Name of the Programme: M.Sc. Part-I (Chemistry)

Course Code: CHP-521 Title of the course: Practical course in Physical Chemistry-I

Number of Credits: 02

Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied chemistry courses at graduate level have cleared change of discipline entrance test conducted University.	
Course Objective:	 To develop experimental skills on basic lab techniques in physical chemistry To acquire skills for data analysis and interpretation To help the students to develop research skills 	
Content	 Minimum 13 Experiments to be performed per Semester Non-instrumental Experiments (any 7) 1. To study the kinetics of hydrolysis of ethyl acetate and to determine a) Energy of activation b) Entropy of activation and c) Free energy change. 2. To determine the order of reaction between potassium persulphate and potassium iodide by graphical, fractional change and differential methods. 3. To study the three-component system such as acetic acid, chloroform; and water and obtain tie line. 4. To determine the molecular weight of polyvinyl alcohol by viscosity measurement. 5. To study the electro-kinetics of rapid reaction between SO₄²⁻ and I in an aqueous solution. 6. To determine the partial molal volume of ethanol-water mixture at a given temperature. 8. To measure energy content of various types of plastics using bomb calorimetry 9. To determine number average molecular weight of a polymer 	No of hours 30
	sample with an indirect titration method. 10. To investigate basic hydrolysis of ethyl acetate at four different temperatures and find out energy of activation	
	 Instrumental Experiments (any 6) 11. To determine the degree of hydrolysis of salt of weak base and strong acid using conductometer. 	30

	12. To determine the dissociation constants of a tribasic acid	
	(Phosphoric acid obtain derivative plot to get equivalence point.	
	Ce^{3+}/Ce^{4+} system obtain derivative plot to get equivalence point.	
	14. To study spectrophotometric titration of ferrous ammonium	
	sulphate with potassium permanganate (or dichromate vs	
	permanganate)	
	15. To determine Avogadro's number by improved electroplating.	
	16. To determine the zeta potential of colloidal system and	
	investigate the effect of different surfactants on stability of the	
	colloids	
	17. To verify the Kohlrausch's law for weak electrolyte by	
	conductometry	
	18. To determine the transport numbers of Cu^{2+} and SO_4^{2-} ions in	
	CuSO ₄ solution by Hittorf's method.	
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assignments /	
	presentations / lab hand-out /self-study or a combination of some of these	
	can also be used. ICT mode should be preferred. Sessions should be	
	interactive in nature to enable peer group learning.	
References /	1. A. Finlay & J.A. Kitchener, Practical Physical Chemistry, Longman.	
Readings	2. F. Daniels & J.H. Mathews, Experimental Physical Chemistry, Longman.	
	3. A. M. James, Practical Physical Chemistry, Longman.	
	4. D.P. Shoemaker & C.W. Garland, Experimental Physical Chemistry,	
Carries	McGraw-Hill.	
Course	1. Students will able to explain various fundamental lab techniques.	
outcomes:	2. Students should be in a position to apply the knowledge for their	
	dissertation and research work.	
	3. Students will be able to use spectrophotometric titrations for appropriate	
	analysis.	
	4. Students will be able to determine molecular weight of some polymers.	