(5)

camera.stop_recording()

camera.stop_preview()

3.4 Motor Control (DC Motor, Stepper Motor, and Servo
Motor)

In this section, authors have explored various types of motor interfacing such as DC
Motor, Stepper Motor, and Servo Motor with Raspberry Pi.

DC (Direct Current) Motor Control

The working principle of DC motor is that, when a magnetic field and an electric field
interact, a mechanical force is produced. This is known as motoring action. There
are two types of DC motors, standard and Brushless DC motors.

The DC Motor Speed Control Using the PWM Technique

The speed of DC motor is directly proportional to the supply voltage; if voltage is
reduced from 12 to 6 V, then the speed becomes half that of the original speed of
DC motor. But in practice, for changing the speed of a DC motor we cannot go on
changing the supply voltage all the time. The voltage provided to the DC motor must
be adjusted to control the speed at different torque levels (Weber 1965). The speed of
the DC motor can be controlled by using PWM technique by varying the duty cycle
of applied signals.

As we have already seen how to use PWM in Sect. 3.1 (control LEDs using
PWM). Here, we will directly use the PWM to control the speed of DC motor. GPIO
pin can source a maximum of 15 mA and the sum of currents from all 26 GPIO Pins
should not exceed 50 mA. Raspberry Pi has a provision of +5 V and +3.3 V power
output pins on the board for connecting other modules and sensors. This power rail is
also giving power to the processor. Drawing high current from this power rail affects
the processor. One can draw 100 mA safely from the +3.3 V rail. To avoid this
loading effect, a separate power source is used for DC motor. The motor Driver IC
L293D module is used to drive the motors. L293D is a powerful IC that can control
direction and speed of two DC motors running with supply voltage ranging from 4.5
to 36 V.

70 3 Simple Applications with Raspberry Pi

Motor Driver—L293D Driver Module

L293D is a medium-power H-bridge motor driver for driving DC Motors. It consists
of two H-bridge circuits for controlling each motor. H-bridge is used to change the
polarity of the output, so that DC motors can be controlled in both directions. It can
drive motors up to 12 V with a total DC current of up to 600 mA. The pin diagram
of L293D is shown in Fig. 3.18 and pin description is as follows:

• Enable 1 and Enable 2 are the enable pins. Motors will only move if these pins
are High.

• Vs is the supply voltage.
• Vss is the Logic supply voltage.
• Input1, Input2, Input3, and Input4 are the input pins.
• Output1, Output2, Output3, and Output4 are the output pins. The motors will be

connected to these pins.
• GND pins are for device ground and heat sink.

Truth Table

The truth Table 3.1 provides the logical conditions to rotate motor in either clock-
wise or anti-clockwise direction. Table 3.2 shows the pin connections of motor with
Raspberry Pi having L293 motor driver,

Figure 3.19a and b show the circuit diagram and photo of motor interfaced to
Raspberry Pi, respectively. Figure 3.19c gives the flowchart for controlling DC motor.
Type the below code in Thonny IDE and execute the same.

Fig. 3.18 Pin diagram of L293D

3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 71

Table 3.1 Truth table for
motor control

Enable Input-1 Input-2 Output

High High Low Turn anti-clockwise

High Low High Turn clockwise

High High Low Stop

High Low High Stop

Low X X X

Table 3.2 Connection of
L293D motor driver module
with Raspberry Pi

L293D motor driver module Raspberry Pi

Input 1 Physical Pin 12 (GPIO18)

Input 2 Physical Pin 18 (GPIO24)

GND GND

Enable Physical Pin 10 (GPIO 15)

72 3 Simple Applications with Raspberry Pi

Fig. 3.19 a Circuit diagram for DC motor interfacing with Raspberry Pi, b hardware connection,
and c flowchart

3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 73

Program to control DC motor

import RPi.GPIO as GPIO

from time import sleep

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

Enable1=10

input1=12

input2=18

GPIO.setup(Enable1,GPIO.OUT)

GPIO.setup(input1,GPIO.OUT)

GPIO.setup(input2,GPIO.OUT)

pwm=GPIO.PWM(Enable1,100)

pwm.start(0)

Rotation=input(" Enter c/C for clockwise & a/A for Anticlockwise: ")

duty_cycle=int(input("Enter Duty Cycle from 1 to 100: "))

pwm.start(duty_cycle)

delay=0.1

print("Press Ctrl+c for termination")

if Rotation=='c' or Rotation=='C':

print ("Clockwise MOTION")

try:

while True :

GPIO.output(input1,False) # pin 2 IN1 of Driver

GPIO.output(input2,True) # pin 7 IN1 of Driver

GPIO.output(Enable1,True) # pin 1 IN1 of Driver

sleep(delay)

exceptKeyboardInterrupt:

pass

74 3 Simple Applications with Raspberry Pi

elif Rotation=='a' or Rotation=='A':

print (" AntiClockwise MOTION")

try:

while True:

GPIO.output(input1,True)

GPIO.output(input2,False)

GPIO.output(Enable1,True)

sleep(delay)

exceptKeyboardInterrupt:

pass

else:

print("Wrong Entry")

pwm.stop()

pwm.stop() #stop the Pulse

GPIO.cleanup()

print("Finished") #cleanup all of the GPIO channels.

Controlling Servo Motor using PWM

A servomotor is a rotary or linear actuator that enables precise control of angular or
linear position, acceleration, and velocity. The main application of DC servo motors
is in remote-controlled devices, robotics, and even in industrial applications (Ferrari
and Ferrari 2007). Servo motors are different from ordinary motors. Depending on
the specification of the servo motor, they can rotate from 0-degree to 180-degree
by varying the duty cycle of the PWM signal. Servo Arm-Head moving speed can
also be controlled by varying the Duty Cycle using PWM. Servo motor 90-degree
position is generally referred to as “neutral” position, because it can rotate equally in
either direction from that point. In this implementation, Tower pro servo motor SG90
is used. Servos can push heavy loads but they cannot lift heavy loads. PWM duration
given for tower pro servo motor is 20 ms (frequency 50 Hz). PWM signal having a
duration of 20 ms and signal duty cycle in between 0 to 2 ms must be generated to
rotate the servo motor. Table 3.3 tabulates the duty cycle with respect to the applied
current.

3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 75

Table 3.3 Duty cycle with
respect to the applied current

Position (degrees) Duty cycle (ms) Duty cycle (%)

90 1.5 7.5

180 2 12.5

0 1 2.5

PWM signal will set the angle of the servo. This can differ from servo to servo,
as normally it is from 2.5 to 12.5%. To calculate the duty cycle for the desired angle,
divide it by 18, then add the lowest available value, and, in this case, it is 2.5.

The formula to calculate the duty cycle is as follows:

Duty_cycle = (set_angle/18) + 2.5

So, for 90 degrees, 7.5% duty cycle and, for 180 degrees, 12.5%.

One can easily rotate the arm at a fixed angle by just varying the duty cycle.
Figure 3.20a–c shows the Tower Pro SG90 9G servo Motor interfaced to Raspberry
Pi with duty cycle. Figure 3.20d shows the flowchart for controlling servo motor.
Type the below code in Thonny IDE and execute the same.

program to control Servo motor

import RPi.GPIO as GPIO

from time import sleep

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

control_pin=10

GPIO.setup(control_pin,GPIO.OUT) # connect to enable pin-1 of Driver IC

pwm=GPIO.PWM(control_pin,50) # to setup the pwm commands type 50Hz freqency

set_angle=int(input(" Enter Servo Motor Rotation Angle: "))

pwm.start(0)

delay=1

duty_cycle=(set_angle/18)+2.5

GPIO.output(control_pin,True)

pwm.ChangeDutyCycle(duty_cycle)

#GPIO.output(control_pin,True)

sleep(delay)

GPIO.output(control_pin,False)

pwm.ChangeDutyCycle(0)

pwm.stop()

GPIO.cleanup()

76 3 Simple Applications with Raspberry Pi

Fig. 3.20 a Tower Pro SG90 9G servo Motor Duty Cycle and PWM Period, b duty cycle with
respect to the angle, c circuit diagram of servo motor interfacing with Raspberry Pi, and d flowchart
for controlling servo motor

3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 77

Stepper Motor Control

Stepper Motor

A stepper motor is a device that translates a DC voltage pulse train into a mechanical
rotation of its shaft in a proportionate manner (Fraser 1994). Stepper motor is made
up of mainly two parts, a stator and a rotor. Stator is of coil winding and rotor is
mostly permanent magnet or ferromagnetic material. Stepper motors are generally
used for position control. One of the best things about these motors is that they can be
positioned accurately and one “step” at a time. They are a special type of brushless
motor that divide a full rotation into a number of equal “steps”. They are usually
found in desktop printers, 3D printers, CNC milling machines, and anything else
that requires precise positioning control. The speed of rotation depends upon the rate
at which the control signals (Duty Cycle) are applied. A driver IC ULN2003 is used
to drive the stepper motor as GPIOs of Raspberry Pi are not able to provide sufficient
drive current.

In the stepper motor, continuous and limited angle rotation is obtained by
providing sequential steps. Mostly, there are two step sequences, i.e. full step and
half step used to rotate stepper motor as shown in Fig. 3.21. In the full-step mode,
at a time two coils are excited, while, in the half-step sequence, motor moves half
of its basic step angle. Tables 3.4 and 3.5 tabulate the full-step mode and half-step
mode coil energizing sequence, respectively.

Fig. 3.21 Full-step and half-step sequence of stepper motor

78 3 Simple Applications with Raspberry Pi

Table 3.4 Full-step mode

Full-step mode

Step A B C D

1 1 0 0 1

2 1 1 0 0

3 0 1 1 0

4 0 0 1 1

Table 3.5 Half-step mode

Half-step mode

Step A B C D

1 1 0 0 1

2 1 0 0 0

3 1 1 0 0

4 0 1 0 0

5 0 1 1 0

6 0 0 1 0

7 0 0 1 1

8 0 0 0 1

In this implementation, 28BYJ-48 motor is used, which runs in full-step mode,
and each step corresponds to a rotation of 11.25°. That means, there are 32 steps per
revolution (360°/11.25° = 32). The gear ratios are 32/9, 22/11, 26/9, and 31/10.

Multiplying all gear ratios:
32/9 * 22/11 * 26/9 * 31/10 = 63.68395 ~ 64.
This gives 64:1 gear ratio. The motor has a 1/64 reduction gear set.
Total Full Steps = 32*64 = 2038 steps and Half steps = 4076.
Figure 3.22a shows the internal gears and Fig. 3.22b shows the pin number and

wire colors of the stepper motor.
The motor 28BYJ-48 has a four unipolar coils and each coil is rated at +12 V;

hence, it is relatively easy to control with Raspberry Pi. This motor has a stride angle
of 5.625°/64, which means the motor will have to make 64 steps to complete one
rotation and, for every step, it will cover 5.625°. The power consumption of the motor
is around 240 mA. The current supplied by GPIO of Raspberry Pi is not sufficient to
drive the motor hence the ULN 2003 motor driver IC is used.

ULN 2003

ULN2003 is a driver IC consisting of a Darlington array and capability of handling
seven different inputs/outputs simultaneously. It operates in the range of 500 mA–
600 mA current. Figure 3.25 shows the pin diagram of the ULN2003 (Fig. 3.23).

3.4 Motor Control (DC Motor, Stepper Motor, and Servo Motor) 79

Fig. 3.22 a internal gears of the stepper motor and b pin number and wire colors of the stepper
motor

Fig. 3.23 Pin diagram of the ULN2003

Table 3.6 tabulates the stepwise sequence of the rotate motor in the clockwise
direction. Figure 3.24 shows (a) circuit diagram, (b) photo of hardware connection,
and (c) flowchart to control stepper motor.

Type the below code in Thonny IDE and execute the same to control stepper
motor.

80 3 Simple Applications with Raspberry Pi

Table 3.6 The stepwise sequence of the rotate motor in the clockwise direction

Motor wire color Sequence to rotate in clockwise direction

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Orange 0 0 1 1 1 1 1 0

Yellow 1 0 0 0 1 1 1 1

Pink 1 1 1 0 0 0 1 1

Blue 1 1 1 1 1 0 0 0

Red 1 1 1 1 1 1 1 1

Program for Stepper motor control
import RPi.GPIO as GPIO
from time import sleep
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)

pins=[10,11,12,13]
Full step Clock wise sequence reverse can be used for anticlockwise
full_step=[[0,1,1,0],

[1,1,0,0],
[1,0,0,1],
[0,0,1,1]]

half step Clock wise sequence reverse can be used for anticlockwise
half_step=[[0,1,1,0],

[1,1,1,0],
[1,1,0,0],
[1,1,0,1],
[1,0,0,1],
[1,0,1,1],
[0,0,1,1],
[0,1,1,1]]

3.5 Raspberry Pi and Mobile Interface Through Bluetooth 81

To reset all pins
for pin in pins:

GPIO.setup(pin,GPIO.OUT)
GPIO.output(pin,0)

seq=input("Enter f/F for full step & h/H for half Step: ")

rotation=input("Enter c/C clockwise & a/A for Anticlock wise: ")
steps=512
delay=0.01
if seq=='f' or seq=='F':

if rotation=='c' or rotation == 'C':
for i in range(0,steps):

for fullstep in range(0,4):
for pin in range(0,4):

GPIO.output(pins[pin],full_step[fullstep][pin])
sleep(delay)

elif rotation=='a' or rotation == 'A':
for i in range(0,steps):

for fullstep in range(3,0,-1):
for pin in range(0,4):

GPIO.output(pins[pin],full_step[fullstep][pin])
sleep(delay)

else:
print("Wrong Entry")

elif seq=='h' or seq=='H':
if rotation=='c' or rotation == 'C':

fori in range(0,steps):
for halfstep in range(0,8):

for pin in range(0,4):
GPIO.output(pins[pin],half_step[halfstep][pin])
sleep(delay)

elif rotation=='a' or rotation == 'A':
for i in range(0,steps):

for halfstep in range(7,0,-1):
for pin in range(0,4):

GPIO.output(pins[pin],half_step[halfstep][pin])
sleep(delay)

else:
print("Wrong Entry")

else:
print("Wrong Entry")

print("finished")

82 3 Simple Applications with Raspberry Pi

Fig. 3.24 a circuit diagram of the stepper motor connected with Raspberry Pi, b hardware
connection of motor and Raspberry Pi, and c flowchart of the program

3.5 Raspberry Pi and Mobile Interface Through Bluetooth 83

3.5 Raspberry Pi and Mobile Interface Through Bluetooth

Bluetooth is a wireless alternative to many of the wired communication that we
use to transport voice and data (Ramandeep Kaur2, Manpreet Kaur3, J. K. 2017).
Raspberry Pi 3 B+ has BCM43438 integrated chip which includes 2.4 GHz WLAN,
Bluetooth, and FM receiver. The main purpose of using Bluetooth is to free up the
on-board GPIO ports. Here, we have established Bluetooth communication between
Raspberry Pi and smartphone to control devices.

Configuration of On-board Bluetooth of Raspberry Pi 3B+:

Raspberry Pi has an on-board Bluetooth which can be used for sending/receiving
files to/from smartphone. Pairing a Bluetooth device on Raspberry Pi is same as that
of a smartphone or Laptop.

Step 1: Turn-ON Bluetooth → make discoverable (Fig. 3.25a).

Step 2: Turn on Bluetooth of smartphone. Simultaneously, Select Add Device on
Raspberry Pi (Fig. 3.25a). After selecting Add device, we can see mobile Bluetooth
device, e.g “Samsung M20” → Select device and then click on pair as shown in
Fig. 3.25b.

Step 3: Following the above step prompts for confirming the pairing code sent on the
smartphone as shown in Fig. 3.25c. After the device accepts the connection by using
the pair option, Raspberry Pi and the Bluetooth device will be paired and connection

Fig. 3.25 Bluetooth connection setting between mobile and Raspberry Pi

84 3 Simple Applications with Raspberry Pi

is established as shown in Fig. 3.25d. Now the Raspberry Pi is ready to communicate
via Bluetooth.

Controlling Device by Using Smartphone Through Bluetooth (Blue Dot app)

Step 1: From the Google Play store, download the Blue Dot app on smartphone for
controlling devices.

Step 2: Open a terminal and enter the following command to install dbus and bluedot
packages for Python 3.

sudo apt install python3-dbus
sudo pip3 install bluedot

optionally following commands shall be used for Python 2:

sudo apt install python-dbus
sudo pip install bluedot

Step 3: Upgrade to the latest version of bluedot using the following command:

sudo pip3 install bluedot—upgrade

Figure 3.26 shows the circuit diagram of the Raspberry Pi interfaced with Relay
for controlling the appliances.

#Python Program to Control the Appliances Using Bluetooth

import os
from bluedot import BlueDot

import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)

pin=11 # Physical Pin-11=GPIO 17
GPIO.setup(pin,GPIO.OUT)

bd=BlueDot()

while True:
bd.wait_for_press()
GPIO.output(pin, HIGH) # to turn on the appliance
bd.wait_for_release()
GPIO.output(pin, LOW) # to turn off the appliance

3.5 Raspberry Pi and Mobile Interface Through Bluetooth 85

Fig. 3.26 a Circuit diagram of Raspberry Pi interfaced with Relay and b flowchart for controlling
relay using BlueDot app

After executing the above program in Thonny IDE, open the Blue Dot app on your
smartphone as shown in Fig. 3.27a. After connecting smartphone with Rasberry Pi,
it will show a blue circle as shown in Fig. 3.27b. When the blue circle is pressed, the
appliance connected to GPIO 17 (Physical Pin = 11) through relay will turn on.

Conclusion:

Raspberry Pi is an SBC installed with Raspbian OS. Various peripherals such as
keyboard, mouse, and display are connected to the Raspberry Pi, which makes this
system act as a mini personal computer. Raspberry Pi is popularly used for real-
time Image Video Processing, IoT-based applications, and Robotics applications. In
this chapter, authors have implemented Python code for controlling LEDs by using
simple delay and PWM. Detailed steps involved in accessing the GPIO along with
a connection diagram and execution are given. A simple I2C-based Adafruit SSD
1306 OLED is interfaced with Pi board and is also covered in a simple manner.
For image and video processing, camera interfacing plays an important role. Here,
authors have given the interfacing of CSI camera to Pi board in a simple manner. At
the end, motor control and IoT-based home appliance control using mobile phone is
covered in detail.

86 3 Simple Applications with Raspberry Pi

Fig. 3.27 Controlling Relay using Bluedot app

Exercise:

(1) Connect 5 LEDs to Raspberry Pi. Configure the Raspberry Pi in BCM mode and
write a program to blink LEDs as shown in the below pattern with an interval
of 1 s between each pattern in a continuous cycle.

(2) Interface a switch and a led with Raspberry Pi. When the switch is turned ON
the LED intensity should increase from Low to High and remain High. When
the switch is turned OFF the intensity of LED should reduce gradually from
High to Low and turn OFF(Hint: Refer to the below figure).

(3) Blink Eeight LEDs with different duty cycles using Raspberry Pi.

(4) Display string “Hello World”, integer and floating-point number on OLED
display.

References 87

(5) Interface a couple of stepper motors/DC with Raspberry Pi. Program it to run in
full-step mode in a clockwise direction for 5 s followed by 10 s in anti-clockwise
direction.

(6) Write Python code to control two servo motors.

References

Christ RD, Wernli RL (2014) Power and telemetry. In: Christ RD, Wernli RL (eds) The ROV manual
(Second Edition), Butterworth-Heinemann, pp 141–161. https://doi.org/10.1016/B978-0-08-098
288-5.00007-5

Ferrari M, Ferrari G (2007) Controlling motors. Building robots with LEGO mindstorms NXT,
syngress, 2007, pp 41–59. https://doi.org/10.1016/B978-159749152-5/50008-5

Fraser CJ (1994) 2 - Electrical and electronics principles. In: Smith EH (ed) Mechanical engineer’s
reference book (Twelfth Edition), Butterworth-Heinemann, p 2-1-2-57. https://doi.org/10.1016/
B978-0-7506-1195-4.50006-3

Kaur R, Kaur M, Kaur J (2017) Bluetooth technology. Int J Eng Comput Sci 5(3).http://www.ijecs.
in/index.php/ijecs/article/view/702

Weber HF (1965) Pulse-width modulation DC motor control. IEEE Trans Ind Electron Control
Instrum IECI 12(1):24–28. https://doi.org/10.1109/TIECI.1965.229545

https://doi.org/10.1016/B978-0-08-098288-5.00007-5
https://doi.org/10.1016/B978-0-08-098288-5.00007-5
https://doi.org/10.1016/B978-159749152-5/50008-5
https://doi.org/10.1016/B978-0-7506-1195-4.50006-3
https://doi.org/10.1016/B978-0-7506-1195-4.50006-3
http://www.ijecs.in/index.php/ijecs/article/view/702
http://www.ijecs.in/index.php/ijecs/article/view/702
https://doi.org/10.1109/TIECI.1965.229545

