On k-Hypergraceful labelings of Complete Graphs

JESSICA PEREIRA¹, TARKESHWAR SINGH² AND S. ARUMUGAM³

¹School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa 403 206, India. e-mail: zaydegrace@unigoa.ac.in

²Department of Mathematics, Birla Institute of Technology and Science Pilani, K K Birla, Goa Campus, NH-17B, Zuarinagar, Goa, India. e-mail: tksingh@goa.bits-pilani.ac.in

³National Centre for Advanced Research in Discrete Mathematics, Kalasalingam University, Anand Nagar, Krishnankoil 626 126, Tamil Nadu, India. e-mail: s.arumugam.klu@gmail.com

Abstract. A (p,q)-graph G = (V, E), that is, |V(G)| = p and |E(G)| = q, is said to be k-hypergraceful if there exists a decomposition of G into edge induced subgraphs G_1, G_2, \ldots, G_k having sizes m_1, m_2, \ldots, m_k respectively, and an injective labeling $f : V(G) \to \{0, 1, \ldots, q\}$, such that when each edge $uv \in E(G)$ is assigned the label |f(u) - f(v)|, the set of labels received by the edges of G_i is precisely $\{1, 2, \ldots, m_i\}$ for each $i \in \{1, 2, \ldots, k\}$. The decomposition $\{G_i\}$, if it exists, is then called a k-hypergraceful decomposition of G and f is called a k-hypergraceful labeling of G. In this paper, we characterize k-hypergraceful complete graphs K_p when $p - 4 \leq k \leq p - 1$. We also prove that the cycle C_n is 3-hypergraceful if $n \equiv 1 \pmod{4}$ and 2-hypergraceful if $n \equiv 2 \pmod{4}$.

Keywords: k-hypergraceful labeling, k-hypergraceful decomposition, k-hypergraceful graphs.

Mathematics Subject Classification (2000): 05C 78.

1. Introduction

For standard terminology and notations in graph theory we follow West [14] and for signed graphs we follow Chartrand [5] and Zaslavsky [15, 16].

134 Jessica Pereira, et al.

Most graph labeling methods trace their origin to the one introduced by Rosa [10]. Let G be a graph of order p and size q. A graceful labeling of G is an injection $f: V(G) \to \{0, 1, \ldots, q\}$ such that when each edge uv is assigned the label $g_f(uv) = |f(u) - f(v)|$, the resulting edge labels are all distinct. Such a function g_f is called the induced edge function and a graph which admits such a labeling is called a graceful graph [4, 6, 7, 10].

The notion of graceful labeling has been extended to signed graphs by Acharya and Singh [2, 3] and Singh [11].

A signed graph S (or simply sigraph) is a graph G = (V, E) together with a function $s : E(G) \to \{+, -\}$ called its signing function, which assigns a sign + or – to each edge. The graph G is called the underlying graph of the sigraph S. The set of all positive and negative edges of S are denoted by $E^+(S)$ and $E^-(S)$ respectively so that $E^+(S) \cup E^-(S) = E(S)$ is the edge set of S. Further, if $|E^+(S)| = m$ and $|E^-(S)| = n$ so that m + n = q, then S is called a (p, m, n)-sigraph. An all-positive sigraph S is one in which $E^+(S) = E(S)$ and an all-negative sigraph is one in which $E^-(S) = E(S)$. A sigraph is said to be homogeneous if it is either all-positive or all-negative, and heterogeneous otherwise.

Let S be a (p, m, n)-sigraph. For any injection $f: V(S) \to \{0, 1, \ldots, q = m + n\}$, the induced edge labeling g_f is defined by $g_f(uv) = s(uv)|f(u) - f(v)|$, for all $uv \in E(S)$ where s(uv) is the sign of the edge uv. The function f is said to be a graceful labeling of S if $g_f(E^+(S)) = \{1, 2, \ldots, m\}$ and $g_f(E^-(S)) = \{-1, -2, \ldots, -n\}$. A signed graph which admits a graceful labeling is called a graceful signed graph.

The notion of hypergraceful decomposition of graphs was first introduced by Acharya [1], which is a generalization of graceful graphs and graceful signed graphs [11, 12].

A (p,q)-graph G = (V, E) is said to be *k*-hypergraceful if there exists a decomposition of G into edge induced subgraphs G_1, G_2, \ldots, G_k having sizes m_1, m_2, \ldots, m_k respectively, and an injective labeling $f : V(G) \to \{0, 1, \ldots, q\}$, such that when each edge $uv \in E(G)$ is assigned the label |f(u) - f(v)|, the set of labels received by the edges of G_i is precisely $\{1, 2, \ldots, m_i\}$ for each $i \in \{1, 2, \ldots, k\}$. The decomposition $\{G_i\}$, if it exists, is then called a *k*-hypergraceful decomposition of G and f is called a *k*-hypergraceful labeling of G. Further, G is said to be hypergraceful if it possesses a *k*-hypergraceful decomposition for some k.

k-hypergraceful labeling for a graph G for k = 1, 2, 3 and 4 is given in Figure 1.

The friendship graph F_3 is known to be nongraceful [8]. It is also known that no signed graph on F_3 is graceful [13]. Therefore, F_3 is neither a 1-hypergraceful nor a 2-hypergraceful graph. In Figure 2 we show 3-hypergraceful and 4-hypergraceful labelings of F_3 .

We need the following results.

Figure 1. *k*-hypergraceful labelings of a graph.

Figure 2. *k*-hypergraceful labeling of F_3 for k = 3, 4.

Theorem 1.1 ([7]). A complete graph K_p is graceful if and only if $p \leq 4$.

Theorem 1.2 ([9]). A necessary condition for a (p,q)-graph G = (V, E) to be k-hypergraceful with decomposition G_1, G_2, \ldots, G_k is that it is possible to partition its vertex set V into two subsets V_o and V_e such that for each integer $i \in \{1, 2, \ldots, k\}$ there are exactly $\lfloor \frac{m_i+1}{2} \rfloor$ edges of G_i each of which joins a vertex of V_o with one of V_e .

Lemma 1.3 ([9]). If for no integer j, $0 \le j \le k$, p - 2j is a perfect square, then K_p is not k-hypergraceful with respect to any decomposition of K_p .

Remark 1.4. If for some integer j, there exists a k-hypergraceful decomposition of K_p for which p - 2j is a perfect square, then j represents the number of G_i 's with odd size.

136 Jessica Pereira, et al.

By the negation of a signed graph S, we mean a signed graph $\eta(S)$ which is obtained from S by changing the sign of every edge to its opposite. If a signed graph S is graceful with a graceful labeling f, then the negation of the signed graph S is also graceful under the same f.

Lemma 1.5 ([9]). If any integer p is such that none of p, p-2, p-4 is a perfect square, then no signed graph on K_p is graceful.

Theorem 1.6 ([9]).

- (i) No signed graph on K_p , $p \ge 6$, is graceful.
- (ii) Every signed graph on K_p , $p \leq 3$, is graceful.
- (iii) A signed graph on K_4 is graceful if and only if the number of negative edges in it is not three.
- (iv) A signed graph S on K_5 with n negative edges is graceful if and only if either n = 1 or n = 3 and the three negative edges in S are not incident at the same vertex or $\eta(S)$ satisfies similar conditions.

2. Main Results

In this section, we characterize k-hypergraceful complete graphs K_p when $p-4 \le k \le p-1$. We present our results through a series of lemmas. We use the following notation.

Let $\pi_p = (a_1, a_2, \ldots, a_t)$ be a sequence of positive integers with $a_1 \leq a_2 \leq \cdots \leq a_t$ and $t = \binom{p}{2}$. If a_i occurs r_i times in the sequence, then we write the sequence as $\pi_p = (a_1^{r_1}, a_2^{r_2}, \ldots, a_s^{r_s})$.

Lemma 2.1. The complete graph K_p is (p-4)-hypergraceful if $p \ge 8$ and p is even.

Proof. Let f be a labeling of K_p with the elements of the set $S \cup T$ where $S = \{0, 3, 4, 6\}$ and $T = \{8, 9, \ldots, p + 3\}$. Note that the elements of the sets S and T are from the set $\{0, 1, \ldots, q\}$ which are the labels of the vertices of K_p . It can be easily verified that $\pi_8 = (1^4, 2^4, 3^4, 4^3, 5^3, 6^3, 7^2, 8^2, 9^1, 10^1, 11^1)$ and $\pi_{10} = (1^6, 2^6, 3^6, 4^5, 5^4, 6^4, 7^3, 8^3, 9^3, 10^2, 11^1, 12^1, 13^1)$. Now let $p \ge 12$. Let $L_1 = \{g_f(uv) : u, v \in S\}, L_2 = \{g_f(uv) : u, v \in T\}$ and $L_3 = \{g_f(uv) : u \in S, v \in T\}$, where the integers in each L_i are in ascending order. Then $L_1 = \{1, 2, 3^2, 4, 6\}, L_2 = \{1^{p-5}, 2^{p-6}, 3^{p-7}, \ldots, (p-6)^2, (p-5)^1\}$ and $L_3 = \{2, 3, 4^2, 5^3, 6^3, 7^3, 8^4, 9^4, \ldots, (p-3)^4, (p-2)^3, (p-1)^3, p^2, (p+1), (p+2), (p+3)\}$.

Hence it follows that $\pi_p = (1^{r_1}, 2^{r_2}, 3^{r_3}, \dots, (p+3)^{r_{p+3}})$ where

$$r_{i} = \begin{cases} p-4 & \text{if } 1 \leq i \leq 3; \\ p-5 & \text{if } i = 4; \\ p-6 & \text{if } i = 5, 6; \\ p-8 & \text{if } i = 7; \\ p-i & \text{if } 8 \leq i \leq p-4; \\ 4 & \text{if } i = p-3; \\ 3 & \text{if } i = p-2, p-1; \\ 2 & \text{if } i = p; \\ 1 & \text{if } i = p+1, p+2, p+3 \end{cases}$$

Clearly $r_i \leq p-4$ for all i and $r_i \leq r_j$ if $i \leq j$. Hence π_p gives a (p-4)-hypergraceful decomposition of K_p .

Lemma 2.2. The complete graph K_p is (p-4)-hypergraceful if p = 4t + 1, where $t \ge 2$.

Proof. Let f be a labeling of K_p with the elements of the set $S \cup T$ where $S = \{0, 2, 4, 5\}$ and $T = \{8, 9, \dots, p+3\}$. It can be easily verified that $\pi_9 = (1^5, 2^5, 3^4, 4^4, 5^3, 6^3, 7^3, 8^3, 9^2, 10^2, 11^1, 12^1)$. Now let $p \ge 13$. Let $L_1 = \{g_f(uv) : u, v \in S\}$, $L_2 = \{g_f(uv) : u, v \in T\}$ and $L_3 = \{g_f(uv) : u \in S, v \in T\}$, where the integers in each L_i are in ascending order. Then $L_1 = \{1, 2^2, 3, 4, 5\}$, $L_2 = \{1^{p-5}, 2^{p-6}, 3^{p-7}, \dots, (p-6)^2, (p-5)^1\}$ and $L_3 = \{3, 4^2, 5^2, 6^3, 7^3, 8^4, 9^4, \dots, (p-2)^4, (p-1)^3, p^2, (p+1)^2, (p+2)^1, (p+3)^1\}$. Hence it follows that $\pi_p = (1^{r_1}, 2^{r_2}, 3^{r_3}, \dots, (p+3)^{r_{p+3}})$, where

$$r_{i} = \begin{cases} p-4 & \text{if } i = 1, 2; \\ p-5 & \text{if } i = 3, 4; \\ p-6 & \text{if } i = 5; \\ p-7 & \text{if } i = 6; \\ p-8 & \text{if } i = 7; \\ p-i & \text{if } 8 \le i \le p-4; \\ 4 & \text{if } i = p-3, p-2; \\ 3 & \text{if } i = p-1; \\ 2 & \text{if } i = p, p+1; \\ 1 & \text{if } i = p+2, p+3. \end{cases}$$

Clearly $r_i \leq p-4$ for all i and $r_i \leq r_j$ if $i \leq j$. Hence π_p gives a (p-4)-hypergraceful decomposition of K_p .

Lemma 2.3. The complete graph K_p is (p-4)-hypergraceful, if p = 4t + 3, where $t \ge 3$.

Proof. The labeling given in Lemma 2.1 is also a (p-4)-hypergraceful labeling of K_p where p = 4t + 3 and $t \ge 3$.

Lemma 2.4. The complete graph K_{11} is 7-hypergraceful.

Proof. Let f be the labeling of K_{11} with the elements of the set $S \cup T$ where $S = \{0, 4, 6, 7\}$ and $T = \{9, 10, 11, 12, 13, 14, 15\}$. It can be easily verified that $\pi_{11} = (1^7, 2^7, 3^7, 4^6, 5^5, 6^5, 7^4, 8^3, 9^3, 10^2, 11^2, 12^1, 13^1, 14^1, 15^1)$. Hence f gives a 7-hypergraceful labeling of K_{11} .

Lemma 2.5. The complete graph K_7 is not 3-hypergraceful.

Proof. Suppose there exists a 3-hypergraceful labeling of K_7 with label set S with decomposition G_1, G_2, G_3 of sizes (m_1, m_2, m_3) . Since 7-2j is a perfect square when j = 3, it follows from Remark 1.4 that each m_i is odd. Hence the possible cases for (m_1, m_2, m_3) are

$$(1, i, 20 - i)$$
 where $i = 1, 3, 5, 7$ or 9,
 $(3, i, 18 - i)$ where $i = 3, 5, 7$ or 9,
 $(5, i, 16 - i)$ where $i = 5$ or 7 and
 $(7, 7, 7)$.

We claim that f does not induce any of the above twelve decompositions.

Case 1. $(m_1, m_2, m_3) = (1, 1, 19).$

The sequence of edge labels is $(1^3, 2^1, 3^1, \ldots, 19^1)$. Without loss of generality, we may assume that $0, 19, 1 \in S$. Now to get the label 1 for the second edge, two consecutive integers i, i + 1 must be in S for some $i \ge 2$. However in this case the edge label i occurs twice which is a contradiction. Therefore, f does not induce the decomposition (1, 1, 19).

Case 2. (1, 3, 17).

The sequence of edge labels is $(1^3, 2^2, 3^2, 4^1, 5^1, \ldots, 17^1)$. Without loss of generality, we may assume that $0, 17, 1 \in S$. Now to get the label 1 for the second edge, i and i + 1 must be in S and $i \leq 3$. Hence $2, 3 \in S$. Now 4, 5 cannot belong to S. So to get label 3 for the second edge, 6 must be in S. Now 7 cannot be an edge label. Therefore, f does not induce the decomposition (1, 3, 17).

Case 3. (1, 5, 15).

The sequence of edge labels is $(1^3, 2^2, 3^2, 4^2, 5^2, 6^1, 7^1, \dots, 15^1)$. Without loss of generality, we may assume that $0, 15, 1 \in S$. To get two more edges with label 1, we have the following possibilities

- (a) $2, 3 \in S$
- (b) $3, 4, 5 \in S$
- (c) $2, 4, 5 \in S$

In case (a) for edges to have edge labels 3 and 11, we must have $6, 11 \in S$ and the label 9 is repeated twice, which is a contradiction. In cases (b) and (c) label 5 for second edge cannot appear. Therefore, f does not induce the decomposition (1, 5, 15).

Case 4. (1, 7, 13).

The sequence of edge labels is $(1^3, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^1, 9^1, \dots, 13^1)$. Without loss of generality, we may assume that $0, 13, 1 \in S$. Now the set $\{6, 7\}$ cannot be a subset of S. To get label 1 for three edges we have the following possibilities

(a) $2, 3 \in S$ (b) $3, 4, 7, 8 \in S$ or $4, 5, 7, 8 \in S$ (c) $2, i, i + 1 \in S$ for i = 4, 5 or $j, j + 1, j + 2 \in S$ for j = 3, 4

In case (a) label 7 for two edges cannot be obtained. In case (b) the edge label 3 repeats more than twice which gives a contradiction. In case (c) if $2, i, i + 1 \in S$ then label 10 for an edge cannot appear and if $j, j + 1, j + 2 \in S$ then label 11 for an edge cannot appear. Therefore, f does not induce the decomposition (1, 7, 13).

Case 5. (1, 9, 11).

The sequence of edge labels is $(1^3, 2^2, 3^2, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2, 10^1, 11^1)$. Without loss of generality, we may assume that $0, 11, 1 \in S$. To get label 9 for two edges, 2 and 9 must be in S. So to get label 8 for second edge, 8 must be in S. Now the label 3 for the second edge cannot be obtained. Therefore, f does not induce the decomposition (1, 9, 11).

Case 6. (3, 3, 15).

The sequence of edge labels is $(1^3, 2^3, 3^3, 4^1, 5^1, \dots, 15^1)$. Without loss of generality, we may assume that $0, 15, 1 \in S$. To get label 1 for 3 edges, we have to include 2 and 3 in S and to get label 11 for an edge we must have 11 in S. Now label 7 for an edge cannot be obtained. Therefore, f does not induce the decomposition (3, 3, 15).

Case 7. (3, 5, 13).

The sequence of edge labels is $(1^3, 2^3, 3^3, 4^2, 5^2, 6^1, 7^1, \dots, 13^1)$. Without loss of generality, we may assume that $0, 13, 1 \in S$. To get label 1 for two more edges, we have the following possibilities

(a) $2, 3 \in S$ (b) $3, 4, 5 \in S$ (c) $2, 4, 5 \in S$

In case (a) to get label 9 for an edge, we must have $9 \in S$. Now the label 3 for an edge cannot be obtained. In case (b) label 11 for an edge cannot appear and in case (c) label 10 for an edge cannot appear. Therefore, f does not induce the decomposition (3, 5, 13).

Case 8. (3, 7, 11).

The sequence of edge labels is $(1^3, 2^3, 3^3, 4^2, 5^2, 6^2, 7^2, 8^1, 9^1, \dots, 11^1)$. Without loss of generality, we may assume that $0, 11, 1 \in S$. To get the edge label 9 we have the following two cases

(a) $9 \in S$

(b) $2 \in S$

In case (a) to get label 7 for two edges, 4 and 7 must be in S. Now the label 1 for the second edge cannot appear. In case (b) to get label 8 for an edge, either 8 or 3 must be in S. If $3 \in S$, then label 7 for two edges cannot appear. If $8 \in S$, then to get label 7 for a second edge, either 4 must be in S or 7 must be in S. In either case edge label 5 cannot appear. Therefore, f does not induce the decomposition (3, 7, 11).

Case 9. (3, 9, 9).

In order to get the sequence of edge labels as $(1^3, 2^3, 3^3, 4^2, 5^2, 6^2, 7^2, 8^2, 9^2)$, we have to assign the labels to the vertices of K_7 from the set $\{0, 1, \ldots, 9\}$, which is not possible, as we cannot get label 9 for two edges.

Case 10. (5, 5, 11).

The sequence of edge labels is $(1^3, 2^3, 3^3, 4^3, 5^3, 6^1, 7^1, \dots, 11^1)$. Without loss of generality, we may assume that $0, 11, 1 \in S$. To get label 1 for two more edges, we have the following possibilities

(a) $2, 3 \in S$ (b) $3, 4, 5 \in S$ (c) $2, 4, 5 \in S$

In case (a) label 5 for three edges cannot appear. In cases (b) and (c) label 5 for two edges cannot appear. Therefore, f does not induce the decomposition (5, 5, 11).

Case 11. (5, 7, 9).

The sequence of edge labels is $(1^3, 2^3, 3^3, 4^3, 5^3, 6^2, 7^2, 8^1, 9^1)$, Without loss of generality, we may assume that $0, 9, 1 \in S$. To obtain label 7 for two edges, the integers 2 and 7 must be in S. Now to obtain label 6 for a second edge, either $6 \in S$ or $3 \in S$. In both the cases label 5 for another edge cannot be obtained. Therefore, f does not induce the decomposition (5, 7, 9).

Case 12. (7, 7, 7).

In this case, to get the sequence of edge labels $(1^3, 2^3, 3^3, 4^3, 5^3, 6^3, 7^3)$, we have to assign the labels to the vertices of K_7 from the set $\{0, 1, \ldots, 7\}$. One can easily see that no labeling from this set can give label 7 for three edges. Thus we see that none of the above decompositions have a 3-hypergraceful labeling of K_7 . Hence K_7 is not 3-hypergraceful.

Theorem 2.6. The complete graph K_p is (p-4)-hypergraceful if and only if $p \ge 8$.

Proof. Suppose $p \ge 8$. If p = 2t, $t = 4, 5, \ldots$, then by Lemma 2.1, K_p is (p - 4)-hypergraceful. If p = 4t+1, $t \ge 2$, then by Lemma 2.2, K_p is (p-4)-hypergraceful. If p = 4t + 3, $t \ge 3$, then by Lemma 2.3, K_p is (p - 4)-hypergraceful. Finally, by Lemma 2.4, K_{11} is 7-hypegraceful. Therefore if $p \ge 8$ then K_p is (p-4)-hypergraceful.

Conversely, Suppose that K_p is (p-4)-hypergraceful. We need to prove that $p \ge 8$. Instead, we prove the contrapositive statement. Suppose that p < 8. By Theorem 1.1, K_5 is nongraceful; by Theorem 1.6, K_6 is not 2-hypergraceful and by Lemma 2.5, K_7 is not 3-hypergraceful. Therefore, if p < 8 then K_p is not (p-4)-hypergraceful. \Box

Lemma 2.7. The complete graph K_p is (p-3)-hypergraceful if $p \ge 7$.

Proof. Let f be a labeling of K_p with the elements of the set $S \cup T$ where $S = \{0,2\}$ and $T = \{5,6,\ldots,p+2\}$. Let $L_1 = \{g_f(uv) : u, v \in S\}$, $L_2 = \{g_f(uv) : u, v \in T\}$ and $L_3 = \{g_f(uv) : u \in S, v \in T\}$, where the integers in each L_i are in ascending order. Then $L_1 = \{2\}$, $L_2 = \{1^{p-3}, 2^{p-4}, 3^{p-5}, \ldots, (p-4)^2, (p-3)^1\}$ and $L_3 = \{3,4,5^2,6^2,7^2,\ldots,p^2,(p+1)^1,(p+2)^1\}$. Hence it follows that $\pi_p = (1^{r_1}, 2^{r_2}, 3^{r_3}, \ldots, (p+2)^{r_{p+2}})$,

where
$$r_i = \begin{cases} p-3, & i=1,2; \\ p-4, & i=3; \\ p-5, & i=4; \\ p-i, & 5 \le i \le p-2; \\ 2, & i=p-1,p; \\ 1, & i=p+1,p+2 \end{cases}$$

142 Jessica Pereira, et al.

Clearly $r_i \leq p-3$ for all i and $r_i \leq r_j$ if $i \leq j$. Hence π_p gives a (p-3)-hypergraceful decomposition of K_p .

Lemma 2.8. The complete graph K_6 is 3-hypergraceful.

Proof. Consider the labeling of K_6 with the elements of $\{0, 1, 3, 4, 5, 7\}$. One can easily verify that the corresponding sequence of induced edge labels is $(1^3, 2^3, 3^3, 4^3, 5^1, 6^1, 7^1)$. The decomposition G_1, G_2 and G_3 of K_6 have sizes (4, 4, 7).

Theorem 2.9. The complete graph K_p is (p-3)-hypergraceful for all $p \ge 4$.

Proof. The result follows from Theorem 1.1, Theorem 1.6, Lemma 2.7 and Lemma 2.8. $\hfill \Box$

Theorem 2.10. The complete graph K_p is (p-2)-hypergraceful for all $p \ge 3$.

Proof. Let f be a labeling of K_p with the elements of the set $S \cup T$ where $S = \{0\}$ and $T = \{2, 3, ..., p\}$. Let $L_1 = \{g_f(uv) : u, v \in S\}, L_2 = \{g_f(uv) : u, v \in T\}$ and $L_3 = \{g_f(uv) : u \in S, v \in T\}$, where the integers in each L_i are in ascending order. Then $L_1 = \emptyset$, $L_2 = \{1^{p-2}, 2^{p-3}, 3^{p-4}, ..., (p-4)^3, (p-3)^2, (p-2)^1\}$ and $L_3 = \{2, 3, ..., p-1, p\}$. Hence it follows that $\pi_p = (1^{r_1}, 2^{r_2}, 3^{r_3}, ..., p^{r_p})$,

where
$$r_i = \begin{cases} p - 2, & i = 1; \\ p - i, & 2 \le i \le p - 1; \\ 1, & i = p. \end{cases}$$

Clearly $r_i \leq p-2$ for all i and $r_i \leq r_j$ if $i \leq j$. Hence π_p gives a (p-2)-hypergraceful decomposition of K_p .

Theorem 2.11. The complete graph K_p is (p-1)-hypergraceful for all $p \ge 2$.

Proof. We label the vertices of K_p from the set $\{0, 1, \ldots, p-1\}$. It can be easily verified that the sequence of edge labels $\pi_p = (1^{p-1}, 2^{p-2}, 3^{p-3}, \ldots, (p-2)^2, (p-1)^1)$. Hence K_p is (p-1)-hypergraceful for all $p \geq 2$..

We now proceed to investigate the existence of k-hypergraceful labelings of cycles. It is known that if $n \equiv 1$ or $2 \pmod{4}$, then the cycle C_n is nongraceful [7] and if $n \equiv 1 \pmod{4}$, then C_n is also not 2-hypergraceful [2]. In the following theorems we determine the least k for which C_n , $n \equiv 1$ or $2 \pmod{4}$ is k-hypergraceful.

Theorem 2.12. If $n \equiv 1 \pmod{4}$, then C_n is 3-hypergraceful.

Proof. Let $C_n = (a_1, b_1, a_2, b_2, \dots, a_{\frac{n-1}{2}}, b_{\frac{n-1}{2}}, a_{\frac{n+1}{2}}, a_1)$. Let $f : V(C_n) \to \{0, 1, \dots, n\}$ be defined as follows:

$$f(a_i) = \begin{cases} 0, & \text{for } i = 1; \\ i, & \text{for } 2 \le i \le \frac{n+1}{2}; \end{cases}$$

and
$$f(b_i) = \begin{cases} 1, & \text{for } i = 1; \\ n+2-i, & \text{for } 2 \le i \le \frac{n-1}{4}; \\ n+1-i, & \text{for } \frac{n-1}{4} + 1 \le i \le \frac{n-1}{2} \end{cases}$$

It can be easily verified that f is injective and the sequence of corresponding edge labels is $(1^3, 2^1, 3^1, \ldots, (n-2)^1)$. Hence C_n is 3-hypergraceful.

Theorem 2.13. If $n \equiv 2 \pmod{4}$, then C_n is 2-hypergraceful.

Proof. Let $C_n = (a_1, b_1, a_2, b_2, \dots, a_{\frac{n}{2}}, b_{\frac{n}{2}}, a_1)$. Let $f : V(C_n) \to \{0, 1, \dots, n\}$ be defined as follows:

$$f(a_i) = \begin{cases} 0, & \text{for } i = 1; \\ n+2-i, & \text{for } 2 \le i \le \frac{n+2}{4}; \\ n+1-i, & \text{for } \frac{n+2}{4} + 1 \le i \le \frac{n}{2}. \end{cases}$$

and
$$f(b_i) = i$$
, for $1 \le i \le \frac{n}{2}$.

It can be easily verified that f is injective and the sequence of corresponding edge labels is $(1^2, 2^1, \ldots, (n-1)^1)$. Hence C_n is 2-hypergraceful.

3. Conclusion and Scope

In this paper we have investigated the existence of k-hypergraceful labeling of complete graphs and cycles. In this connection we propose the following conjecture.

Conjecture 3.1. For any connected graph G, there exists a positive integer k such that G is k-hypergraceful.

The hypergraceful index $h_i(G)$ is then defined to be the least positive integer k such that G is k-hypergraceful. Since $h_i(G) = 1$ if and only if G is graceful, this parameter gives another measure of gracefulness of graphs. It follows from Theorem 2.6 that $h_i(K_p) \leq p - 4$ for all $p \geq 8$. Also it follows from Theorem 2.12 and Theorem 2.13 that $h_i(C_n) = 2$ if $n \equiv 2 \pmod{4}$ and 3 if $n \equiv 1 \pmod{4}$. The most well-known conjecture on graceful labeling is Kotzig's conjecture which states that every nontrivial tree is graceful; which still remains open. We propose the following weaker conjecture.

Conjecture 3.2. Every nontrivial tree is 2-hypergraceful.

143

Acknowledgement

The second author is thankful to the Department of Science and Technology (DST), Govt. of India, for providing financial support under the Fast Track Project for Young Scientist (Ref. No. SR/FTP/MS-01/2003).

References

- B. D. Acharya, (k, d)-graceful packings of a graph, In: Technical Proc. of Group Discussion on Graph Labeling Problems (Eds.: Acharya B. D. and Hegde S. M.), National Institute of Technology, Karnataka, Surathkal, India (1999).
- [2] M. Acharya and T. Singh, Graceful signed graphs, *Czechoslovak Math. J.*, 54(129) (2004) 291–302.
- [3] M. Acharya and T. Singh, Graceful signed graphs: II. The case of signed cycle with connected negative section, *Czechoslovak Math. J.*, **55(130)** (2005) 25–40.
- [4] G. S. Bloom and S. W. Golomb, Applications of numbered undirected graphs, *Proc. IEEE*, 65(4) (1977) 562–570.
- [5] G. Chartrand, Graphs as mathematical models, Prindle, Weber and Schmidt, Inc., Boston, Massachusetts (1977).
- [6] J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, Dynamic survey, (2005), DS #6: pp. 256.
- [7] S. W. Golomb, How to number a graph, In: Graph theory and computing (Ed.: Read R.C.), Academic Press (1972) 23–37.
- [8] K. M. Koh, D. G. Rogers, P. Y. Lee and C. W. Toh, On graceful graphs V: unions of graphs with one vertex in common, *Nanta Math.*, **12** (1979) 133–136.
- [9] S. B. Rao, B. D. Acharya, T. Singh and M. Acharya, Hypergraceful complete graphs, Australas. J. Combin., 48 (2010) 5–24.
- [10] A. Rosa, On certain valuations of the vertices of a graph; In. Theory of Graphs, Internat. Symp., Rome, 1966, (Ed.: Rosentiehl P.), Gordon and Breach, New York and Dunod, Paris, (1967) 349–355.
- [11] T. Singh, Advances in the theory of signed graphs, Ph.D. Thesis, University of Delhi, Delhi (2003).
- [12] T. Singh, Hypergraceful graphs, DST Project completion Report No.: SR/FTP/MS-01/2003, Department of Science and Technology, Govt. of India (2008).
- [13] T. Singh, Graceful sigraphs on C_3^k , AKCE J. Graphs. Combin., **6(1)** (2009) 201–208.
- [14] D. B. West, Introduction to Graph Theory, Prentice-Hall of India, Pvt. Ltd. (1999).

- [15] T. Zaslavsky, Signed graphs, *Discrete Appl. Math.*, **4(1)** (1982) 47–74.
- [16] T. Zaslavsky, A mathematical bibliography of signed and gain graphs and allied areas, *Electron. J. Combin.*, Dynamic survey, (2005), DS #6: 1–148.