

2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

DOI: 10.1109/SITIS48811.2019

26-29 Nov. 2019

2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS) SITIS 2019

Table of Contents

Foreword xvii
Track Messages xviii
Workshop Messages xx
Organizing Committee xxxii
Track Program Committeesxxxiv
Workshop Program Committees xxxvi
Keynotes xlviii
Acknowledgement li
TRACK SIVT: Signal Image and Vision Technologies
Improved Palmprint Segmentation for Robust Identification and Verification
Detecting Finger-Vein Presentation Attacks Using 3D Shape & Diffuse Reflectance Decomposition
Visual Navigation Using a Webcam Based on Semantic Segmentation for Indoor Robots
Unsupervised Novelty Detection in Video with Adversarial Autoencoder Based on Non-Euclidean Space 22 Jin-Young Kim (Yonsei University, South Korea) and Sung-Bae Cho (Yonsei University, South Korea)
An Efficient Dense Network for Semantic Segmentation of Eyes Images Captured with Virtual Reality Lens
Andres Valenzuela (Universidad Andres Bello), Claudia Arellano (Universidad Andres Bello), and Juan Tapia (Universidad Tecnologica de Chile)
Proposition of Convolutional Neural Network Based System for Skin Cancer Detection

An Adaptive Background Modelling Method Based on Modified Running Averages
Deterministic vs. Random Initializations for K-Means Color Image Quantization
Enhanced Morphological Filtering for Wavelet-Based Changepoint Detection
An Investigation of Denoising Parameters Choice in two Perona-Malik Models
Dehazing with Recovery Level Map: Suppressing Over-Enhancement and Residual Haze
Low-Light Image Enhancement via Adaptive Shape and Texture Prior
Light-Weight Visual Feature Based Labeling (LVFL) for Unsupervised Person Re-identification
Performance Comparison of Deep Learning Based Face Identification Methods for Video Under Adverse Conditions
Galip Pala (Marmara University) and Cigdem Eroglu Erdem (Marmara University)
Multi-angled Face Segmentation and Identification Using Limited Data 98 Dane Brown (Rhodes University)
Robust Morph-Detection at Automated Border Control Gate Using Deep Decomposed 3D Shape & Diffuse Reflectance
Jag Mohan Singh (Norwegian Biometrics Laboratory, NTNU, Norway), Raghavendra Ramachandra (Norwegian Biometrics Laboratory, NTNU, Norway), Kiran B. Raja (Norwegian Biometrics Laboratory, NTNU, Norway), and Christoph Busch (Norwegian Biometrics Laboratory, NTNU, Norway)
Face Recognition - A One-Shot Learning Perspective
Visible to Band Gender Classification: An Extensive Experimental Evaluation Based on Multi-spectral
Imaging

Visible to Band Gender Classification: An Extensive Experimental Evaluation Based on Multi-spectral Imaging

Publisher: IEEE

Cite This

Narayan Vetrekar;Raghavendra Ramachandra;Kiran Raja;Sushma Venkatesh;Rajendra Gad;Christoph Busch

All Author

1 Cites in

Paper

49Full
Text Views

Abstract

Document Sections

- I. Introduction
- II. Database
- III. Methodology
- IV. Experiments and Results
- VI. Conclusion

Authors

Figures

References

Citations

Keywords

Metrics

Abstract:

The ability of multi-spectral imaging to acquire spatial and spectral details across electromagnetic spectrum, has gained significant importance to perform under varying illumination conditions. Due to which a maximum preference is shown in the recent times to employ multi-spectral imaging in biometric systems. Although there are substantial studies carried out independently using visible image face database and multi-spectral face database operated in several bands, the visible to band gender classification is still an open problem. In this paper, we present gender classification, thereby training the Support Vector Machine (SVM) classifier model using visible face images and testing independently using individual band images for analysis. We evaluate the proposed approach on 79750 sample images which comprises of multi-spectral face database and newly introduced visible face database to present the importance of this study. The extensive evaluation results in the form of average classification accuracy is presented by using 10 fold cross-validation method. The highest average classification accuracy of 95.96±1.68% demonstrates the applicability of visible to band comparison approach for gender classification.

Published in: 2019 15th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)

Date of Conference: 26-29 November **DOI:** 10.1109/SITIS.2019.00030

2019

Publisher: IEEE

Date Added to IEEE Xplore: 16 April 2020

Conference Location: Sorrento, Italy

▼ ISBN Information:

Electronic ISBN:978-1-7281-5686-6

Print on Demand(PoD)

ISBN:978-1-7281-5687-3

I. Introduction

Soft biometric based on face can help in predicting the useful set of demographic or forensic information such as gender, age, ethnicity, height, weight, skin color, etc [1]–[3]. Essentially, in any biometric identification/verification system. gender is considered as an important characteristic

Authors

Narayan Vetrekar

Department of Electronics, Goa University, Taleigao Plateau, Goa, India

Raghavendra Ramachandra

Norwegian Biometrics Laboratory, Norwegian University of Science and Technology, Gjovik, Norway

Kiran Raja

Norwegian Biometrics Laboratory, Norwegian University of Science and Technology, Gjovik, Norway

Sushma Venkatesh

Norwegian Biometrics Laboratory, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway

Rajendra Gad

Department of Electronics, Goa University, Taleigao, India

Christoph Busch

Norwegian Biometrics Laboratory, Norwegian University of Science and Technology (NTNU), Gjøvik, Norway