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Abstract. A (p, q)-graph G = (V,E), that is, |V (G)| = p and |E(G)| = q,
is said to be k-hypergraceful if there exists a decomposition of G into
edge induced subgraphs G1, G2, . . . , Gk having sizes m1, m2, . . . , mk

respectively, and an injective labeling f : V (G) → {0, 1, . . . , q}, such that
when each edge uv ∈ E(G) is assigned the label |f(u) − f(v)|, the set
of labels received by the edges of Gi is precisely {1, 2, . . . , mi} for each
i ∈ {1, 2, . . . , k}. The decomposition {Gi}, if it exists, is then called a
k-hypergraceful decomposition of G and f is called a k-hypergraceful labeling
of G. In this paper, we characterize k-hypergraceful complete graphs Kp when
p − 4 ≤ k ≤ p − 1. We also prove that the cycle Cn is 3-hypergraceful if
n ≡ 1(mod 4) and 2-hypergraceful if n ≡ 2(mod 4).

Keywords: k-hypergraceful labeling, k-hypergraceful decomposition, k-
hypergraceful graphs.
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1. Introduction

For standard terminology and notations in graph theory we follow West [14] and for
signed graphs we follow Chartrand [5] and Zaslavsky [15, 16].
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Most graph labeling methods trace their origin to the one introduced by Rosa [10].
Let G be a graph of order p and size q. A graceful labeling of G is an injection

f : V (G) → {0, 1, . . . , q} such that when each edge uv is assigned the label gf (uv) =
|f(u)− f(v)|, the resulting edge labels are all distinct. Such a function gf is called
the induced edge function and a graph which admits such a labeling is called a
graceful graph [4, 6, 7, 10].
The notion of graceful labeling has been extended to signed graphs by Acharya

and Singh [2, 3] and Singh [11].
A signed graph S (or simply sigraph) is a graph G = (V,E) together with a

function s : E(G) → {+,−} called its signing function, which assigns a sign + or −
to each edge. The graph G is called the underlying graph of the sigraph S. The set of
all positive and negative edges of S are denoted by E+(S) and E−(S) respectively
so that E+(S) ∪ E−(S) = E(S) is the edge set of S. Further, if |E+(S)| = m and
|E−(S)| = n so that m+ n = q, then S is called a (p,m, n)-sigraph. An all-positive
sigraph S is one in which E+(S) = E(S) and an all-negative sigraph is one in which
E−(S) = E(S). A sigraph is said to be homogeneous if it is either all-positive or
all-negative, and heterogeneous otherwise.
Let S be a (p,m, n)-sigraph. For any injection f : V (S) → {0, 1, . . . , q = m+ n},

the induced edge labeling gf is defined by gf (uv) = s(uv)|f(u)− f(v)|, for all uv ∈
E(S) where s(uv) is the sign of the edge uv. The function f is said to be a graceful
labeling of S if gf (E

+(S)) = {1, 2, . . . ,m} and gf (E
−(S)) = {−1,−2, . . . ,−n}.

A signed graph which admits a graceful labeling is called a graceful signed graph.
The notion of hypergraceful decomposition of graphs was first introduced by

Acharya [1], which is a generalization of graceful graphs and graceful signed graphs
[11, 12].
A (p, q)-graph G = (V,E) is said to be k-hypergraceful if there exists a

decomposition of G into edge induced subgraphs G1, G2, . . . , Gk having sizes
m1,m2, . . . ,mk respectively, and an injective labeling f : V (G) → {0, 1, . . . , q}, such
that when each edge uv ∈ E(G) is assigned the label |f(u)− f(v)|, the set of labels
received by the edges of Gi is precisely {1, 2, . . . ,mi} for each i ∈ {1, 2, . . . , k}. The
decomposition {Gi}, if it exists, is then called a k-hypergraceful decomposition of G
and f is called a k-hypergraceful labeling of G. Further, G is said to be hypergraceful
if it possesses a k-hypergraceful decomposition for some k.
k-hypergraceful labeling for a graph G for k = 1, 2, 3 and 4 is given in Figure 1.
The friendship graph F3 is known to be nongraceful [8]. It is also known that no

signed graph on F3 is graceful [13]. Therefore, F3 is neither a 1-hypergraceful nor
a 2-hypergraceful graph. In Figure 2 we show 3-hypergraceful and 4-hypergraceful
labelings of F3.
We need the following results.
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Figure 1. k-hypergraceful labelings of a graph.
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Figure 2. k-hypergraceful labeling of F3 for k = 3, 4.

Theorem 1.1 ([7]). A complete graph Kp is graceful if and only if p ≤ 4.

Theorem 1.2 ([9]). A necessary condition for a (p, q)-graph G = (V,E) to be
k-hypergraceful with decomposition G1, G2, . . . , Gk is that it is possible to partition
its vertex set V into two subsets Vo and Ve such that for each integer i ∈ {1, 2, . . . , k}
there are exactly ⌊mi+1

2 ⌋ edges of Gi each of which joins a vertex of Vo with one of Ve.

Lemma 1.3 ([9]). If for no integer j, 0 ≤ j ≤ k, p− 2j is a perfect square, then
Kp is not k-hypergraceful with respect to any decomposition of Kp.

Remark 1.4. If for some integer j, there exists a k-hypergraceful decomposition of
Kp for which p − 2j is a perfect square, then j represents the number of Gi’s with
odd size.
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By the negation of a signed graph S, we mean a signed graph η(S) which is
obtained from S by changing the sign of every edge to its opposite. If a signed graph
S is graceful with a graceful labeling f , then the negation of the signed graph S is
also graceful under the same f .

Lemma 1.5 ([9]). If any integer p is such that none of p, p− 2, p− 4 is a perfect
square, then no signed graph on Kp is graceful.

Theorem 1.6 ([9]).

(i) No signed graph on Kp, p ≥ 6, is graceful.
(ii) Every signed graph on Kp, p ≤ 3, is graceful.
(iii) A signed graph on K4 is graceful if and only if the number of negative edges in

it is not three.
(iv) A signed graph S on K5 with n negative edges is graceful if and only if either

n = 1 or n = 3 and the three negative edges in S are not incident at the same
vertex or η(S) satisfies similar conditions.

2. Main Results

In this section, we characterize k-hypergraceful complete graphs Kp when p − 4 ≤
k ≤ p− 1. We present our results through a series of lemmas. We use the following
notation.
Let πp = (a1, a2, . . . , at) be a sequence of positive integers with a1 ≤ a2 ≤ · · · ≤ at

and t =
(
p
2

)
. If ai occurs ri times in the sequence, then we write the sequence as

πp = (ar11 , ar22 , . . . , arss ).

Lemma 2.1. The complete graph Kp is (p − 4)-hypergraceful if p ≥ 8 and p is
even.

Proof. Let f be a labeling of Kp with the elements of the set S ∪ T where
S = {0, 3, 4, 6} and T = {8, 9, . . . , p + 3}. Note that the elements of the sets
S and T are from the set {0, 1, . . . , q} which are the labels of the vertices of
Kp. It can be easily verified that π8 = (14, 24, 34, 43, 53, 63, 72, 82, 91, 101, 111)
and π10 = (16, 26, 36, 45, 54, 64, 73, 83, 93, 102, 111, 121, 131). Now let p ≥ 12. Let
L1 = {gf (uv) : u, v ∈ S}, L2 = {gf (uv) : u, v ∈ T} and L3 = {gf (uv) :
u ∈ S, v ∈ T}, where the integers in each Li are in ascending order. Then
L1 = {1, 2, 32, 4, 6}, L2 = {1p−5, 2p−6, 3p−7, . . . , (p − 6)2, (p − 5)1} and L3 =
{2, 3, 42, 53, 63, 73, 84, 94, . . . , (p− 3)4, (p− 2)3, (p− 1)3, p2, (p+ 1), (p+ 2), (p+ 3)}.
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Hence it follows that πp = (1r1 , 2r2 , 3r3 , . . . , (p+ 3)rp+3) where

ri =



p− 4 if 1 ≤ i ≤ 3;

p− 5 if i = 4;

p− 6 if i = 5, 6;
p− 8 if i = 7;

p− i if 8 ≤ i ≤ p− 4;

4 if i = p− 3;

3 if i = p− 2, p− 1;

2 if i = p;

1 if i = p+ 1, p+ 2, p+ 3.

Clearly ri ≤ p−4 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p−4)-hypergraceful
decomposition of Kp. 2

Lemma 2.2. The complete graph Kp is (p − 4)-hypergraceful if p = 4t + 1, where
t ≥ 2.

Proof. Let f be a labeling of Kp with the elements of the set S ∪ T where
S = {0, 2, 4, 5} and T = {8, 9, . . . , p + 3}. It can be easily verified that π9 =
(15, 25, 34, 44, 53, 63, 73, 83, 92, 102, 111, 121). Now let p ≥ 13. Let L1 = {gf (uv) :
u, v ∈ S}, L2 = {gf (uv) : u, v ∈ T} and L3 = {gf (uv) : u ∈ S, v ∈ T},
where the integers in each Li are in ascending order. Then L1 = {1, 22, 3, 4, 5},
L2 = {1p−5, 2p−6, 3p−7, . . . , (p − 6)2, (p − 5)1} and L3 = {3, 42, 52, 63, 73, 84, 94, . . . ,
(p − 2)4, (p − 1)3, p2, (p + 1)2, (p + 2)1, (p + 3)1}. Hence it follows that πp =
(1r1 , 2r2 , 3r3 , . . . , (p+ 3)rp+3), where

ri =



p− 4 if i = 1, 2;

p− 5 if i = 3, 4;

p− 6 if i = 5;

p− 7 if i = 6;

p− 8 if i = 7;

p− i if 8 ≤ i ≤ p− 4;

4 if i = p− 3, p− 2;

3 if i = p− 1;

2 if i = p, p+ 1;

1 if i = p+ 2, p+ 3.

Clearly ri ≤ p−4 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p−4)-hypergraceful
decomposition of Kp. 2
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Lemma 2.3. The complete graph Kp is (p − 4)-hypergraceful, if p = 4t + 3, where
t ≥ 3.

Proof. The labeling given in Lemma 2.1 is also a (p − 4)-hypergraceful labeling of
Kp where p = 4t+ 3 and t ≥ 3. 2

Lemma 2.4. The complete graph K11 is 7-hypergraceful.

Proof. Let f be the labeling of K11 with the elements of the set S ∪ T where
S = {0, 4, 6, 7} and T = {9, 10, 11, 12, 13, 14, 15}. It can be easily verified that
π11 = (17, 27, 37, 46, 55, 65, 74, 83, 93, 102, 112, 121, 131, 141, 151). Hence f gives a
7-hypergraceful labeling of K11. 2

Lemma 2.5. The complete graph K7 is not 3-hypergraceful.

Proof. Suppose there exists a 3-hypergraceful labeling of K7 with label set S with
decomposition G1, G2, G3 of sizes (m1,m2,m3). Since 7−2j is a perfect square when
j = 3, it follows from Remark 1.4 that each mi is odd. Hence the possible cases for
(m1,m2,m3) are

(1, i, 20− i) where i = 1, 3, 5, 7 or 9,

(3, i, 18− i) where i = 3, 5, 7 or 9,

(5, i, 16− i) where i = 5 or 7 and

(7, 7, 7).

We claim that f does not induce any of the above twelve decompositions.

Case 1. (m1,m2,m3) = (1, 1, 19).
The sequence of edge labels is (13, 21, 31, . . . , 191). Without loss of generality,

we may assume that 0, 19, 1 ∈ S. Now to get the label 1 for the second edge, two
consecutive integers i , i+ 1 must be in S for some i ≥ 2. However in this case the
edge label i occurs twice which is a contradiction. Therefore, f does not induce the
decomposition (1, 1, 19).

Case 2. (1, 3, 17).
The sequence of edge labels is (13, 22, 32, 41, 51, . . . , 171). Without loss of

generality, we may assume that 0, 17, 1 ∈ S. Now to get the label 1 for the second
edge, i and i+1 must be in S and i ≤ 3. Hence 2, 3 ∈ S. Now 4, 5 cannot belong to
S. So to get label 3 for the second edge, 6 must be in S. Now 7 cannot be an edge
label. Therefore, f does not induce the decomposition (1, 3, 17).
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Case 3. (1, 5, 15).
The sequence of edge labels is (13, 22, 32, 42, 52, 61, 71, . . . , 151). Without loss of

generality, we may assume that 0, 15, 1 ∈ S. To get two more edges with label 1,
we have the following possibilities

(a) 2, 3 ∈ S
(b) 3, 4, 5 ∈ S
(c) 2, 4, 5 ∈ S

In case (a) for edges to have edge labels 3 and 11, we must have 6, 11 ∈ S and
the label 9 is repeated twice, which is a contradiction. In cases (b) and (c) label
5 for second edge cannot appear. Therefore, f does not induce the decomposition
(1, 5, 15).

Case 4. (1, 7, 13).
The sequence of edge labels is (13, 22, 32, 42, 52, 62, 72, 81, 91, . . . , 131). Without loss

of generality, we may assume that 0, 13, 1 ∈ S. Now the set {6, 7} cannot be a subset
of S. To get label 1 for three edges we have the following possibilities

(a) 2, 3 ∈ S
(b) 3, 4, 7, 8 ∈ S or 4, 5, 7, 8 ∈ S
(c) 2, i, i+ 1 ∈ S for i = 4, 5 or j, j + 1, j + 2 ∈ S for j = 3, 4

In case (a) label 7 for two edges cannot be obtained. In case (b) the edge label 3
repeats more than twice which gives a contradiction. In case (c) if 2, i, i + 1 ∈ S
then label 10 for an edge cannot appear and if j, j + 1, j + 2 ∈ S then label
11 for an edge cannot appear. Therefore, f does not induce the decomposition
(1, 7, 13).

Case 5. (1, 9, 11).
The sequence of edge labels is (13, 22, 32, 42, 52, 62, 72, 82, 92, 101, 111). Without

loss of generality, we may assume that 0, 11, 1 ∈ S. To get label 9 for two edges,
2 and 9 must be in S. So to get label 8 for second edge, 8 must be in S. Now the
label 3 for the second edge cannot be obtained. Therefore, f does not induce the
decomposition (1, 9, 11).

Case 6. (3, 3, 15).
The sequence of edge labels is (13, 23, 33, 41, 51, . . . , 151). Without loss of

generality, we may assume that 0, 15, 1 ∈ S. To get label 1 for 3 edges, we have to
include 2 and 3 in S and to get label 11 for an edge we must have 11 in S. Now label
7 for an edge cannot be obtained. Therefore, f does not induce the decomposition
(3, 3, 15).
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Case 7. (3, 5, 13).
The sequence of edge labels is (13, 23, 33, 42, 52, 61, 71, . . . , 131). Without loss of

generality, we may assume that 0, 13, 1 ∈ S. To get label 1 for two more edges,
we have the following possibilities

(a) 2, 3 ∈ S
(b) 3, 4, 5 ∈ S
(c) 2, 4, 5 ∈ S

In case (a) to get label 9 for an edge, we must have 9 ∈ S. Now the label 3 for an edge
cannot be obtained. In case (b) label 11 for an edge cannot appear and in case (c)
label 10 for an edge cannot appear. Therefore, f does not induce the decomposition
(3, 5, 13).

Case 8. (3, 7, 11).
The sequence of edge labels is (13, 23, 33, 42, 52, 62, 72, 81, 91 . . . , 111). Without loss

of generality, we may assume that 0, 11, 1 ∈ S. To get the edge label 9 we have the
following two cases

(a) 9 ∈ S
(b) 2 ∈ S

In case (a) to get label 7 for two edges, 4 and 7 must be in S. Now the label 1 for the
second edge cannot appear. In case (b) to get label 8 for an edge, either 8 or 3 must
be in S. If 3 ∈ S, then label 7 for two edges cannot appear. If 8 ∈ S, then to get
label 7 for a second edge, either 4 must be in S or 7 must be in S. In either case edge
label 5 cannot appear. Therefore, f does not induce the decomposition (3, 7, 11).

Case 9. (3, 9, 9).
In order to get the sequence of edge labels as (13, 23, 33, 42, 52, 62, 72, 82, 92),

we have to assign the labels to the vertices of K7 from the set {0, 1, . . . , 9}, which
is not possible, as we cannot get label 9 for two edges.

Case 10. (5, 5, 11).
The sequence of edge labels is (13, 23, 33, 43, 53, 61, 71, . . . , 111). Without loss of

generality, we may assume that 0, 11, 1 ∈ S. To get label 1 for two more edges,
we have the following possibilities

(a) 2, 3 ∈ S

(b) 3, 4, 5 ∈ S
(c) 2, 4, 5 ∈ S

In case (a) label 5 for three edges cannot appear. In cases (b) and (c) label 5 for two
edges cannot appear. Therefore, f does not induce the decomposition (5, 5, 11).
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Case 11. (5, 7, 9).
The sequence of edge labels is (13, 23, 33, 43, 53, 62, 72, 81, 91), Without loss of

generality, we may assume that 0, 9, 1 ∈ S. To obtain label 7 for two edges, the
integers 2 and 7 must be in S. Now to obtain label 6 for a second edge, either 6 ∈ S
or 3 ∈ S. In both the cases label 5 for another edge cannot be obtained. Therefore,
f does not induce the decomposition (5, 7, 9).

Case 12. (7, 7, 7).
In this case, to get the sequence of edge labels (13, 23, 33, 43, 53, 63, 73), we have

to assign the labels to the vertices of K7 from the set {0, 1, . . . , 7}. One can easily
see that no labeling from this set can give label 7 for three edges. Thus we see that
none of the above decompositions have a 3-hypergraceful labeling of K7. Hence K7

is not 3-hypergraceful.
2

Theorem 2.6. The complete graph Kp is (p− 4)-hypergraceful if and only if p ≥ 8.

Proof. Suppose p ≥ 8. If p = 2t, t = 4, 5, . . . , then by Lemma 2.1, Kp is (p −
4)-hypergraceful. If p = 4t+1, t ≥ 2, then by Lemma 2.2,Kp is (p−4)-hypergraceful.
If p = 4t + 3, t ≥ 3, then by Lemma 2.3, Kp is (p − 4)-hypergraceful. Finally, by
Lemma 2.4,K11 is 7-hypegraceful. Therefore if p ≥ 8 thenKp is (p−4)-hypergraceful.
Conversely, Suppose thatKp is (p−4)-hypergraceful. We need to prove that p ≥ 8.

Instead, we prove the contrapositive statement. Suppose that p < 8. By Theorem 1.1,
K5 is nongraceful; by Theorem 1.6, K6 is not 2-hypergraceful and by Lemma 2.5, K7

is not 3-hypergraceful. Therefore, if p < 8 then Kp is not (p− 4)-hypergraceful. 2

Lemma 2.7. The complete graph Kp is (p− 3)-hypergraceful if p ≥ 7.

Proof. Let f be a labeling of Kp with the elements of the set S ∪ T where S =
{0, 2} and T = {5, 6, . . . , p + 2}. Let L1 = {gf (uv) : u, v ∈ S}, L2 = {gf (uv) :
u, v ∈ T} and L3 = {gf (uv) : u ∈ S, v ∈ T}, where the integers in each Li are
in ascending order. Then L1 = {2}, L2 = {1p−3, 2p−4, 3p−5, . . . , (p − 4)2, (p − 3)1}
and L3 = {3, 4, 52, 62, 72, . . . , p2, (p + 1)1, (p + 2)1}. Hence it follows that πp =
(1r1 , 2r2 , 3r3 , . . . , (p+ 2)rp+2),

where ri =



p− 3, i = 1, 2;

p− 4, i = 3;

p− 5, i = 4;

p− i, 5 ≤ i ≤ p− 2;

2, i = p− 1, p;

1, i = p+ 1, p+ 2.
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Clearly ri ≤ p−3 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p−3)-hypergraceful
decomposition of Kp. 2

Lemma 2.8. The complete graph K6 is 3-hypergraceful.

Proof. Consider the labeling of K6 with the elements of {0, 1, 3, 4, 5, 7}.
One can easily verify that the corresponding sequence of induced edge labels is
(13, 23, 33, 43, 51, 61, 71). The decomposition G1, G2 and G3 of K6 have sizes (4, 4, 7).

2

Theorem 2.9. The complete graph Kp is (p− 3)-hypergraceful for all p ≥ 4.

Proof. The result follows from Theorem 1.1, Theorem 1.6, Lemma 2.7 and
Lemma 2.8. 2

Theorem 2.10. The complete graph Kp is (p− 2)-hypergraceful for all p ≥ 3.

Proof. Let f be a labeling of Kp with the elements of the set S ∪ T where S = {0}
and T = {2, 3, . . . , p}. Let L1 = {gf (uv) : u, v ∈ S}, L2 = {gf (uv) : u, v ∈ T}
and L3 = {gf (uv) : u ∈ S, v ∈ T}, where the integers in each Li are in ascending
order. Then L1 = ∅, L2 = {1p−2, 2p−3, 3p−4, . . . , (p − 4)3, (p − 3)2, (p − 2)1} and
L3 = {2, 3, . . . , p− 1, p}. Hence it follows that πp = (1r1 , 2r2 , 3r3 , . . . , prp),

where ri =


p− 2, i = 1;

p− i, 2 ≤ i ≤ p− 1;

1, i = p.

Clearly ri ≤ p−2 for all i and ri ≤ rj if i ≤ j. Hence πp gives a (p−2)-hypergraceful
decomposition of Kp. 2

Theorem 2.11. The complete graph Kp is (p− 1)-hypergraceful for all p ≥ 2.

Proof. We label the vertices of Kp from the set {0, 1, . . . , p − 1}. It can be easily
verified that the sequence of edge labels πp = (1p−1, 2p−2, 3p−3, . . . , (p−2)2, (p−1)1).
Hence Kp is (p− 1)-hypergraceful for all p ≥ 2.. 2

We now proceed to investigate the existence of k-hypergraceful labelings of cycles.
It is known that if n ≡ 1 or 2(mod 4), then the cycle Cn is nongraceful [7] and if
n ≡ 1(mod 4), then Cn is also not 2-hypergraceful [2]. In the following theorems we
determine the least k for which Cn, n ≡ 1 or 2(mod 4) is k-hypergraceful.

Theorem 2.12. If n ≡ 1(mod 4), then Cn is 3-hypergraceful.
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Proof. Let Cn = (a1, b1, a2, b2, . . . , an−1
2
, bn−1

2
, an+1

2
, a1). Let f : V (Cn) → {0, 1, . . . , n}

be defined as follows:

f(ai) =

{
0, for i = 1;

i, for 2 ≤ i ≤ n+1
2 ;

and f(bi) =


1, for i = 1;

n+ 2− i, for 2 ≤ i ≤ n−1
4 ;

n+ 1− i, for n−1
4 + 1 ≤ i ≤ n−1

2 .

It can be easily verified that f is injective and the sequence of corresponding edge
labels is (13, 21, 31, . . . , (n− 2)1}. Hence Cn is 3-hypergraceful. 2

Theorem 2.13. If n ≡ 2(mod 4), then Cn is 2-hypergraceful.

Proof. Let Cn = (a1, b1, a2, b2, . . . , an
2
, bn

2
, a1). Let f : V (Cn) → {0, 1, . . . , n} be

defined as follows:

f(ai) =


0, for i = 1;

n+ 2− i, for 2 ≤ i ≤ n+2
4 ;

n+ 1− i, for n+2
4 + 1 ≤ i ≤ n

2 .

and f(bi) = i, for 1 ≤ i ≤ n
2 .

It can be easily verified that f is injective and the sequence of corresponding edge
labels is (12, 21, . . . , (n− 1)1}. Hence Cn is 2-hypergraceful. 2

3. Conclusion and Scope

In this paper we have investigated the existence of k-hypergraceful labeling of
complete graphs and cycles. In this connection we propose the following conjecture.

Conjecture 3.1. For any connected graph G, there exists a positive integer k such
that G is k-hypergraceful.

The hypergraceful index hi(G) is then defined to be the least positive integer
k such that G is k-hypergraceful. Since hi(G) = 1 if and only if G is graceful,
this parameter gives another measure of gracefulness of graphs. It follows from
Theorem 2.6 that hi(Kp) ≤ p − 4 for all p ≥ 8. Also it follows from Theorem 2.12
and Theorem 2.13 that hi(Cn) = 2 if n ≡ 2(mod 4) and 3 if n ≡ 1(mod 4). The most
well-known conjecture on graceful labeling is Kotzig’s conjecture which states that
every nontrivial tree is graceful; which still remains open. We propose the following
weaker conjecture.

Conjecture 3.2. Every nontrivial tree is 2-hypergraceful.
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